Seventy Sevens
Daniel 9:22-27 is one of the more mysterious passages in the Bible leading to endless speculation and debate. Many have used the passage to calculate the coming of Jesus, and others have tried using it to predict the timing of the Anti-Christ and of Jesus' return. This page will not focus on such calculations and predictions, but on the marvellous numeric patterns of seven in the text itself. As the angel Gabriel said, Seventy sevens
play a major role in the history of Israel, and this holds even for the text.
22 He came and he said to me, "O Daniel, I have now come out to give you wisdom and understanding. 23 At the beginning of your supplications a word went forth, and I have come to tell it to you, for you are greatly beloved; therefore consider the word and understand the vision. 24 Seventy weeks of years are decreed concerning your people and your holy city, to finish the transgression, to put an end to sin, and to atone for iniquity, to bring in everlasting righteousness, to seal both vision and prophet, and to anoint a most holy place. 25 Know therefore and understand that from the going forth of the word to restore and build Jerusalem to the coming of an anointed one, a prince, there shall be seven weeks. Then for sixty-two weeks it shall be built again with squares and moat, but in a troubled time. 26 And after the sixty-two weeks, an anointed one shall be cut off, and shall have nothing; and the people of the prince who is to come shall destroy the city and the sanctuary. Its end shall come with a flood, and to the end there shall be war; desolations are decreed. 27 And he shall make a strong covenant with many for one week; and for half of the week he shall cause sacrifice and offering to cease; and upon the wing of abominations shall come one who makes desolate, until the decreed end is poured out on the desolator. (Daniel 9:22-271)
1 2 3 4 5 6 7 8 68 222 120 257 95 475 511 415 32 42 39 50 41 43 61 82 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 19 20 1 22 23 24 25 26 27 8 29 30 31 2 33 34 35 36 37 6- 10- 2- 14 6- 10- 4- 2- 20 16- 13- 10 6- 10- 1- 13- 20 4- 14- 10- 1- 12 16- 22- 5 10- 18- 1- 22- 10 12- 5- 21- 11- 10- 12- 11 6- 10- 2- 50 6- 10- 4- 2- 200 70- 40- 10 6- 10- 1- 40- 200 4- 50- 10- 1- 30 70- 400- 5 10- 90- 1- 400- 10 30- 5- 300- 20- 10- 30- 20 and-he-instructed and-he-spoke to-me and-he-said Daniel now I-came to-give-you-insight 9 10 11 12 13 14 15 16 17 67 840 544 101 206 67 413 52 30 31 66 85 29 26 31 35 34 21 38 39 40 41 42 43 4 45 46 47 8 49 50 51 52 53 54 55 56 57 8 59 60 1 62 63 64 5 66 67 68 9 70 71 72 73 74 2- 10- 14- 5 2- 22- 8- 12- 22 22- 8- 14- 6- 14- 10- 11 10- 18- 1 4- 2- 20 6- 1- 14- 10 2- 1- 22- 10 12- 5- 3- 10- 4 11- 10 2- 10- 50- 5 2- 400- 8- 30- 400 400- 8- 50- 6- 50- 10- 20 10- 90- 1 4- 2- 200 6- 1- 50- 10 2- 1- 400- 10 30- 5- 3- 10- 4 20- 10 understanding at-beginning-of your-prayers he-came answer and-I I-came to-tell for 18 19 20 21 22 23 24 25 464 406 68 208 63 248 422 422 59 28 32 28 27 41 62 62 75 76 7 8 9 80 81 82 83 84 5 86 87 88 9 90 91 92 3 4 95 96 97 98 9 100 101 2 03 04 105 106 7 08 09 110 8- 13- 6- 4- 6- 22 1- 22- 5 6- 2- 10- 14 2- 4- 2- 20 6- 5- 2- 14 2- 13- 20- 1- 5 21- 2- 16- 10- 13 21- 2- 16- 10- 13 8- 40- 6- 4- 6- 400 1- 400- 5 6- 2- 10- 50 2- 4- 2- 200 6- 5- 2- 50 2- 40- 200- 1- 5 300- 2- 70- 10- 40 300- 2- 70- 10- 40 highly-esteemed you thus-consider the-message and-understand the-vision sevens seventy 26 27 28 29 30 31 32 33 34 478 100 130 106 280 424 81 455 484 55 28 40 34 46 55 36 59 61 111 2 113 114 115 116 117 18 119 120 21 122 123 24 125 126 7 128 129 130 31 32 133 134 35 136 137 138 39 140 141 142 14- 8- 22- 11 16- 12 16- 13- 11 6- 16- 12 16- 10- 20 19- 4- 21- 11 12- 11- 12- 1 5- 17- 21- 16 6- 12- 8- 22- 13 50- 8- 400- 20 70- 30 70- 40- 20 6- 70- 30 70- 10- 200 100- 4- 300- 20 30- 20- 30- 1 5- 80- 300- 70 6- 30- 8- 400- 40 is-decreed for your-people and-for city-of holy to-finish the-transgression and-to-put-to-end 35 36 37 38 39 40 41 42 424 336 126 54 194 190 484 71 46 66 36 36 41 64 61 35 143 4 5 6 147 148 49 150 51 152 153 4 155 156 57 8 9 160 161 162 3 164 165 66 67 68 169 170 71 2 173 174 175 6 7 178 8- 9- 1- 6- 22 6- 12- 11- 17- 20 16- 6- 14 6- 12- 5- 2- 10- 1 18- 4- 19 16- 12- 13- 10- 13 6- 12- 8- 22- 13 8- 7- 6- 14 8- 9- 1- 6- 400 6- 30- 20- 80- 200 70- 6- 50 6- 30- 5- 2- 10- 1 90- 4- 100 70- 30- 40- 10- 40 6- 30- 8- 400- 40 8- 7- 6- 50 sin and-to-atone-for wickedness and-to-bring-in righteousness everlasting and-to-seal-up vision 43 44 45 46 47 48 49 50 51 69 384 404 454 480 756 90 131 206 33 60 44 67 48 72 27 32 26 179 180 1 82 183 184 85 86 187 188 189 190 191 192 3 194 95 196 197 198 9 200 201 202 203 04 205 206 207 208 09 210 211 2 213 6- 14- 2- 10- 1 6- 12- 13- 21- 8 19- 4- 21 19- 4- 21- 10- 13 6- 22- 4- 16 6- 22- 21- 11- 12 13- 14 13- 18- 1 4- 2- 20 6- 50- 2- 10- 1 6- 30- 40- 300- 8 100- 4- 300 100- 4- 300- 10- 40 6- 400- 4- 70 6- 400- 300- 20- 30 40- 50 40- 90- 1 4- 2- 200 and-prophet and-to-anoint holy-of holy-ones so-you-know and-you-understand from issuing matter 52 53 54 55 56 57 58 59 347 494 586 74 358 67 422 377 50 62 82 20 52 31 62 44 214 5 216 17 218 219 220 1 22 3 224 225 226 7 228 29 230 231 232 233 234 35 236 237 8 39 240 241 2 43 44 245 246 7 48 249 12- 5- 21- 10- 2 6- 12- 2- 14- 6- 22 10- 20- 6- 21- 12- 13 16- 4 13- 21- 10- 8 14- 3- 10- 4 21- 2- 16- 10- 13 21- 2- 16- 5 30- 5- 300- 10- 2 6- 30- 2- 50- 6- 400 10- 200- 6- 300- 30- 40 70- 4 40- 300- 10- 8 50- 3- 10- 4 300- 2- 70- 10- 40 300- 2- 70- 5 to-restore and-to-rebuild Jerusalem until anointed ruler sevens seven 60 61 62 63 64 65 66 428 650 406 708 513 216 310 68 65 64 51 63 36 58 250 251 2 53 54 255 256 257 58 259 260 261 62 63 264 265 266 7 268 269 270 1 72 273 274 275 6 7 278 279 280 281 2 283 6- 21- 2- 16- 10- 13 21- 21- 10- 13 6- 21- 14- 10- 13 22- 21- 6- 2 6- 14- 2- 14- 22- 5 20- 8- 6- 2 6- 8- 20- 6- 18 6- 300- 2- 70- 10- 40 300- 300- 10- 40 6- 300- 50- 10- 40 400- 300- 6- 2 6- 50- 2- 50- 400- 5 200- 8- 6- 2 6- 8- 200- 6- 90 and-sevens sixty and-two she-will-return and-she-will-be-rebuilt street and-moat 67 68 69 70 71 72 73 204 525 225 427 650 406 630 51 66 45 67 65 64 63 284 5 86 7 288 289 290 291 92 293 294 5 6 297 298 299 300 1 02 03 304 305 306 07 308 309 310 11 12 313 314 15 316 317 6- 2- 18- 6- 19 5- 16- 22- 10- 13 6- 1- 8- 20- 10 5- 21- 2- 16- 10- 13 21- 21- 10- 13 6- 21- 14- 10- 13 10- 11- 20- 22 6- 2- 90- 6- 100 5- 70- 400- 10- 40 6- 1- 8- 200- 10 5- 300- 2- 70- 10- 40 300- 300- 10- 40 6- 300- 50- 10- 40 10- 20- 200- 400 in-troubled the-times and-after the-sevens sixty and-two he-will-be-cut-off 74 75 76 77 78 79 80 81 358 67 36 291 415 728 110 67 52 31 18 57 55 71 29 31 318 319 320 321 322 3 24 325 326 327 328 9 330 31 332 333 4 335 6 337 338 339 340 41 342 343 344 345 6 47 348 13- 21- 10- 8 6- 1- 10- 14 12- 6 6- 5- 16- 10- 20 6- 5- 19- 4- 21 10- 21- 8- 10- 22 16- 13 14- 3- 10- 4 40- 300- 10- 8 6- 1- 10- 50 30- 6 6- 5- 70- 10- 200 6- 5- 100- 4- 300 10- 300- 8- 10- 400 70- 40 50- 3- 10- 4 anointed and-there-will-be-nothing to-him and-the-city and-the-sanctuary he-will-destroy people-of ruler 82 83 84 85 86 87 88 89 8 202 391 80 190 123 748 786 8 49 49 26 37 51 82 75 349 350 351 352 353 54 355 356 357 8 359 360 61 362 363 364 365 66 7 68 369 370 1 372 73 374 375 76 77 8 379 5- 2- 1 6- 19- 18- 6 2- 21- 9- 17 6- 16- 4 19- 18 13- 12- 8- 13- 5 14- 8- 20- 18- 22 21- 13- 13- 6- 22 5- 2- 1 6- 100- 90- 6 2- 300- 9- 80 6- 70- 4 100- 90 40- 30- 8- 40- 5 50- 8- 200- 90- 400 300- 40- 40- 6- 400 the-one-coming and-end-of-him like-flood until-to end war being-decreed ones-being-desolate 90 91 92 93 94 95 96 97 226 612 282 378 13 114 383 722 46 54 57 45 13 42 50 65 380 1 2 3 84 385 386 387 88 389 390 391 2 93 394 395 6 7 398 399 400 401 402 3 04 405 406 407 8 9 410 411 412 3 14 415 6- 5- 3- 2- 10- 20 2- 20- 10- 22 12- 20- 2- 10- 13 21- 2- 6- 16 1- 8- 4 6- 8- 18- 10 5- 21- 2- 6- 16 10- 21- 2- 10- 22 6- 5- 3- 2- 10- 200 2- 200- 10- 400 30- 200- 2- 10- 40 300- 2- 6- 70 1- 8- 4 6- 8- 90- 10 5- 300- 2- 6- 70 10- 300- 2- 10- 400 and-he-will-confirm covenant with-many seven one but-middle the-Seven he-will-put-to-end 98 99 100 101 102 103 104 105 17 109 106 150 546 420 80 55 17 46 34 42 87 60 26 28 416 7 418 419 420 21 2 423 424 25 426 427 28 429 430 431 2 33 34 435 436 437 38 439 440 41 442 443 44 445 7- 2- 8 6- 13- 14- 8- 5 6- 16- 12 11- 14- 17 21- 19- 6- 18- 10- 13 13- 21- 13- 13 6- 16- 4 11- 12- 5 7- 2- 8 6- 40- 50- 8- 5 6- 70- 30 20- 50- 80 300- 100- 6- 90- 10- 40 40- 300- 40- 40 6- 70- 4 20- 30- 5 sacrifice and-offering and-on peak-of abomination causing-desolation and-until end 106 107 108 109 English interlinear is adapted (with slight changes) from, 359 820 100 380 "The NIV Interlinear Hebrew-English Old Testament", 71 55 28 47 volume 4, edited by John R. Kohlenberger III, 446 47 8 449 450 451 452 453 454 455 456 457 58 459 The Zondervan Corporation, Grand Rapids Michigan, 1985 6- 14- 8- 20- 18- 5 22- 22- 11 16- 12 21- 13- 13 6- 50- 8- 200- 90- 5 400- 400- 20 70- 30 300- 40- 40 decreed she-is-poured-out on one-being-desolate
Even though some of numeric features can go several levels deep, there are inconsistencies. This is because this is a prophecy about Israel, not a description about God, nor a spiritual lesson. The angel Gabriel is the speaker, not God.
The numeric total of the passage: 33670 = 2 x 5 x 7 x 13 x 37. Two factors related to God appear. There is 7 representing God’s perfection, and there is 13 representing God’s name. This is a one in ninety-one chance, and shows God’s sovereign will in the prophecy.
The Words
1Since there are 109 words, and 109 is a prime number, the words cannot be divided into equal sized groups greater than one. However, they can be divided into alternating groups of 21 and 23, or as alternating groups of 7 and 27. The totals for the groups are divisible by 7.2
List of 109 words: 68 222 120 257 95 475 511 415 67 840 544 101 206 67 413 52 30 464 406 68 208 63 248 422 422 478 100 130 106 280 424 81 455 484 424 336 126 54 194 190 484 71 69 384 404 454 480 756 90 131 206 347 494 586 74 358 67 422 377 428 650 406 708 513 216 310 204 525 225 427 650 406 630 358 67 36 291 415 728 110 67 8 202 391 80 190 123 748 786 226 612 282 378 13 114 383 722 17 109 106 150 546 420 80 55 359 820 100 380
1.1Alternating groups of 21 and 23.
1.1.1Groups of 21 words:
68 222 120 257 95 475 511 415 67 840 544 101 206 67 413 52 30 464 406 68 208 404 454 480 756 90 131 206 347 494 586 74 358 67 422 377 428 650 406 708 513 216 786 226 612 282 378 13 114 383 722 17 109 106 150 546 420 80 55 359 820 100 380
Total: 20454 = 2 x 3 x 7 x 487.
1.1.2Groups of 23 words:
63 248 422 422 478 100 130 106 280 424 81 455 484 424 336 126 54 194 190 484 71 69 384 310 204 525 225 427 650 406 630 358 67 36 291 415 728 110 67 8 202 391 80 190 123 748
Total: 13216 = 25 x 7 x 59.
1.2Alternating groups of 7 and 27 words.
1.2.1Groups of 7 words:
68 222 120 257 95 475 511 424 336 126 54 194 190 484 225 427 650 406 630 358 67 420 80 55 359 820 100 380
Total: 8533 = 7 x 23 x 53.
1.2.1.1 Odd positioned groups of 2 from 1.2.1:
68 222 95 475 336 126 190 484 650 406 67 420 359 820
Total: 4718 = 2 x 7 x 337.
1.2.1.1.1 First half of 7 from 1.2.1.1:
484 650 406 67 420 359 820
Total: 3206 = 2 x 7 x 229. SF: 238 = 2 x 7 x 17. SF: 26 = 2 x 13.
1.2.1.1.2 Last half of 7 from 1.2.1.1:
68 222 95 475 336 126 190
Total: 1512 = 23 x 33 x 7.
1.2.1.2 Even positioned groups of 2 from 1.2.1:
120 257 511 424 54 194 225 427 630 358 80 55 100 380
Total: 3815 = 5 x 7 x 109.
1.2.1.2.1 Odd positioned groups of 2 from 1.2.1.2:
120 257 54 194 630 358 100 380
Total: 2093 = 7 x 13 x 23.
1.2.1.2.1.1 Odd positioned groups of 2 from 1.2.1.2.1:
120 257 630 358
Total: 1365 = 3 x 5 x 7 x 13. SF: 28 = 22 x 7.
1.2.1.2.1.1.1 First half of 2 from 1.2.1.2.1.1:
120 257
Total: 377 = 13 x 29. SF: 42 = 2 x 3 x 7.
1.2.1.2.1.1.2 Last half of 2 from 1.2.1.2.1.1:
630 358
Total: 988 = 22 x 13 x 19.
1.2.1.2.1.2 Even positioned groups of 2 from 1.2.1.2.1:
54 194 100 380
Total: 728 = 23 x 7 x 13. SF: 26 = 2 x 13.
1.2.1.2.1.2.1 Odd positioned groups of 1 from 1.2.1.2.1.2:
54 100
Total: 154 = 2 x 7 x 11.
1.2.1.2.1.2.2 Even positioned groups of 1 from 1.2.1.2.1.2:
194 380
Total: 574 = 2 x 7 x 41.
1.2.1.2.2 Even positioned groups of 2 from 1.2.1.2:
511 424 225 427 80 55
Total: 1722 = 2 x 3 x 7 x 41.
1.2.1.2.3 First half of 7 from 1.2.1.2:
427 630 358 80 55 100 380
Total: 2030 = 2 x 5 x 7 x 29.
1.2.1.2.4 Last half of 7 from 1.2.1.2:
120 257 511 424 54 194 225
Total: 1785 = 3 x 5 x 7 x 17.
1.2.1.2.4.1 Odd positioned groups of 1 from 1.2.1.2.4:
120 511 54 225
Total: 910 = 2 x 5 x 7 x 13.
1.2.1.2.4.2 Even positioned groups of 1 from 1.2.1.2.4:
257 424 194
Total: 875 = 53 x 7.
1.2.1.3 First half of 14 from 1.2.1:
225 427 650 406 630 358 67 420 80 55 359 820 100 380
Total: 4977 = 32 x 7 x 79.
1.2.1.4 Last half of 14 from 1.2.1:
68 222 120 257 95 475 511 424 336 126 54 194 190 484
Total: 3556 = 22 x 7 x 127.
1.2.2Groups of 27 words:
415 67 840 544 101 206 67 413 52 30 464 406 68 208 63 248 422 422 478 100 130 106 280 424 81 455 484 71 69 384 404 454 480 756 90 131 206 347 494 586 74 358 67 422 377 428 650 406 708 513 216 310 204 525 36 291 415 728 110 67 8 202 391 80 190 123 748 786 226 612 282 378 13 114 383 722 17 109 106 150 546
Total: 25137 = 33 x 72 x 19. SF: 42 = 2 x 3 x 7.
1.2.2.1Odd positioned groups of 27 from 1.2.2:
71 69 384 404 454 480 756 90 131 206 347 494 586 74 358 67 422 377 428 650 406 708 513 216 310 204 525
Total: 9730 = 2 x 5 x 7 x 139.
1.2.2.1.1Odd positioned groups of 1 from 1.2.2.1:
71 384 454 756 131 347 586 358 422 428 406 513 310 525
Total: 5691 = 3 x 7 x 271.
1.2.2.1.1.1Odd positioned groups of 1 from 1.2.2.1.1:
71 454 131 586 422 406 310
Total: 2380 = 22 x 5 x 7 x 17.
1.2.2.1.1.2Even positioned groups of 1 from 1.2.2.1.1:
384 756 347 358 428 513 525
Total: 3311 = 7 x 11 x 43.
1.2.2.1.1.3Odd positioned groups of 2 from 1.2.2.1.1:
71 384 131 347 422 428 310 525
Total: 2618 = 2 x 7 x 11 x 17.
1.2.2.1.1.4Even positioned groups of 2 from 1.2.2.1.1:
454 756 586 358 406 513
Total: 3073 = 7 x 439.
1.2.2.1.2Even positioned groups of 1 from 1.2.2.1:
69 404 480 90 206 494 74 67 377 650 708 216 204
Total: 4039 = 7 x 577.
1.2.2.2Even positioned groups of 27 from 1.2.2:
415 67 840 544 101 206 67 413 52 30 464 406 68 208 63 248 422 422 478 100 130 106 280 424 81 455 484 36 291 415 728 110 67 8 202 391 80 190 123
748 786 226 612 282 378 13 114 383 722 17 109 106 150 546
Total: 15407 = 7 x 31 x 71.
1.2.2.2.1First half of 27 from 1.2.2.2:
36 291 415 728 110 67 8 202 391 80 190 123 748 786 226 612 282 378 13 114 383 722 17 109 106 150 546
Total: 7833 = 3 x 7 x 373.
1.2.2.2.2Last half of 27 from 1.2.2.2:
415 67 840 544 101 206 67 413 52 30 464 406 68 208 63 248 422 422 478 100 130 106 280 424 81 455 484
Total: 7574 = 2 x 7 x 541.
1.2.2.2.2.1Odd positioned groups of 9 from 1.2.2.2.2:
415 67 840 544 101 206 67 413 52 478 100 130 106 280 424 81 455 484
Total: 5243 = 72 x 107.
1.2.2.2.2.2Even positioned groups of 9 from 1.2.2.2.2:
30 464 406 68 208 63 248 422 422
Total: 2331 = 32 x 7 x 37.
1.3.1In The Proclamation, every other letter added up produced a total divisible by seven. These would be all the letters in odd positions, and all the letters in even positions. With a slight change, the same can be found in the words of Daniel 9:22-27. In this case, the odd positioned words of each individual verse, independent of the other verses, are taken together.
Verse | Word Values |
---|---|
22: | 68 120 95 511 67 |
23: | 840 101 67 52 464 68 63 |
24: | 422 478 130 280 81 484 336 54 190 71 384 454 |
25: | 480 90 206 494 74 67 377 650 708 216 204 |
26: | 225 650 630 67 291 728 67 202 80 123 786 |
27: | 226 282 13 383 17 106 546 80 359 100 |
Total of the odd positioned words: 15407 = 7 x 31 x 71. SF: 109. (There are 109 words in the entire passage.)
1.3.2Since the total of the passage is a multiple of 7, this means each verse's even positioned words would also be divisible by 7.
Verse | Word Values |
---|---|
22: | 222 257 475 415 |
23: | 544 206 413 30 406 208 248 |
24: | 422 100 106 424 455 424 126 194 484 69 404 |
25: | 756 131 347 586 358 422 428 406 513 310 525 |
26: | 427 406 358 36 415 110 8 391 190 748 |
27: | 612 378 114 722 109 150 420 55 820 380 |
Total of the even positioned words: 18263 = 7 x 2609. SF: 2616 = 23 x 3 x 109. (Once again the number of words in the passage appears as a factor. This is a one in 109 chance, and very rare.)
1.4Symmetrically positioned groups of words can be found from the beginning or end of the passage that together and individually are divisible by 13, the number associated with God’s name.
a) 4 7 8 8 13 23 30 32 b) 50 10 29 44 14 32 44 42 c) 29029 3055 12103 21541 1378 5005 9438 6929 a) Starting position of the first word of the two groups. For the first group, the starting position is from the beginning of the passage. For the second group, the starting position is from the end of the passage. b) Ending position of the last word of the two groups. For the first group, the ending position is from the beginning of the passage. For the second group, the ending position is from the end of the passage. c) Total of the two groups.
Total of line a) and b): 390 = 2 x 3 x 5 x 13. One would not expect the position total to be a multiple of 13 as well, but it is.
1.5The middle N words added together are multiples of 7 when N is one of the following:
107 105 97 95 77 51 41 33 27 17
Total of N: 650 = 2 x 52 x 13.
1.6When the words are added one by one, there are 20 occasions where the cumulative total is divisible by 7. The word positions, and word values where this occurs are listed below.
a) 8 31 38 41 43 47 48 51 67 68 71 72 73 81 83 87 94 96 b) 415 424 54 484 69 480 756 206 204 525 650 406 630 67 202 123 13 383 a) 105 109 (Word position.) b) 55 380 (Word value.)
Total of the word positions: 1313 = 13 x 101.
Total of the words: 6526 = 2 x 13 x 251. SF: 266 = 2 x 7 x 19. SF: 28 = 22 x 7.
1.7From Revelation 1:8's concept of Alpha and Omega, add the first and last words: 448 = 26 x 7. (The sum of the factors is 19, and this shows up next.)
1.7.1Nineteen of the word values are duplicates. Remove them so only unique word values remain. This is because God is unique.
68 222 120 257 95 475 511 415 67 840 544 101 206 413 52 30 464 406 208 63 248 422 478 100 130 106 280 424 81 455 484 336 126 54 194 190 71 69 384 404 454 480 756 90 131 347 494 586 74 358 377 428 650 708 513 216 310 204 525 225 427 630 36 291 728 110 8 202 391 80 123 748 786 226 612 282 378 13 114 383 722 17 109 150 546 420 55 359 820 380
Total of these 90 unique words: 28665 = 32 x 5 x 72 x 13. (The curious coincidence is that the sum of the factors is 38, which is 2 x 19, leading back to the number of duplicated words dropped.)
1.7.1.1The total of the entire passage is 33670. Subtract the total for the unique words to find the total for the 19 words that were dropped: 33670 − 28665 = 5005. This is a very nice symmetrical number, and its factors are 5 x 7 x 11 x 13.
It was a 1 in 91 chance that the total of the passage would be divisible by 7 and 13. It was another 1 in 91 chance that the unique word values would also be divisible by 7 and 13. Together, this is a 1 in 8281 chance.
1.7.2.1Odd positioned words from the list in 1.7.1:
68 120 95 511 67 544 206 52 464 208 248 478 130 280 81 484 126 194 71 384 454 756 131 494 74 377 650 513 310 525 427 36 728 8 391 123 786 612 378 114 722 109 546 55 820
Total: 14950 = 2 x 52 x 13 x 23.
1.7.2.2Even positioned words from the list in 1.7.1:
222 257 475 415 840 101 413 30 406 63 422 100 106 424 455 336 54 190 69 404 480 90 347 586 358 428 708 216 204 225 630 291 110 202 80 748 226 282 13 383 17 150 420 359 380
Total: 13715 = 5 x 13 x 211.
1.7.3If the list of unique word values in 1.7.1 is divided in half, neither half yields a feature. Since God is God of Order, sort the list from least to greatest.
8 13 17 30 36 52 54 55 63 67 68 69 71 74 80 81 90 95 100 101 106 109 110 114 120 123 126 130 131 150 190 194 202 204 206 208 216 222 225 226 248 257 280 282 291 310 336 347 358 359 377 378 380 383 384 391 404 406 413 415 420 422 424 427 428 454 455 464 475 478 480 484 494 511 513 525 544 546 586 612 630 650 708 722 728 748 756 786 820 840
1.7.3.1Now that order has been imposed, divide the list in half. The first half:
8 13 17 30 36 52 54 55 63 67 68 69 71 74 80 81 90 95 100 101 106 109 110 114 120 123 126 130 131 150 190 194 202 204 206 208 216 222 225 226 248 257 280 282 291
Total: 5894 = 2 x 7 x 421.
1.7.3.2The last half:
310 336 347 358 359 377 378 380 383 384 391 404 406 413 415 420 422 424 427 428 454 455 464 475 478 480 484 494 511 513 525 544 546 586 612 630 650 708 722 728 748 756 786 820 840
Total: 22771 = 7 x 3253.
1.7.4Revelation 1:8's principle of complementary opposites can also be applied to the number of appearances of a word or letter. The word that appeared the most is contrasted to the word that appeared the least. Words with a value of 67 appeared the most in the passage at 5 times. Many words appeared only once, but the lowest valued word that only appeared once has a value of 8. Thus all the words that appeared the most plus all the words that appeared the least is 67 x 5 + 8 = 343 (7 x 7 x 7)!
1.8The angel said seventy sevens
would figure prominently in prophecy and Israel's history. No word in the passage has a value of 7 or 70, but there are words that are multiples of 7. (In the table below, words that are divisible by 7 are marked in grey. Words that are divisible by 91 (or 7 and 13) are marked in green.)
68 | 222 | 120 | 257 | 95 | 475 | 511 | 415 | 67 | 840 | 544 | 101 | 206 | 67 | 413 | 52 | 30 | 464 | 406 | 68 | 208 | 63 |
248 | 422 | 422 | 478 | 100 | 130 | 106 | 280 | 424 | 81 | 455 | 484 | 424 | 336 | 126 | 54 | 194 | 190 | 484 | 71 | 69 | 384 |
404 | 454 | 480 | 756 | 90 | 131 | 206 | 347 | 494 | 586 | 74 | 358 | 67 | 422 | 377 | 428 | 650 | 406 | 708 | 513 | 216 | 310 |
204 | 525 | 225 | 427 | 650 | 406 | 630 | 358 | 67 | 36 | 291 | 415 | 728 | 110 | 67 | 8 | 202 | 391 | 80 | 190 | 123 | 748 |
786 | 226 | 612 | 282 | 378 | 13 | 114 | 383 | 722 | 17 | 109 | 106 | 150 | 546 | 420 | 80 | 55 | 359 | 820 | 100 | 380 |
1.8.1.1The first and last words that are multiples of seven set apart what is in between them, and what is before and after them. The words that are before and after them: 3031 = 7 x 433.
1.8.1.2The words that are between them: 29708 = 22 x 7 x 1061.
1.8.2The fourth pair is the next pair that successfully divides the passage into before/after and in between.
1.8.2.1The letters before and after the fourth pair that are multiples of 7: 13524 = 22 x 3 x 72 x 23.
1.8.2.2The letters between the fourth pair: 19012 =22 x 72 x 97.
1.8.3The ninth and ninth last words divisible by 7 are the last pair.
1.8.3.1The words before and after the ninth and ninth last: 25368 = 23 x 3 x 7 x 151.
1.8.3.2The words between the ninth and ninth last: 7770 = 2 x 3 x 5 x 7 x 37.
Only nine pairs were possible. The odds would have suggested only one working, but three were discovered. The three pairs were the first, fourth and ninth. These three pairs have their own feature: 1 + 4 + 9 = 14 (2 x 7).
1.9Amazingly, the 109 words also work with the number 13. Eleven words are divisible by 13. Their positions in the passage are listed below.
Word position: 16 21 28 33 53 59 61 71 79 94 102 Word value: 52 208 130 455 494 377 650 650 728 13 546
These eleven words can also be paired (e.g. first and last, second and second last). Of the five pairs, two work. One would have thought only one would work. (In the table, they are coloured grey.)
68 | 222 | 120 | 257 | 95 | 475 | 511 | 415 | 67 | 840 | 544 | 101 | 206 | 67 | 413 | 52 | 30 | 464 | 406 | 68 | 208 | 63 |
248 | 422 | 422 | 478 | 100 | 130 | 106 | 280 | 424 | 81 | 455 | 484 | 424 | 336 | 126 | 54 | 194 | 190 | 484 | 71 | 69 | 384 |
404 | 454 | 480 | 756 | 90 | 131 | 206 | 347 | 494 | 586 | 74 | 358 | 67 | 422 | 377 | 428 | 650 | 406 | 708 | 513 | 216 | 310 |
204 | 525 | 225 | 427 | 650 | 406 | 630 | 358 | 67 | 36 | 291 | 415 | 728 | 110 | 67 | 8 | 202 | 391 | 80 | 190 | 123 | 748 |
786 | 226 | 612 | 282 | 378 | 13 | 114 | 383 | 722 | 17 | 109 | 106 | 150 | 546 | 420 | 80 | 55 | 359 | 820 | 100 | 380 |
1.9.1.1The words before and after the first and last that are divisible by 13: 6615 = 33 x 5 x 72. SF: 28 = 22 x 7.
1.9.1.2Unlike the words divisible by 7, the paired words divisible by 13 are included with the words they sandwich: 27055 = 5 x 7 x 773.
1.9.2.1The third and third last words divisible by 13 also form a pair with everything before and after them adding to a multiple of 7: 15939 = 32 x 7 x 11 x 23.
1.9.2.2And again the third pair along with everything in between is also a multiple of 7: 17731 = 7 x 17 x 149.
1.9.3Since there are eleven words divisible by 13, the middle one cannot be paired and stands on its own: 377 = 13 x 29. SF: 42 = 2 x 3 x 7. The sum of its factors just happens to be divisible by 7.
1.9.3.1All the words before it: 16523 = 13 x 31 x 41.
1.9.3.2All the words after it: 16770 = 2 x 3 x 5 x 13 x 43.
1.9.3.3Since the entire passage is already divisible by 13, everything before and after 377 is also a multiple of 13: 33293 = 13 x 13 x 197. It goes one step further being divisible by 13 twice.
1.10.1The nineteenth word is the first occurrence of 406. It is divisible by 7, and it appears three times in the passage. Its last occurrence is as the 72nd word. Everything from the beginning to the first appearance, and everything from its last occurrence to the end of the passage: 16861 (13 x 1297).
1.10.2Everything between the first and last occurrences of 406: 16809 = 3 x 13 x 431.
1.11Six other words are also strategically positioned in the passage, but only one deserves mention because its value is not divisible by 7 or 13.
1.11.1The first word, 68, appears only one other time in the twentieth position.
1.11.1.1As 68 is the very first word, there are no other words before it. Thus the total of words before it is 0, and 0 is divisible by every number, including 7 and 13.
1.11.1.2Eighty-nine words are after 68s last appearance. The total of these words: 28249 = 13 x 41 x 53.
1.11.1.2.1The total of all words before and after both 68s would be the same as in 1.11.1.2.
1.11.1.2.2If the two 68s are included with what is before and after, the total becomes 28249 + 68 + 68 = 28385 (5 x 7 x 811).
1.11.1.3.1Eighteen words are between the two 68s. Their total: 5285 = 5 x 7 x 151.
1.11.1.3.2If the two 68s are included with what is in between: 5285 + 68 + 68 = 5421 (3 x 13 x 139).
1.11.2.1Aside from being the very first word of the passage, why is 68 special? It is not divisible by 7 or 13, but the sum of its factors is 21. The sum of 21s factors is 10, which again is not divisible by 7, but the sum of 10s factors is 7. 68 appears to have an on and off relationship with 7. But there may be something more than 68 itself.
1.11.2.2The two 68s sandwich 18 other words.
68 222 120 257 95 475 511 415 67 840 544 101 206 67 413 52t 30 464 406 68
1.11.2.2.1The even positioned words of the list: 2961 = 3 x 3 x 7 x 47. (There is no corresponding feature with the odd positioned words.)
1.11.2.2.2The odd valued words of the list: 2401 = 7 x 7 x 7 x 7! While 68 might not be very special, it is marking nine words whose total is four 7s, and the angel said sevens are fixed in the prophecy.
The Letters
Similar to The Proclamation, odd and even positioned letters here also yield totals that are multiples of 7. The difference in this case is that the complementary opposites are groups of letters rather than individual letters.
2. From the list of 459 letters below, 572 numeric features can be found.
6 10 2 50 6 10 4 2 200 70 40 10 6 10 1 40 200 4 50 10 1 30 70 400 5 10 90 1 400 10 30 5 300 20 10 30 20 2 10 50 5 2 400 8 30 400 400 8 50 6 50 10 20 10 90 1 4 2 200 6 1 50 10 2 1 400 10 30 5 3 10 4 20 10 8 40 6 4 6 400 1 400 5 6 2 10 50 2 4 2 200 6 5 2 50 2 40 200 1 5 300 2 70 10 40 300 2 70 10 40 50 8 400 20 70 30 70 40 20 6 70 30 70 10 200 100 4 300 20 30 20 30 1 5 80 300 70 6 30 8 400 40 8 9 1 6 400 6 30 20 80 200 70 6 50 6 30 5 2 10 1 90 4 100 70 30 40 10 40 6 30 8 400 40 8 7 6 50 6 50 2 10 1 6 30 40 300 8 100 4 300 100 4 300 10 40 6 400 4 70 6 400 300 20 30 40 50 40 90 1 4 2 200 30 5 300 10 2 6 30 2 50 6 400 10 200 6 300 30 40 70 4 40 300 10 8 50 3 10 4 300 2 70 10 40 300 2 70 5 6 300 2 70 10 40 300 300 10 40 6 300 50 10 40 400 300 6 2 6 50 2 50 400 5 200 8 6 2 6 8 200 6 90 6 2 90 6 100 5 70 400 10 40 6 1 8 200 10 5 300 2 70 10 40 300 300 10 40 6 300 50 10 40 10 20 200 400 40 300 10 8 6 1 10 50 30 6 6 5 70 10 200 6 5 100 4 300 10 300 8 10 400 70 40 50 3 10 4 5 2 1 6 100 90 6 2 300 9 80 6 70 4 100 90 40 30 8 40 5 50 8 200 90 400 300 40 40 6 400 6 5 3 2 10 200 2 200 10 400 30 200 2 10 40 300 2 6 70 1 8 4 6 8 90 10 5 300 2 6 70 10 300 2 10 400 7 2 8 6 40 50 8 5 6 70 30 20 50 80 300 100 6 90 10 40 40 300 40 40 6 70 4 20 30 5 6 50 8 200 90 5 400 400 20 70 30 300 40 40
2.1 Odd positioned groups of 27 from 1:
6 10 2 50 6 10 4 2 200 70 40 10 6 10 1 40 200 4 50 10 1 30 70 400 5 10 90 90 1 4 2 200 6 1 50 10 2 1 400 10 30 5 3 10 4 20 10 8 40 6 4 6 400 1 10 40 50 8 400 20 70 30 70 40 20 6 70 30 70 10 200 100 4 300 20 30 20 30 1 5 80 4 100 70 30 40 10 40 6 30 8 400 40 8 7 6 50 6 50 2 10 1 6 30 40 300 8 100 10 2 6 30 2 50 6 400 10 200 6 300 30 40 70 4 40 300 10 8 50 3 10 4 300 2 70 2 50 400 5 200 8 6 2 6 8 200 6 90 6 2 90 6 100 5 70 400 10 40 6 1 8 200 50 30 6 6 5 70 10 200 6 5 100 4 300 10 300 8 10 400 70 40 50 3 10 4 5 2 1 400 6 5 3 2 10 200 2 200 10 400 30 200 2 10 40 300 2 6 70 1 8 4 6 8 90 10 90 10 40 40 300 40 40 6 70 4 20 30 5 6 50 8 200 90 5 400 400 20 70 30 300 40 40
Total: 15771 = 3 x 7 x 751.
2.1.1 Odd positioned groups of 3 from 2.1:
50 6 10 70 40 10 40 200 4 30 70 400 90 1 4 1 50 10 10 30 5 20 10 8 6 400 1 8 400 20 40 20 6 10 200 100 30 20 30 4 100 70 40 6 30 8 7 6 2 10 1 300 8 100 30 2 50 200 6 300 4 40 300 3 10 4 2 50 400 6 2 6 90 6 2 5 70 400 1 8 200 6 5 70 5 100 4 8 10 400 3 10 4 400 6 5 200 2 200 200 2 10 6 70 1 8 90 10 40 300 40 4 20 30 8 200 90 20 70 30
Total: 8036 = 2 x 2 x 7 x 7 x 41.
2.1.1.1 Odd positioned from 2.1.1:
50 10 40 40 4 70 90 4 50 10 5 10 6 1 400 40 6 200 30 30 100 40 30 7 2 1 8 30 50 6 4 300 10 2 400 2 90 2 70 1 200 5 5 4 10 3 4 6 200 200 2 6 1 90 40 40 20 8 90 70
Total: 3255 = 3 x 5 x 7 x 31.
2.1.1.1.1 Odd positioned groups of 20 from 2.1.1.1:
50 10 40 40 4 70 90 4 50 10 5 10 6 1 400 40 6 200 30 30 200 5 5 4 10 3 4 6 200 200 2 6 1 90 40 40 20 8 90 70
Total: 2100 = 2 x 2 x 3 x 5 x 5 x 7.
2.1.1.1.1.1 Odd positioned from 2.1.1.1.1:
50 40 4 90 50 5 6 400 6 30 200 5 10 4 200 2 1 40 20 90
Total: 1253 = 7 x 179.
2.1.1.1.1.2 Even positioned from 2.1.1.1.1:
10 40 70 4 10 10 1 40 200 30 5 4 3 6 200 6 90 40 8 70
Total: 847 = 7 x 11 x 11.
2.1.1.1.2 Even positioned groups of 20 from 2.1.1.1:
100 40 30 7 2 1 8 30 50 6 4 300 10 2 400 2 90 2 70 1
Total: 1155 = 3 x 5 x 7 x 11. SF: 26 = 2 x 13.
2.1.1.1.2.1 Odd positioned groups of 4 from 2.1.1.1.2:
100 40 30 7 50 6 4 300 90 2 70 1
Total: 700 = 2 x 2 x 5 x 5 x 7. SF: 21 = 3 x 7.
2.1.1.1.2.2 Even positioned groups of 4 from 2.1.1.1.2:
2 1 8 30 10 2 400 2
Total: 455 = 5 x 7 x 13.
2.1.1.1.2.2.1 Odd positioned from 2.1.1.1.2.2:
2 8 10 400
Total: 420 = 2 x 2 x 3 x 5 x 7.
2.1.1.1.2.2.2 Even positioned from 2.1.1.1.2.2:
1 30 2 2
Total: 35 = 5 x 7.
2.1.1.2 Even positioned from 2.1.1:
6 70 10 200 30 400 1 1 10 30 20 8 400 8 20 20 10 100 20 4 70 6 8 6 10 300 100 2 200 300 40 3 4 50 6 6 6 5 400 8 6 70 100 8 400 10 400 5 2 200 10 70 8 10 300 4 30 200 20 30
Total: 4781 = 7 x 683.
2.1.1.2.1 Odd positioned 0 from 2.1.1.2:
20 8 400 8 20 20 10 100 20 4 40 3 4 50 6 6 6 5 400 8 10 70 8 10 300 4 30 200 20 30
Total: 1820 = 2 x 2 x 5 x 7 x 13.
2.1.1.2.2 Even positioned 0 from 2.1.1.2:
6 70 10 200 30 400 1 1 10 30 70 6 8 6 10 300 100 2 200 300 6 70 100 8 400 10 400 5 2 200
Total: 2961 = 3 x 3 x 7 x 47.
2.1.1.3 Odd positioned groups of 6 from 2.1.1:
50 6 10 70 40 10 90 1 4 1 50 10 6 400 1 8 400 20 30 20 30 4 100 70 2 10 1 300 8 100 4 40 300 3 10 4 90 6 2 5 70 400 5 100 4 8 10 400 200 2 200 200 2 10 40 300 40 4 20 30
Total: 4361 = 7 x 7 x 89.
2.1.1.3.1 Odd positioned 5 from 2.1.1.3:
50 6 10 70 40 10 90 1 4 1 50 10 6 400 1 4 40 300 3 10 4 90 6 2 5 70 400 5 100 4
Total: 1792 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 7.
2.1.1.3.1.1 First half of 15 from 2.1.1.3.1:
4 40 300 3 10 4 90 6 2 5 70 400 5 100 4
Total: 1043 = 7 x 149. SF: 156 = 2 x 2 x 3 x 13.
2.1.1.3.1.2 Last half of 15 from 2.1.1.3.1:
50 6 10 70 40 10 90 1 4 1 50 10 6 400 1
Total: 749 = 7 x 107.
2.1.1.3.2 Even positioned 5 from 2.1.1.3:
8 400 20 30 20 30 4 100 70 2 10 1 300 8 100 8 10 400 200 2 200 200 2 10 40 300 40 4 20 30
Total: 2569 = 7 x 367.
2.1.1.3.2.1 Odd positioned groups of 3 from 2.1.1.3.2:
30 20 30 2 10 1 8 10 400 200 2 10 4 20 30
Total: 777 = 3 x 7 x 37.
2.1.1.3.2.2 Even positioned groups of 3 from 2.1.1.3.2:
8 400 20 4 100 70 300 8 100 200 2 200 40 300 40
Total: 1792 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 7.
2.1.1.4 Even positioned groups of 6 from 2.1.1:
40 200 4 30 70 400 10 30 5 20 10 8 40 20 6 10 200 100 40 6 30 8 7 6 30 2 50 200 6 300 2 50 400 6 2 6 1 8 200 6 5 70 3 10 4 400 6 5 6 70 1 8 90 10 8 200 90 20 70 30
Total: 3675 = 3 x 5 x 5 x 7 x 7.
2.1.1.4.1 Odd positioned 5 from 2.1.1.4:
40 200 4 30 70 400 10 30 5 20 10 8 40 20 6 2 50 400 6 2 6 1 8 200 6 5 70 3 10 4
Total: 1666 = 2 x 7 x 7 x 17.
2.1.1.4.2 Even positioned 5 from 2.1.1.4:
10 200 100 40 6 30 8 7 6 30 2 50 200 6 300 400 6 5 6 70 1 8 90 10 8 200 90 20 70 30
Total: 2009 = 7 x 7 x 41.
2.1.1.4.2.1 Odd positioned from 2.1.1.4.2:
10 100 6 8 6 2 200 300 6 6 1 90 8 90 70
Total: 903 = 3 x 7 x 43.
2.1.1.4.2.2 Even positioned from 2.1.1.4.2:
200 40 30 7 30 50 6 400 5 70 8 10 200 20 30
Total: 1106 = 2 x 7 x 79.
2.1.1.4.2.2.1 Odd positioned groups of 3 from 2.1.1.4.2.2:
7 30 50 70 8 10
Total: 175 = 5 x 5 x 7.
2.1.1.4.2.2.2 Even positioned groups of 3 from 2.1.1.4.2.2:
200 40 30 6 400 5 200 20 30
Total: 931 = 7 x 7 x 19.
2.1.1.5 Odd positioned groups of 8 from 2.1.1:
50 6 10 70 40 10 40 200 50 10 10 30 5 20 10 8 6 10 200 100 30 20 30 4 2 10 1 300 8 100 30 2 10 4 2 50 400 6 2 6 200 6 5 70 5 100 4 8 200 2 200 200 2 10 6 70 20 30 8 200 90 20 70 30
Total: 3458 = 2 x 7 x 13 x 19.
2.1.1.5.1 Odd positioned groups of 2 from 2.1.1.5:
50 6 40 10 50 10 5 20 6 10 30 20 2 10 8 100 10 4 400 6 200 6 5 100 200 2 2 10 20 30 90 20
Total: 1482 = 2 x 3 x 13 x 19.
2.1.1.5.1.1 Odd positioned from 2.1.1.5.1:
50 40 50 5 6 30 2 8 10 400 200 5 200 2 20 90
Total: 1118 = 2 x 13 x 43.
2.1.1.5.1.2 Even positioned from 2.1.1.5.1:
6 10 10 20 10 20 10 100 4 6 6 100 2 10 30 20
Total: 364 = 2 x 2 x 7 x 13.
2.1.1.5.1.2.1 Odd positioned from 2.1.1.5.1.2:
6 10 10 10 4 6 2 30
Total: 78 = 2 x 3 x 13.
2.1.1.5.1.2.1.1 Odd positioned groups of 2 from 2.1.1.5.1.2.1:
6 10 4 6
Total: 26 = 2 x 13.
2.1.1.5.1.2.1.2 Even positioned groups of 2 from 2.1.1.5.1.2.1:
10 10 2 30
Total: 52 = 2 x 2 x 13.
2.1.1.5.1.2.2 Even positioned from 2.1.1.5.1.2:
10 20 20 100 6 100 10 20
Total: 286 = 2 x 11 x 13. SF: 26 = 2 x 13.
2.1.1.5.1.3 Odd positioned groups of 4 from 2.1.1.5.1:
50 6 40 10 6 10 30 20 10 4 400 6 200 2 2 10
Total: 806 = 2 x 13 x 31.
2.1.1.5.1.4 Even positioned groups of 4 from 2.1.1.5.1:
50 10 5 20 2 10 8 100 200 6 5 100 20 30 90 20
Total: 676 = 2 x 2 x 13 x 13.
2.1.1.5.1.5 First half of 16 from 2.1.1.5.1:
50 6 40 10 50 10 5 20 6 10 30 20 2 10 8 100
Total: 377 = 13 x 29. SF: 42 = 2 x 3 x 7.
2.1.1.5.1.6 Last half of 16 from 2.1.1.5.1:
10 4 400 6 200 6 5 100 200 2 2 10 20 30 90 20
Total: 1105 = 5 x 13 x 17. SF: 35 = 5 x 7.
2.1.1.5.2 Even positioned groups of 2 from 2.1.1.5:
10 70 40 200 10 30 10 8 200 100 30 4 1 300 30 2 2 50 2 6 5 70 4 8 200 200 6 70 8 200 70 30
Total: 1976 = 2 x 2 x 2 x 13 x 19.
2.1.1.5.2.1 Odd positioned groups of 2 from 2.1.1.5.2:
10 70 10 30 200 100 1 300 2 50 5 70 200 200 8 200
Total: 1456 = 2 x 2 x 2 x 2 x 7 x 13. SF: 28 = 2 x 2 x 7.
2.1.1.5.2.1.1 Odd positioned groups of 2 from 2.1.1.5.2.1:
10 70 200 100 2 50 200 200
Total: 832 = 2 x 2 x 2 x 2 x 2 x 2 x 13.
2.1.1.5.2.1.2 Even positioned groups of 2 from 2.1.1.5.2.1:
10 30 1 300 5 70 8 200
Total: 624 = 2 x 2 x 2 x 2 x 3 x 13.
2.1.1.5.2.1.3 Odd positioned groups of 4 from 2.1.1.5.2.1:
10 70 10 30 2 50 5 70
Total: 247 = 13 x 19.
2.1.1.5.2.1.4 Even positioned groups of 4 from 2.1.1.5.2.1:
200 100 1 300 200 200 8 200
Total: 1209 = 3 x 13 x 31.
2.1.1.5.2.1.5 First half of 8 from 2.1.1.5.2.1:
10 70 10 30 200 100 1 300
Total: 721 = 7 x 103.
2.1.1.5.2.1.6 Last half of 8 from 2.1.1.5.2.1:
2 50 5 70 200 200 8 200
Total: 735 = 3 x 5 x 7 x 7.
2.1.1.5.2.2 Even positioned groups of 2 from 2.1.1.5.2:
40 200 10 8 30 4 30 2 2 6 4 8 6 70 70 30
Total: 520 = 2 x 2 x 2 x 5 x 13.
2.1.1.5.3 Odd positioned groups of 4 from 2.1.1.5:
50 6 10 70 50 10 10 30 6 10 200 100 2 10 1 300 10 4 2 50 200 6 5 70 200 2 200 200 20 30 8 200
Total: 2072 = 2 x 2 x 2 x 7 x 37.
2.1.1.5.3.1 Odd positioned groups of 2 from 2.1.1.5.3:
50 6 50 10 6 10 2 10 10 4 200 6 200 2 20 30
Total: 616 = 2 x 2 x 2 x 7 x 11.
2.1.1.5.3.1.1 Odd positioned groups of 4 from 2.1.1.5.3.1:
50 6 50 10 10 4 200 6
Total: 336 = 2 x 2 x 2 x 2 x 3 x 7.
2.1.1.5.3.1.1.1 Odd positioned groups of 2 from 2.1.1.5.3.1.1:
50 6 10 4
Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
2.1.1.5.3.1.1.1.1 First half of 2 from 2.1.1.5.3.1.1.1:
50 6
Total: 56 = 2 x 2 x 2 x 7. SF: 13.
2.1.1.5.3.1.1.1.2 Last half of 2 from 2.1.1.5.3.1.1.1:
10 4
Total: 14 = 2 x 7.
2.1.1.5.3.1.1.2 Even positioned groups of 2 from 2.1.1.5.3.1.1:
50 10 200 6
Total: 266 = 2 x 7 x 19. SF: 28 = 2 x 2 x 7.
2.1.1.5.3.1.2 Even positioned groups of 4 from 2.1.1.5.3.1:
6 10 2 10 200 2 20 30
Total: 280 = 2 x 2 x 2 x 5 x 7.
2.1.1.5.3.1.2.1 First half of 4 from 2.1.1.5.3.1.2:
6 10 2 10
Total: 28 = 2 x 2 x 7.
2.1.1.5.3.1.2.2 Last half of 4 from 2.1.1.5.3.1.2:
200 2 20 30
Total: 252 = 2 x 2 x 3 x 3 x 7.
2.1.1.5.3.2 Even positioned groups of 2 from 2.1.1.5.3:
10 70 10 30 200 100 1 300 2 50 5 70 200 200 8 200
Total: 1456 = 2 x 2 x 2 x 2 x 7 x 13. SF: 28 = 2 x 2 x 7.
2.1.1.5.3.2.1 Odd positioned groups of 2 from 2.1.1.5.3.2:
10 70 200 100 2 50 200 200
Total: 832 = 2 x 2 x 2 x 2 x 2 x 2 x 13.
2.1.1.5.3.2.2 Even positioned groups of 2 from 2.1.1.5.3.2:
10 30 1 300 5 70 8 200
Total: 624 = 2 x 2 x 2 x 2 x 3 x 13.
2.1.1.5.3.2.3 Odd positioned groups of 4 from 2.1.1.5.3.2:
10 70 10 30 2 50 5 70
Total: 247 = 13 x 19.
2.1.1.5.3.2.4 Even positioned groups of 4 from 2.1.1.5.3.2:
200 100 1 300 200 200 8 200
Total: 1209 = 3 x 13 x 31.
2.1.1.5.3.2.5 First half of 8 from 2.1.1.5.3.2:
10 70 10 30 200 100 1 300
Total: 721 = 7 x 103.
2.1.1.5.3.2.6 Last half of 8 from 2.1.1.5.3.2:
2 50 5 70 200 200 8 200
Total: 735 = 3 x 5 x 7 x 7.
2.1.1.5.3.3 Odd positioned groups of 4 from 2.1.1.5.3:
50 6 10 70 6 10 200 100 10 4 2 50 200 2 200 200
Total: 1120 = 2 x 2 x 2 x 2 x 2 x 5 x 7.
2.1.1.5.3.4 Even positioned groups of 4 from 2.1.1.5.3:
50 10 10 30 2 10 1 300 200 6 5 70 20 30 8 200
Total: 952 = 2 x 2 x 2 x 7 x 17.
2.1.1.5.3.4.1 First half of 8 from 2.1.1.5.3.4:
50 10 10 30 2 10 1 300
Total: 413 = 7 x 59.
2.1.1.5.3.4.1.1 Odd positioned from 2.1.1.5.3.4.1:
50 10 2 1
Total: 63 = 3 x 3 x 7. SF: 13.
2.1.1.5.3.4.1.2 Even positioned from 2.1.1.5.3.4.1:
10 30 10 300
Total: 350 = 2 x 5 x 5 x 7.
2.1.1.5.3.4.2 Last half of 8 from 2.1.1.5.3.4:
200 6 5 70 20 30 8 200
Total: 539 = 7 x 7 x 11.
2.1.1.5.4 Even positioned groups of 4 from 2.1.1.5:
40 10 40 200 5 20 10 8 30 20 30 4 8 100 30 2 400 6 2 6 5 100 4 8 2 10 6 70 90 20 70 30
Total: 1386 = 2 x 3 x 3 x 7 x 11. SF: 26 = 2 x 13.
2.1.1.6 Even positioned groups of 8 from 2.1.1:
4 30 70 400 90 1 4 1 6 400 1 8 400 20 40 20 100 70 40 6 30 8 7 6 50 200 6 300 4 40 300 3 90 6 2 5 70 400 1 8 10 400 3 10 4 400 6 5 1 8 90 10 40 300 40 4
Total: 4578 = 2 x 3 x 7 x 109.
2.1.1.7 Odd positioned groups of 30 from 2.1.1:
50 6 10 70 40 10 40 200 4 30 70 400 90 1 4 1 50 10 10 30 5 20 10 8 6 400 1 8 400 20 4 40 300 3 10 4 2 50 400 6 2 6 90 6 2 5 70 400 1 8 200 6 5 70 5 100 4 8 10 400
Total: 4221 = 3 x 3 x 7 x 67.
2.1.1.8 Even positioned groups of 30 from 2.1.1:
40 20 6 10 200 100 30 20 30 4 100 70 40 6 30 8 7 6 2 10 1 300 8 100 30 2 50 200 6 300 3 10 4 400 6 5 200 2 200 200 2 10 6 70 1 8 90 10 40 300 40 4 20 30 8 200 90 20 70 30
Total: 3815 = 5 x 7 x 109.
2.1.1.8.1 Odd positioned groups of 2 from 2.1.1.8:
40 20 200 100 30 4 40 6 7 6 1 300 30 2 6 300 4 400 200 2 2 10 1 8 40 300 20 30 90 20
Total: 2219 = 7 x 317.
2.1.1.8.2 Even positioned groups of 2 from 2.1.1.8:
6 10 30 20 100 70 30 8 2 10 8 100 50 200 3 10 6 5 200 200 6 70 90 10 40 4 8 200 70 30
Total: 1596 = 2 x 2 x 3 x 7 x 19.
2.1.1.8.2.1 Odd positioned groups of 2 from 2.1.1.8.2:
6 10 100 70 2 10 50 200 6 5 6 70 40 4 70 30
Total: 679 = 7 x 97. SF: 104 = 2 x 2 x 2 x 13.
2.1.1.8.2.1.1 Odd positioned from 2.1.1.8.2.1:
6 100 2 50 6 6 40 70
Total: 280 = 2 x 2 x 2 x 5 x 7.
2.1.1.8.2.1.2 Even positioned from 2.1.1.8.2.1:
10 70 10 200 5 70 4 30
Total: 399 = 3 x 7 x 19.
2.1.1.8.2.1.3 Odd positioned groups of 4 from 2.1.1.8.2.1:
6 10 100 70 6 5 6 70
Total: 273 = 3 x 7 x 13.
2.1.1.8.2.1.4 Even positioned groups of 4 from 2.1.1.8.2.1:
2 10 50 200 40 4 70 30
Total: 406 = 2 x 7 x 29.
2.1.1.8.2.1.4.1 Odd positioned groups of 2 from 2.1.1.8.2.1.4:
2 10 40 4
Total: 56 = 2 x 2 x 2 x 7. SF: 13.
2.1.1.8.2.1.4.1.1 Odd positioned from 2.1.1.8.2.1.4.1:
2 40
Total: 42 = 2 x 3 x 7.
2.1.1.8.2.1.4.1.2 Even positioned from 2.1.1.8.2.1.4.1:
10 4
Total: 14 = 2 x 7.
2.1.1.8.2.1.4.2 Even positioned groups of 2 from 2.1.1.8.2.1.4:
50 200 70 30
Total: 350 = 2 x 5 x 5 x 7.
2.1.1.8.2.1.5 First half of 8 from 2.1.1.8.2.1:
6 10 100 70 2 10 50 200
Total: 448 = 2 x 2 x 2 x 2 x 2 x 2 x 7.
2.1.1.8.2.1.5.1 Odd positioned groups of 2 from 2.1.1.8.2.1.5:
6 10 2 10
Total: 28 = 2 x 2 x 7.
2.1.1.8.2.1.5.2 Even positioned groups of 2 from 2.1.1.8.2.1.5:
100 70 50 200
Total: 420 = 2 x 2 x 3 x 5 x 7.
2.1.1.8.2.1.6 Last half of 8 from 2.1.1.8.2.1:
6 5 6 70 40 4 70 30
Total: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.
2.1.1.8.2.2 Even positioned groups of 2 from 2.1.1.8.2:
30 20 30 8 8 100 3 10 200 200 90 10 8 200
Total: 917 = 7 x 131.
2.1.1.8.3 Odd positioned groups of 3 from 2.1.1.8:
40 20 6 30 20 30 40 6 30 2 10 1 30 2 50 3 10 4 200 2 200 6 70 1 40 300 40 8 200 90
Total: 1491 = 3 x 7 x 71.
2.1.1.8.4 Even positioned groups of 3 from 2.1.1.8:
10 200 100 4 100 70 8 7 6 300 8 100 200 6 300 400 6 5 200 2 10 8 90 10 4 20 30 20 70 30
Total: 2324 = 2 x 2 x 7 x 83.
2.1.1.8.4.1 Odd positioned groups of 6 from 2.1.1.8.4:
8 7 6 300 8 100 200 2 10 8 90 10
Total: 749 = 7 x 107.
2.1.1.8.4.1.1 Odd positioned from 2.1.1.8.4.1:
8 6 8 200 10 90
Total: 322 = 2 x 7 x 23.
2.1.1.8.4.1.2 Even positioned from 2.1.1.8.4.1:
7 300 100 2 8 10
Total: 427 = 7 x 61.
2.1.1.8.4.2 Even positioned groups of 6 from 2.1.1.8.4:
10 200 100 4 100 70 200 6 300 400 6 5 4 20 30 20 70 30
Total: 1575 = 3 x 3 x 5 x 5 x 7.
2.1.1.8.4.2.1 Odd positioned groups of 2 from 2.1.1.8.4.2:
10 200 100 70 300 400 4 20 70 30
Total: 1204 = 2 x 2 x 7 x 43.
2.1.1.8.4.2.2 Even positioned groups of 2 from 2.1.1.8.4.2:
100 4 200 6 6 5 30 20
Total: 371 = 7 x 53.
2.1.1.8.4.2.2.1 Odd positioned from 2.1.1.8.4.2.2:
100 200 6 30
Total: 336 = 2 x 2 x 2 x 2 x 3 x 7.
2.1.1.8.4.2.2.2 Even positioned from 2.1.1.8.4.2.2:
4 6 5 20
Total: 35 = 5 x 7.
2.1.1.8.4.2.3 Odd positioned groups of 6 from 2.1.1.8.4.2:
200 6 300 400 6 5
Total: 917 = 7 x 131.
2.1.1.8.4.2.3.1 Odd positioned groups of 2 from 2.1.1.8.4.2.3:
200 6 6 5
Total: 217 = 7 x 31.
2.1.1.8.4.2.3.2 Even positioned groups of 2 from 2.1.1.8.4.2.3:
300 400
Total: 700 = 2 x 2 x 5 x 5 x 7. SF: 21 = 3 x 7.
2.1.1.8.4.2.4 Even positioned groups of 6 from 2.1.1.8.4.2:
10 200 100 4 100 70 4 20 30 20 70 30
Total: 658 = 2 x 7 x 47. SF: 56 = 2 x 2 x 2 x 7. SF: 13.
2.1.1.8.4.2.4.1 Odd positioned groups of 3 from 2.1.1.8.4.2.4:
10 200 100 4 20 30
Total: 364 = 2 x 2 x 7 x 13.
2.1.1.8.4.2.4.1.1 Odd positioned from 2.1.1.8.4.2.4.1:
10 100 20
Total: 130 = 2 x 5 x 13.
2.1.1.8.4.2.4.1.2 Even positioned from 2.1.1.8.4.2.4.1:
200 4 30
Total: 234 = 2 x 3 x 3 x 13. SF: 21 = 3 x 7.
2.1.1.8.4.2.4.1.3 Odd positioned groups of 2 from 2.1.1.8.4.2.4.1:
10 200 20 30
Total: 260 = 2 x 2 x 5 x 13.
2.1.1.8.4.2.4.1.4 Even positioned groups of 2 from 2.1.1.8.4.2.4.1:
100 4
Total: 104 = 2 x 2 x 2 x 13.
2.1.1.8.4.2.4.2 Even positioned groups of 3 from 2.1.1.8.4.2.4:
4 100 70 20 70 30
Total: 294 = 2 x 3 x 7 x 7.
2.1.1.8.5 Odd positioned groups of 5 from 2.1.1.8:
100 30 20 30 4 8 7 6 2 10 2 50 200 6 300 5 200 2 200 200 8 90 10 40 300 200 90 20 70 30
Total: 2240 = 2 x 2 x 2 x 2 x 2 x 2 x 5 x 7.
2.1.1.8.5.1 Odd positioned groups of 2 from 2.1.1.8.5:
100 30 4 8 2 10 200 6 200 2 8 90 300 200 70 30
Total: 1260 = 2 x 2 x 3 x 3 x 5 x 7.
2.1.1.8.5.2 Even positioned groups of 2 from 2.1.1.8.5:
20 30 7 6 2 50 300 5 200 200 10 40 90 20
Total: 980 = 2 x 2 x 5 x 7 x 7.
2.1.1.8.5.3 Odd positioned groups of 5 from 2.1.1.8.5:
8 7 6 2 10 5 200 2 200 200 200 90 20 70 30
Total: 1050 = 2 x 3 x 5 x 5 x 7.
2.1.1.8.5.4 Even positioned groups of 5 from 2.1.1.8.5:
100 30 20 30 4 2 50 200 6 300 8 90 10 40 300
Total: 1190 = 2 x 5 x 7 x 17.
2.1.1.8.5.4.1 Odd positioned groups of 3 from 2.1.1.8.5.4:
30 4 2 300 8 90
Total: 434 = 2 x 7 x 31.
2.1.1.8.5.4.2 Even positioned groups of 3 from 2.1.1.8.5.4:
100 30 20 50 200 6 10 40 300
Total: 756 = 2 x 2 x 3 x 3 x 3 x 7.
2.1.1.8.5.4.2.1 Odd positioned from 2.1.1.8.5.4.2:
100 20 200 10 300
Total: 630 = 2 x 3 x 3 x 5 x 7.
2.1.1.8.5.4.2.2 Even positioned from 2.1.1.8.5.4.2:
30 50 6 40
Total: 126 = 2 x 3 x 3 x 7.
2.1.1.8.6 Even positioned groups of 5 from 2.1.1.8:
40 20 6 10 200 100 70 40 6 30 1 300 8 100 30 3 10 4 400 6 2 10 6 70 1 40 4 20 30 8
Total: 1575 = 3 x 3 x 5 x 5 x 7.
2.1.1.8.6.1 Odd positioned groups of 2 from 2.1.1.8.6:
40 20 200 100 6 30 8 100 10 4 2 10 1 40 30 8
Total: 609 = 3 x 7 x 29. SF: 39 = 3 x 13.
2.1.1.8.6.1.1 First half of 8 from 2.1.1.8.6.1:
40 20 200 100 6 30 8 100
Total: 504 = 2 x 2 x 2 x 3 x 3 x 7.
2.1.1.8.6.1.2 Last half of 8 from 2.1.1.8.6.1:
10 4 2 10 1 40 30 8
Total: 105 = 3 x 5 x 7.
2.1.1.8.6.2 Even positioned groups of 2 from 2.1.1.8.6:
6 10 70 40 1 300 30 3 400 6 6 70 4 20
Total: 966 = 2 x 3 x 7 x 23. SF: 35 = 5 x 7.
2.1.1.8.7 First half of 30 from 2.1.1.8:
3 10 4 400 6 5 200 2 200 200 2 10 6 70 1 8 90 10 40 300 40 4 20 30 8 200 90 20 70 30
Total: 2079 = 3 x 3 x 3 x 7 x 11.
2.1.1.8.7.1 Odd positioned groups of 2 from 2.1.1.8.7:
3 10 6 5 200 200 6 70 90 10 40 4 8 200 70 30
Total: 952 = 2 x 2 x 2 x 7 x 17.
2.1.1.8.7.1.1 Odd positioned groups of 2 from 2.1.1.8.7.1:
3 10 200 200 90 10 8 200
Total: 721 = 7 x 103.
2.1.1.8.7.1.1.1 Odd positioned from 2.1.1.8.7.1.1:
3 200 90 8
Total: 301 = 7 x 43.
2.1.1.8.7.1.1.1.1 First half of 2 from 2.1.1.8.7.1.1.1:
3 200
Total: 203 = 7 x 29.
2.1.1.8.7.1.1.1.2 Last half of 2 from 2.1.1.8.7.1.1.1:
90 8
Total: 98 = 2 x 7 x 7.
2.1.1.8.7.1.1.2 Even positioned from 2.1.1.8.7.1.1:
10 200 10 200
Total: 420 = 2 x 2 x 3 x 5 x 7.
2.1.1.8.7.1.1.2.1 First half of 2 from 2.1.1.8.7.1.1.2:
10 200
Total: 210 = 2 x 3 x 5 x 7.
2.1.1.8.7.1.1.2.2 Last half of 2 from 2.1.1.8.7.1.1.2:
10 200
Total: 210 = 2 x 3 x 5 x 7.
2.1.1.8.7.1.1.3 First half of 4 from 2.1.1.8.7.1.1:
3 10 200 200
Total: 413 = 7 x 59.
2.1.1.8.7.1.1.3.1 Odd positioned from 2.1.1.8.7.1.1.3:
3 200
Total: 203 = 7 x 29.
2.1.1.8.7.1.1.3.2 Even positioned from 2.1.1.8.7.1.1.3:
10 200
Total: 210 = 2 x 3 x 5 x 7.
2.1.1.8.7.1.1.4 Last half of 4 from 2.1.1.8.7.1.1:
90 10 8 200
Total: 308 = 2 x 2 x 7 x 11.
2.1.1.8.7.1.1.4.1 Odd positioned from 2.1.1.8.7.1.1.4:
90 8
Total: 98 = 2 x 7 x 7.
2.1.1.8.7.1.1.4.2 Even positioned from 2.1.1.8.7.1.1.4:
10 200
Total: 210 = 2 x 3 x 5 x 7.
2.1.1.8.7.1.2 Even positioned groups of 2 from 2.1.1.8.7.1:
6 5 6 70 40 4 70 30
Total: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.
2.1.1.8.7.1.3 Odd positioned groups of 4 from 2.1.1.8.7.1:
3 10 6 5 90 10 40 4
Total: 168 = 2 x 2 x 2 x 3 x 7.
2.1.1.8.7.1.4 Even positioned groups of 4 from 2.1.1.8.7.1:
200 200 6 70 8 200 70 30
Total: 784 = 2 x 2 x 2 x 2 x 7 x 7.
2.1.1.8.7.1.4.1 First half of 4 from 2.1.1.8.7.1.4:
200 200 6 70
Total: 476 = 2 x 2 x 7 x 17. SF: 28 = 2 x 2 x 7.
2.1.1.8.7.1.4.2 Last half of 4 from 2.1.1.8.7.1.4:
8 200 70 30
Total: 308 = 2 x 2 x 7 x 11.
2.1.1.8.7.2 Even positioned groups of 2 from 2.1.1.8.7:
4 400 200 2 2 10 1 8 40 300 20 30 90 20
Total: 1127 = 7 x 7 x 23.
2.1.1.8.7.2.1 Odd positioned from 2.1.1.8.7.2:
4 200 2 1 40 20 90
Total: 357 = 3 x 7 x 17.
2.1.1.8.7.2.2 Even positioned from 2.1.1.8.7.2:
400 2 10 8 300 30 20
Total: 770 = 2 x 5 x 7 x 11.
2.1.1.8.8 Last half of 30 from 2.1.1.8:
40 20 6 10 200 100 30 20 30 4 100 70 40 6 30 8 7 6 2 10 1 300 8 100 30 2 50 200 6 300
Total: 1736 = 2 x 2 x 2 x 7 x 31.
2.1.1.8.8.1 Odd positioned groups of 2 from 2.1.1.8.8:
40 20 200 100 30 4 40 6 7 6 1 300 30 2 6 300
Total: 1092 = 2 x 2 x 3 x 7 x 13.
2.1.1.8.8.2 Even positioned groups of 2 from 2.1.1.8.8:
6 10 30 20 100 70 30 8 2 10 8 100 50 200
Total: 644 = 2 x 2 x 7 x 23.
2.1.1.8.8.2.1 Odd positioned groups of 2 from 2.1.1.8.8.2:
6 10 100 70 2 10 50 200
Total: 448 = 2 x 2 x 2 x 2 x 2 x 2 x 7.
2.1.1.8.8.2.1.1 Odd positioned groups of 2 from 2.1.1.8.8.2.1:
6 10 2 10
Total: 28 = 2 x 2 x 7.
2.1.1.8.8.2.1.2 Even positioned groups of 2 from 2.1.1.8.8.2.1:
100 70 50 200
Total: 420 = 2 x 2 x 3 x 5 x 7.
2.1.1.8.8.2.2 Even positioned groups of 2 from 2.1.1.8.8.2:
30 20 30 8 8 100
Total: 196 = 2 x 2 x 7 x 7.
2.1.1.8.8.2.3 First half of 7 from 2.1.1.8.8.2:
8 2 10 8 100 50 200
Total: 378 = 2 x 3 x 3 x 3 x 7.
2.1.1.8.8.2.4 Last half of 7 from 2.1.1.8.8.2:
6 10 30 20 100 70 30
Total: 266 = 2 x 7 x 19. SF: 28 = 2 x 2 x 7.
2.1.2 Even positioned groups of 3 from 2.1:
6 10 2 4 2 200 6 10 1 50 10 1 5 10 90 2 200 6 2 1 400 3 10 4 40 6 4 10 40 50 70 30 70 70 30 70 4 300 20 1 5 80 30 40 10 8 400 40 50 6 50 6 30 40 10 2 6 6 400 10 30 40 70 10 8 50 300 2 70 5 200 8 8 200 6 90 6 100 10 40 6 50 30 6 10 200 6 300 10 300 70 40 50 5 2 1 3 2 10 10 400 30 40 300 2 8 4 6 90 10 40 40 6 70 5 6 50 5 400 400 300 40 40
Total: 7735 = 5 x 7 x 13 x 17. SF: 42 = 2 x 3 x 7.
2.1.3 Odd positioned groups of 27 from 2.1:
90 1 4 2 200 6 1 50 10 2 1 400 10 30 5 3 10 4 20 10 8 40 6 4 6 400 1 4 100 70 30 40 10 40 6 30 8 400 40 8 7 6 50 6 50 2 10 1 6 30 40 300 8 100 2 50 400 5 200 8 6 2 6 8 200 6 90 6 2 90 6 100 5 70 400 10 40 6 1 8 200 400 6 5 3 2 10 200 2 200 10 400 30 200 2 10 40 300 2 6 70 1 8 4 6 8 90 10
Total: 6678 = 2 x 3 x 3 x 7 x 53.
2.1.3.1 Odd positioned groups of 2 from 2.1.3:
90 1 200 6 10 2 10 30 10 4 8 40 6 400 100 70 10 40 8 400 7 6 50 2 6 30 8 100 400 5 6 2 200 6 2 90 5 70 40 6 200 400 3 2 2 200 30 200 40 300 70 1 6 8
Total: 3948 = 2 x 2 x 3 x 7 x 47.
2.1.3.1.1 Odd positioned groups of 2 from 2.1.3.1:
90 1 10 2 10 4 6 400 10 40 7 6 6 30 400 5 200 6 5 70 200 400 2 200 40 300 6 8
Total: 2464 = 2 x 2 x 2 x 2 x 2 x 7 x 11. SF: 28 = 2 x 2 x 7.
2.1.3.1.1.1 Odd positioned groups of 2 from 2.1.3.1.1:
90 1 10 4 10 40 6 30 200 6 200 400 40 300
Total: 1337 = 7 x 191.
2.1.3.1.1.1.1 First half of 7 from 2.1.3.1.1.1:
30 200 6 200 400 40 300
Total: 1176 = 2 x 2 x 2 x 3 x 7 x 7.
2.1.3.1.1.1.2 Last half of 7 from 2.1.3.1.1.1:
90 1 10 4 10 40 6
Total: 161 = 7 x 23.
2.1.3.1.1.2 Even positioned groups of 2 from 2.1.3.1.1:
10 2 6 400 7 6 400 5 5 70 2 200 6 8
Total: 1127 = 7 x 7 x 23.
2.1.3.1.2 Even positioned groups of 2 from 2.1.3.1:
200 6 10 30 8 40 100 70 8 400 50 2 8 100 6 2 2 90 40 6 3 2 30 200 70 1
Total: 1484 = 2 x 2 x 7 x 53.
2.1.3.1.2.1 Odd positioned groups of 2 from 2.1.3.1.2:
200 6 8 40 8 400 8 100 2 90 3 2 70 1
Total: 938 = 2 x 7 x 67.
2.1.3.1.2.1.1 Odd positioned groups of 2 from 2.1.3.1.2.1:
200 6 8 400 2 90 70 1
Total: 777 = 3 x 7 x 37.
2.1.3.1.2.1.1.1 Odd positioned from 2.1.3.1.2.1.1:
200 8 2 70
Total: 280 = 2 x 2 x 2 x 5 x 7.
2.1.3.1.2.1.1.2 Even positioned from 2.1.3.1.2.1.1:
6 400 90 1
Total: 497 = 7 x 71. SF: 78 = 2 x 3 x 13.
2.1.3.1.2.1.1.2.1 First half of 2 from 2.1.3.1.2.1.1.2:
6 400
Total: 406 = 2 x 7 x 29.
2.1.3.1.2.1.1.2.2 Last half of 2 from 2.1.3.1.2.1.1.2:
90 1
Total: 91 = 7 x 13.
2.1.3.1.2.1.2 Even positioned groups of 2 from 2.1.3.1.2.1:
8 40 8 100 3 2
Total: 161 = 7 x 23.
2.1.3.1.2.1.2.1 First half of 3 from 2.1.3.1.2.1.2:
100 3 2
Total: 105 = 3 x 5 x 7.
2.1.3.1.2.1.2.2 Last half of 3 from 2.1.3.1.2.1.2:
8 40 8
Total: 56 = 2 x 2 x 2 x 7. SF: 13.
2.1.3.1.2.2 Even positioned groups of 2 from 2.1.3.1.2:
10 30 100 70 50 2 6 2 40 6 30 200
Total: 546 = 2 x 3 x 7 x 13.
2.1.3.1.3 First half of 27 from 2.1.3.1:
100 400 5 6 2 200 6 2 90 5 70 40 6 200 400 3 2 2 200 30 200 40 300 70 1 6 8
Total: 2394 = 2 x 3 x 3 x 7 x 19.
2.1.3.1.3.1 Odd positioned groups of 9 from 2.1.3.1.3:
100 400 5 6 2 200 6 2 90 200 30 200 40 300 70 1 6 8
Total: 1666 = 2 x 7 x 7 x 17.
2.1.3.1.3.2 Even positioned groups of 9 from 2.1.3.1.3:
5 70 40 6 200 400 3 2 2
Total: 728 = 2 x 2 x 2 x 7 x 13. SF: 26 = 2 x 13.
2.1.3.1.4 Last half of 27 from 2.1.3.1:
90 1 200 6 10 2 10 30 10 4 8 40 6 400 100 70 10 40 8 400 7 6 50 2 6 30 8
Total: 1554 = 2 x 3 x 7 x 37. SF: 49 = 7 x 7. SF: 14 = 2 x 7.
2.1.3.2 Even positioned groups of 2 from 2.1.3:
4 2 1 50 1 400 5 3 20 10 6 4 1 4 30 40 6 30 40 8 50 6 10 1 40 300 2 50 200 8 6 8 90 6 6 100 400 10 1 8 6 5 10 200 10 400 2 10 2 6 8 4 90 10
Total: 2730 = 2 x 3 x 5 x 7 x 13.
2.1.3.2.1 Odd positioned groups of 3 from 2.1.3.2:
50 1 400 10 6 4 40 6 30 6 10 1 50 200 8 6 6 100 8 6 5 400 2 10 4 90 10
Total: 1469 = 13 x 113. SF: 126 = 2 x 3 x 3 x 7.
2.1.3.2.2 Even positioned groups of 3 from 2.1.3.2:
4 2 1 5 3 20 1 4 30 40 8 50 40 300 2 6 8 90 400 10 1 10 200 10 2 6 8
Total: 1261 = 13 x 97.
2.1.3.2.3 Odd positioned 8 from 2.1.3.2:
4 2 1 50 1 400 5 3 20 10 6 4 1 4 30 40 6 30 400 10 1 8 6 5 10 200 10 400 2 10 2 6 8 4 90 10
Total: 1799 = 7 x 257.
2.1.3.2.3.1 Odd positioned groups of 2 from 2.1.3.2.3:
4 2 1 400 20 10 1 4 6 30 1 8 10 200 2 10 8 4
Total: 721 = 7 x 103.
2.1.3.2.3.1.1 Odd positioned groups of 2 from 2.1.3.2.3.1:
4 2 20 10 6 30 10 200 8 4
Total: 294 = 2 x 3 x 7 x 7.
2.1.3.2.3.1.1.1 First half of 5 from 2.1.3.2.3.1.1:
30 10 200 8 4
Total: 252 = 2 x 2 x 3 x 3 x 7.
2.1.3.2.3.1.1.2 Last half of 5 from 2.1.3.2.3.1.1:
4 2 20 10 6
Total: 42 = 2 x 3 x 7.
2.1.3.2.3.1.2 Even positioned groups of 2 from 2.1.3.2.3.1:
1 400 1 4 1 8 2 10
Total: 427 = 7 x 61.
2.1.3.2.3.1.2.1 First half of 4 from 2.1.3.2.3.1.2:
1 400 1 4
Total: 406 = 2 x 7 x 29.
2.1.3.2.3.1.2.2 Last half of 4 from 2.1.3.2.3.1.2:
1 8 2 10
Total: 21 = 3 x 7.
2.1.3.2.3.1.3 First half of 9 from 2.1.3.2.3.1:
4 2 1 400 20 10 1 4 6
Total: 448 = 2 x 2 x 2 x 2 x 2 x 2 x 7.
2.1.3.2.3.1.4 Last half of 9 from 2.1.3.2.3.1:
30 1 8 10 200 2 10 8 4
Total: 273 = 3 x 7 x 13.
2.1.3.2.3.1.4.1 Odd positioned from 2.1.3.2.3.1.4:
30 8 200 10 4
Total: 252 = 2 x 2 x 3 x 3 x 7.
2.1.3.2.3.1.4.2 Even positioned from 2.1.3.2.3.1.4:
1 10 2 8
Total: 21 = 3 x 7.
2.1.3.2.3.2 Even positioned groups of 2 from 2.1.3.2.3:
1 50 5 3 6 4 30 40 400 10 6 5 10 400 2 6 90 10
Total: 1078 = 2 x 7 x 7 x 11.
2.1.3.2.3.2.1 Odd positioned groups of 3 from 2.1.3.2.3.2:
3 6 4 10 6 5 6 90 10
Total: 140 = 2 x 2 x 5 x 7.
2.1.3.2.3.2.1.1 Odd positioned groups of 3 from 2.1.3.2.3.2.1:
10 6 5
Total: 21 = 3 x 7.
2.1.3.2.3.2.1.2 Even positioned groups of 3 from 2.1.3.2.3.2.1:
3 6 4 6 90 10
Total: 119 = 7 x 17.
2.1.3.2.3.2.2 Even positioned groups of 3 from 2.1.3.2.3.2:
1 50 5 30 40 400 10 400 2
Total: 938 = 2 x 7 x 67.
2.1.3.2.3.2.3 First half of 9 from 2.1.3.2.3.2:
1 50 5 3 6 4 30 40 400
Total: 539 = 7 x 7 x 11.
2.1.3.2.3.2.4 Last half of 9 from 2.1.3.2.3.2:
10 6 5 10 400 2 6 90 10
Total: 539 = 7 x 7 x 11.
2.1.3.2.4 Even positioned 8 from 2.1.3.2:
40 8 50 6 10 1 40 300 2 50 200 8 6 8 90 6 6 100
Total: 931 = 7 x 7 x 19.
2.1.3.2.4.1 Odd positioned groups of 2 from 2.1.3.2.4:
40 8 10 1 2 50 6 8 6 100
Total: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.
2.1.3.2.4.2 Even positioned groups of 2 from 2.1.3.2.4:
50 6 40 300 200 8 90 6
Total: 700 = 2 x 2 x 5 x 5 x 7. SF: 21 = 3 x 7.
2.1.4 Even positioned groups of 27 from 2.1:
6 10 2 50 6 10 4 2 200 70 40 10 6 10 1 40 200 4 50 10 1 30 70 400 5 10 90 10 40 50 8 400 20 70 30 70 40 20 6 70 30 70 10 200 100 4 300 20 30 20 30 1 5 80 10 2 6 30 2 50 6 400 10 200 6 300 30 40 70 4 40 300 10 8 50 3 10 4 300 2 70 50 30 6 6 5 70 10 200 6 5 100 4 300 10 300 8 10 400 70 40 50 3 10 4 5 2 1 90 10 40 40 300 40 40 6 70 4 20 30 5 6 50 8 200 90 5 400 400 20 70 30 300 40 40
Total: 9093 = 3 x 7 x 433.
2.1.5 Odd positioned groups of 81 from 2.1:
6 10 2 50 6 10 4 2 200 70 40 10 6 10 1 40 200 4 50 10 1 30 70 400 5 10 90 90 1 4 2 200 6 1 50 10 2 1 400 10 30 5 3 10 4 20 10 8 40 6 4 6 400 1 10 40 50 8 400 20 70 30 70 40 20 6 70 30 70 10 200 100 4 300 20 30 20 30 1 5 80 50 30 6 6 5 70 10 200 6 5 100 4 300 10 300 8 10 400 70 40 50 3 10 4 5 2 1 400 6 5 3 2 10 200 2 200 10 400 30 200 2 10 40 300 2 6 70 1 8 4 6 8 90 10 90 10 40 40 300 40 40 6 70 4 20 30 5 6 50 8 200 90 5 400 400 20 70 30 300 40 40
Total: 10479 = 3 x 7 x 499.
2.1.5.1 Odd positioned groups of 27 from 2.1.5:
90 1 4 2 200 6 1 50 10 2 1 400 10 30 5 3 10 4 20 10 8 40 6 4 6 400 1 50 30 6 6 5 70 10 200 6 5 100 4 300 10 300 8 10 400 70 40 50 3 10 4 5 2 1 90 10 40 40 300 40 40 6 70 4 20 30 5 6 50 8 200 90 5 400 400 20 70 30 300 40 40
Total: 5383 = 7 x 769.
2.1.5.2 Even positioned groups of 27 from 2.1.5:
6 10 2 50 6 10 4 2 200 70 40 10 6 10 1 40 200 4 50 10 1 30 70 400 5 10 90 10 40 50 8 400 20 70 30 70 40 20 6 70 30 70 10 200 100 4 300 20 30 20 30 1 5 80 400 6 5 3 2 10 200 2 200 10 400 30 200 2 10 40 300 2 6 70 1 8 4 6 8 90 10
Total: 5096 = 2 x 2 x 2 x 7 x 7 x 13.
2.1.6 Even positioned groups of 81 from 2.1:
4 100 70 30 40 10 40 6 30 8 400 40 8 7 6 50 6 50 2 10 1 6 30 40 300 8 100 10 2 6 30 2 50 6 400 10 200 6 300 30 40 70 4 40 300 10 8 50 3 10 4 300 2 70 2 50 400 5 200 8 6 2 6 8 200 6 90 6 2 90 6 100 5 70 400 10 40 6 1 8 200
Total: 5292 = 2 x 2 x 3 x 3 x 3 x 7 x 7.
2.2 Even positioned groups of 27 from 1:
1 400 10 30 5 300 20 10 30 20 2 10 50 5 2 400 8 30 400 400 8 50 6 50 10 20 10 400 5 6 2 10 50 2 4 2 200 6 5 2 50 2 40 200 1 5 300 2 70 10 40 300 2 70 300 70 6 30 8 400 40 8 9 1 6 400 6 30 20 80 200 70 6 50 6 30 5 2 10 1 90 4 300 100 4 300 10 40 6 400 4 70 6 400 300 20 30 40 50 40 90 1 4 2 200 30 5 300 10 40 300 2 70 5 6 300 2 70 10 40 300 300 10 40 6 300 50 10 40 400 300 6 2 6 50 10 5 300 2 70 10 40 300 300 10 40 6 300 50 10 40 10 20 200 400 40 300 10 8 6 1 10 6 100 90 6 2 300 9 80 6 70 4 100 90 40 30 8 40 5 50 8 200 90 400 300 40 40 6 5 300 2 6 70 10 300 2 10 400 7 2 8 6 40 50 8 5 6 70 30 20 50 80 300 100 6
Total: 17899 = 7 x 2557.
2.2.1 Odd positioned groups of 2 from 2.2:
1 400 5 300 30 20 50 5 8 30 8 50 10 20 5 6 50 2 200 6 50 2 1 5 70 10 2 70 6 30 40 8 6 400 20 80 6 50 5 2 90 4 4 300 6 400 6 400 30 40 90 1 200 30 10 40 70 5 2 70 300 300 6 300 40 400 2 6 5 300 10 40 10 40 50 10 20 200 300 10 1 10 90 6 9 80 4 100 30 8 50 8 400 300 6 5 6 70 2 10 2 8 50 8 70 30 80 300
Total: 7959 = 3 x 7 x 379.
2.2.1.1 Odd positioned groups of 36 from 2.2.1:
1 400 5 300 30 20 50 5 8 30 8 50 10 20 5 6 50 2 200 6 50 2 1 5 70 10 2 70 6 30 40 8 6 400 20 80 10 40 50 10 20 200 300 10 1 10 90 6 9 80 4 100 30 8 50 8 400 300 6 5 6 70 2 10 2 8 50 8 70 30 80 300
Total: 4389 = 3 x 7 x 11 x 19.
2.2.1.1.1 Odd positioned groups of 4 from 2.2.1.1:
1 400 5 300 8 30 8 50 50 2 200 6 70 10 2 70 6 400 20 80 20 200 300 10 9 80 4 100 400 300 6 5 2 8 50 8
Total: 3220 = 2 x 2 x 5 x 7 x 23. SF: 39 = 3 x 13.
2.2.1.1.1.1 Odd positioned groups of 9 from 2.2.1.1.1:
2 200 6 70 10 2 70 6 400 100 400 300 6 5 2 8 50 8
Total: 1645 = 5 x 7 x 47.
2.2.1.1.1.2 Even positioned groups of 9 from 2.2.1.1.1:
1 400 5 300 8 30 8 50 50 20 80 20 200 300 10 9 80 4
Total: 1575 = 3 x 3 x 5 x 5 x 7.
2.2.1.1.2 Even positioned groups of 4 from 2.2.1.1:
30 20 50 5 10 20 5 6 50 2 1 5 6 30 40 8 10 40 50 10 1 10 90 6 30 8 50 8 6 70 2 10 70 30 80 300
Total: 1169 = 7 x 167.
2.2.1.1.2.1 Odd positioned from 2.2.1.1.2:
30 50 10 5 50 1 6 40 10 50 1 90 30 50 6 2 70 80
Total: 581 = 7 x 83.
2.2.1.1.2.2 Even positioned from 2.2.1.1.2:
20 5 20 6 2 5 30 8 40 10 10 6 8 8 70 10 30 300
Total: 588 = 2 x 2 x 3 x 7 x 7. SF: 21 = 3 x 7.
2.2.1.1.2.3 Odd positioned groups of 6 from 2.2.1.1.2:
5 6 50 2 1 5 50 10 1 10 90 6 2 10 70 30 80 300
Total: 728 = 2 x 2 x 2 x 7 x 13. SF: 26 = 2 x 13.
2.2.1.1.2.3.1 Odd positioned groups of 2 from 2.2.1.1.2.3:
5 6 1 5 1 10 2 10 80 300
Total: 420 = 2 x 2 x 3 x 5 x 7.
2.2.1.1.2.3.2 Even positioned groups of 2 from 2.2.1.1.2.3:
50 2 50 10 90 6 70 30
Total: 308 = 2 x 2 x 7 x 11.
2.2.1.1.2.3.2.1 First half of 4 from 2.2.1.1.2.3.2:
50 2 50 10
Total: 112 = 2 x 2 x 2 x 2 x 7.
2.2.1.1.2.3.2.2 Last half of 4 from 2.2.1.1.2.3.2:
90 6 70 30
Total: 196 = 2 x 2 x 7 x 7.
2.2.1.1.2.3.3 First half of 9 from 2.2.1.1.2.3:
5 6 50 2 1 5 50 10 1
Total: 130 = 2 x 5 x 13.
2.2.1.1.2.3.4 Last half of 9 from 2.2.1.1.2.3:
10 90 6 2 10 70 30 80 300
Total: 598 = 2 x 13 x 23.
2.2.1.1.2.4 Even positioned groups of 6 from 2.2.1.1.2:
30 20 50 5 10 20 6 30 40 8 10 40 30 8 50 8 6 70
Total: 441 = 3 x 3 x 7 x 7.
2.2.1.1.2.5 Odd positioned 2 from 2.2.1.1.2:
6 30 40 8 10 40 50 10 1 10 90 6
Total: 301 = 7 x 43.
2.2.1.1.2.6 Even positioned 2 from 2.2.1.1.2:
30 20 50 5 10 20 5 6 50 2 1 5 30 8 50 8 6 70 2 10 70 30 80 300
Total: 868 = 2 x 2 x 7 x 31. SF: 42 = 2 x 3 x 7.
2.2.1.1.2.6.1 Odd positioned groups of 8 from 2.2.1.1.2.6:
30 20 50 5 10 20 5 6 6 70 2 10 70 30 80 300
Total: 714 = 2 x 3 x 7 x 17.
2.2.1.1.2.6.2 Even positioned groups of 8 from 2.2.1.1.2.6:
50 2 1 5 30 8 50 8
Total: 154 = 2 x 7 x 11.
2.2.1.1.3 Odd positioned groups of 9 from 2.2.1.1:
30 8 50 10 20 5 6 50 2 70 6 30 40 8 6 400 20 80 10 90 6 9 80 4 100 30 8 10 2 8 50 8 70 30 80 300
Total: 1736 = 2 x 2 x 2 x 7 x 31.
2.2.1.1.3.1 Odd positioned groups of 9 from 2.2.1.1.3:
70 6 30 40 8 6 400 20 80 10 2 8 50 8 70 30 80 300
Total: 1218 = 2 x 3 x 7 x 29.
2.2.1.1.3.2 Even positioned groups of 9 from 2.2.1.1.3:
30 8 50 10 20 5 6 50 2 10 90 6 9 80 4 100 30 8
Total: 518 = 2 x 7 x 37.
2.2.1.1.4 Even positioned groups of 9 from 2.2.1.1:
1 400 5 300 30 20 50 5 8 200 6 50 2 1 5 70 10 2 10 40 50 10 20 200 300 10 1 50 8 400 300 6 5 6 70 2
Total: 2653 = 7 x 379.
2.2.1.1.4.1 Odd positioned groups of 2 from 2.2.1.1.4:
1 400 30 20 8 200 2 1 10 2 50 10 300 10 8 400 5 6
Total: 1463 = 7 x 11 x 19.
2.2.1.1.4.1.1 First half of 9 from 2.2.1.1.4.1:
1 400 30 20 8 200 2 1 10
Total: 672 = 2 x 2 x 2 x 2 x 2 x 3 x 7.
2.2.1.1.4.1.2 Last half of 9 from 2.2.1.1.4.1:
2 50 10 300 10 8 400 5 6
Total: 791 = 7 x 113.
2.2.1.1.4.2 Even positioned groups of 2 from 2.2.1.1.4:
5 300 50 5 6 50 5 70 10 40 20 200 1 50 300 6 70 2
Total: 1190 = 2 x 5 x 7 x 17.
2.2.1.1.4.2.1 Odd positioned groups of 3 from 2.2.1.1.4.2:
5 6 50 40 20 200 6 70 2
Total: 399 = 3 x 7 x 19.
2.2.1.1.4.2.2 Even positioned groups of 3 from 2.2.1.1.4.2:
5 300 50 5 70 10 1 50 300
Total: 791 = 7 x 113.
2.2.1.1.4.3 Odd positioned 2 from 2.2.1.1.4:
2 1 5 70 10 2 10 40 50 10 20 200
Total: 420 = 2 x 2 x 3 x 5 x 7.
2.2.1.1.4.4 Even positioned 2 from 2.2.1.1.4:
1 400 5 300 30 20 50 5 8 200 6 50 300 10 1 50 8 400 300 6 5 6 70 2
Total: 2233 = 7 x 11 x 29.
2.2.1.1.4.4.1 Odd positioned from 2.2.1.1.4.4:
1 5 30 50 8 6 300 1 8 300 5 70
Total: 784 = 2 x 2 x 2 x 2 x 7 x 7.
2.2.1.1.4.4.1.1 Odd positioned groups of 4 from 2.2.1.1.4.4.1:
1 5 30 50 8 300 5 70
Total: 469 = 7 x 67.
2.2.1.1.4.4.1.2 Even positioned groups of 4 from 2.2.1.1.4.4.1:
8 6 300 1
Total: 315 = 3 x 3 x 5 x 7.
2.2.1.1.4.4.1.2.1 Odd positioned from 2.2.1.1.4.4.1.2:
8 300
Total: 308 = 2 x 2 x 7 x 11.
2.2.1.1.4.4.1.2.2 Even positioned from 2.2.1.1.4.4.1.2:
6 1
Total: 7 = 7. SF: 7.
2.2.1.1.4.4.1.2.3 First half of 2 from 2.2.1.1.4.4.1.2:
8 6
Total: 14 = 2 x 7.
2.2.1.1.4.4.1.2.4 Last half of 2 from 2.2.1.1.4.4.1.2:
300 1
Total: 301 = 7 x 43.
2.2.1.1.4.4.2 Even positioned from 2.2.1.1.4.4:
400 300 20 5 200 50 10 50 400 6 6 2
Total: 1449 = 3 x 3 x 7 x 23.
2.2.1.1.4.4.2.1 Odd positioned from 2.2.1.1.4.4.2:
400 20 200 10 400 6
Total: 1036 = 2 x 2 x 7 x 37.
2.2.1.1.4.4.2.1.1 Odd positioned groups of 2 from 2.2.1.1.4.4.2.1:
400 20 400 6
Total: 826 = 2 x 7 x 59.
2.2.1.1.4.4.2.1.1.1 First half of 2 from 2.2.1.1.4.4.2.1.1:
400 20
Total: 420 = 2 x 2 x 3 x 5 x 7.
2.2.1.1.4.4.2.1.1.2 Last half of 2 from 2.2.1.1.4.4.2.1.1:
400 6
Total: 406 = 2 x 7 x 29.
2.2.1.1.4.4.2.1.2 Even positioned groups of 2 from 2.2.1.1.4.4.2.1:
200 10
Total: 210 = 2 x 3 x 5 x 7.
2.2.1.1.4.4.2.2 Even positioned from 2.2.1.1.4.4.2:
300 5 50 50 6 2
Total: 413 = 7 x 59.
2.2.1.2 Even positioned groups of 36 from 2.2.1:
6 50 5 2 90 4 4 300 6 400 6 400 30 40 90 1 200 30 10 40 70 5 2 70 300 300 6 300 40 400 2 6 5 300 10 40
Total: 3570 = 2 x 3 x 5 x 7 x 17.
2.2.1.2.1 Odd positioned from 2.2.1.2:
6 5 90 4 6 6 30 90 200 10 70 2 300 6 40 2 5 10
Total: 882 = 2 x 3 x 3 x 7 x 7.
2.2.1.2.2 Even positioned from 2.2.1.2:
50 2 4 300 400 400 40 1 30 40 5 70 300 300 400 6 300 40
Total: 2688 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 3 x 7.
2.2.1.2.2.1 Odd positioned groups of 2 from 2.2.1.2.2:
50 2 400 400 30 40 300 300 300 40
Total: 1862 = 2 x 7 x 7 x 19. SF: 35 = 5 x 7.
2.2.1.2.2.1.1 Odd positioned groups of 2 from 2.2.1.2.2.1:
50 2 30 40 300 40
Total: 462 = 2 x 3 x 7 x 11.
2.2.1.2.2.1.1.1 Odd positioned groups of 2 from 2.2.1.2.2.1.1:
50 2 300 40
Total: 392 = 2 x 2 x 2 x 7 x 7.
2.2.1.2.2.1.1.1.1 Odd positioned from 2.2.1.2.2.1.1.1:
50 300
Total: 350 = 2 x 5 x 5 x 7.
2.2.1.2.2.1.1.1.2 Even positioned from 2.2.1.2.2.1.1.1:
2 40
Total: 42 = 2 x 3 x 7.
2.2.1.2.2.1.1.2 Even positioned groups of 2 from 2.2.1.2.2.1.1:
30 40
Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
2.2.1.2.2.1.2 Even positioned groups of 2 from 2.2.1.2.2.1:
400 400 300 300
Total: 1400 = 2 x 2 x 2 x 5 x 5 x 7.
2.2.1.2.2.1.2.1 Odd positioned from 2.2.1.2.2.1.2:
400 300
Total: 700 = 2 x 2 x 5 x 5 x 7. SF: 21 = 3 x 7.
2.2.1.2.2.1.2.2 Even positioned from 2.2.1.2.2.1.2:
400 300
Total: 700 = 2 x 2 x 5 x 5 x 7. SF: 21 = 3 x 7.
2.2.1.2.2.1.3 First half of 5 from 2.2.1.2.2.1:
40 300 300 300 40
Total: 980 = 2 x 2 x 5 x 7 x 7.
2.2.1.2.2.1.4 Last half of 5 from 2.2.1.2.2.1:
50 2 400 400 30
Total: 882 = 2 x 3 x 3 x 7 x 7.
2.2.1.2.2.2 Even positioned groups of 2 from 2.2.1.2.2:
4 300 40 1 5 70 400 6
Total: 826 = 2 x 7 x 59.
2.2.1.2.2.3 Odd positioned groups of 3 from 2.2.1.2.2:
300 400 400 40 5 70 6 300 40
Total: 1561 = 7 x 223.
2.2.1.2.2.4 Even positioned groups of 3 from 2.2.1.2.2:
50 2 4 40 1 30 300 300 400
Total: 1127 = 7 x 7 x 23.
2.2.1.2.3 Odd positioned 2 from 2.2.1.2:
30 40 90 1 200 30 10 40 70 5 2 70
Total: 588 = 2 x 2 x 3 x 7 x 7. SF: 21 = 3 x 7.
2.2.1.2.3.1 Odd positioned groups of 3 from 2.2.1.2.3:
30 40 90 10 40 70
Total: 280 = 2 x 2 x 2 x 5 x 7.
2.2.1.2.3.2 Even positioned groups of 3 from 2.2.1.2.3:
1 200 30 5 2 70
Total: 308 = 2 x 2 x 7 x 11.
2.2.1.2.3.2.1 Odd positioned groups of 2 from 2.2.1.2.3.2:
1 200 2 70
Total: 273 = 3 x 7 x 13.
2.2.1.2.3.2.2 Even positioned groups of 2 from 2.2.1.2.3.2:
30 5
Total: 35 = 5 x 7.
2.2.1.2.3.2.3 First half of 3 from 2.2.1.2.3.2:
5 2 70
Total: 77 = 7 x 11.
2.2.1.2.3.2.4 Last half of 3 from 2.2.1.2.3.2:
1 200 30
Total: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.
2.2.1.2.3.3 Odd positioned groups of 4 from 2.2.1.2.3:
30 40 90 1 70 5 2 70
Total: 308 = 2 x 2 x 7 x 11.
2.2.1.2.3.3.1 First half of 4 from 2.2.1.2.3.3:
30 40 90 1
Total: 161 = 7 x 23.
2.2.1.2.3.3.1.1 First half of 2 from 2.2.1.2.3.3.1:
30 40
Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
2.2.1.2.3.3.1.2 Last half of 2 from 2.2.1.2.3.3.1:
90 1
Total: 91 = 7 x 13.
2.2.1.2.3.3.2 Last half of 4 from 2.2.1.2.3.3:
70 5 2 70
Total: 147 = 3 x 7 x 7.
2.2.1.2.3.4 Even positioned groups of 4 from 2.2.1.2.3:
200 30 10 40
Total: 280 = 2 x 2 x 2 x 5 x 7.
2.2.1.2.3.4.1 Odd positioned from 2.2.1.2.3.4:
200 10
Total: 210 = 2 x 3 x 5 x 7.
2.2.1.2.3.4.2 Even positioned from 2.2.1.2.3.4:
30 40
Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
2.2.1.2.4 Even positioned 2 from 2.2.1.2:
6 50 5 2 90 4 4 300 6 400 6 400 300 300 6 300 40 400 2 6 5 300 10 40
Total: 2982 = 2 x 3 x 7 x 71.
2.2.1.2.4.1 Odd positioned groups of 4 from 2.2.1.2.4:
6 50 5 2 6 400 6 400 40 400 2 6
Total: 1323 = 3 x 3 x 3 x 7 x 7.
2.2.1.2.4.1.1 Odd positioned groups of 4 from 2.2.1.2.4.1:
6 50 5 2 40 400 2 6
Total: 511 = 7 x 73.
2.2.1.2.4.1.1.1 First half of 4 from 2.2.1.2.4.1.1:
6 50 5 2
Total: 63 = 3 x 3 x 7. SF: 13.
2.2.1.2.4.1.1.1.1 First half of 2 from 2.2.1.2.4.1.1.1:
6 50
Total: 56 = 2 x 2 x 2 x 7. SF: 13.
2.2.1.2.4.1.1.1.2 Last half of 2 from 2.2.1.2.4.1.1.1:
5 2
Total: 7 = 7. SF: 7.
2.2.1.2.4.1.1.2 Last half of 4 from 2.2.1.2.4.1.1:
40 400 2 6
Total: 448 = 2 x 2 x 2 x 2 x 2 x 2 x 7.
2.2.1.2.4.1.1.2.1 Odd positioned from 2.2.1.2.4.1.1.2:
40 2
Total: 42 = 2 x 3 x 7.
2.2.1.2.4.1.1.2.2 Even positioned from 2.2.1.2.4.1.1.2:
400 6
Total: 406 = 2 x 7 x 29.
2.2.1.2.4.1.2 Even positioned groups of 4 from 2.2.1.2.4.1:
6 400 6 400
Total: 812 = 2 x 2 x 7 x 29.
2.2.1.2.4.1.2.1 First half of 2 from 2.2.1.2.4.1.2:
6 400
Total: 406 = 2 x 7 x 29.
2.2.1.2.4.1.2.2 Last half of 2 from 2.2.1.2.4.1.2:
6 400
Total: 406 = 2 x 7 x 29.
2.2.1.2.4.1.3 First half of 6 from 2.2.1.2.4.1:
6 400 40 400 2 6
Total: 854 = 2 x 7 x 61. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
2.2.1.2.4.1.4 Last half of 6 from 2.2.1.2.4.1:
6 50 5 2 6 400
Total: 469 = 7 x 67.
2.2.1.2.4.1.4.1 Odd positioned groups of 2 from 2.2.1.2.4.1.4:
6 50 6 400
Total: 462 = 2 x 3 x 7 x 11.
2.2.1.2.4.1.4.1.1 First half of 2 from 2.2.1.2.4.1.4.1:
6 50
Total: 56 = 2 x 2 x 2 x 7. SF: 13.
2.2.1.2.4.1.4.1.2 Last half of 2 from 2.2.1.2.4.1.4.1:
6 400
Total: 406 = 2 x 7 x 29.
2.2.1.2.4.1.4.2 Even positioned groups of 2 from 2.2.1.2.4.1.4:
5 2
Total: 7 = 7. SF: 7.
2.2.1.2.4.2 Even positioned groups of 4 from 2.2.1.2.4:
90 4 4 300 300 300 6 300 5 300 10 40
Total: 1659 = 3 x 7 x 79.
2.2.2 Even positioned groups of 2 from 2.2:
10 30 20 10 2 10 2 400 400 400 6 50 10 400 2 10 4 2 5 2 40 200 300 2 40 300 300 70 8 400 9 1 6 30 200 70 6 30 10 1 300 100 10 40 4 70 300 20 50 40 4 2 5 300 300 2 6 300 10 40 10 40 50 10 300 6 50 10 2 70 300 300 6 300 40 10 400 40 8 6 6 100 2 300 6 70 90 40 40 5 200 90 40 40 300 2 10 300 400 7 6 40 5 6 20 50 100 6
Total: 9940 = 2 x 2 x 5 x 7 x 71.
2.2.2.1 Odd positioned from 2.2.2:
10 20 2 2 400 6 10 2 4 5 40 300 40 300 8 9 6 200 6 10 300 10 4 300 50 4 5 300 6 10 10 50 300 50 2 300 6 40 400 8 6 2 6 90 40 200 40 300 10 400 6 5 20 100
Total: 4760 = 2 x 2 x 2 x 5 x 7 x 17. SF: 35 = 5 x 7.
2.2.2.1.1 Odd positioned groups of 9 from 2.2.2.1:
10 20 2 2 400 6 10 2 4 6 10 300 10 4 300 50 4 5 6 40 400 8 6 2 6 90 40
Total: 1743 = 3 x 7 x 83.
2.2.2.1.2 Even positioned groups of 9 from 2.2.2.1:
5 40 300 40 300 8 9 6 200 300 6 10 10 50 300 50 2 300 200 40 300 10 400 6 5 20 100
Total: 3017 = 7 x 431.
2.2.2.10 Even positioned groups of 27 from 2.2.2:
70 8 400 9 1 6 30 200 70 6 30 10 1 300 100 10 40 4 70 300 20 50 40 4 2 5 300 100 2 300 6 70 90 40 40 5 200 90 40 40 300 2 10 300 400 7 6 40 5 6 20 50 100 6
Total: 4361 = 7 x 7 x 89.
2.2.2.10.1 First half of 27 from 2.2.2.10:
100 2 300 6 70 90 40 40 5 200 90 40 40 300 2 10 300 400 7 6 40 5 6 20 50 100 6
Total: 2275 = 5 x 5 x 7 x 13.
2.2.2.10.2 Last half of 27 from 2.2.2.10:
70 8 400 9 1 6 30 200 70 6 30 10 1 300 100 10 40 4 70 300 20 50 40 4 2 5 300
Total: 2086 = 2 x 7 x 149.
2.2.2.10.2.1 Odd positioned groups of 3 from 2.2.2.10.2:
9 1 6 6 30 10 10 40 4 50 40 4
Total: 210 = 2 x 3 x 5 x 7.
2.2.2.10.2.1.1 Odd positioned groups of 3 from 2.2.2.10.2.1:
9 1 6 10 40 4
Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
2.2.2.10.2.1.2 Even positioned groups of 3 from 2.2.2.10.2.1:
6 30 10 50 40 4
Total: 140 = 2 x 2 x 5 x 7.
2.2.2.10.2.1.2.1 Odd positioned from 2.2.2.10.2.1.2:
6 10 40
Total: 56 = 2 x 2 x 2 x 7. SF: 13.
2.2.2.10.2.1.2.2 Even positioned from 2.2.2.10.2.1.2:
30 50 4
Total: 84 = 2 x 2 x 3 x 7. SF: 14 = 2 x 7.
2.2.2.10.2.2 Even positioned groups of 3 from 2.2.2.10.2:
70 8 400 30 200 70 1 300 100 70 300 20 2 5 300
Total: 1876 = 2 x 2 x 7 x 67. SF: 78 = 2 x 3 x 13.
2.2.2.2 Even positioned from 2.2.2:
30 10 10 400 400 50 400 10 2 2 200 2 300 70 400 1 30 70 30 1 100 40 70 20 40 2 300 2 300 40 40 10 6 10 70 300 300 10 40 6 100 300 70 40 5 90 40 2 300 7 40 6 50 6
Total: 5180 = 2 x 2 x 5 x 7 x 37.
2.2.2.2.1 Odd positioned groups of 9 from 2.2.2.2:
30 10 10 400 400 50 400 10 2 30 1 100 40 70 20 40 2 300 300 10 40 6 100 300 70 40 5
Total: 2786 = 2 x 7 x 199. SF: 208 = 2 x 2 x 2 x 2 x 13. SF: 21 = 3 x 7.
2.2.2.2.1.1 Odd positioned groups of 3 from 2.2.2.2.1:
400 400 50 30 1 100 40 2 300 6 100 300
Total: 1729 = 7 x 13 x 19. SF: 39 = 3 x 13.
2.2.2.2.1.1.1 Odd positioned groups of 4 from 2.2.2.2.1.1:
400 400 50 30 300 6 100 300
Total: 1586 = 2 x 13 x 61.
2.2.2.2.1.1.2 Even positioned groups of 4 from 2.2.2.2.1.1:
1 100 40 2
Total: 143 = 11 x 13.
2.2.2.2.1.2 Even positioned groups of 3 from 2.2.2.2.1:
30 10 10 400 10 2 40 70 20 300 10 40 70 40 5
Total: 1057 = 7 x 151.
2.2.2.2.2 Even positioned groups of 9 from 2.2.2.2:
2 200 2 300 70 400 1 30 70 2 300 40 40 10 6 10 70 300 90 40 2 300 7 40 6 50 6
Total: 2394 = 2 x 3 x 3 x 7 x 19.
2.2.2.2.2.1 Odd positioned from 2.2.2.2.2:
2 2 70 1 70 300 40 6 70 90 2 7 6 6
Total: 672 = 2 x 2 x 2 x 2 x 2 x 3 x 7.
2.2.2.2.2.1.1 Odd positioned groups of 2 from 2.2.2.2.2.1:
2 2 70 300 70 90 6 6
Total: 546 = 2 x 3 x 7 x 13.
2.2.2.2.2.1.2 Even positioned groups of 2 from 2.2.2.2.2.1:
70 1 40 6 2 7
Total: 126 = 2 x 3 x 3 x 7.
2.2.2.2.2.1.2.1 Odd positioned from 2.2.2.2.2.1.2:
70 40 2
Total: 112 = 2 x 2 x 2 x 2 x 7.
2.2.2.2.2.1.2.2 Even positioned from 2.2.2.2.2.1.2:
1 6 7
Total: 14 = 2 x 7.
2.2.2.2.2.2 Even positioned from 2.2.2.2.2:
200 300 400 30 2 40 10 10 300 40 300 40 50
Total: 1722 = 2 x 3 x 7 x 41.
2.2.2.3 Odd positioned groups of 4 from 2.2.2:
10 30 20 10 400 400 6 50 4 2 5 2 40 300 300 70 6 30 200 70 300 100 10 40 50 40 4 2 6 300 10 40 300 6 50 10 6 300 40 10 6 100 2 300 40 5 200 90 10 300 400 7 20 50 100 6
Total: 5215 = 5 x 7 x 149. SF: 161 = 7 x 23.
2.2.2.3.1 Odd positioned groups of 8 from 2.2.2.3:
10 30 20 10 400 400 6 50 6 30 200 70 300 100 10 40 300 6 50 10 6 300 40 10 10 300 400 7 20 50 100 6
Total: 3297 = 3 x 7 x 157.
2.2.2.3.1.1 Odd positioned groups of 2 from 2.2.2.3.1:
10 30 400 400 6 30 300 100 300 6 6 300 10 300 20 50
Total: 2268 = 2 x 2 x 3 x 3 x 3 x 3 x 7.
2.2.2.3.1.2 Even positioned groups of 2 from 2.2.2.3.1:
20 10 6 50 200 70 10 40 50 10 40 10 400 7 100 6
Total: 1029 = 3 x 7 x 7 x 7.
2.2.2.3.1.2.1 Odd positioned from 2.2.2.3.1.2:
20 6 200 10 50 40 400 100
Total: 826 = 2 x 7 x 59.
2.2.2.3.1.2.2 Even positioned from 2.2.2.3.1.2:
10 50 70 40 10 10 7 6
Total: 203 = 7 x 29.
2.2.2.3.1.2.3 Odd positioned groups of 4 from 2.2.2.3.1.2:
20 10 6 50 50 10 40 10
Total: 196 = 2 x 2 x 7 x 7.
2.2.2.3.1.2.4 Even positioned groups of 4 from 2.2.2.3.1.2:
200 70 10 40 400 7 100 6
Total: 833 = 7 x 7 x 17.
2.2.2.3.1.2.5 First half of 8 from 2.2.2.3.1.2:
20 10 6 50 200 70 10 40
Total: 406 = 2 x 7 x 29.
2.2.2.3.1.2.6 Last half of 8 from 2.2.2.3.1.2:
50 10 40 10 400 7 100 6
Total: 623 = 7 x 89.
2.2.2.3.2 Even positioned groups of 8 from 2.2.2.3:
4 2 5 2 40 300 300 70 50 40 4 2 6 300 10 40 6 100 2 300 40 5 200 90
Total: 1918 = 2 x 7 x 137.
2.2.2.3.2.1 First half of 12 from 2.2.2.3.2:
6 300 10 40 6 100 2 300 40 5 200 90
Total: 1099 = 7 x 157.
2.2.2.3.2.1.1 Odd positioned groups of 3 from 2.2.2.3.2.1:
6 300 10 2 300 40
Total: 658 = 2 x 7 x 47. SF: 56 = 2 x 2 x 2 x 7. SF: 13.
2.2.2.3.2.1.2 Even positioned groups of 3 from 2.2.2.3.2.1:
40 6 100 5 200 90
Total: 441 = 3 x 3 x 7 x 7.
2.2.2.3.2.1.2.1 Odd positioned groups of 2 from 2.2.2.3.2.1.2:
40 6 200 90
Total: 336 = 2 x 2 x 2 x 2 x 3 x 7.
2.2.2.3.2.1.2.2 Even positioned groups of 2 from 2.2.2.3.2.1.2:
100 5
Total: 105 = 3 x 5 x 7.
2.2.2.3.2.1.3 First half of 6 from 2.2.2.3.2.1:
2 300 40 5 200 90
Total: 637 = 7 x 7 x 13.
2.2.2.3.2.1.4 Last half of 6 from 2.2.2.3.2.1:
6 300 10 40 6 100
Total: 462 = 2 x 3 x 7 x 11.
2.2.2.3.2.2 Last half of 12 from 2.2.2.3.2:
4 2 5 2 40 300 300 70 50 40 4 2
Total: 819 = 3 x 3 x 7 x 13. SF: 26 = 2 x 13.
2.2.2.3.2.2.1 Odd positioned from 2.2.2.3.2.2:
4 5 40 300 50 4
Total: 403 = 13 x 31.
2.2.2.3.2.2.2 Even positioned from 2.2.2.3.2.2:
2 2 300 70 40 2
Total: 416 = 2 x 2 x 2 x 2 x 2 x 13.
2.2.2.4 Even positioned groups of 4 from 2.2.2:
2 10 2 400 10 400 2 10 40 200 300 2 8 400 9 1 6 30 10 1 4 70 300 20 5 300 300 2 10 40 50 10 2 70 300 300 400 40 8 6 6 70 90 40 40 40 300 2 6 40 5 6
Total: 4725 = 3 x 3 x 3 x 5 x 5 x 7. SF: 26 = 2 x 13.
2.2.2.5 Odd positioned groups of 9 from 2.2.2:
400 6 50 10 400 2 10 4 2 70 8 400 9 1 6 30 200 70 70 300 20 50 40 4 2 5 300 10 300 6 50 10 2 70 300 300 100 2 300 6 70 90 40 40 5 7 6 40 5 6 20 50 100 6
Total: 4410 = 2 x 3 x 3 x 5 x 7 x 7.
2.2.2.5.1 Odd positioned groups of 6 from 2.2.2.5:
10 4 2 70 8 400 70 300 20 50 40 4 50 10 2 70 300 300 40 40 5 7 6 40
Total: 1848 = 2 x 2 x 2 x 3 x 7 x 11.
2.2.2.5.1.1 Odd positioned from 2.2.2.5.1:
10 2 8 70 20 40 50 2 300 40 5 6
Total: 553 = 7 x 79.
2.2.2.5.1.1.1 Odd positioned groups of 4 from 2.2.2.5.1.1:
10 2 8 70 300 40 5 6
Total: 441 = 3 x 3 x 7 x 7.
2.2.2.5.1.1.2 Even positioned groups of 4 from 2.2.2.5.1.1:
20 40 50 2
Total: 112 = 2 x 2 x 2 x 2 x 7.
2.2.2.5.1.1.2.1 Odd positioned from 2.2.2.5.1.1.2:
20 50
Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
2.2.2.5.1.1.2.2 Even positioned from 2.2.2.5.1.1.2:
40 2
Total: 42 = 2 x 3 x 7.
2.2.2.5.1.2 Even positioned from 2.2.2.5.1:
4 70 400 300 50 4 10 70 300 40 7 40
Total: 1295 = 5 x 7 x 37. SF: 49 = 7 x 7. SF: 14 = 2 x 7.
2.2.2.5.1.2.1 Odd positioned groups of 3 from 2.2.2.5.1.2:
4 70 400 10 70 300
Total: 854 = 2 x 7 x 61. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
2.2.2.5.1.2.2 Even positioned groups of 3 from 2.2.2.5.1.2:
300 50 4 40 7 40
Total: 441 = 3 x 3 x 7 x 7.
2.2.2.5.1.3 Odd positioned groups of 3 from 2.2.2.5.1:
10 4 2 70 300 20 50 10 2 40 40 5
Total: 553 = 7 x 79.
2.2.2.5.1.3.1 First half of 6 from 2.2.2.5.1.3:
50 10 2 40 40 5
Total: 147 = 3 x 7 x 7.
2.2.2.5.1.3.1.1 Odd positioned groups of 2 from 2.2.2.5.1.3.1:
50 10 40 5
Total: 105 = 3 x 5 x 7.
2.2.2.5.1.3.1.2 Even positioned groups of 2 from 2.2.2.5.1.3.1:
2 40
Total: 42 = 2 x 3 x 7.
2.2.2.5.1.3.2 Last half of 6 from 2.2.2.5.1.3:
10 4 2 70 300 20
Total: 406 = 2 x 7 x 29.
2.2.2.5.1.4 Even positioned groups of 3 from 2.2.2.5.1:
70 8 400 50 40 4 70 300 300 7 6 40
Total: 1295 = 5 x 7 x 37. SF: 49 = 7 x 7. SF: 14 = 2 x 7.
2.2.2.5.1.4.1 Odd positioned groups of 3 from 2.2.2.5.1.4:
70 8 400 70 300 300
Total: 1148 = 2 x 2 x 7 x 41. SF: 52 = 2 x 2 x 13.
2.2.2.5.1.4.1.1 Odd positioned from 2.2.2.5.1.4.1:
70 400 300
Total: 770 = 2 x 5 x 7 x 11.
2.2.2.5.1.4.1.2 Even positioned from 2.2.2.5.1.4.1:
8 70 300
Total: 378 = 2 x 3 x 3 x 3 x 7.
2.2.2.5.1.4.1.2.1 Odd positioned from 2.2.2.5.1.4.1.2:
8 300
Total: 308 = 2 x 2 x 7 x 11.
2.2.2.5.1.4.1.2.2 Even positioned from 2.2.2.5.1.4.1.2:
70
Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
2.2.2.5.1.4.2 Even positioned groups of 3 from 2.2.2.5.1.4:
50 40 4 7 6 40
Total: 147 = 3 x 7 x 7.
2.2.2.5.2 Even positioned groups of 6 from 2.2.2.5:
400 6 50 10 400 2 9 1 6 30 200 70 2 5 300 10 300 6 100 2 300 6 70 90 5 6 20 50 100 6
Total: 2562 = 2 x 3 x 7 x 61.
2.2.2.5.2.1 First half of 15 from 2.2.2.5.2:
10 300 6 100 2 300 6 70 90 5 6 20 50 100 6
Total: 1071 = 3 x 3 x 7 x 17.
2.2.2.5.2.2 Last half of 15 from 2.2.2.5.2:
400 6 50 10 400 2 9 1 6 30 200 70 2 5 300
Total: 1491 = 3 x 7 x 71.
2.2.2.6 Even positioned groups of 9 from 2.2.2:
10 30 20 10 2 10 2 400 400 5 2 40 200 300 2 40 300 300 6 30 10 1 300 100 10 40 4 300 2 6 300 10 40 10 40 50 6 300 40 10 400 40 8 6 6 200 90 40 40 300 2 10 300 400
Total: 5530 = 2 x 5 x 7 x 79.
2.2.2.6.1 Odd positioned groups of 2 from 2.2.2.6:
10 30 2 10 400 5 200 300 300 300 10 1 10 40 2 6 40 10 6 300 400 40 6 200 40 300 300 400
Total: 3668 = 2 x 2 x 7 x 131.
2.2.2.6.1.1 Odd positioned groups of 2 from 2.2.2.6.1:
10 30 400 5 300 300 10 40 40 10 400 40 40 300
Total: 1925 = 5 x 5 x 7 x 11. SF: 28 = 2 x 2 x 7.
2.2.2.6.1.2 Even positioned groups of 2 from 2.2.2.6.1:
2 10 200 300 10 1 2 6 6 300 6 200 300 400
Total: 1743 = 3 x 7 x 83.
2.2.2.6.1.2.1 Odd positioned groups of 2 from 2.2.2.6.1.2:
2 10 10 1 6 300 300 400
Total: 1029 = 3 x 7 x 7 x 7.
2.2.2.6.1.2.2 Even positioned groups of 2 from 2.2.2.6.1.2:
200 300 2 6 6 200
Total: 714 = 2 x 3 x 7 x 17.
2.2.2.6.1.2.3 First half of 7 from 2.2.2.6.1.2:
6 6 300 6 200 300 400
Total: 1218 = 2 x 3 x 7 x 29.
2.2.2.6.1.2.4 Last half of 7 from 2.2.2.6.1.2:
2 10 200 300 10 1 2
Total: 525 = 3 x 5 x 5 x 7.
2.2.2.6.1.3 Odd positioned groups of 7 from 2.2.2.6.1:
300 300 300 10 1 10 40 40 6 200 40 300 300 400
Total: 2247 = 3 x 7 x 107. SF: 117 = 3 x 3 x 13.
2.2.2.6.1.3.1 Odd positioned from 2.2.2.6.1.3:
300 300 1 40 6 40 300
Total: 987 = 3 x 7 x 47.
2.2.2.6.1.3.2 Even positioned from 2.2.2.6.1.3:
300 10 10 40 200 300 400
Total: 1260 = 2 x 2 x 3 x 3 x 5 x 7.
2.2.2.6.1.3.2.1 Odd positioned from 2.2.2.6.1.3.2:
300 10 200 400
Total: 910 = 2 x 5 x 7 x 13.
2.2.2.6.1.3.2.2 Even positioned from 2.2.2.6.1.3.2:
10 40 300
Total: 350 = 2 x 5 x 5 x 7.
2.2.2.6.1.4 Even positioned groups of 7 from 2.2.2.6.1:
10 30 2 10 400 5 200 2 6 40 10 6 300 400
Total: 1421 = 7 x 7 x 29.
2.2.2.6.2 Even positioned groups of 2 from 2.2.2.6:
20 10 2 400 2 40 2 40 6 30 300 100 4 300 300 10 40 50 40 10 8 6 90 40 2 10
Total: 1862 = 2 x 7 x 7 x 19. SF: 35 = 5 x 7.
2.2.2.7 Odd positioned 8 from 2.2.2:
10 30 20 10 2 10 2 400 400 400 6 50 10 400 2 10 4 2 6 30 10 1 300 100 10 40 4 70 300 20 50 40 4 2 5 300 6 300 40 10 400 40 8 6 6 100 2 300 6 70 90 40 40 5
Total: 4529 = 7 x 647.
2.2.2.7.1 Odd positioned from 2.2.2.7:
10 20 2 2 400 6 10 2 4 6 10 300 10 4 300 50 4 5 6 40 400 8 6 2 6 90 40
Total: 1743 = 3 x 7 x 83.
2.2.2.7.2 Even positioned from 2.2.2.7:
30 10 10 400 400 50 400 10 2 30 1 100 40 70 20 40 2 300 300 10 40 6 100 300 70 40 5
Total: 2786 = 2 x 7 x 199. SF: 208 = 2 x 2 x 2 x 2 x 13. SF: 21 = 3 x 7.
2.2.2.7.2.1 Odd positioned groups of 3 from 2.2.2.7.2:
400 400 50 30 1 100 40 2 300 6 100 300
Total: 1729 = 7 x 13 x 19. SF: 39 = 3 x 13.
2.2.2.7.2.1.1 Odd positioned groups of 4 from 2.2.2.7.2.1:
400 400 50 30 300 6 100 300
Total: 1586 = 2 x 13 x 61.
2.2.2.7.2.1.2 Even positioned groups of 4 from 2.2.2.7.2.1:
1 100 40 2
Total: 143 = 11 x 13.
2.2.2.7.2.2 Even positioned groups of 3 from 2.2.2.7.2:
30 10 10 400 10 2 40 70 20 300 10 40 70 40 5
Total: 1057 = 7 x 151.
2.2.2.8 Even positioned 8 from 2.2.2:
5 2 40 200 300 2 40 300 300 70 8 400 9 1 6 30 200 70 300 2 6 300 10 40 10 40 50 10 300 6 50 10 2 70 300 300 200 90 40 40 300 2 10 300 400 7 6 40 5 6 20 50 100 6
Total: 5411 = 7 x 773. SF: 780 = 2 x 2 x 3 x 5 x 13.
2.2.2.8.1 Odd positioned from 2.2.2.8:
5 40 300 40 300 8 9 6 200 300 6 10 10 50 300 50 2 300 200 40 300 10 400 6 5 20 100
Total: 3017 = 7 x 431.
2.2.2.8.2 Even positioned from 2.2.2.8:
2 200 2 300 70 400 1 30 70 2 300 40 40 10 6 10 70 300 90 40 2 300 7 40 6 50 6
Total: 2394 = 2 x 3 x 3 x 7 x 19.
2.2.2.8.2.1 Odd positioned from 2.2.2.8.2:
2 2 70 1 70 300 40 6 70 90 2 7 6 6
Total: 672 = 2 x 2 x 2 x 2 x 2 x 3 x 7.
2.2.2.8.2.1.1 Odd positioned groups of 2 from 2.2.2.8.2.1:
2 2 70 300 70 90 6 6
Total: 546 = 2 x 3 x 7 x 13.
2.2.2.8.2.1.2 Even positioned groups of 2 from 2.2.2.8.2.1:
70 1 40 6 2 7
Total: 126 = 2 x 3 x 3 x 7.
2.2.2.8.2.1.2.1 Odd positioned from 2.2.2.8.2.1.2:
70 40 2
Total: 112 = 2 x 2 x 2 x 2 x 7.
2.2.2.8.2.1.2.2 Even positioned from 2.2.2.8.2.1.2:
1 6 7
Total: 14 = 2 x 7.
2.2.2.8.2.2 Even positioned from 2.2.2.8.2:
200 300 400 30 2 40 10 10 300 40 300 40 50
Total: 1722 = 2 x 3 x 7 x 41.
2.2.2.8.3 Odd positioned 8 from 2.2.2.8:
5 2 40 200 300 2 40 300 300 70 8 400 9 1 6 30 200 70 200 90 40 40 300 2 10 300 400 7 6 40 5 6 20 50 100 6
Total: 3605 = 5 x 7 x 103.
2.2.2.8.3.1 Odd positioned groups of 4 from 2.2.2.8.3:
5 2 40 200 300 70 8 400 200 70 200 90 10 300 400 7 20 50 100 6
Total: 2478 = 2 x 3 x 7 x 59.
2.2.2.8.3.1.1 Odd positioned groups of 5 from 2.2.2.8.3.1:
70 8 400 200 70 7 20 50 100 6
Total: 931 = 7 x 7 x 19.
2.2.2.8.3.1.2 Even positioned groups of 5 from 2.2.2.8.3.1:
5 2 40 200 300 200 90 10 300 400
Total: 1547 = 7 x 13 x 17.
2.2.2.8.3.1.2.1 Odd positioned from 2.2.2.8.3.1.2:
5 40 300 90 300
Total: 735 = 3 x 5 x 7 x 7.
2.2.2.8.3.1.2.2 Even positioned from 2.2.2.8.3.1.2:
2 200 200 10 400
Total: 812 = 2 x 2 x 7 x 29.
2.2.2.8.3.1.2.2.1 Odd positioned from 2.2.2.8.3.1.2.2:
2 200 400
Total: 602 = 2 x 7 x 43. SF: 52 = 2 x 2 x 13.
2.2.2.8.3.1.2.2.2 Even positioned from 2.2.2.8.3.1.2.2:
200 10
Total: 210 = 2 x 3 x 5 x 7.
2.2.2.8.3.1.3 First half of 10 from 2.2.2.8.3.1:
200 90 10 300 400 7 20 50 100 6
Total: 1183 = 7 x 13 x 13.
2.2.2.8.3.1.4 Last half of 10 from 2.2.2.8.3.1:
5 2 40 200 300 70 8 400 200 70
Total: 1295 = 5 x 7 x 37. SF: 49 = 7 x 7. SF: 14 = 2 x 7.
2.2.2.8.3.1.4.1 Odd positioned from 2.2.2.8.3.1.4:
5 40 300 8 200
Total: 553 = 7 x 79.
2.2.2.8.3.1.4.2 Even positioned from 2.2.2.8.3.1.4:
2 200 70 400 70
Total: 742 = 2 x 7 x 53.
2.2.2.8.3.2 Even positioned groups of 4 from 2.2.2.8.3:
300 2 40 300 9 1 6 30 40 40 300 2 6 40 5 6
Total: 1127 = 7 x 7 x 23.
2.2.2.8.4 Even positioned 8 from 2.2.2.8:
300 2 6 300 10 40 10 40 50 10 300 6 50 10 2 70 300 300
Total: 1806 = 2 x 3 x 7 x 43.
2.2.2.9 Odd positioned groups of 27 from 2.2.2:
10 30 20 10 2 10 2 400 400 400 6 50 10 400 2 10 4 2 5 2 40 200 300 2 40 300 300 300 2 6 300 10 40 10 40 50 10 300 6 50 10 2 70 300 300 6 300 40 10 400 40 8 6 6
Total: 5579 = 7 x 797.
2.2.2.9.1 Odd positioned from 2.2.2.9:
10 20 2 2 400 6 10 2 4 5 40 300 40 300 2 300 40 40 10 6 10 70 300 300 10 40 6
Total: 2275 = 5 x 5 x 7 x 13.
2.2.2.9.1.1 Odd positioned from 2.2.2.9.1:
10 2 400 10 4 40 40 2 40 10 10 300 10 6
Total: 884 = 2 x 2 x 13 x 17.
2.2.2.9.1.2 Even positioned from 2.2.2.9.1:
20 2 6 2 5 300 300 300 40 6 70 300 40
Total: 1391 = 13 x 107.
2.2.2.9.1.2.1 Odd positioned from 2.2.2.9.1.2:
20 6 5 300 40 70 40
Total: 481 = 13 x 37.
2.2.2.9.1.2.2 Even positioned from 2.2.2.9.1.2:
2 2 300 300 6 300
Total: 910 = 2 x 5 x 7 x 13.
2.2.2.9.1.2.2.1 Odd positioned from 2.2.2.9.1.2.2:
2 300 6
Total: 308 = 2 x 2 x 7 x 11.
2.2.2.9.1.2.2.2 Even positioned from 2.2.2.9.1.2.2:
2 300 300
Total: 602 = 2 x 7 x 43. SF: 52 = 2 x 2 x 13.
2.2.2.9.2 Even positioned from 2.2.2.9:
30 10 10 400 400 50 400 10 2 2 200 2 300 300 6 10 10 50 300 50 2 300 6 40 400 8 6
Total: 3304 = 2 x 2 x 2 x 7 x 59.
2.2.2.9.2.1 Odd positioned from 2.2.2.9.2:
30 10 400 400 2 200 300 6 10 300 2 6 400 6
Total: 2072 = 2 x 2 x 2 x 7 x 37.
2.2.2.9.2.2 Even positioned from 2.2.2.9.2:
10 400 50 10 2 2 300 10 50 50 300 40 8
Total: 1232 = 2 x 2 x 2 x 2 x 7 x 11. SF: 26 = 2 x 13.
2.2.2.9.2.3 Odd positioned groups of 3 from 2.2.2.9.2:
400 400 50 2 200 2 10 10 50 300 6 40
Total: 1470 = 2 x 3 x 5 x 7 x 7.
2.2.2.9.2.4 Even positioned groups of 3 from 2.2.2.9.2:
30 10 10 400 10 2 300 300 6 300 50 2 400 8 6
Total: 1834 = 2 x 7 x 131. SF: 140 = 2 x 2 x 5 x 7.
2.2.2.9.2.4.1 Odd positioned from 2.2.2.9.2.4:
30 10 10 300 6 50 400 6
Total: 812 = 2 x 2 x 7 x 29.
2.2.2.9.2.4.1.1 First half of 4 from 2.2.2.9.2.4.1:
30 10 10 300
Total: 350 = 2 x 5 x 5 x 7.
2.2.2.9.2.4.1.2 Last half of 4 from 2.2.2.9.2.4.1:
6 50 400 6
Total: 462 = 2 x 3 x 7 x 11.
2.2.2.9.2.4.1.2.1 Odd positioned from 2.2.2.9.2.4.1.2:
6 400
Total: 406 = 2 x 7 x 29.
2.2.2.9.2.4.1.2.2 Even positioned from 2.2.2.9.2.4.1.2:
50 6
Total: 56 = 2 x 2 x 2 x 7. SF: 13.
2.2.2.9.2.4.1.2.3 First half of 2 from 2.2.2.9.2.4.1.2:
6 50
Total: 56 = 2 x 2 x 2 x 7. SF: 13.
2.2.2.9.2.4.1.2.4 Last half of 2 from 2.2.2.9.2.4.1.2:
400 6
Total: 406 = 2 x 7 x 29.
2.2.2.9.2.4.2 Even positioned from 2.2.2.9.2.4:
10 400 2 300 300 2 8
Total: 1022 = 2 x 7 x 73.
2.2.3 Odd positioned groups of 6 from 2.2:
1 400 10 30 5 300 50 5 2 400 8 30 10 20 10 400 5 6 200 6 5 2 50 2 70 10 40 300 2 70 40 8 9 1 6 400 6 50 6 30 5 2 4 300 10 40 6 400 30 40 50 40 90 1 10 40 300 2 70 5 300 300 10 40 6 300 2 6 50 10 5 300 10 40 6 300 50 10 300 10 8 6 1 10 9 80 6 70 4 100 50 8 200 90 400 300 6 70 10 300 2 10 50 8 5 6 70 30
Total: 8414 = 2 x 7 x 601.
2.2.3.1 Odd positioned 2 from 2.2.3:
10 20 10 400 5 6 200 6 5 2 50 2 6 50 6 30 5 2 4 300 10 40 6 400 300 300 10 40 6 300 2 6 50 10 5 300 9 80 6 70 4 100 50 8 200 90 400 300
Total: 4221 = 3 x 3 x 7 x 67.
2.2.3.1.1 Odd positioned groups of 2 from 2.2.3.1:
10 20 5 6 5 2 6 50 5 2 10 40 300 300 6 300 50 10 9 80 4 100 200 90
Total: 1610 = 2 x 5 x 7 x 23.
2.2.3.1.1.1 First half of 12 from 2.2.3.1.1:
300 300 6 300 50 10 9 80 4 100 200 90
Total: 1449 = 3 x 3 x 7 x 23.
2.2.3.1.1.1.1 First half of 6 from 2.2.3.1.1.1:
9 80 4 100 200 90
Total: 483 = 3 x 7 x 23.
2.2.3.1.1.1.2 Last half of 6 from 2.2.3.1.1.1:
300 300 6 300 50 10
Total: 966 = 2 x 3 x 7 x 23. SF: 35 = 5 x 7.
2.2.3.1.1.2 Last half of 12 from 2.2.3.1.1:
10 20 5 6 5 2 6 50 5 2 10 40
Total: 161 = 7 x 23.
2.2.3.1.1.2.1 Odd positioned groups of 4 from 2.2.3.1.1.2:
10 20 5 6 5 2 10 40
Total: 98 = 2 x 7 x 7.
2.2.3.1.1.2.2 Even positioned groups of 4 from 2.2.3.1.1.2:
5 2 6 50
Total: 63 = 3 x 3 x 7. SF: 13.
2.2.3.1.1.2.2.1 First half of 2 from 2.2.3.1.1.2.2:
5 2
Total: 7 = 7. SF: 7.
2.2.3.1.1.2.2.2 Last half of 2 from 2.2.3.1.1.2.2:
6 50
Total: 56 = 2 x 2 x 2 x 7. SF: 13.
2.2.3.1.2 Even positioned groups of 2 from 2.2.3.1:
10 400 200 6 50 2 6 30 4 300 6 400 10 40 2 6 5 300 6 70 50 8 400 300
Total: 2611 = 7 x 373.
2.2.3.1.2.1 Odd positioned from 2.2.3.1.2:
10 200 50 6 4 6 10 2 5 6 50 400
Total: 749 = 7 x 107.
2.2.3.1.2.1.1 Odd positioned groups of 2 from 2.2.3.1.2.1:
10 200 4 6 5 6
Total: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.
2.2.3.1.2.1.2 Even positioned groups of 2 from 2.2.3.1.2.1:
50 6 10 2 50 400
Total: 518 = 2 x 7 x 37.
2.2.3.1.2.2 Even positioned from 2.2.3.1.2:
400 6 2 30 300 400 40 6 300 70 8 300
Total: 1862 = 2 x 7 x 7 x 19. SF: 35 = 5 x 7.
2.2.3.1.2.2.1 Odd positioned from 2.2.3.1.2.2:
400 2 300 40 300 8
Total: 1050 = 2 x 3 x 5 x 5 x 7.
2.2.3.1.2.2.2 Even positioned from 2.2.3.1.2.2:
6 30 400 6 70 300
Total: 812 = 2 x 2 x 7 x 29.
2.2.3.1.2.2.2.1 Odd positioned from 2.2.3.1.2.2.2:
6 400 70
Total: 476 = 2 x 2 x 7 x 17. SF: 28 = 2 x 2 x 7.
2.2.3.1.2.2.2.2 Even positioned from 2.2.3.1.2.2.2:
30 6 300
Total: 336 = 2 x 2 x 2 x 2 x 3 x 7.
2.2.3.1.2.2.2.3 Odd positioned groups of 2 from 2.2.3.1.2.2.2:
6 30 70 300
Total: 406 = 2 x 7 x 29.
2.2.3.1.2.2.2.4 Even positioned groups of 2 from 2.2.3.1.2.2.2:
400 6
Total: 406 = 2 x 7 x 29.
2.2.3.1.2.3 First half of 12 from 2.2.3.1.2:
10 40 2 6 5 300 6 70 50 8 400 300
Total: 1197 = 3 x 3 x 7 x 19.
2.2.3.1.2.3.1 Odd positioned groups of 2 from 2.2.3.1.2.3:
10 40 5 300 50 8
Total: 413 = 7 x 59.
2.2.3.1.2.3.2 Even positioned groups of 2 from 2.2.3.1.2.3:
2 6 6 70 400 300
Total: 784 = 2 x 2 x 2 x 2 x 7 x 7.
2.2.3.1.2.3.2.1 First half of 3 from 2.2.3.1.2.3.2:
70 400 300
Total: 770 = 2 x 5 x 7 x 11.
2.2.3.1.2.3.2.2 Last half of 3 from 2.2.3.1.2.3.2:
2 6 6
Total: 14 = 2 x 7.
2.2.3.1.2.4 Last half of 12 from 2.2.3.1.2:
10 400 200 6 50 2 6 30 4 300 6 400
Total: 1414 = 2 x 7 x 101.
2.2.3.1.3 First half of 24 from 2.2.3.1:
300 300 10 40 6 300 2 6 50 10 5 300 9 80 6 70 4 100 50 8 200 90 400 300
Total: 2646 = 2 x 3 x 3 x 3 x 7 x 7.
2.2.3.1.3.1 Odd positioned groups of 2 from 2.2.3.1.3:
300 300 6 300 50 10 9 80 4 100 200 90
Total: 1449 = 3 x 3 x 7 x 23.
2.2.3.1.3.1.1 First half of 6 from 2.2.3.1.3.1:
9 80 4 100 200 90
Total: 483 = 3 x 7 x 23.
2.2.3.1.3.1.2 Last half of 6 from 2.2.3.1.3.1:
300 300 6 300 50 10
Total: 966 = 2 x 3 x 7 x 23. SF: 35 = 5 x 7.
2.2.3.1.3.2 Even positioned groups of 2 from 2.2.3.1.3:
10 40 2 6 5 300 6 70 50 8 400 300
Total: 1197 = 3 x 3 x 7 x 19.
2.2.3.1.3.2.1 Odd positioned groups of 2 from 2.2.3.1.3.2:
10 40 5 300 50 8
Total: 413 = 7 x 59.
2.2.3.1.3.2.2 Even positioned groups of 2 from 2.2.3.1.3.2:
2 6 6 70 400 300
Total: 784 = 2 x 2 x 2 x 2 x 7 x 7.
2.2.3.1.3.2.2.1 First half of 3 from 2.2.3.1.3.2.2:
70 400 300
Total: 770 = 2 x 5 x 7 x 11.
2.2.3.1.3.2.2.2 Last half of 3 from 2.2.3.1.3.2.2:
2 6 6
Total: 14 = 2 x 7.
2.2.3.1.3.3 Odd positioned groups of 6 from 2.2.3.1.3:
300 300 10 40 6 300 9 80 6 70 4 100
Total: 1225 = 5 x 5 x 7 x 7.
2.2.3.1.3.4 Even positioned groups of 6 from 2.2.3.1.3:
2 6 50 10 5 300 50 8 200 90 400 300
Total: 1421 = 7 x 7 x 29.
2.2.3.1.3.4.1 Odd positioned from 2.2.3.1.3.4:
2 50 5 50 200 400
Total: 707 = 7 x 101.
2.2.3.1.3.4.2 Even positioned from 2.2.3.1.3.4:
6 10 300 8 90 300
Total: 714 = 2 x 3 x 7 x 17.
2.2.3.1.3.4.2.1 Odd positioned groups of 2 from 2.2.3.1.3.4.2:
6 10 90 300
Total: 406 = 2 x 7 x 29.
2.2.3.1.3.4.2.2 Even positioned groups of 2 from 2.2.3.1.3.4.2:
300 8
Total: 308 = 2 x 2 x 7 x 11.
2.2.3.1.4 Last half of 24 from 2.2.3.1:
10 20 10 400 5 6 200 6 5 2 50 2 6 50 6 30 5 2 4 300 10 40 6 400
Total: 1575 = 3 x 3 x 5 x 5 x 7.
2.2.3.1.4.1 Odd positioned groups of 2 from 2.2.3.1.4:
10 20 5 6 5 2 6 50 5 2 10 40
Total: 161 = 7 x 23.
2.2.3.1.4.1.1 Odd positioned groups of 4 from 2.2.3.1.4.1:
10 20 5 6 5 2 10 40
Total: 98 = 2 x 7 x 7.
2.2.3.1.4.1.2 Even positioned groups of 4 from 2.2.3.1.4.1:
5 2 6 50
Total: 63 = 3 x 3 x 7. SF: 13.
2.2.3.1.4.1.2.1 First half of 2 from 2.2.3.1.4.1.2:
5 2
Total: 7 = 7. SF: 7.
2.2.3.1.4.1.2.2 Last half of 2 from 2.2.3.1.4.1.2:
6 50
Total: 56 = 2 x 2 x 2 x 7. SF: 13.
2.2.3.1.4.2 Even positioned groups of 2 from 2.2.3.1.4:
10 400 200 6 50 2 6 30 4 300 6 400
Total: 1414 = 2 x 7 x 101.
2.2.3.2 Even positioned 2 from 2.2.3:
1 400 10 30 5 300 50 5 2 400 8 30 70 10 40 300 2 70 40 8 9 1 6 400 30 40 50 40 90 1 10 40 300 2 70 5 10 40 6 300 50 10 300 10 8 6 1 10 6 70 10 300 2 10 50 8 5 6 70 30
Total: 4193 = 7 x 599.
2.2.3.2.1 Odd positioned groups of 3 from 2.2.3.2:
1 400 10 50 5 2 70 10 40 40 8 9 30 40 50 10 40 300 10 40 6 300 10 8 6 70 10 50 8 5
Total: 1638 = 2 x 3 x 3 x 7 x 13. SF: 28 = 2 x 2 x 7.
2.2.3.2.1.1 Odd positioned groups of 3 from 2.2.3.2.1:
50 5 2 40 8 9 10 40 300 300 10 8 50 8 5
Total: 845 = 5 x 13 x 13.
2.2.3.2.1.2 Even positioned groups of 3 from 2.2.3.2.1:
1 400 10 70 10 40 30 40 50 10 40 6 6 70 10
Total: 793 = 13 x 61.
2.2.3.2.2 Even positioned groups of 3 from 2.2.3.2:
30 5 300 400 8 30 300 2 70 1 6 400 40 90 1 2 70 5 300 50 10 6 1 10 300 2 10 6 70 30
Total: 2555 = 5 x 7 x 73.
2.2.3.2.3 Odd positioned groups of 6 from 2.2.3.2:
50 5 2 400 8 30 40 8 9 1 6 400 10 40 300 2 70 5 300 10 8 6 1 10 50 8 5 6 70 30
Total: 1890 = 2 x 3 x 3 x 3 x 5 x 7.
2.2.3.2.3.1 First half of 15 from 2.2.3.2.3:
2 70 5 300 10 8 6 1 10 50 8 5 6 70 30
Total: 581 = 7 x 83.
2.2.3.2.3.1.1 Odd positioned from 2.2.3.2.3.1:
2 5 10 6 10 8 6 30
Total: 77 = 7 x 11.
2.2.3.2.3.1.1.1 Odd positioned from 2.2.3.2.3.1.1:
2 10 10 6
Total: 28 = 2 x 2 x 7.
2.2.3.2.3.1.1.2 Even positioned from 2.2.3.2.3.1.1:
5 6 8 30
Total: 49 = 7 x 7. SF: 14 = 2 x 7.
2.2.3.2.3.1.2 Even positioned from 2.2.3.2.3.1:
70 300 8 1 50 5 70
Total: 504 = 2 x 2 x 2 x 3 x 3 x 7.
2.2.3.2.3.2 Last half of 15 from 2.2.3.2.3:
50 5 2 400 8 30 40 8 9 1 6 400 10 40 300
Total: 1309 = 7 x 11 x 17. SF: 35 = 5 x 7.
2.2.3.2.4 Even positioned groups of 6 from 2.2.3.2:
1 400 10 30 5 300 70 10 40 300 2 70 30 40 50 40 90 1 10 40 6 300 50 10 6 70 10 300 2 10
Total: 2303 = 7 x 7 x 47.
2.2.3.2.4.1 First half of 15 from 2.2.3.2.4:
40 90 1 10 40 6 300 50 10 6 70 10 300 2 10
Total: 945 = 3 x 3 x 3 x 5 x 7. SF: 21 = 3 x 7.
2.2.3.2.4.2 Last half of 15 from 2.2.3.2.4:
1 400 10 30 5 300 70 10 40 300 2 70 30 40 50
Total: 1358 = 2 x 7 x 97.
2.2.3.2.4.2.1 Odd positioned groups of 3 from 2.2.3.2.4.2:
30 5 300 300 2 70
Total: 707 = 7 x 101.
2.2.3.2.4.2.2 Even positioned groups of 3 from 2.2.3.2.4.2:
1 400 10 70 10 40 30 40 50
Total: 651 = 3 x 7 x 31.
2.2.3.3 Odd positioned 8 from 2.2.3:
1 400 10 30 5 300 50 5 2 400 8 30 10 20 10 400 5 6 6 50 6 30 5 2 4 300 10 40 6 400 30 40 50 40 90 1 10 40 6 300 50 10 300 10 8 6 1 10 9 80 6 70 4 100
Total: 3822 = 2 x 3 x 7 x 7 x 13.
2.2.3.3.1 Odd positioned from 2.2.3.3:
1 10 5 50 2 8 10 10 5 6 6 5 4 10 6 30 50 90 10 6 50 300 8 1 9 6 4
Total: 702 = 2 x 3 x 3 x 3 x 13.
2.2.3.3.2 Even positioned from 2.2.3.3:
400 30 300 5 400 30 20 400 6 50 30 2 300 40 400 40 40 1 40 300 10 10 6 10 80 70 100
Total: 3120 = 2 x 2 x 2 x 2 x 3 x 5 x 13.
2.2.3.3.2.1 Odd positioned from 2.2.3.3.2:
400 300 400 20 6 30 300 400 40 40 10 6 80 100
Total: 2132 = 2 x 2 x 13 x 41.
2.2.3.3.2.1.1 First half of 7 from 2.2.3.3.2.1:
400 40 40 10 6 80 100
Total: 676 = 2 x 2 x 13 x 13.
2.2.3.3.2.1.1.1 Odd positioned from 2.2.3.3.2.1.1:
400 40 6 100
Total: 546 = 2 x 3 x 7 x 13.
2.2.3.3.2.1.1.1.1 Odd positioned from 2.2.3.3.2.1.1.1:
400 6
Total: 406 = 2 x 7 x 29.
2.2.3.3.2.1.1.1.2 Even positioned from 2.2.3.3.2.1.1.1:
40 100
Total: 140 = 2 x 2 x 5 x 7.
2.2.3.3.2.1.1.2 Even positioned from 2.2.3.3.2.1.1:
40 10 80
Total: 130 = 2 x 5 x 13.
2.2.3.3.2.1.2 Last half of 7 from 2.2.3.3.2.1:
400 300 400 20 6 30 300
Total: 1456 = 2 x 2 x 2 x 2 x 7 x 13. SF: 28 = 2 x 2 x 7.
2.2.3.3.2.1.2.1 Odd positioned from 2.2.3.3.2.1.2:
400 400 6 300
Total: 1106 = 2 x 7 x 79.
2.2.3.3.2.1.2.1.1 Odd positioned from 2.2.3.3.2.1.2.1:
400 6
Total: 406 = 2 x 7 x 29.
2.2.3.3.2.1.2.1.2 Even positioned from 2.2.3.3.2.1.2.1:
400 300
Total: 700 = 2 x 2 x 5 x 5 x 7. SF: 21 = 3 x 7.
2.2.3.3.2.1.2.2 Even positioned from 2.2.3.3.2.1.2:
300 20 30
Total: 350 = 2 x 5 x 5 x 7.
2.2.3.3.2.2 Even positioned from 2.2.3.3.2:
30 5 30 400 50 2 40 40 1 300 10 10 70
Total: 988 = 2 x 2 x 13 x 19.
2.2.3.3.2.3 Odd positioned groups of 3 from 2.2.3.3.2:
5 400 30 50 30 2 40 40 1 10 6 10
Total: 624 = 2 x 2 x 2 x 2 x 3 x 13.
2.2.3.3.2.4 Even positioned groups of 3 from 2.2.3.3.2:
400 30 300 20 400 6 300 40 400 40 300 10 80 70 100
Total: 2496 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 13. SF: 28 = 2 x 2 x 7.
2.2.3.3.3 Odd positioned groups of 9 from 2.2.3.3:
1 400 10 30 5 300 50 5 2 6 50 6 30 5 2 4 300 10 10 40 6 300 50 10 300 10 8
Total: 1950 = 2 x 3 x 5 x 5 x 13. SF: 28 = 2 x 2 x 7.
2.2.3.3.4 Even positioned groups of 9 from 2.2.3.3:
400 8 30 10 20 10 400 5 6 40 6 400 30 40 50 40 90 1 6 1 10 9 80 6 70 4 100
Total: 1872 = 2 x 2 x 2 x 2 x 3 x 3 x 13.
2.2.3.4 Even positioned 8 from 2.2.3:
200 6 5 2 50 2 70 10 40 300 2 70 40 8 9 1 6 400 10 40 300 2 70 5 300 300 10 40 6 300 2 6 50 10 5 300 50 8 200 90 400 300 6 70 10 300 2 10 50 8 5 6 70 30
Total: 4592 = 2 x 2 x 2 x 2 x 7 x 41. SF: 56 = 2 x 2 x 2 x 7. SF: 13.
2.2.3.4.1 Odd positioned groups of 3 from 2.2.3.4:
2 50 2 300 2 70 1 6 400 2 70 5 40 6 300 10 5 300 90 400 300 300 2 10 6 70 30
Total: 2779 = 7 x 397.
2.2.3.4.2 Even positioned groups of 3 from 2.2.3.4:
200 6 5 70 10 40 40 8 9 10 40 300 300 300 10 2 6 50 50 8 200 6 70 10 50 8 5
Total: 1813 = 7 x 7 x 37.
2.2.4 Even positioned groups of 6 from 2.2:
20 10 30 20 2 10 400 400 8 50 6 50 2 10 50 2 4 2 40 200 1 5 300 2 300 70 6 30 8 400 6 30 20 80 200 70 10 1 90 4 300 100 4 70 6 400 300 20 4 2 200 30 5 300 6 300 2 70 10 40 50 10 40 400 300 6 2 70 10 40 300 300 40 10 20 200 400 40 6 100 90 6 2 300 90 40 30 8 40 5 40 40 6 5 300 2 400 7 2 8 6 40 20 50 80 300 100 6
Total: 9485 = 5 x 7 x 271.
2.2.4.1 Odd positioned groups of 6 from 2.2.4:
400 400 8 50 6 50 40 200 1 5 300 2 6 30 20 80 200 70 4 70 6 400 300 20 6 300 2 70 10 40 2 70 10 40 300 300 6 100 90 6 2 300 40 40 6 5 300 2 20 50 80 300 100 6
Total: 5271 = 3 x 7 x 251.
2.2.4.2 Even positioned groups of 6 from 2.2.4:
20 10 30 20 2 10 2 10 50 2 4 2 300 70 6 30 8 400 10 1 90 4 300 100 4 2 200 30 5 300 50 10 40 400 300 6 40 10 20 200 400 40 90 40 30 8 40 5 400 7 2 8 6 40
Total: 4214 = 2 x 7 x 7 x 43.
2.2.4.2.1 First half of 27 from 2.2.4.2:
30 5 300 50 10 40 400 300 6 40 10 20 200 400 40 90 40 30 8 40 5 400 7 2 8 6 40
Total: 2527 = 7 x 19 x 19.
2.2.4.2.2 Last half of 27 from 2.2.4.2:
20 10 30 20 2 10 2 10 50 2 4 2 300 70 6 30 8 400 10 1 90 4 300 100 4 2 200
Total: 1687 = 7 x 241.
2.2.4.2.2.1 Odd positioned groups of 3 from 2.2.4.2.2:
20 2 10 2 4 2 30 8 400 4 300 100
Total: 882 = 2 x 3 x 3 x 7 x 7.
2.2.4.2.2.2 Even positioned groups of 3 from 2.2.4.2.2:
20 10 30 2 10 50 300 70 6 10 1 90 4 2 200
Total: 805 = 5 x 7 x 23. SF: 35 = 5 x 7.
2.2.4.3 First half of 54 from 2.2.4:
6 300 2 70 10 40 50 10 40 400 300 6 2 70 10 40 300 300 40 10 20 200 400 40 6 100 90 6 2 300 90 40 30 8 40 5 40 40 6 5 300 2 400 7 2 8 6 40 20 50 80 300 100 6
Total: 4795 = 5 x 7 x 137.
2.2.4.3.1 Odd positioned groups of 2 from 2.2.4.3:
6 300 10 40 40 400 2 70 300 300 20 200 6 100 2 300 30 8 40 40 300 2 2 8 20 50 100 6
Total: 2702 = 2 x 7 x 193.
2.2.4.3.1.1 Odd positioned groups of 2 from 2.2.4.3.1:
6 300 40 400 300 300 6 100 30 8 300 2 20 50
Total: 1862 = 2 x 7 x 7 x 19. SF: 35 = 5 x 7.
2.2.4.3.1.2 Even positioned groups of 2 from 2.2.4.3.1:
10 40 2 70 20 200 2 300 40 40 2 8 100 6
Total: 840 = 2 x 2 x 2 x 3 x 5 x 7. SF: 21 = 3 x 7.
2.2.4.3.1.3 Odd positioned groups of 4 from 2.2.4.3.1:
6 300 10 40 300 300 20 200 30 8 40 40 20 50 100 6
Total: 1470 = 2 x 3 x 5 x 7 x 7.
2.2.4.3.1.3.1 First half of 8 from 2.2.4.3.1.3:
6 300 10 40 300 300 20 200
Total: 1176 = 2 x 2 x 2 x 3 x 7 x 7.
2.2.4.3.1.3.1.1 Odd positioned from 2.2.4.3.1.3.1:
6 10 300 20
Total: 336 = 2 x 2 x 2 x 2 x 3 x 7.
2.2.4.3.1.3.1.2 Even positioned from 2.2.4.3.1.3.1:
300 40 300 200
Total: 840 = 2 x 2 x 2 x 3 x 5 x 7. SF: 21 = 3 x 7.
2.2.4.3.1.3.2 Last half of 8 from 2.2.4.3.1.3:
30 8 40 40 20 50 100 6
Total: 294 = 2 x 3 x 7 x 7.
2.2.4.3.1.4 Even positioned groups of 4 from 2.2.4.3.1:
40 400 2 70 6 100 2 300 300 2 2 8
Total: 1232 = 2 x 2 x 2 x 2 x 7 x 11. SF: 26 = 2 x 13.
2.2.4.3.2 Even positioned groups of 2 from 2.2.4.3:
2 70 50 10 300 6 10 40 40 10 400 40 90 6 90 40 40 5 6 5 400 7 6 40 80 300
Total: 2093 = 7 x 13 x 23.
2.2.4.3.3 Odd positioned groups of 3 from 2.2.4.3:
70 10 40 400 300 6 40 300 300 200 400 40 6 2 300 8 40 5 5 300 2 8 6 40 300 100 6
Total: 3234 = 2 x 3 x 7 x 7 x 11.
2.2.4.3.3.1 Odd positioned groups of 9 from 2.2.4.3.3:
70 10 40 400 300 6 40 300 300 5 300 2 8 6 40 300 100 6
Total: 2233 = 7 x 11 x 29.
2.2.4.3.3.2 Even positioned groups of 9 from 2.2.4.3.3:
200 400 40 6 2 300 8 40 5
Total: 1001 = 7 x 11 x 13.
2.2.4.3.3.2.1 Odd positioned groups of 3 from 2.2.4.3.3.2:
6 2 300
Total: 308 = 2 x 2 x 7 x 11.
2.2.4.3.3.2.2 Even positioned groups of 3 from 2.2.4.3.3.2:
200 400 40 8 40 5
Total: 693 = 3 x 3 x 7 x 11.
2.2.4.3.3.2.2.1 Odd positioned from 2.2.4.3.3.2.2:
200 40 40
Total: 280 = 2 x 2 x 2 x 5 x 7.
2.2.4.3.3.2.2.2 Even positioned from 2.2.4.3.3.2.2:
400 8 5
Total: 413 = 7 x 59.
2.2.4.3.4 Even positioned groups of 3 from 2.2.4.3:
6 300 2 50 10 40 2 70 10 40 10 20 6 100 90 90 40 30 40 40 6 400 7 2 20 50 80
Total: 1561 = 7 x 223.
2.2.4.3.4.1 Odd positioned from 2.2.4.3.4:
6 2 10 2 10 10 6 90 40 40 6 7 20 80
Total: 329 = 7 x 47.
2.2.4.3.4.1.1 Odd positioned from 2.2.4.3.4.1:
6 10 10 6 40 6 20
Total: 98 = 2 x 7 x 7.
2.2.4.3.4.1.2 Even positioned from 2.2.4.3.4.1:
2 2 10 90 40 7 80
Total: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.
2.2.4.3.4.2 Even positioned from 2.2.4.3.4:
300 50 40 70 40 20 100 90 30 40 400 2 50
Total: 1232 = 2 x 2 x 2 x 2 x 7 x 11. SF: 26 = 2 x 13.
2.2.4.4 Last half of 54 from 2.2.4:
20 10 30 20 2 10 400 400 8 50 6 50 2 10 50 2 4 2 40 200 1 5 300 2 300 70 6 30 8 400 6 30 20 80 200 70 10 1 90 4 300 100 4 70 6 400 300 20 4 2 200 30 5 300
Total: 4690 = 2 x 5 x 7 x 67.
2.3 Odd positioned 53 from 1:
6 10 2 50 6 10 4 2 200 70 40 10 6 10 1 40 200 4 50 10 1 30 70 400 5 10 90 1 400 10 30 5 300 20 10 30 20 2 10 50 5 2 400 8 30 400 400 8 50 6 50 10 20 10 90 1 4 2 200 6 1 50 10 2 1 400 10 30 5 3 10 4 20 10 8 40 6 4 6 400 1 400 5 6 2 10 50 2 4 2 200 6 5 2 50 2 40 200 1 5 300 2 70 10 40 300 2 70 10 40 50 8 400 20 70 30 70 40 20 6 70 30 70 10 200 100 4 300 20 30 20 30 1 5 80 300 70 6 30 8 400 40 8 9 1 6 400 6 30 20 80 200 70 10 40 6 300 50 10 40 10 20 200 400 40 300 10 8 6 1 10 50 30 6 6 5 70 10 200 6 5 100 4 300 10 300 8 10 400 70 40 50 3 10 4 5 2 1 6 100 90 6 2 300 9 80 6 70 4 100 90 40 30 8 40 5 50 8 200 90 400 300 40 40 6 400 6 5 3 2 10 200 2 200 10 400 30 200 2 10 40 300 2 6 70 1 8 4 6 8 90 10 5 300 2 6 70 10 300 2 10 400 7 2 8 6 40 50 8 5 6 70 30 20 50 80 300 100 6 90 10 40 40 300 40 40 6 70 4 20 30 5 6 50 8 200 90 5 400 400 20 70 30 300 40 40
Total: 21710 = 2 x 5 x 13 x 167.
2.3.1 Odd positioned groups of 3 from 2.3:
50 6 10 70 40 10 40 200 4 30 70 400 1 400 10 20 10 30 50 5 2 400 400 8 10 20 10 2 200 6 2 1 400 3 10 4 40 6 4 400 5 6 2 4 2 2 50 2 5 300 2 300 2 70 8 400 20 40 20 6 10 200 100 30 20 30 300 70 6 40 8 9 6 30 20 10 40 6 40 10 20 300 10 8 50 30 6 10 200 6 300 10 300 70 40 50 5 2 1 6 2 300 70 4 100 8 40 5 90 400 300 400 6 5 200 2 200 200 2 10 6 70 1 8 90 10 6 70 10 400 7 2 50 8 5 20 50 80 90 10 40 40 6 70 5 6 50 5 400 400 300 40 40
Total: 11778 = 2 x 3 x 13 x 151. SF: 169 = 13 x 13. SF: 26 = 2 x 13.
2.3.2 Even positioned groups of 3 from 2.3:
6 10 2 4 2 200 6 10 1 50 10 1 5 10 90 30 5 300 20 2 10 400 8 30 50 6 50 90 1 4 1 50 10 10 30 5 20 10 8 6 400 1 2 10 50 200 6 5 40 200 1 70 10 40 10 40 50 70 30 70 70 30 70 4 300 20 1 5 80 30 8 400 1 6 400 80 200 70 300 50 10 200 400 40 6 1 10 6 5 70 5 100 4 8 10 400 3 10 4 6 100 90 9 80 6 90 40 30 50 8 200 40 40 6 3 2 10 10 400 30 40 300 2 8 4 6 5 300 2 300 2 10 8 6 40 6 70 30 300 100 6 40 300 40 4 20 30 8 200 90 20 70 30
Total: 9932 = 2 x 2 x 13 x 191. SF: 208 = 2 x 2 x 2 x 2 x 13. SF: 21 = 3 x 7.
2.4 Even positioned 53 from 1:
6 50 6 30 5 2 10 1 90 4 100 70 30 40 10 40 6 30 8 400 40 8 7 6 50 6 50 2 10 1 6 30 40 300 8 100 4 300 100 4 300 10 40 6 400 4 70 6 400 300 20 30 40 50 40 90 1 4 2 200 30 5 300 10 2 6 30 2 50 6 400 10 200 6 300 30 40 70 4 40 300 10 8 50 3 10 4 300 2 70 10 40 300 2 70 5 6 300 2 70 10 40 300 300 10 40 6 300 50 10 40 400 300 6 2 6 50 2 50 400 5 200 8 6 2 6 8 200 6 90 6 2 90 6 100 5 70 400 10 40 6 1 8 200 10 5 300 2 70 10 40 300 300
Total: 11960 = 2 x 2 x 2 x 5 x 13 x 23.
The First And The Last Letters
Revelation 1:8's Alpha and Omega point to the first and last letters of each word. These features are not as consistent because Daniel 9:22-27 is not about God.
This section begins with the positions of the first letter of each word.
Positions of the first letter of each word: 1 5 10 13 18 23 26 31 38 42 47 54 57 60 64 68 73 75 81 84 88 92 96 101 106 111 115 117 120 123 126 130 134 138 143 148 153 156 162 165 170 175 179 184 189 192 197 201 206 208 211 214 219 225 231 233 237 241 246 250 256 260 265 269 275 279 284 289 294 299 305 309 314 318 322 326 328 333 338 343 345 349 352 356 360 363 365 370 375 380 386 390 395 399 402 406 411 416 419 424 427 430 436 440 443 446 452 455 457
3The positions of the first letter of each word can be collected into three groups, a group of 28, a group of 53, and a final group of 28.
3.1The two groups of 28 at the beginning and end:
1 5 10 13 18 23 26 31 38 42 47 54 57 60 64 68 73 75 81 84 88 92 96 101 106 111 115 117
349 352 356 360 363 365 370 375 380 386 390 395 399 402 406 411 416 419 424 427 430 436 440 443 446 452 455 457
Total: 13000 = 23 x 53 x 13.
3.2The one group of 53 in the middle:
120 123 126 130 134 138 143 148 153 156 162 165 170 175 179 184 189 192 197 201 206 208 211 214 219 225 231 233 237 241 246 250 256 260 265 269 275 279 284 289 294 299 305 309 314 318 322 326 328 333 338 343 345
Total: 12257 = 7 x 17 x 103.
No features are found with the values of the first letter of each word.
3.3Now turning to the positions of the last letter of each word.
Positions of the last letter of each word: 4 9 12 17 22 25 30 37 41 46 53 56 59 63 67 72 74 80 83 87 91 95 100 105 110 114 116 119 122 125 129 133 137 142 147 152 155 161 164 169 174 178 183 188 191 196 200 205 207 210 213 218 224 230 232 236 240 245 249 255 259 264 268 274 278 283 288 293 298 304 308 313 317 321 325 327 332 337 342 344 348 351 355 359 362 364 369 374 379 385 389 394 398 401 405 410 415 418 423 426 429 435 439 442 445 451 454 456 459
The positions of the last letter of each word can be collected three ways into alternating groups.
3.3.1In the first method, the positions are in alternating groups of 13 and 3.
3.3.1.1Seven groups of 13 positions:
4 9 12 17 22 25 30 37 41 46 53 56 59
74 80 83 87 91 95 100 105 110 114 116 119 122
137 142 147 152 155 161 164 169 174 178 183 188 191
207 210 213 218 224 230 232 236 240 245 249 255 259
278 283 288 293 298 304 308 313 317 321 325 327 332
348 351 355 359 362 364 369 374 379 385 389 394 398
415 418 423 426 429 435 439 442 445 451 454 456 459
Total: 21372 = 22 x 3 x 13 x 137.
3.3.1.2Six groups of 3 positions:
63 67 72
125 129 133
196 200 205
264 268 274
337 342 344
401 405 410
Total: 4235 = 5 x 7 x 112. (Curiously, there are a total of 13 groups.)
3.3.2In the second method, the positions are in alternating groups of 51 and 7.
3.3.2.1Groups of 51:
4 9 12 17 22 25 30 37 41 46 53 56 59 63 67 72 74 80 83 87 91 95 100 105 110 114 116 119 122 125 129 133 137 142 147 152 155 161 164 169 174 178 183 188 191 196 200 205 207 210 213
249 255 259 264 268 274 278 283 288 293 298 304 308 313 317 321 325 327 332 337 342 344 348 351 355 359 362 364 369 374 379 385 389 394 398 401 405 410 415 418 423 426 429 435 439 442 445 451 454 456 459
Total: 23982 = 2 x 3 x 7 x 571.
3.3.2.2Groups of 7:
218 224 230 232 236 240 245
Total: 1625 = 53 x 13. SF: 28 = 22 x 7.
3.3.3In the final method, the positions are in alternating groups of 19 and 26.
3.3.3.1Groups of 19:
4 9 12 17 22 25 30 37 41 46 53 56 59 63 67 72 74 80 83
196 200 205 207 210 213 218 224 230 232 236 240 245 249 255 259 264 268 274
389 394 398 401 405 410 415 418 423 426 429 435 439 442 445 451 454 456 459
13364 = 22 x 13 x 257.
3.3.3.2Groups of 26:
87 91 95 100 105 110 114 116 119 122 125 129 133 137 142 147 152 155 161 164 169 174 178 183 188 191
278 283 288 293 298 304 308 313 317 321 325 327 332 337 342 344 348 351 355 359 362 364 369 374 379 385
Total: 12243 = 3 x 7 x 11 x 53.
3.4Turning of the values of the last letter of each word... (No features are found for the values of the first letter of each word.)
Values of the last letter of each word: 50 200 10 200 30 5 10 20 5 400 20 1 200 10 10 4 10 400 5 50 200 50 5 40 40 20 30 20 30 200 20 1 70 40 400 200 50 1 100 40 40 50 1 8 300 40 70 30 50 1 200 2 400 40 4 8 4 40 5 40 40 40 2 5 2 90 100 40 10 40 40 40 400 8 50 6 200 300 400 40 4 1 6 80 4 90 5 400 400 200 400 40 70 4 10 70 400 8 5 30 80 40 40 4 5 5 20 30 40
3.4.1The values of the last letter of each word can be placed in alternating groups of 35 and 2.
3.4.1.1Groups of 35:
50 200 10 200 30 5 10 20 5 400 20 1 200 10 10 4 10 400 5 50 200 50 5 40 40 20 30 20 30 200 20 1 70 40 400
1 100 40 40 50 1 8 300 40 70 30 50 1 200 2 400 40 4 8 4 40 5 40 40 40 2 5 2 90 100 40 10 40 40 40
50 6 200 300 400 40 4 1 6 80 4 90 5 400 400 200 400 40 70 4 10 70 400 8 5 30 80 40 40 4 5 5 20 30 40
Total: 8216 = 23 x 13 x 79. SF: 98 = 2 x 72
3.4.1.2Groups of 2:
200 50
400 8
Total: 658 = 2 x 7 x 47. SF: 56 = 23 x 7. SF: 13.
3.4.2The values of the last letter of each word can also be gathered in alternating groups of 27 and 14.
3.4.2.1Groups of 27:
50 200 10 200 30 5 10 20 5 400 20 1 200 10 10 4 10 400 5 50 200 50 5 40 40 20 30
50 1 8 300 40 70 30 50 1 200 2 400 40 4 8 4 40 5 40 40 40 2 5 2 90 100 40
6 80 4 90 5 400 400 200 400 40 70 4 10 70 400 8 5 30 80 40 40 4 5 5 20 30 40
Total: 6123 = 3 x 13 x 157.
3.4.2.2Groups of 14:
20 30 200 20 1 70 40 400 200 50 1 100 40 40
10 40 40 40 400 8 50 6 200 300 400 40 4 1
Total: 2751 = 3 x 7 x 131.
3.5The positions of the first and last letters of each word can be added together.
5 14s 22 30 40 48 56s 68 79 88 100 110 116 123 131 140s 147s 155 164 171 179 187 196s 206 216 225 231s 236 242 248 255 263 271 280s 290 300 308s 317 326 334 344 353 362 372 380 388 397 406s 413s 418 424 432 443 455s 463 469s 477 486 495 505 515 524 533t 543 553s 562 572t 582 592 603 613 622 631 639 647 653 660 670 680 687 693s 700s 707s 715t 722 727 734 744 754t 765 775 784s 793t 800 807 816 826s 834 842 850 856 865 875s 882s 888 897t 906 911 916
3.5.1From the list in 3.5, take the odd positioned totals. (Unfortunately, the even positioned words show nothing.
5 22 40 56s 79 100 116 131 147s 164 179 196s 216 231s 242 255 271 290 308s 326 344 362 380 397 413s 424 443 463 477 495 515 533t 553s 572t 592 613 631 647 660 680 693s 707s 722 734 754t 775 793t 807 826s 842 856 875s 888 906 916
Total: 25662 = 2 x 3 x 7 x 13 x 47.
3.6The values first and last letters of each word can be added together.
56s 206 80 206 34 75 20 50 7s 402 420s 11 204 16 12 34 30 408 6 56s 202 56s 7s 340 340 70s 100 90 36 270 120 31 75 46 408 206 120 7s 190 110 46 58 7s 14s 400 140s 76 36 90 41 204 32 406s 50 74 48 54 340 305 46 340 46 402 11 202 96 106 45 16 45 340 46 410 48 56s 36 206 306 410 110 54 6 12 82 10 190 45 450 700s 206 402 70s 370 5 16 75 410 15 11 36 100 340 80 10 25 11 420s 100 340
3.6.1Even positioned totals from 3.6:
206 206 75 50 402 11 16 34 408 56s 56s 340 70s 90 270 31 46 206 7s 110 58 14s 140s 36 41 32 50 48 340 46 46 11 96 45 45 46 48 36 306 110 6 82 190 450 206 70s 5 75 15 36 340 10 11 100
Total: 5880 = 23 x 3 x 5 x 72.
3.6.2.1Odd valued totals from 3.6:
75 7 11 7 31 75 7 7 41 305 11 45 45 45 5 75 15 11 25 11
Total: 854 = 2 x 7 x 61.
3.6.2.2Even valued totals from 3.6:
56 206 80 206 34 20 50 402 420 204 16 12 34 30 408 6 56 202 56 340 340 70 100 90 36 270 120 46 408 206 120 190 110 46 58 14 400 140 76 36 90 204 32 406 50 74 48 54 340 46 340 46 402 202 96 106 16 340 46 410 48 56 36 206 306 410 110 54 6 12 82 10 190 450 700 206 402 70 370 16 410 36 100 340 80 10 420 100 340
Total: 14638 = 2 x 13 x 563.
3.6.2.3Totals in 3.6 where the first digit is odd:
56 34 75 50 7 11 16 12 34 30 56 56 7 340 340 70 100 90 36 120 31 75 120 7 190 110 58 7 14 140 76 36 90 32 50 74 54 340 305 340 11 96 106 16 340 56 36 306 110 54 12 10 190 700 70 370 5 16 75 15 11 36 100 340 10 11 100 340
Total: 7231 = 7 x 1033.
3.7Features can also be found for the letters (and their positions) that are not first or last in a word.
Positions of letters that are not first or last: 2 3 6 7 8 11 14 15 16 19 20 21 24 27 28 29 32 33 34 35 36 39 40 43 44 45 48 49 50 51 52 55 58 61 62 65 66 69 70 71 76 77 78 79 82 85 86 89 90 93 94 97 98 99 102 103 104 107 108 109 112 113 118 121 124 127 128 131 132 135 136 139 140 141 144 145 146 149 150 151 154 157 158 159 160 163 166 167 168 171 172 173 176 177 180 181 182 185 186 187 190 193 194 195 198 199 202 203 204 209 212 215 216 217 220 221 222 223 226 227 228 229 234 235 238 239 242 243 244 247 248 251 252 253 254 257 258 261 262 263 266 267 270 271 272 273 276 277 280 281 282 285 286 287 290 291 292 295 296 297 300 301 302 303 306 307 310 311 312 315 316 319 320 323 324 329 330 331 334 335 336 339 340 341 346 347 350 353 354 357 358 361 366 367 368 371 372 373 376 377 378 381 382 383 384 387 388 391 392 393 396 397 400 403 404 407 408 409 412 413 414 417 420 421 422 425 428 431 432 433 434 437 438 441 444 447 448 449 450 453 458
3.7.1Groups of 21:
2 3 6 7 8 11 14 15 16 19 20 21 24 27 28 29 32 33 34 35 36
103 104 107 108 109 112 113 118 121 124 127 128 131 132 135 136 139 140 141 144 145
212 215 216 217 220 221 222 223 226 227 228 229 234 235 238 239 242 243 244 247 248
307 310 311 312 315 316 319 320 323 324 329 330 331 334 335 336 339 340 341 346 347
414 417 420 421 422 425 428 431 432 433 434 437 438 441 444 447 448 449 450 453 458
Total: 23870 = 2 x 5 x 7 x 11 x 31. SF: 56 = 23 x 7. SF: 13.
3.7.2Groups of 34:
39 40 43 44 45 48 49 50 51 52 55 58 61 62 65 66 69 70 71 76 77 78 79 82 85 86 89 90 93 94 97 98 99 102
146 149 150 151 154 157 158 159 160 163 166 167 168 171 172 173 176 177 180 181 182 185 186 187 190 193 194 195 198 199 202 203 204 209
251 252 253 254 257 258 261 262 263 266 267 270 271 272 273 276 277 280 281 282 285 286 287 290 291 292 295 296 297 300 301 302 303 306
350 353 354 357 358 361 366 367 368 371 372 373 376 377 378 381 382 383 384 387 388 391 392 393 396 397 400 403 404 407 408 409 412 413
Total: 30836 = 22 x 13 x 593.
All The Letters
The letters are loaded into a block (3 columns x 9 rows x 17 layers), left to right across each row first, and top to bottom row by row. (Slowly pass mouse along the right or bottom edges to riffle through the deck.)
6 | 10 | 2 |
50 | 6 | 10 |
4 | 2 | 200 |
70 | 40 | 10 |
6 | 10 | 1 |
40 | 200 | 4 |
50 | 10 | 1 |
30 | 70 | 400 |
5 | 10 | 90 |
1 | 400 | 10 |
30 | 5 | 300 |
20 | 10 | 30 |
20 | 2 | 10 |
50 | 5 | 2 |
400 | 8 | 30 |
400 | 400 | 8 |
50 | 6 | 50 |
10 | 20 | 10 |
90 | 1 | 4 |
2 | 200 | 6 |
1 | 50 | 10 |
2 | 1 | 400 |
10 | 30 | 5 |
3 | 10 | 4 |
20 | 10 | 8 |
40 | 6 | 4 |
6 | 400 | 1 |
400 | 5 | 6 |
2 | 10 | 50 |
2 | 4 | 2 |
200 | 6 | 5 |
2 | 50 | 2 |
40 | 200 | 1 |
5 | 300 | 2 |
70 | 10 | 40 |
300 | 2 | 70 |
10 | 40 | 50 |
8 | 400 | 20 |
70 | 30 | 70 |
40 | 20 | 6 |
70 | 30 | 70 |
10 | 200 | 100 |
4 | 300 | 20 |
30 | 20 | 30 |
1 | 5 | 80 |
300 | 70 | 6 |
30 | 8 | 400 |
40 | 8 | 9 |
1 | 6 | 400 |
6 | 30 | 20 |
80 | 200 | 70 |
6 | 50 | 6 |
30 | 5 | 2 |
10 | 1 | 90 |
4 | 100 | 70 |
30 | 40 | 10 |
40 | 6 | 30 |
8 | 400 | 40 |
8 | 7 | 6 |
50 | 6 | 50 |
2 | 10 | 1 |
6 | 30 | 40 |
300 | 8 | 100 |
4 | 300 | 100 |
4 | 300 | 10 |
40 | 6 | 400 |
4 | 70 | 6 |
400 | 300 | 20 |
30 | 40 | 50 |
40 | 90 | 1 |
4 | 2 | 200 |
30 | 5 | 300 |
10 | 2 | 6 |
30 | 2 | 50 |
6 | 400 | 10 |
200 | 6 | 300 |
30 | 40 | 70 |
4 | 40 | 300 |
10 | 8 | 50 |
3 | 10 | 4 |
300 | 2 | 70 |
10 | 40 | 300 |
2 | 70 | 5 |
6 | 300 | 2 |
70 | 10 | 40 |
300 | 300 | 10 |
40 | 6 | 300 |
50 | 10 | 40 |
400 | 300 | 6 |
2 | 6 | 50 |
2 | 50 | 400 |
5 | 200 | 8 |
6 | 2 | 6 |
8 | 200 | 6 |
90 | 6 | 2 |
90 | 6 | 100 |
5 | 70 | 400 |
10 | 40 | 6 |
1 | 8 | 200 |
10 | 5 | 300 |
2 | 70 | 10 |
40 | 300 | 300 |
10 | 40 | 6 |
300 | 50 | 10 |
40 | 10 | 20 |
200 | 400 | 40 |
300 | 10 | 8 |
6 | 1 | 10 |
50 | 30 | 6 |
6 | 5 | 70 |
10 | 200 | 6 |
5 | 100 | 4 |
300 | 10 | 300 |
8 | 10 | 400 |
70 | 40 | 50 |
3 | 10 | 4 |
5 | 2 | 1 |
6 | 100 | 90 |
6 | 2 | 300 |
9 | 80 | 6 |
70 | 4 | 100 |
90 | 40 | 30 |
8 | 40 | 5 |
50 | 8 | 200 |
90 | 400 | 300 |
40 | 40 | 6 |
400 | 6 | 5 |
3 | 2 | 10 |
200 | 2 | 200 |
10 | 400 | 30 |
200 | 2 | 10 |
40 | 300 | 2 |
6 | 70 | 1 |
8 | 4 | 6 |
8 | 90 | 10 |
5 | 300 | 2 |
6 | 70 | 10 |
300 | 2 | 10 |
400 | 7 | 2 |
8 | 6 | 40 |
50 | 8 | 5 |
6 | 70 | 30 |
20 | 50 | 80 |
300 | 100 | 6 |
90 | 10 | 40 |
40 | 300 | 40 |
40 | 6 | 70 |
4 | 20 | 30 |
5 | 6 | 50 |
8 | 200 | 90 |
5 | 400 | 400 |
20 | 70 | 30 |
300 | 40 | 40 |
4.1.1 The surface area, or outside of this block: 24885 = 32 x 5 x 7 x 79.
4.1.2 The inside of the block: 8785 = 5 x 7 x 251. Not only are the inside letters a total divisible by 7, but the inside is also a block of 105 (7 x 15) letters.
4.1.3 The difference between the outside and inside would naturally be divisible by seven as well, but it also produces a very well rounded number, and a number with symmetry: 24885 − 8785 = 16100 = 22 x 52 x 7 x 23.
4.2.1 First and last columns: 21336 = 23 x 3 x 7 x 127. SF: 143 = 11 x 13.
4.2.2 The middle columns (not first or last): 12334 = 2 x 7 x 881.
4.3.1 The total of the first and last columns was divisible by 7, but the total of the first and last rows yields nothing. However, the first and last columns are also the odd positioned columns. Apply this to the rows. The odd positioned rows: 19243 = 7 x 2749. SF: 2756 = 22 x 13 x 53. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
4.3.2 The even positioned rows: 14427 = 32 x 7 x 229.
4.4.1 Odd positioned layers: 15771 = 3 x 7 x 751.
4.4.2 Even positioned layers: 17899 = 7 x 2557.
4.5.1 Numbers can be written on each layer, from 1 to 9, 0 to 7. The total of the letters marked: 18980 = 22 x 5 x 13 x 73. The numbers conveniently end with 7.
4.5.2 The letters not marked by numbers: 14690 = 2 x 5 x 13 x 113. SF: 133 = 7 x 19. SF: 26 = 2 x 13.
Note: For this exercise, the digit 9 was written with a straight downward stem, and no curve at the bottom. The digit 6 was written with an overhang as the curve at the top. If these two digits were written differently, the total of the letters marked would no longer be divisible by 13. This all seems arbitrary as everything depends on the way a number digit is written. However, there is an extra coincidence. All the digits written on the layers of the block form one large number: 12345678901234567. This number factors: 7 x 1763668414462081.
Odd and even positioned columns represent the X-axis. Odd and even positioned rows represent the Y-axis. Odd and even positioned layers represent the Z-axis. All three dimensions have been covered perfectly with complementary features.
Outside and inside represent a fourth dimension. It is as if the numeric features confirm the solidity of the prophecy.
4.6Extract the inside of the block (feature 4.1.2):
5 | 10 | 2 | 5 | 8 | 400 | 6 |
200 | 50 | 1 | 30 | 10 | 10 | 6 |
10 | 4 | 6 | 50 | 200 | 300 | 10 |
400 | 30 | 20 | 30 | 200 | 300 | 20 |
8 | 8 | 6 | 30 | 200 | 50 | 5 |
40 | 6 | 400 | 7 | 6 | 10 | 30 |
300 | 6 | 70 | 300 | 40 | 90 | 2 |
2 | 400 | 6 | 40 | 40 | 8 | 10 |
70 | 300 | 10 | 300 | 6 | 10 | 300 |
200 | 2 | 200 | 6 | 6 | 70 | 40 |
70 | 300 | 40 | 50 | 10 | 400 | 10 |
5 | 200 | 100 | 10 | 10 | 40 | 10 |
2 | 80 | 4 | 40 | 40 | 8 | 400 |
2 | 2 | 400 | 2 | 300 | 70 | 4 |
70 | 2 | 7 | 6 | 8 | 70 | 50 |
4.6.1 This rectangle (or flat block) has no outside because it came from within the block in feature 4.1.2, and its thickness is only one. What it does have is a series of insides a perimeter and inner border: 4515 = 3 x 5 x 7 x 43.
4.6.2 The opposite of the previous feature: 4270 = 2 x 5 x 7 x 61.
4.6.3 The rectangle can be split into five bands. The odd positioned bands: 5200 = 24 x 52 x 13. (There is no corresponding feature with the even positioned bands.)
4.6.4 The first and last two columns: 5523 = 3 x 7 x 263. SF: 273 = 3 x 7 x 13.
4.6.5.1 The first and last two rows: 1736 = 23 x 7 x 31.
4.6.5.2 The first and last six rows: 6475 = 52 x 7 x 37.
4.7.Since the angel Gabriel mentions seventy sevens, the letters 7 and 70 are marked in the table below. The letter 7, appears only twice and is marked in green. The letter 70 appears many times and is marked in grey.
6 | 10 | 2 | 50 | 6 | 10 | 4 | 2 | 200 | 70 | 40 | 10 | 6 | 10 | 1 | 40 | 200 | 4 | 50 | 10 | 1 | 30 | 70 | 400 | 5 | 10 | 90 |
1 | 400 | 10 | 30 | 5 | 300 | 20 | 10 | 30 | 20 | 2 | 10 | 50 | 5 | 2 | 400 | 8 | 30 | 400 | 400 | 8 | 50 | 6 | 50 | 10 | 20 | 10 |
90 | 1 | 4 | 2 | 200 | 6 | 1 | 50 | 10 | 2 | 1 | 400 | 10 | 30 | 5 | 3 | 10 | 4 | 20 | 10 | 8 | 40 | 6 | 4 | 6 | 400 | 1 |
400 | 5 | 6 | 2 | 10 | 50 | 2 | 4 | 2 | 200 | 6 | 5 | 2 | 50 | 2 | 40 | 200 | 1 | 5 | 300 | 2 | 70 | 10 | 40 | 300 | 2 | 70 |
10 | 40 | 50 | 8 | 400 | 20 | 70 | 30 | 70 | 40 | 20 | 6 | 70 | 30 | 70 | 10 | 200 | 100 | 4 | 300 | 20 | 30 | 20 | 30 | 1 | 5 | 80 |
300 | 70 | 6 | 30 | 8 | 400 | 40 | 8 | 9 | 1 | 6 | 400 | 6 | 30 | 20 | 80 | 200 | 70 | 6 | 50 | 6 | 30 | 5 | 2 | 10 | 1 | 90 |
4 | 100 | 70 | 30 | 40 | 10 | 40 | 6 | 30 | 8 | 400 | 40 | 8 | 7 | 6 | 50 | 6 | 50 | 2 | 10 | 1 | 6 | 30 | 40 | 300 | 8 | 100 |
4 | 300 | 100 | 4 | 300 | 10 | 40 | 6 | 400 | 4 | 70 | 6 | 400 | 300 | 20 | 30 | 40 | 50 | 40 | 90 | 1 | 4 | 2 | 200 | 30 | 5 | 300 |
10 | 2 | 6 | 30 | 2 | 50 | 6 | 400 | 10 | 200 | 6 | 300 | 30 | 40 | 70 | 4 | 40 | 300 | 10 | 8 | 50 | 3 | 10 | 4 | 300 | 2 | 70 |
10 | 40 | 300 | 2 | 70 | 5 | 6 | 300 | 2 | 70 | 10 | 40 | 300 | 300 | 10 | 40 | 6 | 300 | 50 | 10 | 40 | 400 | 300 | 6 | 2 | 6 | 50 |
2 | 50 | 400 | 5 | 200 | 8 | 6 | 2 | 6 | 8 | 200 | 6 | 90 | 6 | 2 | 90 | 6 | 100 | 5 | 70 | 400 | 10 | 40 | 6 | 1 | 8 | 200 |
10 | 5 | 300 | 2 | 70 | 10 | 40 | 300 | 300 | 10 | 40 | 6 | 300 | 50 | 10 | 40 | 10 | 20 | 200 | 400 | 40 | 300 | 10 | 8 | 6 | 1 | 10 |
50 | 30 | 6 | 6 | 5 | 70 | 10 | 200 | 6 | 5 | 100 | 4 | 300 | 10 | 300 | 8 | 10 | 400 | 70 | 40 | 50 | 3 | 10 | 4 | 5 | 2 | 1 |
6 | 100 | 90 | 6 | 2 | 300 | 9 | 80 | 6 | 70 | 4 | 100 | 90 | 40 | 30 | 8 | 40 | 5 | 50 | 8 | 200 | 90 | 400 | 300 | 40 | 40 | 6 |
400 | 6 | 5 | 3 | 2 | 10 | 200 | 2 | 200 | 10 | 400 | 30 | 200 | 2 | 10 | 40 | 300 | 2 | 6 | 70 | 1 | 8 | 4 | 6 | 8 | 90 | 10 |
5 | 300 | 2 | 6 | 70 | 10 | 300 | 2 | 10 | 400 | 7 | 2 | 8 | 6 | 40 | 50 | 8 | 5 | 6 | 70 | 30 | 20 | 50 | 80 | 300 | 100 | 6 |
90 | 10 | 40 | 40 | 300 | 40 | 40 | 6 | 70 | 4 | 20 | 30 | 5 | 6 | 50 | 8 | 200 | 90 | 5 | 400 | 400 | 20 | 70 | 30 | 300 | 40 | 40 |
4.7.1.1 Nine letters are before the first 70. The total of these nine letters: 290. Four letters are after the last 70. The total of these four letters: 410. Thus all the letters before and after 70 amount to 700 = 22 x 52 x 7. SF: 21 = 3 x 7.
4.7.1.2 This means all the letters between the first and last 70 are also divisible by 7: 32830 = 2 x 5 x 72 x 67.
4.7.2.1 One hundred and seventy-five letters are before the first appearance of the letter 7. The total of these letters: 11138. Forty-three letters are after the last appearance of the letter 7. The total of these letters: 3135. Thus all the letters before and after 7 amount to 14273 = 7 x 2039.
4.7.2.2 All the letters between the first and last appearances of the letter 7: 19383 = 3 x 7 x 13 x 71.
4.7.3 The difference between the results of the letters 7 and 70 (features 4.7.1.1 and 4.7.2.1): 14273 − 700 = 13573 (7 x 7 x 277). There is an extra factor of seven.
In other words, the first and last appearances of the letters 7 and 70 are perfectly positioned.
4.7.4.1 The fourth letter 70 from the beginning, and the fourth letter 70 from the end mark off 301 (7 x 43) letters between them. The sum of these 301 letters: 23002 = 2 x 7 x 31 x 53.
4.7.4.2 The letters before and after the fourth 70 from the beginning and the fourth 70 from the end: 10528 = 25 x 7 x 47.
4.7.5.1 All the letters before the sixth appearance of the letter 70, and all the letters after the sixth last appearance of the letter 70: 15085 = 5 x 7 x 431.
4.7.5.2 All the letters between the sixth and sixth last appearances of the letter 70: 18445 = 5 x 7 x 17 x 31.
4.7.6.1 All the letters before or after the 8th and 8th last appearances of the letter 70: 17528 = 23 x 7 x 313.
4.7.6.2 All the letters between the eighth and eighth last appearances of the letter 70: 16002 = 2 x 32 x 7 x 127.
4.7.7.1 All the letters before the 13th and 13th last appearances of the letter 70: 32799 = 3 x 13 x 292 Notice the symmetry.
4.7.7.2 The 13th and 13th last appearances of the letter 70 span exactly thirteen letters. In this case, all thirteen letters are added rather than leaving out the two 70s: 871 = 13 x 67. SF: 80 = 24 x 5. SF: 13. The line is precisely positioned.
4.7.8.1 The thirteen letters in last half of the middle of the rectangle draws attention. Extend this line across the entire middle: 1963 = 13 x 151.
4.7.8.2 This means everything that is not the middle is also divisible by 13: 31707 = 3 x 3 x 13 x 271.
There were 26 appearances of the letter 70 in the passage. Twenty-six is related to the value of God’s name in Hebrew. This is why the letter 70 can be paired first and last as in Revelation 1:8. Of the thirteen pairs, the first, fourth, sixth, and eighth all produced multiples of 7. The odds would have suggested only two successes out of thirteen. And although out of thirteen pairs the odds would favour one success for something divisible by thirteen, it just so happens to be the very last pair, the thirteenth pair that produces a total divisible by 13. Coincidence? It can't be when it keeps happening.
Note: All the letters that are divisible by 7 (7 and 70) number 28: 22 x 7.
4.8What about the rest of the letters? Can they also be paired Nth and Nth last? In this case, the Nth occurrence of a letter is included with what went before it, and the Nth last occurrence is included with what goes after it.
6 | 10 | 2 | 50 | 6 | 10 | 4 | 2 | 200 | 70 | 40 | 10 | 6 | 10 | 1 | 40 | 200 | 4 | 50 | 10 | 1 | 30 | 70 | 400 | 5 | 10 | 90 |
1 | 400 | 10 | 30 | 5 | 300 | 20 | 10 | 30 | 20 | 2 | 10 | 50 | 5 | 2 | 400 | 8 | 30 | 400 | 400 | 8 | 50 | 6 | 50 | 10 | 20 | 10 |
90 | 1 | 4 | 2 | 200 | 6 | 1 | 50 | 10 | 2 | 1 | 400 | 10 | 30 | 5 | 3 | 10 | 4 | 20 | 10 | 8 | 40 | 6 | 4 | 6 | 400 | 1 |
400 | 5 | 6 | 2 | 10 | 50 | 2 | 4 | 2 | 200 | 6 | 5 | 2 | 50 | 2 | 40 | 200 | 1 | 5 | 300 | 2 | 70 | 10 | 40 | 300 | 2 | 70 |
10 | 40 | 50 | 8 | 400 | 20 | 70 | 30 | 70 | 40 | 20 | 6 | 70 | 30 | 70 | 10 | 200 | 100 | 4 | 300 | 20 | 30 | 20 | 30 | 1 | 5 | 80 |
300 | 70 | 6 | 30 | 8 | 400 | 40 | 8 | 9 | 1 | 6 | 400 | 6 | 30 | 20 | 80 | 200 | 70 | 6 | 50 | 6 | 30 | 5 | 2 | 10 | 1 | 90 |
4 | 100 | 70 | 30 | 40 | 10 | 40 | 6 | 30 | 8 | 400 | 40 | 8 | 7 | 6 | 50 | 6 | 50 | 2 | 10 | 1 | 6 | 30 | 40 | 300 | 8 | 100 |
4 | 300 | 100 | 4 | 300 | 10 | 40 | 6 | 400 | 4 | 70 | 6 | 400 | 300 | 20 | 30 | 40 | 50 | 40 | 90 | 1 | 4 | 2 | 200 | 30 | 5 | 300 |
10 | 2 | 6 | 30 | 2 | 50 | 6 | 400 | 10 | 200 | 6 | 300 | 30 | 40 | 70 | 4 | 40 | 300 | 10 | 8 | 50 | 3 | 10 | 4 | 300 | 2 | 70 |
10 | 40 | 300 | 2 | 70 | 5 | 6 | 300 | 2 | 70 | 10 | 40 | 300 | 300 | 10 | 40 | 6 | 300 | 50 | 10 | 40 | 400 | 300 | 6 | 2 | 6 | 50 |
2 | 50 | 400 | 5 | 200 | 8 | 6 | 2 | 6 | 8 | 200 | 6 | 90 | 6 | 2 | 90 | 6 | 100 | 5 | 70 | 400 | 10 | 40 | 6 | 1 | 8 | 200 |
10 | 5 | 300 | 2 | 70 | 10 | 40 | 300 | 300 | 10 | 40 | 6 | 300 | 50 | 10 | 40 | 10 | 20 | 200 | 400 | 40 | 300 | 10 | 8 | 6 | 1 | 10 |
50 | 30 | 6 | 6 | 5 | 70 | 10 | 200 | 6 | 5 | 100 | 4 | 300 | 10 | 300 | 8 | 10 | 400 | 70 | 40 | 50 | 3 | 10 | 4 | 5 | 2 | 1 |
6 | 100 | 90 | 6 | 2 | 300 | 9 | 80 | 6 | 70 | 4 | 100 | 90 | 40 | 30 | 8 | 40 | 5 | 50 | 8 | 200 | 90 | 400 | 300 | 40 | 40 | 6 |
400 | 6 | 5 | 3 | 2 | 10 | 200 | 2 | 200 | 10 | 400 | 30 | 200 | 2 | 10 | 40 | 300 | 2 | 6 | 70 | 1 | 8 | 4 | 6 | 8 | 90 | 10 |
5 | 300 | 2 | 6 | 70 | 10 | 300 | 2 | 10 | 400 | 7 | 2 | 8 | 6 | 40 | 50 | 8 | 5 | 6 | 70 | 30 | 20 | 50 | 80 | 300 | 100 | 6 |
90 | 10 | 40 | 40 | 300 | 40 | 40 | 6 | 70 | 4 | 20 | 30 | 5 | 6 | 50 | 8 | 200 | 90 | 5 | 400 | 400 | 20 | 70 | 30 | 300 | 40 | 40 |
# | Letter | Paired | Total (Before & After) | Show | Total (In Between) | Show |
---|---|---|---|---|---|---|
4.8.1 | 1 | 7th & 7th last | 28357 = 7 x 4051. | 5313 = 3 x 7 x 11 x 23. | ||
4.8.2.1 | 2 | 7th & 7th last | 11219 = 13 x 863. | 22451 = 11 x 13 x 157. | ||
4.8.2.2 | 11th & 11th last | 19227 = 3 x 13 x 17 x 29. | 14443 = 11 x 13 x 101. | |||
4.8.3.1 | 4 | first & last | 1806 = 2 x 3 x 7 x 43. | 31864 = 23 x 7 x 569. | ||
4.8.3.2 | 4th & 4th last | 12857 = 13 x 23 x 43. | 20813 = 13 x 1601. | |||
4.8.4.1 | 5 | 5th & 5th last | 11219 = 13 x 863. | 22451 = 11 x 13 x 157. | ||
4.8.4.2 | 8th & 8th last | 18102 = 2 x 3 x 7 x 431. | 15568 = 24 x 7 x 139. SF: 154 = 2 x 7 x 11. | |||
4.8.4.3 | 9th & 9th last | 20254 = 2 x 13 x 19 x 41. | 13416 = 23 x 3 x 13 x 43. SF: 65 = 5 x 13. | |||
4.8.5.1 | 6 | 6th & 6th last | 8477 = 72 x 173. | 25193 = 7 x 59 x 61. | ||
4.8.5.2 | 10th & 10th last | 13776 = 24 x 3 x 7 x 41. | 19894 = 2 x 73 x 29. SF: 52 = 22 x 13. | |||
4.8.5.3 | 12th & 12th last | 17542 = 2 x 72 x 179. SF: 195 = 3 x 5 x 13. SF: 21 = 3 x 7. | 16128 = 28 x 32 x 7. | |||
4.8.5.4 | 13th & 13th last | 18144 = 25 x 34 x 7. | 15526 = 2 x 7 x 1109. SF: 1118 = 2 x 13 x 43. | |||
4.8.5.5 | 18th & 18th last | 22715 = 5 x 7 x 11 x 59. | 10955 = 5 x 7 x 313. SF: 325 = 52 x 13. | |||
4.8.5.6 | 21th & 21th last | 26537 = 7 x 17 x 223. SF: 247 = 13 x 19. | 7133 = 7 x 1019. | |||
4.8.6 | 7 | first & last | 14287 = 7 x 13 x 157. | 19383 = 3 x 7 x 13 x 71. | ||
4.8.7 | 8 | 11th & 11th last | 33656 = 23 x 7 x 601. | 14 = 2 x 7. | ||
4.8.8 | 9 | first & last | 17227 = 7 x 23 x 107. | 16443 = 34 x 7 x 29. | ||
4.8.9.1 | 10 | 4th & 4th last | 4683 = 3 x 7 x 223. | 28987 = 7 x 41 x 101. | ||
4.8.9.2 | 19th & 19th last | 20538 = 2 x 32 x 7 x 163. | 13132 = 22 x 72 x 67. | |||
4.8.9.3 | 20th & 20th last | 25597 = 11 x 13 x 179. SF: 203 = 7 x 29. | 8073 = 33 x 13 x 23. | |||
4.8.9.4 | 21th & 21th last | 26348 = 22 x 7 x 941. SF: 952 = 23 x 7 x 17. | 7322 = 2 x 7 x 523. SF: 532 = 22 x 7 x 19. | |||
4.8.10 | 20 | 3rd & 3rd last | 6524 = 22 x 7 x 233. | 27146 = 2 x 72 x 277. | ||
4.8.11.1 | 30 | 2nd & 2nd last | 3472 = 24 x 7 x 31. | 30198 = 2 x 3 x 7 x 719. | ||
4.8.11.2 | 3rd & 3rd last | 5083 = 13 x 17 x 23. | 28587 = 3 x 13 x 733. SF: 749 = 7 x 107. | |||
4.8.11.3 | 6th & 6th last | 17409 = 3 x 7 x 829. | 16261 = 7 x 23 x 101. | |||
4.8.11.4 | 10th & 10th last | 28826 = 2 x 7 x 29 x 71. | 4844 = 22 x 7 x 173. | |||
4.8.12.1 | 40 | 7th & 7th last | 10591 = 7 x 17 x 89. | 23079 = 3 x 72 x 157. | ||
4.8.12.2 | 10th & 10th last | 17004 = 22 x 3 x 13 x 109. | 16666 = 2 x 13 x 641. | |||
4.8.13.1 | 50 | 3rd & 3rd last | 5304 = 23 x 3 x 13 x 17. SF: 39 = 3 x 13. | 28366 = 2 x 13 x 1091. SF: 1106 = 2 x 7 x 79. | ||
4.8.13.2 | 4th & 4th last | 10934 = 2 x 7 x 11 x 71. SF: 91 = 7 x 13. | 22736 = 24 x 72 x 29. | |||
4.8.13.3 | 5th & 5th last | 12051 = 32 x 13 x 103. | 21619 = 13 x 1663. | |||
4.8.13.4 | 9th & 9th last | 21406 = 2 x 7 x 11 x 139. | 12264 = 23 x 3 x 7 x 73. | |||
4.8.14.1 | 70 | first & last | 840 = 23 x 3 x 5 x 7. SF: 21 = 3 x 7. | 32830 = 2 x 5 x 72 x 67. | ||
4.8.14.2 | 4th & 4th last | 10668 = 22 x 3 x 7 x 127. | 23002 = 2 x 7 x 31 x 53. | |||
4.8.14.3 | 6th & 6th last | 15225 = 3 x 52 x 7 x 29. SF: 49 = 72 SF: 14 = 2 x 7. | 18445 = 5 x 7 x 17 x 31. | |||
4.8.14.4 | 8th & 8th last | 17668 = 22 x 7 x 631. | 16002 = 2 x 32 x 7 x 127. | |||
4.8.14.5 | 11th & 11th last | 26988 = 22 x 3 x 13 x 173. | 6682 = 2 x 13 x 257. | |||
4.8.15.1 | 200 | first & last | 1885 = 5 x 13 x 29. | 31785 = 3 x 5 x 13 x 163. | ||
4.8.15.2 | 7th & 7th last | 21154 = 2 x 7 x 1511. | 12516 = 22 x 3 x 7 x 149. | |||
4.8.16.1 | 300 | 2nd & 2nd last | 8414 = 2 x 7 x 601. | 25256 = 23 x 7 x 11 x 41. SF: 65 = 5 x 13. | ||
4.8.16.2 | 3rd & 3rd last | 9422 = 2 x 7 x 673. | 24248 = 23 x 7 x 433. | |||
4.8.16.3 | 8th & 8th last | 20650 = 2 x 52 x 7 x 59. SF: 78 = 2 x 3 x 13. | 13020 = 22 x 3 x 5 x 7 x 31. | |||
4.8.16.4 | 10th & 10th last | 24115 = 5 x 7 x 13 x 53. SF: 78 = 2 x 3 x 13. | 9555 = 3 x 5 x 72 x 13. SF: 35 = 5 x 7. | |||
4.8.16.5 | 13th & 13th last | 28259 = 7 x 11 x 367. SF: 385 = 5 x 7 x 11. | 5411 = 7 x 773. SF: 780 = 22 x 3 x 5 x 13. | |||
4.8.16.6 | 17th & 17th last | 33614 = 2 x 75 | 56 = 23 x 7. SF: 13. | |||
4.8.17.1 | 400 | first & last | 2132 = 22 x 13 x 41. | 31538 = 2 x 13 x 1213. | ||
4.8.17.2 | 2nd & 2nd last | 3038 = 2 x 72 x 31. | 30632 = 23 x 7 x 547. SF: 560 = 24 x 5 x 7. | |||
4.8.17.3 | 3rd & 3rd last | 6174 = 2 x 32 x 73. | 27496 = 23 x 7 x 491. SF: 504 = 23 x 32 x 7. | |||
4.8.17.4 | 11th & 11th last | 25032 = 23 x 3 x 7 x 149. | 8638 = 2 x 7 x 617. |
4.8.18.1All the possible pairs represent 225 tries at obtaining a total divisible by 7 or 13. The odds would favour 32 results divisible by 7, 17 results divisible by 13, and two or three results divisible by 91.
Letter: 1 2 3 4 5 6 7 8 9 10 20 30 40 50 70 80 90 100 200 300 400 Appearances: 17 35 4 19 23 52 2 22 2 50 14 25 39 25 26 4 12 9 19 34 26 Possible Pairs: 8 17 2 9 11 26 1 11 1 25 7 12 19 12 13 2 6 4 9 17 13
Out of 225 tries there were a total of 49 with results. Thirty-six of them were divisible by 7. (Slightly more than the odds would suggest.) Fifteen were divisible by 13. (This is slightly less than the odds, but the results are so close as to be the odds.) And two results were divisible by 91, which is in line with the odds. The skeptic would say this was all random chance since everything is close to what the odds would suggest. Is it simply the odds, or coincidence?
4.8.18.2What the odds cannot predict is which letters of the alphabet would succeed or fail. Only seventeen of the twenty-two Hebrew letters had results.
1 2 4 5 6 7 8 9 10 20 30 40 50 70 200 300 400
The total of these letters: 1162 = 2 x 7 x 83. It is a one in seven chance that the total of the letters that would succeed be a multiple of 7.
4.8.18.3Six letters had pairs that were either the 7th and 7th last, or the 21st and 21st last. In other words, by the sequence of pairs, they were in positions divisible by 7. The six letters:
1 2 6 10 40 200
The total of these letters: 259 = 7 x 37.
4.8.18.4Only three letters (6, 70, 400) have a number of pairs that is a multiple of 13. The three numbers total: 476 = 22 x 7 x 1. SF: 28 = 22 x 7.
4.8.18.5If the odd positioned letters from the figure in 4.8.18.1 are extracted, this is the result:
1 3 5 7 9 20 40 70 90 200 400
Total: 845 = 5 x 132. There is no correlating feature with the even positioned letters, but the result here more than makes up for it with two factors of 13.
4.8.18.6High and low, or the most and the least, form a different complementary opposite. The letter 7 appeared the least, with only two occurrences. The letter 6 appeared the most with 52 occurrences. These two letters together: 13.
These additional features show a relationship tying this section together. This makes coincidence less likely.
4.7.9The letters can also be loaded into a 17 x 27 rectangle.
6 | 10 | 2 | 50 | 6 | 10 | 4 | 2 | 200 | 70 | 40 | 10 | 6 | 10 | 1 | 40 | 200 |
4 | 50 | 10 | 1 | 30 | 70 | 400 | 5 | 10 | 90 | 1 | 400 | 10 | 30 | 5 | 300 | 20 |
10 | 30 | 20 | 2 | 10 | 50 | 5 | 2 | 400 | 8 | 30 | 400 | 400 | 8 | 50 | 6 | 50 |
10 | 20 | 10 | 90 | 1 | 4 | 2 | 200 | 6 | 1 | 50 | 10 | 2 | 1 | 400 | 10 | 30 |
5 | 3 | 10 | 4 | 20 | 10 | 8 | 40 | 6 | 4 | 6 | 400 | 1 | 400 | 5 | 6 | 2 |
10 | 50 | 2 | 4 | 2 | 200 | 6 | 5 | 2 | 50 | 2 | 40 | 200 | 1 | 5 | 300 | 2 |
70 | 10 | 40 | 300 | 2 | 70 | 10 | 40 | 50 | 8 | 400 | 20 | 70 | 30 | 70 | 40 | 20 |
6 | 70 | 30 | 70 | 10 | 200 | 100 | 4 | 300 | 20 | 30 | 20 | 30 | 1 | 5 | 80 | 300 |
70 | 6 | 30 | 8 | 400 | 40 | 8 | 9 | 1 | 6 | 400 | 6 | 30 | 20 | 80 | 200 | 70 |
6 | 50 | 6 | 30 | 5 | 2 | 10 | 1 | 90 | 4 | 100 | 70 | 30 | 40 | 10 | 40 | 6 |
30 | 8 | 400 | 40 | 8 | 7 | 6 | 50 | 6 | 50 | 2 | 10 | 1 | 6 | 30 | 40 | 300 |
8 | 100 | 4 | 300 | 100 | 4 | 300 | 10 | 40 | 6 | 400 | 4 | 70 | 6 | 400 | 300 | 20 |
30 | 40 | 50 | 40 | 90 | 1 | 4 | 2 | 200 | 30 | 5 | 300 | 10 | 2 | 6 | 30 | 2 |
50 | 6 | 400 | 10 | 200 | 6 | 300 | 30 | 40 | 70 | 4 | 40 | 300 | 10 | 8 | 50 | 3 |
10 | 4 | 300 | 2 | 70 | 10 | 40 | 300 | 2 | 70 | 5 | 6 | 300 | 2 | 70 | 10 | 40 |
300 | 300 | 10 | 40 | 6 | 300 | 50 | 10 | 40 | 400 | 300 | 6 | 2 | 6 | 50 | 2 | 50 |
400 | 5 | 200 | 8 | 6 | 2 | 6 | 8 | 200 | 6 | 90 | 6 | 2 | 90 | 6 | 100 | 5 |
70 | 400 | 10 | 40 | 6 | 1 | 8 | 200 | 10 | 5 | 300 | 2 | 70 | 10 | 40 | 300 | 300 |
10 | 40 | 6 | 300 | 50 | 10 | 40 | 10 | 20 | 200 | 400 | 40 | 300 | 10 | 8 | 6 | 1 |
10 | 50 | 30 | 6 | 6 | 5 | 70 | 10 | 200 | 6 | 5 | 100 | 4 | 300 | 10 | 300 | 8 |
10 | 400 | 70 | 40 | 50 | 3 | 10 | 4 | 5 | 2 | 1 | 6 | 100 | 90 | 6 | 2 | 300 |
9 | 80 | 6 | 70 | 4 | 100 | 90 | 40 | 30 | 8 | 40 | 5 | 50 | 8 | 200 | 90 | 400 |
300 | 40 | 40 | 6 | 400 | 6 | 5 | 3 | 2 | 10 | 200 | 2 | 200 | 10 | 400 | 30 | 200 |
2 | 10 | 40 | 300 | 2 | 6 | 70 | 1 | 8 | 4 | 6 | 8 | 90 | 10 | 5 | 300 | 2 |
6 | 70 | 10 | 300 | 2 | 10 | 400 | 7 | 2 | 8 | 6 | 40 | 50 | 8 | 5 | 6 | 70 |
30 | 20 | 50 | 80 | 300 | 100 | 6 | 90 | 10 | 40 | 40 | 300 | 40 | 40 | 6 | 70 | 4 |
20 | 30 | 5 | 6 | 50 | 8 | 200 | 90 | 5 | 400 | 400 | 20 | 70 | 30 | 300 | 40 | 40 |
4.7.9.1The four corners of the large rectangle: 266 = 2 x 7 x 19. SF: 28 = 22 x 7.
4.7.9.2In this rectangle, the two appearances of the letter 7 mark out a smaller 3 x 15 rectangle inside. The total of this inner rectangle: 2555 = 5 x 7 x 73.
4.7.9.2.1The area outside this inner rectangle: 31115 = 5 x 72 x 127.
4.7.9.2.2The difference between the outside of the small rectangle and the small rectangle: 30849 = 3 x 7 x 13 x 113.
4.7.9.3.1The inner rectangle expands: 8736 = 25 x 3 x 7 x 13.
4.7.9.3.2And the inner rectangle expands again: 13871 = 11 x 13 x 97.
4.7.9.5.1The inner rectangle sets the pattern for alternating small rectangles: 15834 = 2 x 3 x 7 x 13 x 29.
4.7.9.5.2The reverse of this pattern: 17836 = 22 x 73 x 13.
4.7.9.6Various pictures can be drawn: 15778 = 2 x 73 x 23.
4.7.9.6.2The reverse: 17892 = 22 x 32 x 7 x 71.
4.7.9.7.1The other side: 16597 = 7 x 2371.
4.7.9.7.2Reverse: 17073 = 32 x 7 x 271.
4.7.9.8.1White diamond: 24921 = 33 x 13 x 71.
4.7.9.8.2Black diamond: 8749 = 13 x 673. SF: 686 = 2 x 73.
4.8When the letters are added up one by one, there are forty-three instances when the accumulating total will be divisible by 13. The first time this happens is with the 13th letter. The positions where this occurs are listed below.
13 23 53 62 65 77 87 91 94 96 101 108 115 125 127 141 150 157 166 199 212 221 234 245 249 256 266 284 290 313 321 338 355 376 388 402 417 421 423 439 444 451 459
Total of the positions: 9854 = 2 x 13 x 379.
4.9The 459 letters can be divided into groups of 3 letters each. Individual groups are added, with odd valued groups all listed together and all even valued groups listed in another group.
4.9.1Odd valued groups of 3:
6 10 1 6 400 1 40 90 1 3 10 4 50 10 1 400 5 6 30 5 300 9 80 6 5 10 90 200 6 5 3 10 4 8 40 5 1 400 10 40 200 1 2 70 5 400 6 5 30 5 300 5 300 2 5 200 8 3 2 10 50 5 2 40 8 9 5 70 400 6 70 1 90 1 4 1 6 400 1 8 200 5 300 2 1 50 10 30 5 2 10 5 300 400 7 2 2 1 400 10 1 90 6 1 10 50 8 5 10 30 5 8 7 6 6 5 70 5 6 50 3 10 4 2 10 1 5 100 4 5 400 400
Total: 8112 = 24 x 3 x 132.
4.9.2Even valued groups of 3:
6 10 2 1 5 80 300 2 70 5 2 1 50 6 10 300 70 6 10 40 300 6 100 90 4 2 200 30 8 400 6 300 2 6 2 300 70 40 10 6 30 20 70 10 40 70 4 100 40 200 4 80 200 70 300 300 10 90 40 30 30 70 400 6 50 6 40 6 300 50 8 200 20 10 30 4 100 70 50 10 40 90 400 300 20 2 10 30 40 10 400 300 6 40 40 6 400 8 30 40 6 30 2 6 50 200 2 200 400 400 8 8 400 40 2 50 400 10 400 30 50 6 50 50 6 50 6 2 6 200 2 10 10 20 10 6 30 40 8 200 6 40 300 2 2 200 6 300 8 100 90 6 2 8 4 6 20 10 8 4 300 100 90 6 100 8 90 10 40 6 4 4 300 10 10 40 6 6 70 10 2 10 50 40 6 400 2 70 10 300 2 10 2 4 2 4 70 6 40 300 300 8 6 40 2 50 2 400 300 20 10 40 6 6 70 30 70 10 40 30 40 50 300 50 10 20 50 80 300 2 70 4 2 200 40 10 20 300 100 6 10 40 50 10 2 6 200 400 40 90 10 40 8 400 20 30 2 50 300 10 8 40 300 40 70 30 70 6 400 10 50 30 6 40 6 70 40 20 6 200 6 300 10 200 6 4 20 30 70 30 70 30 40 70 300 10 300 8 200 90 10 200 100 4 40 300 8 10 400 20 70 30 4 300 20 10 8 50 70 40 50 300 40 40 30 20 30
Total: 25558 = 2 x 13 x 983.
4.10The 459 letters form three groups of 153 letters each.
4.10.1The first and last groups (odd positioned groups): 21710 = 2 x 5 x 13 x 167.
4.10.2The middle group (even positioned): 11960 = 23 x 5 x 13 x 23.
Conclusion
All these numeric features can't be coincidence. They aren't by chance because many are paired as complementary opposites following Revelation 1:8. The many features that are multiples of 13 tie the prophecy to God. Features divisible by 7 in the text are exactly what the angel Gabriel described of seventy sevens
as a part of Israel's history. Jesus has already fulfilled the most important part. He showed the way to end transgression. He paid the price of sin. He atoned for iniquity. Through him anyone can have everlasting righteousness. His death and resurrection completed the vision of many prophets, and anointed a most holy place.
Notes
- Unless otherwise stated, all reference quotes are from The Revised Standard Version, Thomas Nelson Inc., New York, 1972.
- The 109 words can also be collected into these alternating groups:
4 and 17 9 and 11 9 and 16 25 and 3 40 and 29
Each of these paired groups will be divisible by 13.They can also be gathered into these alternating groups:
9 and 41 15 and 32 19 and 11 23 and 20 29 and 51 34 and 41 38 and 33 41 and 27 46 and 17
Each of these paired groups will be divisible by 7.As the number of words in each of these groups are not divisible by 7 or 13 they are listed in the notes and not in the main study above.
Curiously of these possible groupings, there are five pairs yielding totals divisible by 13, and nine pairs yielding totals divisible by 7 for a grand total of 14 (2 x 7).