Bible Numbers 2.0

Seventy Sevens

Daniel 9:22-27 is one of the more mysterious passages in the Bible leading to endless speculation and debate. Many have used the passage to calculate the coming of Jesus, and others have tried using it to predict the timing of the Anti-Christ and of Jesus' return. This page will not focus on such calculations and predictions, but on the marvellous numeric patterns of seven in the text itself. As the angel Gabriel said, Seventy sevens play a major role in the history of Israel, and this holds even for the text.

22 He came and he said to me, "O Daniel, I have now 
come out to give you wisdom and understanding.
23 At the beginning of your supplications a word went 
forth, and I have come to tell it to you, for you are greatly beloved; 
therefore consider the word and understand the vision.
24 Seventy weeks of years are decreed concerning 
your people and your holy city, to finish the transgression, to put an 
end to sin, and to atone for iniquity, to bring in everlasting 
righteousness, to seal both vision and prophet, and to anoint a most 
holy place.
25 Know therefore and understand that from the going 
forth of the word to restore and build Jerusalem to the coming of an 
anointed one, a prince, there shall be seven weeks. Then for sixty-two 
weeks it shall be built again with squares and moat, but in a troubled 
time.
26 And after the sixty-two weeks, an anointed one shall 
be cut off, and shall have nothing; and the people of the prince who is 
to come shall destroy the city and the sanctuary. Its end shall come 
with a flood, and to the end there shall be war; desolations are 
decreed.
27 And he shall make a strong covenant with many for 
one week; and for half of the week he shall cause sacrifice and 
offering to cease; and upon the wing of abominations shall come one 
who makes desolate, until the decreed end is poured out on the 
desolator. (Daniel 9:22-271)
1                    2                     3             4                     5                   6              7                     8
68                   222                   120           257                   95                  475            511                   415
32                   42                    39            50                    41                  43             61                    82
1  2   3  4          5   6   7  8  9       10  11  12    13  14  5  16  17     18 19  20  1  22    23  24   25    26  27  8  29   30    31  2  33   34  35  36  37
6- 10- 2- 14         6-  10- 4- 2- 20      16- 13- 10    6-  10- 1- 13- 20     4- 14- 10- 1- 12    16- 22-  5     10- 18- 1- 22-  10    12- 5- 21-  11- 10- 12- 11
6- 10- 2- 50         6-  10- 4- 2- 200     70- 40- 10    6-  10- 1- 40- 200    4- 50- 10- 1- 30    70- 400- 5     10- 90- 1- 400- 10    30- 5- 300- 20- 10- 30- 20
and-he-instructed    and-he-spoke          to-me         and-he-said           Daniel              now            I-came                to-give-you-insight

9                 10                      11                            12            13             14               15                16                  17
67                840                     544                           101           206            67               413               52                  30
31                66                      85                            29            26             31               35                34                  21
38 39  40  41     42  43   4  45  46      47   8  49  50 51  52  53     54  55  56    57  8  59      60 1  62  63     64  5  66   67    68  9  70 71  72    73  74
2- 10- 14- 5      2-  22-  8- 12- 22      22-  8- 14- 6- 14- 10- 11     10- 18- 1     4-  2- 20      6- 1- 14- 10     2-  1- 22-  10    12- 5- 3- 10- 4     11- 10
2- 10- 50- 5      2-  400- 8- 30- 400     400- 8- 50- 6- 50- 10- 20     10- 90- 1     4-  2- 200     6- 1- 50- 10     2-  1- 400- 10    30- 5- 3- 10- 4     20- 10
understanding     at-beginning-of         your-prayers                  he-came       answer         and-I            I-came            to-tell             for

18                       19             20                  21                22                 23                     24                     25
464                      406            68                  208               63                 248                    422                    422
59                       28             32                  28                27                 41                     62                     62
75  76  7  8  9  80      81  82   83    84 5  86  87        88  9  90 91      92 3  4  95        96  97  98   9  100    101  2  03  04  105    106  7  08  09  110
8-  13- 6- 4- 6- 22      1-  22-  5     6- 2- 10- 14        2-  4- 2- 20      6- 5- 2- 14        2-  13- 20-  1- 5      21-  2- 16- 10- 13     21-  2- 16- 10- 13
8-  40- 6- 4- 6- 400     1-  400- 5     6- 2- 10- 50        2-  4- 2- 200     6- 5- 2- 50        2-  40- 200- 1- 5      300- 2- 70- 10- 40     300- 2- 70- 10- 40
highly-esteemed          you            thus-consider       the-message       and-understand     the-vision             sevens                 seventy

26                  27          28              29              30              31                   32                  33                   34
478                 100         130             106             280             424                  81                  455                  484
55                  28          40              34              46              55                   36                  59                   61
111 2  113  114     115 116     117 18  119     120 21  122     123 24  125     126  7  128  129     130 31  32  133     134 35  136  137     138 39  140 141  142
14- 8- 22-  11      16- 12      16- 13- 11      6-  16- 12      16- 10- 20      19-  4- 21-  11      12- 11- 12- 1       5-  17- 21-  16      6-  12- 8-  22-  13
50- 8- 400- 20      70- 30      70- 40- 20      6-  70- 30      70- 10- 200     100- 4- 300- 20      30- 20- 30- 1       5-  80- 300- 70      6-  30- 8-  400- 40
is-decreed          for         your-people     and-for         city-of         holy                 to-finish           the-transgression    and-to-put-to-end

35                   36                     37              38                        39               40                     41                     42
424                  336                    126             54                        194              190                    484                    71
46                   66                     36              36                        41               64                     61                     35
143 4  5  6  147     148 49  150 51  152    153 4  155      156 57  8  9  160 161     162 3  164       165 66  67  68  169    170 71  2  173  174    175 6  7  178
8-  9- 1- 6- 22      6-  12- 11- 17- 20     16- 6- 14       6-  12- 5- 2- 10- 1       18- 4- 19        16- 12- 13- 10- 13     6-  12- 8- 22-  13     8-  7- 6- 14
8-  9- 1- 6- 400     6-  30- 20- 80- 200    70- 6- 50       6-  30- 5- 2- 10- 1       90- 4- 100       70- 30- 40- 10- 40     6-  30- 8- 400- 40     8-  7- 6- 50
sin                  and-to-atone-for       wickedness      and-to-bring-in           righteousness    everlasting            and-to-seal-up         vision

43                    44                    45              46                      47                 48                      49         50            51
69                    384                   404             454                     480                756                     90         131           206
33                    60                    44              67                      48                 72                      27         32            26
179 180 1  82  183    184 85  86  187  188  189  190 191    192  3  194  95  196    197 198  9  200    201 202  203  04  205   206 207    208 09  210   211 2  213
6-  14- 2- 10- 1      6-  12- 13- 21-  8    19-  4-  21     19-  4- 21-  10- 13     6-  22-  4- 16     6-  22-  21-  11- 12    13- 14     13- 18- 1     4-  2- 20
6-  50- 2- 10- 1      6-  30- 40- 300- 8    100- 4-  300    100- 4- 300- 10- 40     6-  400- 4- 70     6-  400- 300- 20- 30    40- 50     40- 90- 1     4-  2- 200
and-prophet           and-to-anoint         holy-of         holy-ones               so-you-know        and-you-understand      from       issuing       matter

52                     53                       54                          55         56                  57               58                     59
347                    494                      586                         74         358                 67               422                    377
50                     62                       82                          20         52                  31               62                     44
214 5  216  17  218    219 220 1  22  3  224    225 226  7  228  29  230    231 232    233 234  35  236    237 8  39  240   241  2  43  44  245    246  7  48  249
12- 5- 21-  10- 2      6-  12- 2- 14- 6- 22     10- 20-  6- 21-  12- 13     16- 4      13- 21-  10- 8      14- 3- 10- 4     21-  2- 16- 10- 13     21-  2- 16- 5
30- 5- 300- 10- 2      6-  30- 2- 50- 6- 400    10- 200- 6- 300- 30- 40     70- 4      40- 300- 10- 8      50- 3- 10- 4     300- 2- 70- 10- 40     300- 2- 70- 5
to-restore             and-to-rebuild           Jerusalem                   until      anointed            ruler            sevens                 seven

60                          61                    62                       63                   64                          65                 66
428                         650                   406                      708                  513                         216                310
68                          65                    64                       51                   63                          36                 58
250 251  2  53  54  255     256  257  58  259     260 261  62  63  264     265  266  7  268     269 270 1  72  273  274     275  6  7  278     279 280 281  2  283
6-  21-  2- 16- 10- 13      21-  21-  10- 13      6-  21-  14- 10- 13      22-  21-  6- 2       6-  14- 2- 14- 22-  5       20-  8- 6- 2       6-  8-  20-  6- 18
6-  300- 2- 70- 10- 40      300- 300- 10- 40      6-  300- 50- 10- 40      400- 300- 6- 2       6-  50- 2- 50- 400- 5       200- 8- 6- 2       6-  8-  200- 6- 90
and-sevens                  sixty                 and-two                  she-will-return      and-she-will-be-rebuilt     street             and-moat

67                    68                      69                     70                          71                    72                       73
204                   525                     225                    427                         650                   406                      630
51                    66                      45                     67                          65                    64                       63
284 5  86  7  288     289 290 291  92  293    294 5  6  297  298     299 300  1  02  03  304     305  306  07  308     309 310  11  12  313     314 15  316  317
6-  2- 18- 6- 19      5-  16- 22-  10- 13     6-  1- 8- 20-  10      5-  21-  2- 16- 10- 13      21-  21-  10- 13      6-  21-  14- 10- 13      10- 11- 20-  22
6-  2- 90- 6- 100     5-  70- 400- 10- 40     6-  1- 8- 200- 10      5-  300- 2- 70- 10- 40      300- 300- 10- 40      6-  300- 50- 10- 40      10- 20- 200- 400
in-troubled           the-times               and-after              the-sevens                  sixty                 and-two                  he-will-be-cut-off

74                 75                          76           77                      78                      79                       80            81
358                67                          36           291                     415                     728                      110           67
52                 31                          18           57                      55                      71                       29            31
318 319  320 321   322 3  24  325              326 327      328 9  330 31  332      333 4  335  6  337      338 339  340 41  342     343 344       345 6  47  348
13- 21-  10- 8     6-  1- 10- 14               12- 6        6-  5- 16- 10- 20       6-  5- 19-  4- 21       10- 21-  8-  10- 22      16- 13        14- 3- 10- 4
40- 300- 10- 8     6-  1- 10- 50               30- 6        6-  5- 70- 10- 200      6-  5- 100- 4- 300      10- 300- 8-  10- 400     70- 40        50- 3- 10- 4
anointed           and-there-will-be-nothing   to-him       and-the-city            and-the-sanctuary       he-will-destroy          people-of     ruler

82                   83                    84                   85               86             87                     88                      89
8                    202                   391                  80               190            123                    748                     786
8                    49                    49                   26               37             51                     82                      75
349 350 351          352 353  54  355      356 357  8  359      360 61  362      363  364       365 66  7  68  369     370 1  372  73  374     375  76  77  8  379
5-  2-  1            6-  19-  18- 6        2-  21-  9- 17       6-  16- 4        19-  18        13- 12- 8- 13- 5       14- 8- 20-  18- 22      21-  13- 13- 6- 22
5-  2-  1            6-  100- 90- 6        2-  300- 9- 80       6-  70- 4        100- 90        40- 30- 8- 40- 5       50- 8- 200- 90- 400     300- 40- 40- 6- 400
the-one-coming       and-end-of-him        like-flood           until-to         end            war                    being-decreed           ones-being-desolate

90                       91                   92                     93                94             95                96                    97
226                      612                  282                    378               13             114               383                   722
46                       54                   57                     45                13             42                50                    65
380 1  2  3  84  385     386 387  88  389     390 391  2  93  394    395  6  7  398    399 400 401    402 3  04  405    406 407  8  9  410    411 412  3  14  415
6-  5- 3- 2- 10- 20      2-  20-  10- 22      12- 20-  2- 10- 13     21-  2- 6- 16     1-  8-  4      6-  8- 18- 10     5-  21-  2- 6- 16     10- 21-  2- 10- 22
6-  5- 3- 2- 10- 200     2-  200- 10- 400     30- 200- 2- 10- 40     300- 2- 6- 70     1-  8-  4      6-  8- 90- 10     5-  300- 2- 6- 70     10- 300- 2- 10- 400
and-he-will-confirm      covenant             with-many              seven             one            but-middle        the-Seven             he-will-put-to-end

98                99                       100               101               102                            103                    104               105
17                109                      106               150               546                            420                    80                55
17                46                       34                42                87                             60                     26                28
416 7  418        419 420 21  2  423       424 25  426       427 28  429       430  431  2  33  34  435       436 437  38  439       440 41  442       443 44  445
7-  2- 8          6-  13- 14- 8- 5         6-  16- 12        11- 14- 17        21-  19-  6- 18- 10- 13        13- 21-  13- 13        6-  16- 4         11- 12- 5
7-  2- 8          6-  40- 50- 8- 5         6-  70- 30        20- 50- 80        300- 100- 6- 90- 10- 40        40- 300- 40- 40        6-  70- 4         20- 30- 5
sacrifice         and-offering             and-on            peak-of           abomination                    causing-desolation     and-until         end

106                        107                 108        109                     English interlinear is adapted (with slight changes) from,
359                        820                 100        380                     "The NIV Interlinear Hebrew-English Old Testament",
71                         55                  28         47                      volume 4, edited by John R. Kohlenberger III,
446 47  8  449  450 451    452  453  454       455 456    457  58  459            The Zondervan Corporation, Grand Rapids Michigan, 1985
6-  14- 8- 20-  18- 5      22-  22-  11        16- 12     21-  13- 13
6-  50- 8- 200- 90- 5      400- 400- 20        70- 30     300- 40- 40
decreed                    she-is-poured-out   on         one-being-desolate

Even though some of numeric features can go several levels deep, there are inconsistencies. This is because this is a prophecy about Israel, not a description about God, nor a spiritual lesson. The angel Gabriel is the speaker, not God.

The numeric total of the passage: 33670 = 2 x 5 x 7 x 13 x 37. Two factors related to God appear. There is 7 representing God’s perfection, and there is 13 representing God’s name. This is a one in ninety-one chance, and shows God’s sovereign will in the prophecy.

The Words

1Since there are 109 words, and 109 is a prime number, the words cannot be divided into equal sized groups greater than one. However, they can be divided into alternating groups of 21 and 23, or as alternating groups of 7 and 27. The totals for the groups are divisible by 7.2

List of 109 words:
68 222 120 257 95 475 511 415 67 840 544 101 206 67 413 52 30 464
406 68 208 63 248 422 422 478 100 130 106 280 424 81 455 484 424 336
126 54 194 190 484 71 69 384 404 454 480 756 90 131 206 347 494 586
74 358 67 422 377 428 650 406 708 513 216 310 204 525 225 427 650
406 630 358 67 36 291 415 728 110 67 8 202 391 80 190 123 748 786
226 612 282 378 13 114 383 722 17 109 106 150 546 420 80 55 359 820
100 380

1.1Alternating groups of 21 and 23.

1.1.1Groups of 21 words:

68 222 120 257 95 475 511 415 67 840 544 101 206 67 413 52 30 464 406 
68 208 404 454 480 756 90 131 206 347 494 586 74 358 67 422 377 428 
650 406 708 513 216 786 226 612 282 378 13 114 383 722 17 109 106 150 
546 420 80 55 359 820 100 380

Total: 20454 = 2 x 3 x 7 x 487.

1.1.2Groups of 23 words:

63 248 422 422 478 100 130 106 280 424 81 455 484 424 336 126 54 194 
190 484 71 69 384 310 204 525 225 427 650 406 630 358 67 36 291 415 
728 110 67 8 202 391 80 190 123 748

Total: 13216 = 25 x 7 x 59.

1.2Alternating groups of 7 and 27 words.

1.2.1Groups of 7 words:

68 222 120 257 95 475 511 424 336 126 54 194 190 484 225 427 650 406 
630 358 67 420 80 55 359 820 100 380

Total: 8533 = 7 x 23 x 53.

1.2.1.1       Odd positioned groups of 2 from 1.2.1:

68 222 95 475 336 126 190 484 650 406 67 420 359 820

Total: 4718 = 2 x 7 x 337.

1.2.1.1.1       First half of 7 from 1.2.1.1:

484 650 406 67 420 359 820

Total: 3206 = 2 x 7 x 229. SF: 238 = 2 x 7 x 17. SF: 26 = 2 x 13.

1.2.1.1.2       Last half of 7 from 1.2.1.1:

68 222 95 475 336 126 190

Total: 1512 = 23 x 33 x 7.

1.2.1.2       Even positioned groups of 2 from 1.2.1:

120 257 511 424 54 194 225 427 630 358 80 55 100 380

Total: 3815 = 5 x 7 x 109.

1.2.1.2.1       Odd positioned groups of 2 from 1.2.1.2:

120 257 54 194 630 358 100 380

Total: 2093 = 7 x 13 x 23.

1.2.1.2.1.1       Odd positioned groups of 2 from 1.2.1.2.1:

120 257 630 358

Total: 1365 = 3 x 5 x 7 x 13. SF: 28 = 22 x 7.

1.2.1.2.1.1.1       First half of 2 from 1.2.1.2.1.1:

120 257

Total: 377 = 13 x 29. SF: 42 = 2 x 3 x 7.

1.2.1.2.1.1.2       Last half of 2 from 1.2.1.2.1.1:

630 358

Total: 988 = 22 x 13 x 19.

1.2.1.2.1.2       Even positioned groups of 2 from 1.2.1.2.1:

54 194 100 380

Total: 728 = 23 x 7 x 13. SF: 26 = 2 x 13.

1.2.1.2.1.2.1       Odd positioned groups of 1 from 1.2.1.2.1.2:

54 100

Total: 154 = 2 x 7 x 11.

1.2.1.2.1.2.2       Even positioned groups of 1 from 1.2.1.2.1.2:

194 380

Total: 574 = 2 x 7 x 41.

1.2.1.2.2       Even positioned groups of 2 from 1.2.1.2:

511 424 225 427 80 55

Total: 1722 = 2 x 3 x 7 x 41.

1.2.1.2.3       First half of 7 from 1.2.1.2:

427 630 358 80 55 100 380

Total: 2030 = 2 x 5 x 7 x 29.

1.2.1.2.4       Last half of 7 from 1.2.1.2:

120 257 511 424 54 194 225

Total: 1785 = 3 x 5 x 7 x 17.

1.2.1.2.4.1       Odd positioned groups of 1 from 1.2.1.2.4:

120 511 54 225

Total: 910 = 2 x 5 x 7 x 13.

1.2.1.2.4.2       Even positioned groups of 1 from 1.2.1.2.4:

257 424 194

Total: 875 = 53 x 7.

1.2.1.3       First half of 14 from 1.2.1:

225 427 650 406 630 358 67 420 80 55 359 820 100 380

Total: 4977 = 32 x 7 x 79.

1.2.1.4       Last half of 14 from 1.2.1:

68 222 120 257 95 475 511 424 336 126 54 194 190 484

Total: 3556 = 22 x 7 x 127.

1.2.2Groups of 27 words:

415 67 840 544 101 206 67 413 52 30 464 406 68 208 63 248 422 422 478 
100 130 106 280 424 81 455 484 71 69 384 404 454 480 756 90 131 206 
347 494 586 74 358 67 422 377 428 650 406 708 513 216 310 204 525 36 
291 415 728 110 67 8 202 391 80 190 123 748 786 226 612 282 378 13 
114 383 722 17 109 106 150 546

Total: 25137 = 33 x 72 x 19. SF: 42 = 2 x 3 x 7.

1.2.2.1Odd positioned groups of 27 from 1.2.2:

71 69 384 404 454 480 756 90 131 206 347 494 586 74 358 67 422 377 
428 650 406 708 513 216 310 204 525

Total: 9730 = 2 x 5 x 7 x 139.

1.2.2.1.1Odd positioned groups of 1 from 1.2.2.1:

71 384 454 756 131 347 586 358 422 428 406 513 310 525

Total: 5691 = 3 x 7 x 271.

1.2.2.1.1.1Odd positioned groups of 1 from 1.2.2.1.1:

71 454 131 586 422 406 310

Total: 2380 = 22 x 5 x 7 x 17.

1.2.2.1.1.2Even positioned groups of 1 from 1.2.2.1.1:

384 756 347 358 428 513 525

Total: 3311 = 7 x 11 x 43.

1.2.2.1.1.3Odd positioned groups of 2 from 1.2.2.1.1:

71 384 131 347 422 428 310 525

Total: 2618 = 2 x 7 x 11 x 17.

1.2.2.1.1.4Even positioned groups of 2 from 1.2.2.1.1:

454 756 586 358 406 513

Total: 3073 = 7 x 439.

1.2.2.1.2Even positioned groups of 1 from 1.2.2.1:

69 404 480 90 206 494 74 67 377 650 708 216 204

Total: 4039 = 7 x 577.

1.2.2.2Even positioned groups of 27 from 1.2.2:

415 67 840 544 101 206 67 413 52 30 464 406 68 208 63 248 422 422 478 
100 130 106 280 424 81 455 484 36 291 415 728 110 67 8 202 391 80 190 
123
748 786 226 612 282 378 13 114 383 722 17 109 106 150 546

Total: 15407 = 7 x 31 x 71.

1.2.2.2.1First half of 27 from 1.2.2.2:

36 291 415 728 110 67 8 202 391 80 190 123 748 786 226 612 282 378 13 
114 383 722 17 109 106 150 546

Total: 7833 = 3 x 7 x 373.

1.2.2.2.2Last half of 27 from 1.2.2.2:

415 67 840 544 101 206 67 413 52 30 464 406 68 208 63 248 422 422 478 
100 130 106 280 424 81 455 484

Total: 7574 = 2 x 7 x 541.

1.2.2.2.2.1Odd positioned groups of 9 from 1.2.2.2.2:

415 67 840 544 101 206 67 413 52 478 100 130 106 280 424 81 455 484

Total: 5243 = 72 x 107.

1.2.2.2.2.2Even positioned groups of 9 from 1.2.2.2.2:

30 464 406 68 208 63 248 422 422

Total: 2331 = 32 x 7 x 37.

1.3.1In The Proclamation, every other letter added up produced a total divisible by seven. These would be all the letters in odd positions, and all the letters in even positions. With a slight change, the same can be found in the words of Daniel 9:22-27. In this case, the odd positioned words of each individual verse, independent of the other verses, are taken together.

Odd Positioned Words In Verse
VerseWord Values
22:68 120 95 511 67
23:840 101 67 52 464 68 63
24:422 478 130 280 81 484 336 54 190 71 384 454
25:480 90 206 494 74 67 377 650 708 216 204
26:225 650 630 67 291 728 67 202 80 123 786
27:226 282 13 383 17 106 546 80 359 100

Total of the odd positioned words: 15407 = 7 x 31 x 71. SF: 109. (There are 109 words in the entire passage.)

1.3.2Since the total of the passage is a multiple of 7, this means each verse's even positioned words would also be divisible by 7.

Even Positioned Words In Verse
VerseWord Values
22:222 257 475 415
23:544 206 413 30 406 208 248
24:422 100 106 424 455 424 126 194 484 69 404
25:756 131 347 586 358 422 428 406 513 310 525
26:427 406 358 36 415 110 8 391 190 748
27:612 378 114 722 109 150 420 55 820 380

Total of the even positioned words: 18263 = 7 x 2609. SF: 2616 = 23 x 3 x 109. (Once again the number of words in the passage appears as a factor. This is a one in 109 chance, and very rare.)

1.4Symmetrically positioned groups of words can be found from the beginning or end of the passage that together and individually are divisible by 13, the number associated with God’s name.

a) 4     7    8     8     13   23   30   32
b) 50    10   29    44    14   32   44   42
c) 29029 3055 12103 21541 1378 5005 9438 6929

a) Starting position of the first word of the two groups. For the first
   group, the starting position is from the beginning of the
   passage. For the second group, the starting position is from the
   end of the passage.

b) Ending position of the last word of the two groups. For the first
   group, the ending position is from the beginning of the
   passage. For the second group, the ending position is from the
   end of the passage.

c) Total of the two groups.

Total of line a) and b): 390 = 2 x 3 x 5 x 13. One would not expect the position total to be a multiple of 13 as well, but it is.

1.5The middle N words added together are multiples of 7 when N is one of the following:

107 105 97 95 77 51 41 33 27 17

Total of N: 650 = 2 x 52 x 13.

1.6When the words are added one by one, there are 20 occasions where the cumulative total is divisible by 7. The word positions, and word values where this occurs are listed below.

a) 8   31  38 41  43 47  48  51  67  68  71  72  73  81 83  87  94 96
b) 415 424 54 484 69 480 756 206 204 525 650 406 630 67 202 123 13 383

a) 105 109     (Word position.)
b) 55  380     (Word value.)

Total of the word positions: 1313 = 13 x 101.
Total of the words: 6526 = 2 x 13 x 251. SF: 266 = 2 x 7 x 19. SF: 28 = 22 x 7.

1.7From Revelation 1:8's concept of Alpha and Omega, add the first and last words: 448 = 26 x 7. (The sum of the factors is 19, and this shows up next.)

1.7.1Nineteen of the word values are duplicates. Remove them so only unique word values remain. This is because God is unique.

68 222 120 257 95 475 511 415 67 840 544 101 206 413 52 30 464 406 
208 63 248 422 478 100 130 106 280 424 81 455 484 336 126 54 194 190 
71 69 384 404 454 480 756 90 131 347 494 586 74 358 377 428 650 708 
513 216 310 204 525 225 427 630 36 291 728 110 8 202 391 80 123 748 
786 226 612 282 378 13 114 383 722 17 109 150 546 420 55 359 820 380

Total of these 90 unique words: 28665 = 32 x 5 x 72 x 13. (The curious coincidence is that the sum of the factors is 38, which is 2 x 19, leading back to the number of duplicated words dropped.)

1.7.1.1The total of the entire passage is 33670. Subtract the total for the unique words to find the total for the 19 words that were dropped: 33670 − 28665 = 5005. This is a very nice symmetrical number, and its factors are 5 x 7 x 11 x 13.

It was a 1 in 91 chance that the total of the passage would be divisible by 7 and 13. It was another 1 in 91 chance that the unique word values would also be divisible by 7 and 13. Together, this is a 1 in 8281 chance.

1.7.2.1Odd positioned words from the list in 1.7.1:

68 120 95 511 67 544 206 52 464 208 248 478 130 280 81 484 126 194 71 
384 454 756 131 494 74 377 650 513 310 525 427 36 728 8 391 123 786 
612 378 114 722 109 546 55 820

Total: 14950 = 2 x 52 x 13 x 23.

1.7.2.2Even positioned words from the list in 1.7.1:

222 257 475 415 840 101 413 30 406 63 422 100 106 424 455 336 54 190 
69 404 480 90 347 586 358 428 708 216 204 225 630 291 110 202 80 748 
226 282 13 383 17 150 420 359 380

Total: 13715 = 5 x 13 x 211.

1.7.3If the list of unique word values in 1.7.1 is divided in half, neither half yields a feature. Since God is God of Order, sort the list from least to greatest.

8 13 17 30 36 52 54 55 63 67 68 69 71 74 80 81 90 95 100 101 106 109 
110 114 120 123 126 130 131 150 190 194 202 204 206 208 216 222 225 
226 248 257 280 282 291 310 336 347 358 359 377 378 380 383 384 391 
404 406 413 415 420 422 424 427 428 454 455 464 475 478 480 484 494 
511 513 525 544 546 586 612 630 650 708 722 728 748 756 786 820 840

1.7.3.1Now that order has been imposed, divide the list in half. The first half:

8 13 17 30 36 52 54 55 63 67 68 69 71 74 80 81 90 95 100 101 106 109 
110 114 120 123 126 130 131 150 190 194 202 204 206 208 216 222 225 
226 248 257 280 282 291

Total: 5894 = 2 x 7 x 421.

1.7.3.2The last half:

310 336 347 358 359 377 378 380 383 384 391 404 406 413 415 420 422 
424 427 428 454 455 464 475 478 480 484 494 511 513 525 544 546 586 
612 630 650 708 722 728 748 756 786 820 840

Total: 22771 = 7 x 3253.

1.7.4Revelation 1:8's principle of complementary opposites can also be applied to the number of appearances of a word or letter. The word that appeared the most is contrasted to the word that appeared the least. Words with a value of 67 appeared the most in the passage at 5 times. Many words appeared only once, but the lowest valued word that only appeared once has a value of 8. Thus all the words that appeared the most plus all the words that appeared the least is 67 x 5 + 8 = 343 (7 x 7 x 7)!

1.8The angel said seventy sevens would figure prominently in prophecy and Israel's history. No word in the passage has a value of 7 or 70, but there are words that are multiples of 7. (In the table below, words that are divisible by 7 are marked in grey. Words that are divisible by 91 (or 7 and 13) are marked in green.)

The 109 Words & 7
6822212025795475511415678405441012066741352304644066820863
24842242247810013010628042481455484424336126541941904847169384
404454480756901312063474945867435867422377428650406708513216310
204525225427650406630358673629141572811067820239180190123748
78622661228237813114383722171091061505464208055359820100380

1.8.1.1The first and last words that are multiples of seven set apart what is in between them, and what is before and after them. The words that are before and after them: 3031 = 7 x 433.

1.8.1.2The words that are between them: 29708 = 22 x 7 x 1061.

1.8.2The fourth pair is the next pair that successfully divides the passage into before/after and in between.

1.8.2.1The letters before and after the fourth pair that are multiples of 7: 13524 = 22 x 3 x 72 x 23.

1.8.2.2The letters between the fourth pair: 19012 =22 x 72 x 97.

1.8.3The ninth and ninth last words divisible by 7 are the last pair.

1.8.3.1The words before and after the ninth and ninth last: 25368 = 23 x 3 x 7 x 151.

1.8.3.2The words between the ninth and ninth last: 7770 = 2 x 3 x 5 x 7 x 37.

Only nine pairs were possible. The odds would have suggested only one working, but three were discovered. The three pairs were the first, fourth and ninth. These three pairs have their own feature: 1 + 4 + 9 = 14 (2 x 7).

1.9Amazingly, the 109 words also work with the number 13. Eleven words are divisible by 13. Their positions in the passage are listed below.

Word position: 16 21  28  33  53  59  61  71  79  94 102
Word value:    52 208 130 455 494 377 650 650 728 13 546

These eleven words can also be paired (e.g. first and last, second and second last). Of the five pairs, two work. One would have thought only one would work. (In the table, they are coloured grey.)

The 109 Words & 13
6822212025795475511415678405441012066741352304644066820863
24842242247810013010628042481455484424336126541941904847169384
404454480756901312063474945867435867422377428650406708513216310
204525225427650406630358673629141572811067820239180190123748
78622661228237813114383722171091061505464208055359820100380

1.9.1.1The words before and after the first and last that are divisible by 13: 6615 = 33 x 5 x 72. SF: 28 = 22 x 7.

1.9.1.2Unlike the words divisible by 7, the paired words divisible by 13 are included with the words they sandwich: 27055 = 5 x 7 x 773.

1.9.2.1The third and third last words divisible by 13 also form a pair with everything before and after them adding to a multiple of 7: 15939 = 32 x 7 x 11 x 23.

1.9.2.2And again the third pair along with everything in between is also a multiple of 7: 17731 = 7 x 17 x 149.

1.9.3Since there are eleven words divisible by 13, the middle one cannot be paired and stands on its own: 377 = 13 x 29. SF: 42 = 2 x 3 x 7. The sum of its factors just happens to be divisible by 7.

1.9.3.1All the words before it: 16523 = 13 x 31 x 41.

1.9.3.2All the words after it: 16770 = 2 x 3 x 5 x 13 x 43.

1.9.3.3Since the entire passage is already divisible by 13, everything before and after 377 is also a multiple of 13: 33293 = 13 x 13 x 197. It goes one step further being divisible by 13 twice.

1.10.1The nineteenth word is the first occurrence of 406. It is divisible by 7, and it appears three times in the passage. Its last occurrence is as the 72nd word. Everything from the beginning to the first appearance, and everything from its last occurrence to the end of the passage: 16861 (13 x 1297).

1.10.2Everything between the first and last occurrences of 406: 16809 = 3 x 13 x 431.

1.11Six other words are also strategically positioned in the passage, but only one deserves mention because its value is not divisible by 7 or 13.

1.11.1The first word, 68, appears only one other time in the twentieth position.

1.11.1.1As 68 is the very first word, there are no other words before it. Thus the total of words before it is 0, and 0 is divisible by every number, including 7 and 13.

1.11.1.2Eighty-nine words are after 68s last appearance. The total of these words: 28249 = 13 x 41 x 53.

1.11.1.2.1The total of all words before and after both 68s would be the same as in 1.11.1.2.

1.11.1.2.2If the two 68s are included with what is before and after, the total becomes 28249 + 68 + 68 = 28385 (5 x 7 x 811).

1.11.1.3.1Eighteen words are between the two 68s. Their total: 5285 = 5 x 7 x 151.

1.11.1.3.2If the two 68s are included with what is in between: 5285 + 68 + 68 = 5421 (3 x 13 x 139).

1.11.2.1Aside from being the very first word of the passage, why is 68 special? It is not divisible by 7 or 13, but the sum of its factors is 21. The sum of 21s factors is 10, which again is not divisible by 7, but the sum of 10s factors is 7. 68 appears to have an on and off relationship with 7. But there may be something more than 68 itself.

1.11.2.2The two 68s sandwich 18 other words.

68 222 120 257 95 475 511 415 67 840 544 101 206 67 413 52t 30 464 406 68

1.11.2.2.1The even positioned words of the list: 2961 = 3 x 3 x 7 x 47. (There is no corresponding feature with the odd positioned words.)

1.11.2.2.2The odd valued words of the list: 2401 = 7 x 7 x 7 x 7! While 68 might not be very special, it is marking nine words whose total is four 7s, and the angel said sevens are fixed in the prophecy.

The Letters

Similar to The Proclamation, odd and even positioned letters here also yield totals that are multiples of 7. The difference in this case is that the complementary opposites are groups of letters rather than individual letters.

2.           From the list of 459 letters below, 572 numeric features can be found.

6 10 2 50 6 10 4 2 200 70 40 10 6 10 1 40 200 4 50 10 1 30 70 400 5 
10 90 1 400 10 30 5 300 20 10 30 20 2 10 50 5 2 400 8 30 400 400 8 50 
6 50 10 20 10 90 1 4 2 200 6 1 50 10 2 1 400 10 30 5 3 10 4 20 10 8 
40 6 4 6 400 1 400 5 6 2 10 50 2 4 2 200 6 5 2 50 2 40 200 1 5 300 2 
70 10 40 300 2 70 10 40 50 8 400 20 70 30 70 40 20 6 70 30 70 10 200 
100 4 300 20 30 20 30 1 5 80 300 70 6 30 8 400 40 8 9 1 6 400 6 30 20 
80 200 70 6 50 6 30 5 2 10 1 90 4 100 70 30 40 10 40 6 30 8 400 40 8 
7 6 50 6 50 2 10 1 6 30 40 300 8 100 4 300 100 4 300 10 40 6 400 4 70 
6 400 300 20 30 40 50 40 90 1 4 2 200 30 5 300 10 2 6 30 2 50 6 400 
10 200 6 300 30 40 70 4 40 300 10 8 50 3 10 4 300 2 70 10 40 300 2 70 
5 6 300 2 70 10 40 300 300 10 40 6 300 50 10 40 400 300 6 2 6 50 2 50 
400 5 200 8 6 2 6 8 200 6 90 6 2 90 6 100 5 70 400 10 40 6 1 8 200 10 
5 300 2 70 10 40 300 300 10 40 6 300 50 10 40 10 20 200 400 40 300 10 
8 6 1 10 50 30 6 6 5 70 10 200 6 5 100 4 300 10 300 8 10 400 70 40 50 
3 10 4 5 2 1 6 100 90 6 2 300 9 80 6 70 4 100 90 40 30 8 40 5 50 8 
200 90 400 300 40 40 6 400 6 5 3 2 10 200 2 200 10 400 30 200 2 10 40 
300 2 6 70 1 8 4 6 8 90 10 5 300 2 6 70 10 300 2 10 400 7 2 8 6 40 50 
8 5 6 70 30 20 50 80 300 100 6 90 10 40 40 300 40 40 6 70 4 20 30 5 6 
50 8 200 90 5 400 400 20 70 30 300 40 40

2.1           Odd positioned groups of 27 from 1:

6 10 2 50 6 10 4 2 200 70 40 10 6 10 1 40 200 4 50 10 1 30 70 400 5 
10 90 90 1 4 2 200 6 1 50 10 2 1 400 10 30 5 3 10 4 20 10 8 40 6 4 6 
400 1 10 40 50 8 400 20 70 30 70 40 20 6 70 30 70 10 200 100 4 300 20 
30 20 30 1 5 80 4 100 70 30 40 10 40 6 30 8 400 40 8 7 6 50 6 50 2 10 
1 6 30 40 300 8 100 10 2 6 30 2 50 6 400 10 200 6 300 30 40 70 4 40 
300 10 8 50 3 10 4 300 2 70 2 50 400 5 200 8 6 2 6 8 200 6 90 6 2 90 
6 100 5 70 400 10 40 6 1 8 200 50 30 6 6 5 70 10 200 6 5 100 4 300 10 
300 8 10 400 70 40 50 3 10 4 5 2 1 400 6 5 3 2 10 200 2 200 10 400 30 
200 2 10 40 300 2 6 70 1 8 4 6 8 90 10 90 10 40 40 300 40 40 6 70 4 
20 30 5 6 50 8 200 90 5 400 400 20 70 30 300 40 40 

Total: 15771 = 3 x 7 x 751.

2.1.1           Odd positioned groups of 3 from 2.1:

50 6 10 70 40 10 40 200 4 30 70 400 90 1 4 1 50 10 10 30 5 20 10 8 6 
400 1 8 400 20 40 20 6 10 200 100 30 20 30 4 100 70 40 6 30 8 7 6 2 
10 1 300 8 100 30 2 50 200 6 300 4 40 300 3 10 4 2 50 400 6 2 6 90 6 
2 5 70 400 1 8 200 6 5 70 5 100 4 8 10 400 3 10 4 400 6 5 200 2 200 
200 2 10 6 70 1 8 90 10 40 300 40 4 20 30 8 200 90 20 70 30 

Total: 8036 = 2 x 2 x 7 x 7 x 41.

2.1.1.1           Odd positioned from 2.1.1:

50 10 40 40 4 70 90 4 50 10 5 10 6 1 400 40 6 200 30 30 100 40 30 7 2 
1 8 30 50 6 4 300 10 2 400 2 90 2 70 1 200 5 5 4 10 3 4 6 200 200 2 6 
1 90 40 40 20 8 90 70 

Total: 3255 = 3 x 5 x 7 x 31.

2.1.1.1.1           Odd positioned groups of 20 from 2.1.1.1:

50 10 40 40 4 70 90 4 50 10 5 10 6 1 400 40 6 200 30 30 200 5 5 4 10
3 4 6 200 200 2 6 1 90 40 40 20 8 90 70

Total: 2100 = 2 x 2 x 3 x 5 x 5 x 7.

2.1.1.1.1.1           Odd positioned from 2.1.1.1.1:

50 40 4 90 50 5 6 400 6 30 200 5 10 4 200 2 1 40 20 90

Total: 1253 = 7 x 179.

2.1.1.1.1.2           Even positioned from 2.1.1.1.1:

10 40 70 4 10 10 1 40 200 30 5 4 3 6 200 6 90 40 8 70

Total: 847 = 7 x 11 x 11.

2.1.1.1.2           Even positioned groups of 20 from 2.1.1.1:

100 40 30 7 2 1 8 30 50 6 4 300 10 2 400 2 90 2 70 1

Total: 1155 = 3 x 5 x 7 x 11. SF: 26 = 2 x 13.

2.1.1.1.2.1           Odd positioned groups of 4 from 2.1.1.1.2:

100 40 30 7 50 6 4 300 90 2 70 1

Total: 700 = 2 x 2 x 5 x 5 x 7. SF: 21 = 3 x 7.

2.1.1.1.2.2           Even positioned groups of 4 from 2.1.1.1.2:

2 1 8 30 10 2 400 2

Total: 455 = 5 x 7 x 13.

2.1.1.1.2.2.1           Odd positioned from 2.1.1.1.2.2:

2 8 10 400

Total: 420 = 2 x 2 x 3 x 5 x 7.

2.1.1.1.2.2.2           Even positioned from 2.1.1.1.2.2:

1 30 2 2

Total: 35 = 5 x 7.

2.1.1.2           Even positioned from 2.1.1:

6 70 10 200 30 400 1 1 10 30 20 8 400 8 20 20 10 100 20 4 70 6 8 6 10
300 100 2 200 300 40 3 4 50 6 6 6 5 400 8 6 70 100 8 400 10 400 5 2
200 10 70 8 10 300 4 30 200 20 30

Total: 4781 = 7 x 683.

2.1.1.2.1           Odd positioned 0 from 2.1.1.2:

20 8 400 8 20 20 10 100 20 4 40 3 4 50 6 6 6 5 400 8 10 70 8 10 300 4
30 200 20 30

Total: 1820 = 2 x 2 x 5 x 7 x 13.

2.1.1.2.2           Even positioned 0 from 2.1.1.2:

6 70 10 200 30 400 1 1 10 30 70 6 8 6 10 300 100 2 200 300 6 70 100 8
400 10 400 5 2 200

Total: 2961 = 3 x 3 x 7 x 47.

2.1.1.3           Odd positioned groups of 6 from 2.1.1:

50 6 10 70 40 10 90 1 4 1 50 10 6 400 1 8 400 20 30 20 30 4 100 70 2
10 1 300 8 100 4 40 300 3 10 4 90 6 2 5 70 400 5 100 4 8 10 400 200 2
200 200 2 10 40 300 40 4 20 30

Total: 4361 = 7 x 7 x 89.

2.1.1.3.1           Odd positioned 5 from 2.1.1.3:

50 6 10 70 40 10 90 1 4 1 50 10 6 400 1 4 40 300 3 10 4 90 6 2 5 70
400 5 100 4

Total: 1792 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 7.

2.1.1.3.1.1           First half of 15 from 2.1.1.3.1:

4 40 300 3 10 4 90 6 2 5 70 400 5 100 4

Total: 1043 = 7 x 149. SF: 156 = 2 x 2 x 3 x 13.

2.1.1.3.1.2           Last half of 15 from 2.1.1.3.1:

50 6 10 70 40 10 90 1 4 1 50 10 6 400 1

Total: 749 = 7 x 107.

2.1.1.3.2           Even positioned 5 from 2.1.1.3:

8 400 20 30 20 30 4 100 70 2 10 1 300 8 100 8 10 400 200 2 200 200 2
10 40 300 40 4 20 30

Total: 2569 = 7 x 367.

2.1.1.3.2.1           Odd positioned groups of 3 from 2.1.1.3.2:

30 20 30 2 10 1 8 10 400 200 2 10 4 20 30

Total: 777 = 3 x 7 x 37.

2.1.1.3.2.2           Even positioned groups of 3 from 2.1.1.3.2:

8 400 20 4 100 70 300 8 100 200 2 200 40 300 40

Total: 1792 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 7.

2.1.1.4           Even positioned groups of 6 from 2.1.1:

40 200 4 30 70 400 10 30 5 20 10 8 40 20 6 10 200 100 40 6 30 8 7 6
30 2 50 200 6 300 2 50 400 6 2 6 1 8 200 6 5 70 3 10 4 400 6 5 6 70 1
8 90 10 8 200 90 20 70 30

Total: 3675 = 3 x 5 x 5 x 7 x 7.

2.1.1.4.1           Odd positioned 5 from 2.1.1.4:

40 200 4 30 70 400 10 30 5 20 10 8 40 20 6 2 50 400 6 2 6 1 8 200 6 5
70 3 10 4

Total: 1666 = 2 x 7 x 7 x 17.

2.1.1.4.2           Even positioned 5 from 2.1.1.4:

10 200 100 40 6 30 8 7 6 30 2 50 200 6 300 400 6 5 6 70 1 8 90 10 8
200 90 20 70 30

Total: 2009 = 7 x 7 x 41.

2.1.1.4.2.1           Odd positioned from 2.1.1.4.2:

10 100 6 8 6 2 200 300 6 6 1 90 8 90 70

Total: 903 = 3 x 7 x 43.

2.1.1.4.2.2           Even positioned from 2.1.1.4.2:

200 40 30 7 30 50 6 400 5 70 8 10 200 20 30

Total: 1106 = 2 x 7 x 79.

2.1.1.4.2.2.1           Odd positioned groups of 3 from 2.1.1.4.2.2:

7 30 50 70 8 10

Total: 175 = 5 x 5 x 7.

2.1.1.4.2.2.2           Even positioned groups of 3 from 2.1.1.4.2.2:

200 40 30 6 400 5 200 20 30

Total: 931 = 7 x 7 x 19.

2.1.1.5           Odd positioned groups of 8 from 2.1.1:

50 6 10 70 40 10 40 200 50 10 10 30 5 20 10 8 6 10 200 100 30 20 30 4
2 10 1 300 8 100 30 2 10 4 2 50 400 6 2 6 200 6 5 70 5 100 4 8 200 2
200 200 2 10 6 70 20 30 8 200 90 20 70 30

Total: 3458 = 2 x 7 x 13 x 19.

2.1.1.5.1           Odd positioned groups of 2 from 2.1.1.5:

50 6 40 10 50 10 5 20 6 10 30 20 2 10 8 100 10 4 400 6 200 6 5 100
200 2 2 10 20 30 90 20

Total: 1482 = 2 x 3 x 13 x 19.

2.1.1.5.1.1           Odd positioned from 2.1.1.5.1:

50 40 50 5 6 30 2 8 10 400 200 5 200 2 20 90

Total: 1118 = 2 x 13 x 43.

2.1.1.5.1.2           Even positioned from 2.1.1.5.1:

6 10 10 20 10 20 10 100 4 6 6 100 2 10 30 20

Total: 364 = 2 x 2 x 7 x 13.

2.1.1.5.1.2.1           Odd positioned from 2.1.1.5.1.2:

6 10 10 10 4 6 2 30

Total: 78 = 2 x 3 x 13.

2.1.1.5.1.2.1.1           Odd positioned groups of 2 from 2.1.1.5.1.2.1:

6 10 4 6

Total: 26 = 2 x 13.

2.1.1.5.1.2.1.2           Even positioned groups of 2 from 2.1.1.5.1.2.1:

10 10 2 30

Total: 52 = 2 x 2 x 13.

2.1.1.5.1.2.2           Even positioned from 2.1.1.5.1.2:

10 20 20 100 6 100 10 20

Total: 286 = 2 x 11 x 13. SF: 26 = 2 x 13.

2.1.1.5.1.3           Odd positioned groups of 4 from 2.1.1.5.1:

50 6 40 10 6 10 30 20 10 4 400 6 200 2 2 10

Total: 806 = 2 x 13 x 31.

2.1.1.5.1.4           Even positioned groups of 4 from 2.1.1.5.1:

50 10 5 20 2 10 8 100 200 6 5 100 20 30 90 20

Total: 676 = 2 x 2 x 13 x 13.

2.1.1.5.1.5           First half of 16 from 2.1.1.5.1:

50 6 40 10 50 10 5 20 6 10 30 20 2 10 8 100

Total: 377 = 13 x 29. SF: 42 = 2 x 3 x 7.

2.1.1.5.1.6           Last half of 16 from 2.1.1.5.1:

10 4 400 6 200 6 5 100 200 2 2 10 20 30 90 20

Total: 1105 = 5 x 13 x 17. SF: 35 = 5 x 7.

2.1.1.5.2           Even positioned groups of 2 from 2.1.1.5:

10 70 40 200 10 30 10 8 200 100 30 4 1 300 30 2 2 50 2 6 5 70 4 8 200
200 6 70 8 200 70 30

Total: 1976 = 2 x 2 x 2 x 13 x 19.

2.1.1.5.2.1           Odd positioned groups of 2 from 2.1.1.5.2:

10 70 10 30 200 100 1 300 2 50 5 70 200 200 8 200

Total: 1456 = 2 x 2 x 2 x 2 x 7 x 13. SF: 28 = 2 x 2 x 7.

2.1.1.5.2.1.1           Odd positioned groups of 2 from 2.1.1.5.2.1:

10 70 200 100 2 50 200 200

Total: 832 = 2 x 2 x 2 x 2 x 2 x 2 x 13.

2.1.1.5.2.1.2           Even positioned groups of 2 from 2.1.1.5.2.1:

10 30 1 300 5 70 8 200

Total: 624 = 2 x 2 x 2 x 2 x 3 x 13.

2.1.1.5.2.1.3           Odd positioned groups of 4 from 2.1.1.5.2.1:

10 70 10 30 2 50 5 70

Total: 247 = 13 x 19.

2.1.1.5.2.1.4           Even positioned groups of 4 from 2.1.1.5.2.1:

200 100 1 300 200 200 8 200

Total: 1209 = 3 x 13 x 31.

2.1.1.5.2.1.5           First half of 8 from 2.1.1.5.2.1:

10 70 10 30 200 100 1 300

Total: 721 = 7 x 103.

2.1.1.5.2.1.6           Last half of 8 from 2.1.1.5.2.1:

2 50 5 70 200 200 8 200

Total: 735 = 3 x 5 x 7 x 7.

2.1.1.5.2.2           Even positioned groups of 2 from 2.1.1.5.2:

40 200 10 8 30 4 30 2 2 6 4 8 6 70 70 30

Total: 520 = 2 x 2 x 2 x 5 x 13.

2.1.1.5.3           Odd positioned groups of 4 from 2.1.1.5:

50 6 10 70 50 10 10 30 6 10 200 100 2 10 1 300 10 4 2 50 200 6 5 70
200 2 200 200 20 30 8 200

Total: 2072 = 2 x 2 x 2 x 7 x 37.

2.1.1.5.3.1           Odd positioned groups of 2 from 2.1.1.5.3:

50 6 50 10 6 10 2 10 10 4 200 6 200 2 20 30

Total: 616 = 2 x 2 x 2 x 7 x 11.

2.1.1.5.3.1.1           Odd positioned groups of 4 from 2.1.1.5.3.1:

50 6 50 10 10 4 200 6

Total: 336 = 2 x 2 x 2 x 2 x 3 x 7.

2.1.1.5.3.1.1.1           Odd positioned groups of 2 from 2.1.1.5.3.1.1:

50 6 10 4

Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

2.1.1.5.3.1.1.1.1           First half of 2 from 2.1.1.5.3.1.1.1:

50 6

Total: 56 = 2 x 2 x 2 x 7. SF: 13.

2.1.1.5.3.1.1.1.2           Last half of 2 from 2.1.1.5.3.1.1.1:

10 4

Total: 14 = 2 x 7.

2.1.1.5.3.1.1.2           Even positioned groups of 2 from 2.1.1.5.3.1.1:

50 10 200 6

Total: 266 = 2 x 7 x 19. SF: 28 = 2 x 2 x 7.

2.1.1.5.3.1.2           Even positioned groups of 4 from 2.1.1.5.3.1:

6 10 2 10 200 2 20 30

Total: 280 = 2 x 2 x 2 x 5 x 7.

2.1.1.5.3.1.2.1           First half of 4 from 2.1.1.5.3.1.2:

6 10 2 10

Total: 28 = 2 x 2 x 7.

2.1.1.5.3.1.2.2           Last half of 4 from 2.1.1.5.3.1.2:

200 2 20 30

Total: 252 = 2 x 2 x 3 x 3 x 7.

2.1.1.5.3.2           Even positioned groups of 2 from 2.1.1.5.3:

10 70 10 30 200 100 1 300 2 50 5 70 200 200 8 200

Total: 1456 = 2 x 2 x 2 x 2 x 7 x 13. SF: 28 = 2 x 2 x 7.

2.1.1.5.3.2.1           Odd positioned groups of 2 from 2.1.1.5.3.2:

10 70 200 100 2 50 200 200

Total: 832 = 2 x 2 x 2 x 2 x 2 x 2 x 13.

2.1.1.5.3.2.2           Even positioned groups of 2 from 2.1.1.5.3.2:

10 30 1 300 5 70 8 200

Total: 624 = 2 x 2 x 2 x 2 x 3 x 13.

2.1.1.5.3.2.3           Odd positioned groups of 4 from 2.1.1.5.3.2:

10 70 10 30 2 50 5 70

Total: 247 = 13 x 19.

2.1.1.5.3.2.4           Even positioned groups of 4 from 2.1.1.5.3.2:

200 100 1 300 200 200 8 200

Total: 1209 = 3 x 13 x 31.

2.1.1.5.3.2.5           First half of 8 from 2.1.1.5.3.2:

10 70 10 30 200 100 1 300

Total: 721 = 7 x 103.

2.1.1.5.3.2.6           Last half of 8 from 2.1.1.5.3.2:

2 50 5 70 200 200 8 200

Total: 735 = 3 x 5 x 7 x 7.

2.1.1.5.3.3           Odd positioned groups of 4 from 2.1.1.5.3:

50 6 10 70 6 10 200 100 10 4 2 50 200 2 200 200

Total: 1120 = 2 x 2 x 2 x 2 x 2 x 5 x 7.

2.1.1.5.3.4           Even positioned groups of 4 from 2.1.1.5.3:

50 10 10 30 2 10 1 300 200 6 5 70 20 30 8 200

Total: 952 = 2 x 2 x 2 x 7 x 17.

2.1.1.5.3.4.1           First half of 8 from 2.1.1.5.3.4:

50 10 10 30 2 10 1 300

Total: 413 = 7 x 59.

2.1.1.5.3.4.1.1           Odd positioned from 2.1.1.5.3.4.1:

50 10 2 1

Total: 63 = 3 x 3 x 7. SF: 13.

2.1.1.5.3.4.1.2           Even positioned from 2.1.1.5.3.4.1:

10 30 10 300

Total: 350 = 2 x 5 x 5 x 7.

2.1.1.5.3.4.2           Last half of 8 from 2.1.1.5.3.4:

200 6 5 70 20 30 8 200

Total: 539 = 7 x 7 x 11.

2.1.1.5.4           Even positioned groups of 4 from 2.1.1.5:

40 10 40 200 5 20 10 8 30 20 30 4 8 100 30 2 400 6 2 6 5 100 4 8 2 10
6 70 90 20 70 30

Total: 1386 = 2 x 3 x 3 x 7 x 11. SF: 26 = 2 x 13.

2.1.1.6           Even positioned groups of 8 from 2.1.1:

4 30 70 400 90 1 4 1 6 400 1 8 400 20 40 20 100 70 40 6 30 8 7 6 50
200 6 300 4 40 300 3 90 6 2 5 70 400 1 8 10 400 3 10 4 400 6 5 1 8 90
10 40 300 40 4

Total: 4578 = 2 x 3 x 7 x 109.

2.1.1.7           Odd positioned groups of 30 from 2.1.1:

50 6 10 70 40 10 40 200 4 30 70 400 90 1 4 1 50 10 10 30 5 20 10 8 6
400 1 8 400 20 4 40 300 3 10 4 2 50 400 6 2 6 90 6 2 5 70 400 1 8 200
6 5 70 5 100 4 8 10 400

Total: 4221 = 3 x 3 x 7 x 67.

2.1.1.8           Even positioned groups of 30 from 2.1.1:

40 20 6 10 200 100 30 20 30 4 100 70 40 6 30 8 7 6 2 10 1 300 8 100
30 2 50 200 6 300 3 10 4 400 6 5 200 2 200 200 2 10 6 70 1 8 90 10 40
300 40 4 20 30 8 200 90 20 70 30

Total: 3815 = 5 x 7 x 109.

2.1.1.8.1           Odd positioned groups of 2 from 2.1.1.8:

40 20 200 100 30 4 40 6 7 6 1 300 30 2 6 300 4 400 200 2 2 10 1 8 40
300 20 30 90 20

Total: 2219 = 7 x 317.

2.1.1.8.2           Even positioned groups of 2 from 2.1.1.8:

6 10 30 20 100 70 30 8 2 10 8 100 50 200 3 10 6 5 200 200 6 70 90 10
40 4 8 200 70 30

Total: 1596 = 2 x 2 x 3 x 7 x 19.

2.1.1.8.2.1           Odd positioned groups of 2 from 2.1.1.8.2:

6 10 100 70 2 10 50 200 6 5 6 70 40 4 70 30

Total: 679 = 7 x 97. SF: 104 = 2 x 2 x 2 x 13.

2.1.1.8.2.1.1           Odd positioned from 2.1.1.8.2.1:

6 100 2 50 6 6 40 70

Total: 280 = 2 x 2 x 2 x 5 x 7.

2.1.1.8.2.1.2           Even positioned from 2.1.1.8.2.1:

10 70 10 200 5 70 4 30

Total: 399 = 3 x 7 x 19.

2.1.1.8.2.1.3           Odd positioned groups of 4 from 2.1.1.8.2.1:

6 10 100 70 6 5 6 70

Total: 273 = 3 x 7 x 13.

2.1.1.8.2.1.4           Even positioned groups of 4 from 2.1.1.8.2.1:

2 10 50 200 40 4 70 30

Total: 406 = 2 x 7 x 29.

2.1.1.8.2.1.4.1           Odd positioned groups of 2 from 2.1.1.8.2.1.4:

2 10 40 4

Total: 56 = 2 x 2 x 2 x 7. SF: 13.

2.1.1.8.2.1.4.1.1           Odd positioned from 2.1.1.8.2.1.4.1:

2 40

Total: 42 = 2 x 3 x 7.

2.1.1.8.2.1.4.1.2           Even positioned from 2.1.1.8.2.1.4.1:

10 4

Total: 14 = 2 x 7.

2.1.1.8.2.1.4.2           Even positioned groups of 2 from 2.1.1.8.2.1.4:

50 200 70 30

Total: 350 = 2 x 5 x 5 x 7.

2.1.1.8.2.1.5           First half of 8 from 2.1.1.8.2.1:

6 10 100 70 2 10 50 200

Total: 448 = 2 x 2 x 2 x 2 x 2 x 2 x 7.

2.1.1.8.2.1.5.1           Odd positioned groups of 2 from 2.1.1.8.2.1.5:

6 10 2 10

Total: 28 = 2 x 2 x 7.

2.1.1.8.2.1.5.2           Even positioned groups of 2 from 2.1.1.8.2.1.5:

100 70 50 200

Total: 420 = 2 x 2 x 3 x 5 x 7.

2.1.1.8.2.1.6           Last half of 8 from 2.1.1.8.2.1:

6 5 6 70 40 4 70 30

Total: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.

2.1.1.8.2.2           Even positioned groups of 2 from 2.1.1.8.2:

30 20 30 8 8 100 3 10 200 200 90 10 8 200

Total: 917 = 7 x 131.

2.1.1.8.3           Odd positioned groups of 3 from 2.1.1.8:

40 20 6 30 20 30 40 6 30 2 10 1 30 2 50 3 10 4 200 2 200 6 70 1 40
300 40 8 200 90

Total: 1491 = 3 x 7 x 71.

2.1.1.8.4           Even positioned groups of 3 from 2.1.1.8:

10 200 100 4 100 70 8 7 6 300 8 100 200 6 300 400 6 5 200 2 10 8 90
10 4 20 30 20 70 30

Total: 2324 = 2 x 2 x 7 x 83.

2.1.1.8.4.1           Odd positioned groups of 6 from 2.1.1.8.4:

8 7 6 300 8 100 200 2 10 8 90 10

Total: 749 = 7 x 107.

2.1.1.8.4.1.1           Odd positioned from 2.1.1.8.4.1:

8 6 8 200 10 90

Total: 322 = 2 x 7 x 23.

2.1.1.8.4.1.2           Even positioned from 2.1.1.8.4.1:

7 300 100 2 8 10

Total: 427 = 7 x 61.

2.1.1.8.4.2           Even positioned groups of 6 from 2.1.1.8.4:

10 200 100 4 100 70 200 6 300 400 6 5 4 20 30 20 70 30

Total: 1575 = 3 x 3 x 5 x 5 x 7.

2.1.1.8.4.2.1           Odd positioned groups of 2 from 2.1.1.8.4.2:

10 200 100 70 300 400 4 20 70 30

Total: 1204 = 2 x 2 x 7 x 43.

2.1.1.8.4.2.2           Even positioned groups of 2 from 2.1.1.8.4.2:

100 4 200 6 6 5 30 20

Total: 371 = 7 x 53.

2.1.1.8.4.2.2.1           Odd positioned from 2.1.1.8.4.2.2:

100 200 6 30

Total: 336 = 2 x 2 x 2 x 2 x 3 x 7.

2.1.1.8.4.2.2.2           Even positioned from 2.1.1.8.4.2.2:

4 6 5 20

Total: 35 = 5 x 7.

2.1.1.8.4.2.3           Odd positioned groups of 6 from 2.1.1.8.4.2:

200 6 300 400 6 5

Total: 917 = 7 x 131.

2.1.1.8.4.2.3.1           Odd positioned groups of 2 from 2.1.1.8.4.2.3:

200 6 6 5

Total: 217 = 7 x 31.

2.1.1.8.4.2.3.2           Even positioned groups of 2 from 2.1.1.8.4.2.3:

300 400

Total: 700 = 2 x 2 x 5 x 5 x 7. SF: 21 = 3 x 7.

2.1.1.8.4.2.4           Even positioned groups of 6 from 2.1.1.8.4.2:

10 200 100 4 100 70 4 20 30 20 70 30

Total: 658 = 2 x 7 x 47. SF: 56 = 2 x 2 x 2 x 7. SF: 13.

2.1.1.8.4.2.4.1           Odd positioned groups of 3 from 2.1.1.8.4.2.4:

10 200 100 4 20 30

Total: 364 = 2 x 2 x 7 x 13.

2.1.1.8.4.2.4.1.1           Odd positioned from 2.1.1.8.4.2.4.1:

10 100 20

Total: 130 = 2 x 5 x 13.

2.1.1.8.4.2.4.1.2           Even positioned from 2.1.1.8.4.2.4.1:

200 4 30

Total: 234 = 2 x 3 x 3 x 13. SF: 21 = 3 x 7.

2.1.1.8.4.2.4.1.3           Odd positioned groups of 2 from 2.1.1.8.4.2.4.1:

10 200 20 30

Total: 260 = 2 x 2 x 5 x 13.

2.1.1.8.4.2.4.1.4           Even positioned groups of 2 from 2.1.1.8.4.2.4.1:

100 4

Total: 104 = 2 x 2 x 2 x 13.

2.1.1.8.4.2.4.2           Even positioned groups of 3 from 2.1.1.8.4.2.4:

4 100 70 20 70 30

Total: 294 = 2 x 3 x 7 x 7.

2.1.1.8.5           Odd positioned groups of 5 from 2.1.1.8:

100 30 20 30 4 8 7 6 2 10 2 50 200 6 300 5 200 2 200 200 8 90 10 40
300 200 90 20 70 30

Total: 2240 = 2 x 2 x 2 x 2 x 2 x 2 x 5 x 7.

2.1.1.8.5.1           Odd positioned groups of 2 from 2.1.1.8.5:

100 30 4 8 2 10 200 6 200 2 8 90 300 200 70 30

Total: 1260 = 2 x 2 x 3 x 3 x 5 x 7.

2.1.1.8.5.2           Even positioned groups of 2 from 2.1.1.8.5:

20 30 7 6 2 50 300 5 200 200 10 40 90 20

Total: 980 = 2 x 2 x 5 x 7 x 7.

2.1.1.8.5.3           Odd positioned groups of 5 from 2.1.1.8.5:

8 7 6 2 10 5 200 2 200 200 200 90 20 70 30

Total: 1050 = 2 x 3 x 5 x 5 x 7.

2.1.1.8.5.4           Even positioned groups of 5 from 2.1.1.8.5:

100 30 20 30 4 2 50 200 6 300 8 90 10 40 300

Total: 1190 = 2 x 5 x 7 x 17.

2.1.1.8.5.4.1           Odd positioned groups of 3 from 2.1.1.8.5.4:

30 4 2 300 8 90

Total: 434 = 2 x 7 x 31.

2.1.1.8.5.4.2           Even positioned groups of 3 from 2.1.1.8.5.4:

100 30 20 50 200 6 10 40 300

Total: 756 = 2 x 2 x 3 x 3 x 3 x 7.

2.1.1.8.5.4.2.1           Odd positioned from 2.1.1.8.5.4.2:

100 20 200 10 300

Total: 630 = 2 x 3 x 3 x 5 x 7.

2.1.1.8.5.4.2.2           Even positioned from 2.1.1.8.5.4.2:

30 50 6 40

Total: 126 = 2 x 3 x 3 x 7.

2.1.1.8.6           Even positioned groups of 5 from 2.1.1.8:

40 20 6 10 200 100 70 40 6 30 1 300 8 100 30 3 10 4 400 6 2 10 6 70 1
40 4 20 30 8

Total: 1575 = 3 x 3 x 5 x 5 x 7.

2.1.1.8.6.1           Odd positioned groups of 2 from 2.1.1.8.6:

40 20 200 100 6 30 8 100 10 4 2 10 1 40 30 8

Total: 609 = 3 x 7 x 29. SF: 39 = 3 x 13.

2.1.1.8.6.1.1           First half of 8 from 2.1.1.8.6.1:

40 20 200 100 6 30 8 100

Total: 504 = 2 x 2 x 2 x 3 x 3 x 7.

2.1.1.8.6.1.2           Last half of 8 from 2.1.1.8.6.1:

10 4 2 10 1 40 30 8

Total: 105 = 3 x 5 x 7.

2.1.1.8.6.2           Even positioned groups of 2 from 2.1.1.8.6:

6 10 70 40 1 300 30 3 400 6 6 70 4 20

Total: 966 = 2 x 3 x 7 x 23. SF: 35 = 5 x 7.

2.1.1.8.7           First half of 30 from 2.1.1.8:

3 10 4 400 6 5 200 2 200 200 2 10 6 70 1 8 90 10 40 300 40 4 20 30 8
200 90 20 70 30

Total: 2079 = 3 x 3 x 3 x 7 x 11.

2.1.1.8.7.1           Odd positioned groups of 2 from 2.1.1.8.7:

3 10 6 5 200 200 6 70 90 10 40 4 8 200 70 30

Total: 952 = 2 x 2 x 2 x 7 x 17.

2.1.1.8.7.1.1           Odd positioned groups of 2 from 2.1.1.8.7.1:

3 10 200 200 90 10 8 200

Total: 721 = 7 x 103.

2.1.1.8.7.1.1.1           Odd positioned from 2.1.1.8.7.1.1:

3 200 90 8

Total: 301 = 7 x 43.

2.1.1.8.7.1.1.1.1           First half of 2 from 2.1.1.8.7.1.1.1:

3 200

Total: 203 = 7 x 29.

2.1.1.8.7.1.1.1.2           Last half of 2 from 2.1.1.8.7.1.1.1:

90 8

Total: 98 = 2 x 7 x 7.

2.1.1.8.7.1.1.2           Even positioned from 2.1.1.8.7.1.1:

10 200 10 200

Total: 420 = 2 x 2 x 3 x 5 x 7.

2.1.1.8.7.1.1.2.1           First half of 2 from 2.1.1.8.7.1.1.2:

10 200

Total: 210 = 2 x 3 x 5 x 7.

2.1.1.8.7.1.1.2.2           Last half of 2 from 2.1.1.8.7.1.1.2:

10 200

Total: 210 = 2 x 3 x 5 x 7.

2.1.1.8.7.1.1.3           First half of 4 from 2.1.1.8.7.1.1:

3 10 200 200

Total: 413 = 7 x 59.

2.1.1.8.7.1.1.3.1           Odd positioned from 2.1.1.8.7.1.1.3:

3 200

Total: 203 = 7 x 29.

2.1.1.8.7.1.1.3.2           Even positioned from 2.1.1.8.7.1.1.3:

10 200

Total: 210 = 2 x 3 x 5 x 7.

2.1.1.8.7.1.1.4           Last half of 4 from 2.1.1.8.7.1.1:

90 10 8 200

Total: 308 = 2 x 2 x 7 x 11.

2.1.1.8.7.1.1.4.1           Odd positioned from 2.1.1.8.7.1.1.4:

90 8

Total: 98 = 2 x 7 x 7.

2.1.1.8.7.1.1.4.2           Even positioned from 2.1.1.8.7.1.1.4:

10 200

Total: 210 = 2 x 3 x 5 x 7.

2.1.1.8.7.1.2           Even positioned groups of 2 from 2.1.1.8.7.1:

6 5 6 70 40 4 70 30

Total: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.

2.1.1.8.7.1.3           Odd positioned groups of 4 from 2.1.1.8.7.1:

3 10 6 5 90 10 40 4

Total: 168 = 2 x 2 x 2 x 3 x 7.

2.1.1.8.7.1.4           Even positioned groups of 4 from 2.1.1.8.7.1:

200 200 6 70 8 200 70 30

Total: 784 = 2 x 2 x 2 x 2 x 7 x 7.

2.1.1.8.7.1.4.1           First half of 4 from 2.1.1.8.7.1.4:

200 200 6 70

Total: 476 = 2 x 2 x 7 x 17. SF: 28 = 2 x 2 x 7.

2.1.1.8.7.1.4.2           Last half of 4 from 2.1.1.8.7.1.4:

8 200 70 30

Total: 308 = 2 x 2 x 7 x 11.

2.1.1.8.7.2           Even positioned groups of 2 from 2.1.1.8.7:

4 400 200 2 2 10 1 8 40 300 20 30 90 20

Total: 1127 = 7 x 7 x 23.

2.1.1.8.7.2.1           Odd positioned from 2.1.1.8.7.2:

4 200 2 1 40 20 90

Total: 357 = 3 x 7 x 17.

2.1.1.8.7.2.2           Even positioned from 2.1.1.8.7.2:

400 2 10 8 300 30 20

Total: 770 = 2 x 5 x 7 x 11.

2.1.1.8.8           Last half of 30 from 2.1.1.8:

40 20 6 10 200 100 30 20 30 4 100 70 40 6 30 8 7 6 2 10 1 300 8 100
30 2 50 200 6 300

Total: 1736 = 2 x 2 x 2 x 7 x 31.

2.1.1.8.8.1           Odd positioned groups of 2 from 2.1.1.8.8:

40 20 200 100 30 4 40 6 7 6 1 300 30 2 6 300

Total: 1092 = 2 x 2 x 3 x 7 x 13.

2.1.1.8.8.2           Even positioned groups of 2 from 2.1.1.8.8:

6 10 30 20 100 70 30 8 2 10 8 100 50 200

Total: 644 = 2 x 2 x 7 x 23.

2.1.1.8.8.2.1           Odd positioned groups of 2 from 2.1.1.8.8.2:

6 10 100 70 2 10 50 200

Total: 448 = 2 x 2 x 2 x 2 x 2 x 2 x 7.

2.1.1.8.8.2.1.1           Odd positioned groups of 2 from 2.1.1.8.8.2.1:

6 10 2 10

Total: 28 = 2 x 2 x 7.

2.1.1.8.8.2.1.2           Even positioned groups of 2 from 2.1.1.8.8.2.1:

100 70 50 200

Total: 420 = 2 x 2 x 3 x 5 x 7.

2.1.1.8.8.2.2           Even positioned groups of 2 from 2.1.1.8.8.2:

30 20 30 8 8 100

Total: 196 = 2 x 2 x 7 x 7.

2.1.1.8.8.2.3           First half of 7 from 2.1.1.8.8.2:

8 2 10 8 100 50 200

Total: 378 = 2 x 3 x 3 x 3 x 7.

2.1.1.8.8.2.4           Last half of 7 from 2.1.1.8.8.2:

6 10 30 20 100 70 30

Total: 266 = 2 x 7 x 19. SF: 28 = 2 x 2 x 7.

2.1.2           Even positioned groups of 3 from 2.1:

6 10 2 4 2 200 6 10 1 50 10 1 5 10 90 2 200 6 2 1 400 3 10 4 40 6 4
10 40 50 70 30 70 70 30 70 4 300 20 1 5 80 30 40 10 8 400 40 50 6 50
6 30 40 10 2 6 6 400 10 30 40 70 10 8 50 300 2 70 5 200 8 8 200 6 90
6 100 10 40 6 50 30 6 10 200 6 300 10 300 70 40 50 5 2 1 3 2 10 10
400 30 40 300 2 8 4 6 90 10 40 40 6 70 5 6 50 5 400 400 300 40 40

Total: 7735 = 5 x 7 x 13 x 17. SF: 42 = 2 x 3 x 7.

2.1.3           Odd positioned groups of 27 from 2.1:

90 1 4 2 200 6 1 50 10 2 1 400 10 30 5 3 10 4 20 10 8 40 6 4 6 400 1
4 100 70 30 40 10 40 6 30 8 400 40 8 7 6 50 6 50 2 10 1 6 30 40 300 8
100 2 50 400 5 200 8 6 2 6 8 200 6 90 6 2 90 6 100 5 70 400 10 40 6 1
8 200 400 6 5 3 2 10 200 2 200 10 400 30 200 2 10 40 300 2 6 70 1 8 4
6 8 90 10

Total: 6678 = 2 x 3 x 3 x 7 x 53.

2.1.3.1           Odd positioned groups of 2 from 2.1.3:

90 1 200 6 10 2 10 30 10 4 8 40 6 400 100 70 10 40 8 400 7 6 50 2 6
30 8 100 400 5 6 2 200 6 2 90 5 70 40 6 200 400 3 2 2 200 30 200 40
300 70 1 6 8

Total: 3948 = 2 x 2 x 3 x 7 x 47.

2.1.3.1.1           Odd positioned groups of 2 from 2.1.3.1:

90 1 10 2 10 4 6 400 10 40 7 6 6 30 400 5 200 6 5 70 200 400 2 200 40
300 6 8

Total: 2464 = 2 x 2 x 2 x 2 x 2 x 7 x 11. SF: 28 = 2 x 2 x 7.

2.1.3.1.1.1           Odd positioned groups of 2 from 2.1.3.1.1:

90 1 10 4 10 40 6 30 200 6 200 400 40 300

Total: 1337 = 7 x 191.

2.1.3.1.1.1.1           First half of 7 from 2.1.3.1.1.1:

30 200 6 200 400 40 300

Total: 1176 = 2 x 2 x 2 x 3 x 7 x 7.

2.1.3.1.1.1.2           Last half of 7 from 2.1.3.1.1.1:

90 1 10 4 10 40 6

Total: 161 = 7 x 23.

2.1.3.1.1.2           Even positioned groups of 2 from 2.1.3.1.1:

10 2 6 400 7 6 400 5 5 70 2 200 6 8

Total: 1127 = 7 x 7 x 23.

2.1.3.1.2           Even positioned groups of 2 from 2.1.3.1:

200 6 10 30 8 40 100 70 8 400 50 2 8 100 6 2 2 90 40 6 3 2 30 200 70 1

Total: 1484 = 2 x 2 x 7 x 53.

2.1.3.1.2.1           Odd positioned groups of 2 from 2.1.3.1.2:

200 6 8 40 8 400 8 100 2 90 3 2 70 1

Total: 938 = 2 x 7 x 67.

2.1.3.1.2.1.1           Odd positioned groups of 2 from 2.1.3.1.2.1:

200 6 8 400 2 90 70 1

Total: 777 = 3 x 7 x 37.

2.1.3.1.2.1.1.1           Odd positioned from 2.1.3.1.2.1.1:

200 8 2 70

Total: 280 = 2 x 2 x 2 x 5 x 7.

2.1.3.1.2.1.1.2           Even positioned from 2.1.3.1.2.1.1:

6 400 90 1

Total: 497 = 7 x 71. SF: 78 = 2 x 3 x 13.

2.1.3.1.2.1.1.2.1           First half of 2 from 2.1.3.1.2.1.1.2:

6 400

Total: 406 = 2 x 7 x 29.

2.1.3.1.2.1.1.2.2           Last half of 2 from 2.1.3.1.2.1.1.2:

90 1

Total: 91 = 7 x 13.

2.1.3.1.2.1.2           Even positioned groups of 2 from 2.1.3.1.2.1:

8 40 8 100 3 2

Total: 161 = 7 x 23.

2.1.3.1.2.1.2.1           First half of 3 from 2.1.3.1.2.1.2:

100 3 2

Total: 105 = 3 x 5 x 7.

2.1.3.1.2.1.2.2           Last half of 3 from 2.1.3.1.2.1.2:

8 40 8

Total: 56 = 2 x 2 x 2 x 7. SF: 13.

2.1.3.1.2.2           Even positioned groups of 2 from 2.1.3.1.2:

10 30 100 70 50 2 6 2 40 6 30 200

Total: 546 = 2 x 3 x 7 x 13.

2.1.3.1.3           First half of 27 from 2.1.3.1:

100 400 5 6 2 200 6 2 90 5 70 40 6 200 400 3 2 2 200 30 200 40 300 70
1 6 8

Total: 2394 = 2 x 3 x 3 x 7 x 19.

2.1.3.1.3.1           Odd positioned groups of 9 from 2.1.3.1.3:

100 400 5 6 2 200 6 2 90 200 30 200 40 300 70 1 6 8

Total: 1666 = 2 x 7 x 7 x 17.

2.1.3.1.3.2           Even positioned groups of 9 from 2.1.3.1.3:

5 70 40 6 200 400 3 2 2

Total: 728 = 2 x 2 x 2 x 7 x 13. SF: 26 = 2 x 13.

2.1.3.1.4           Last half of 27 from 2.1.3.1:

90 1 200 6 10 2 10 30 10 4 8 40 6 400 100 70 10 40 8 400 7 6 50 2 6
30 8

Total: 1554 = 2 x 3 x 7 x 37. SF: 49 = 7 x 7. SF: 14 = 2 x 7.

2.1.3.2           Even positioned groups of 2 from 2.1.3:

4 2 1 50 1 400 5 3 20 10 6 4 1 4 30 40 6 30 40 8 50 6 10 1 40 300 2
50 200 8 6 8 90 6 6 100 400 10 1 8 6 5 10 200 10 400 2 10 2 6 8 4 90
10

Total: 2730 = 2 x 3 x 5 x 7 x 13.

2.1.3.2.1           Odd positioned groups of 3 from 2.1.3.2:

50 1 400 10 6 4 40 6 30 6 10 1 50 200 8 6 6 100 8 6 5 400 2 10 4 90 10

Total: 1469 = 13 x 113. SF: 126 = 2 x 3 x 3 x 7.

2.1.3.2.2           Even positioned groups of 3 from 2.1.3.2:

4 2 1 5 3 20 1 4 30 40 8 50 40 300 2 6 8 90 400 10 1 10 200 10 2 6 8

Total: 1261 = 13 x 97.

2.1.3.2.3           Odd positioned 8 from 2.1.3.2:

4 2 1 50 1 400 5 3 20 10 6 4 1 4 30 40 6 30 400 10 1 8 6 5 10 200 10
400 2 10 2 6 8 4 90 10

Total: 1799 = 7 x 257.

2.1.3.2.3.1           Odd positioned groups of 2 from 2.1.3.2.3:

4 2 1 400 20 10 1 4 6 30 1 8 10 200 2 10 8 4

Total: 721 = 7 x 103.

2.1.3.2.3.1.1           Odd positioned groups of 2 from 2.1.3.2.3.1:

4 2 20 10 6 30 10 200 8 4

Total: 294 = 2 x 3 x 7 x 7.

2.1.3.2.3.1.1.1           First half of 5 from 2.1.3.2.3.1.1:

30 10 200 8 4

Total: 252 = 2 x 2 x 3 x 3 x 7.

2.1.3.2.3.1.1.2           Last half of 5 from 2.1.3.2.3.1.1:

4 2 20 10 6

Total: 42 = 2 x 3 x 7.

2.1.3.2.3.1.2           Even positioned groups of 2 from 2.1.3.2.3.1:

1 400 1 4 1 8 2 10

Total: 427 = 7 x 61.

2.1.3.2.3.1.2.1           First half of 4 from 2.1.3.2.3.1.2:

1 400 1 4

Total: 406 = 2 x 7 x 29.

2.1.3.2.3.1.2.2           Last half of 4 from 2.1.3.2.3.1.2:

1 8 2 10

Total: 21 = 3 x 7.

2.1.3.2.3.1.3           First half of 9 from 2.1.3.2.3.1:

4 2 1 400 20 10 1 4 6

Total: 448 = 2 x 2 x 2 x 2 x 2 x 2 x 7.

2.1.3.2.3.1.4           Last half of 9 from 2.1.3.2.3.1:

30 1 8 10 200 2 10 8 4

Total: 273 = 3 x 7 x 13.

2.1.3.2.3.1.4.1           Odd positioned from 2.1.3.2.3.1.4:

30 8 200 10 4

Total: 252 = 2 x 2 x 3 x 3 x 7.

2.1.3.2.3.1.4.2           Even positioned from 2.1.3.2.3.1.4:

1 10 2 8

Total: 21 = 3 x 7.

2.1.3.2.3.2           Even positioned groups of 2 from 2.1.3.2.3:

1 50 5 3 6 4 30 40 400 10 6 5 10 400 2 6 90 10

Total: 1078 = 2 x 7 x 7 x 11.

2.1.3.2.3.2.1           Odd positioned groups of 3 from 2.1.3.2.3.2:

3 6 4 10 6 5 6 90 10

Total: 140 = 2 x 2 x 5 x 7.

2.1.3.2.3.2.1.1           Odd positioned groups of 3 from 2.1.3.2.3.2.1:

10 6 5

Total: 21 = 3 x 7.

2.1.3.2.3.2.1.2           Even positioned groups of 3 from 2.1.3.2.3.2.1:

3 6 4 6 90 10

Total: 119 = 7 x 17.

2.1.3.2.3.2.2           Even positioned groups of 3 from 2.1.3.2.3.2:

1 50 5 30 40 400 10 400 2

Total: 938 = 2 x 7 x 67.

2.1.3.2.3.2.3           First half of 9 from 2.1.3.2.3.2:

1 50 5 3 6 4 30 40 400

Total: 539 = 7 x 7 x 11.

2.1.3.2.3.2.4           Last half of 9 from 2.1.3.2.3.2:

10 6 5 10 400 2 6 90 10

Total: 539 = 7 x 7 x 11.

2.1.3.2.4           Even positioned 8 from 2.1.3.2:

40 8 50 6 10 1 40 300 2 50 200 8 6 8 90 6 6 100

Total: 931 = 7 x 7 x 19.

2.1.3.2.4.1           Odd positioned groups of 2 from 2.1.3.2.4:

40 8 10 1 2 50 6 8 6 100

Total: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.

2.1.3.2.4.2           Even positioned groups of 2 from 2.1.3.2.4:

50 6 40 300 200 8 90 6

Total: 700 = 2 x 2 x 5 x 5 x 7. SF: 21 = 3 x 7.

2.1.4           Even positioned groups of 27 from 2.1:

6 10 2 50 6 10 4 2 200 70 40 10 6 10 1 40 200 4 50 10 1 30 70 400 5
10 90 10 40 50 8 400 20 70 30 70 40 20 6 70 30 70 10 200 100 4 300 20
30 20 30 1 5 80 10 2 6 30 2 50 6 400 10 200 6 300 30 40 70 4 40 300
10 8 50 3 10 4 300 2 70 50 30 6 6 5 70 10 200 6 5 100 4 300 10 300 8
10 400 70 40 50 3 10 4 5 2 1 90 10 40 40 300 40 40 6 70 4 20 30 5 6
50 8 200 90 5 400 400 20 70 30 300 40 40

Total: 9093 = 3 x 7 x 433.

2.1.5           Odd positioned groups of 81 from 2.1:

6 10 2 50 6 10 4 2 200 70 40 10 6 10 1 40 200 4 50 10 1 30 70 400 5
10 90 90 1 4 2 200 6 1 50 10 2 1 400 10 30 5 3 10 4 20 10 8 40 6 4 6
400 1 10 40 50 8 400 20 70 30 70 40 20 6 70 30 70 10 200 100 4 300 20
30 20 30 1 5 80 50 30 6 6 5 70 10 200 6 5 100 4 300 10 300 8 10 400
70 40 50 3 10 4 5 2 1 400 6 5 3 2 10 200 2 200 10 400 30 200 2 10 40
300 2 6 70 1 8 4 6 8 90 10 90 10 40 40 300 40 40 6 70 4 20 30 5 6 50
8 200 90 5 400 400 20 70 30 300 40 40

Total: 10479 = 3 x 7 x 499.

2.1.5.1           Odd positioned groups of 27 from 2.1.5:

90 1 4 2 200 6 1 50 10 2 1 400 10 30 5 3 10 4 20 10 8 40 6 4 6 400 1
50 30 6 6 5 70 10 200 6 5 100 4 300 10 300 8 10 400 70 40 50 3 10 4 5
2 1 90 10 40 40 300 40 40 6 70 4 20 30 5 6 50 8 200 90 5 400 400 20
70 30 300 40 40

Total: 5383 = 7 x 769.

2.1.5.2           Even positioned groups of 27 from 2.1.5:

6 10 2 50 6 10 4 2 200 70 40 10 6 10 1 40 200 4 50 10 1 30 70 400 5
10 90 10 40 50 8 400 20 70 30 70 40 20 6 70 30 70 10 200 100 4 300 20
30 20 30 1 5 80 400 6 5 3 2 10 200 2 200 10 400 30 200 2 10 40 300 2
6 70 1 8 4 6 8 90 10

Total: 5096 = 2 x 2 x 2 x 7 x 7 x 13.

2.1.6           Even positioned groups of 81 from 2.1:

4 100 70 30 40 10 40 6 30 8 400 40 8 7 6 50 6 50 2 10 1 6 30 40 300 8
100 10 2 6 30 2 50 6 400 10 200 6 300 30 40 70 4 40 300 10 8 50 3 10
4 300 2 70 2 50 400 5 200 8 6 2 6 8 200 6 90 6 2 90 6 100 5 70 400 10
40 6 1 8 200

Total: 5292 = 2 x 2 x 3 x 3 x 3 x 7 x 7.

2.2           Even positioned groups of 27 from 1:

1 400 10 30 5 300 20 10 30 20 2 10 50 5 2 400 8 30 400 400 8 50 6 50
10 20 10 400 5 6 2 10 50 2 4 2 200 6 5 2 50 2 40 200 1 5 300 2 70 10
40 300 2 70 300 70 6 30 8 400 40 8 9 1 6 400 6 30 20 80 200 70 6 50 6
30 5 2 10 1 90 4 300 100 4 300 10 40 6 400 4 70 6 400 300 20 30 40 50
40 90 1 4 2 200 30 5 300 10 40 300 2 70 5 6 300 2 70 10 40 300 300 10
40 6 300 50 10 40 400 300 6 2 6 50 10 5 300 2 70 10 40 300 300 10 40
6 300 50 10 40 10 20 200 400 40 300 10 8 6 1 10 6 100 90 6 2 300 9 80
6 70 4 100 90 40 30 8 40 5 50 8 200 90 400 300 40 40 6 5 300 2 6 70
10 300 2 10 400 7 2 8 6 40 50 8 5 6 70 30 20 50 80 300 100 6

Total: 17899 = 7 x 2557.

2.2.1           Odd positioned groups of 2 from 2.2:

1 400 5 300 30 20 50 5 8 30 8 50 10 20 5 6 50 2 200 6 50 2 1 5 70 10
2 70 6 30 40 8 6 400 20 80 6 50 5 2 90 4 4 300 6 400 6 400 30 40 90 1
200 30 10 40 70 5 2 70 300 300 6 300 40 400 2 6 5 300 10 40 10 40 50
10 20 200 300 10 1 10 90 6 9 80 4 100 30 8 50 8 400 300 6 5 6 70 2 10
2 8 50 8 70 30 80 300

Total: 7959 = 3 x 7 x 379.

2.2.1.1           Odd positioned groups of 36 from 2.2.1:

1 400 5 300 30 20 50 5 8 30 8 50 10 20 5 6 50 2 200 6 50 2 1 5 70 10
2 70 6 30 40 8 6 400 20 80 10 40 50 10 20 200 300 10 1 10 90 6 9 80 4
100 30 8 50 8 400 300 6 5 6 70 2 10 2 8 50 8 70 30 80 300

Total: 4389 = 3 x 7 x 11 x 19.

2.2.1.1.1           Odd positioned groups of 4 from 2.2.1.1:

1 400 5 300 8 30 8 50 50 2 200 6 70 10 2 70 6 400 20 80 20 200 300 10
9 80 4 100 400 300 6 5 2 8 50 8

Total: 3220 = 2 x 2 x 5 x 7 x 23. SF: 39 = 3 x 13.

2.2.1.1.1.1           Odd positioned groups of 9 from 2.2.1.1.1:

2 200 6 70 10 2 70 6 400 100 400 300 6 5 2 8 50 8

Total: 1645 = 5 x 7 x 47.

2.2.1.1.1.2           Even positioned groups of 9 from 2.2.1.1.1:

1 400 5 300 8 30 8 50 50 20 80 20 200 300 10 9 80 4

Total: 1575 = 3 x 3 x 5 x 5 x 7.

2.2.1.1.2           Even positioned groups of 4 from 2.2.1.1:

30 20 50 5 10 20 5 6 50 2 1 5 6 30 40 8 10 40 50 10 1 10 90 6 30 8 50
8 6 70 2 10 70 30 80 300

Total: 1169 = 7 x 167.

2.2.1.1.2.1           Odd positioned from 2.2.1.1.2:

30 50 10 5 50 1 6 40 10 50 1 90 30 50 6 2 70 80

Total: 581 = 7 x 83.

2.2.1.1.2.2           Even positioned from 2.2.1.1.2:

20 5 20 6 2 5 30 8 40 10 10 6 8 8 70 10 30 300

Total: 588 = 2 x 2 x 3 x 7 x 7. SF: 21 = 3 x 7.

2.2.1.1.2.3           Odd positioned groups of 6 from 2.2.1.1.2:

5 6 50 2 1 5 50 10 1 10 90 6 2 10 70 30 80 300

Total: 728 = 2 x 2 x 2 x 7 x 13. SF: 26 = 2 x 13.

2.2.1.1.2.3.1           Odd positioned groups of 2 from 2.2.1.1.2.3:

5 6 1 5 1 10 2 10 80 300

Total: 420 = 2 x 2 x 3 x 5 x 7.

2.2.1.1.2.3.2           Even positioned groups of 2 from 2.2.1.1.2.3:

50 2 50 10 90 6 70 30

Total: 308 = 2 x 2 x 7 x 11.

2.2.1.1.2.3.2.1           First half of 4 from 2.2.1.1.2.3.2:

50 2 50 10

Total: 112 = 2 x 2 x 2 x 2 x 7.

2.2.1.1.2.3.2.2           Last half of 4 from 2.2.1.1.2.3.2:

90 6 70 30

Total: 196 = 2 x 2 x 7 x 7.

2.2.1.1.2.3.3           First half of 9 from 2.2.1.1.2.3:

5 6 50 2 1 5 50 10 1

Total: 130 = 2 x 5 x 13.

2.2.1.1.2.3.4           Last half of 9 from 2.2.1.1.2.3:

10 90 6 2 10 70 30 80 300

Total: 598 = 2 x 13 x 23.

2.2.1.1.2.4           Even positioned groups of 6 from 2.2.1.1.2:

30 20 50 5 10 20 6 30 40 8 10 40 30 8 50 8 6 70

Total: 441 = 3 x 3 x 7 x 7.

2.2.1.1.2.5           Odd positioned 2 from 2.2.1.1.2:

6 30 40 8 10 40 50 10 1 10 90 6

Total: 301 = 7 x 43.

2.2.1.1.2.6           Even positioned 2 from 2.2.1.1.2:

30 20 50 5 10 20 5 6 50 2 1 5 30 8 50 8 6 70 2 10 70 30 80 300

Total: 868 = 2 x 2 x 7 x 31. SF: 42 = 2 x 3 x 7.

2.2.1.1.2.6.1           Odd positioned groups of 8 from 2.2.1.1.2.6:

30 20 50 5 10 20 5 6 6 70 2 10 70 30 80 300

Total: 714 = 2 x 3 x 7 x 17.

2.2.1.1.2.6.2           Even positioned groups of 8 from 2.2.1.1.2.6:

50 2 1 5 30 8 50 8

Total: 154 = 2 x 7 x 11.

2.2.1.1.3           Odd positioned groups of 9 from 2.2.1.1:

30 8 50 10 20 5 6 50 2 70 6 30 40 8 6 400 20 80 10 90 6 9 80 4 100 30
8 10 2 8 50 8 70 30 80 300

Total: 1736 = 2 x 2 x 2 x 7 x 31.

2.2.1.1.3.1           Odd positioned groups of 9 from 2.2.1.1.3:

70 6 30 40 8 6 400 20 80 10 2 8 50 8 70 30 80 300

Total: 1218 = 2 x 3 x 7 x 29.

2.2.1.1.3.2           Even positioned groups of 9 from 2.2.1.1.3:

30 8 50 10 20 5 6 50 2 10 90 6 9 80 4 100 30 8

Total: 518 = 2 x 7 x 37.

2.2.1.1.4           Even positioned groups of 9 from 2.2.1.1:

1 400 5 300 30 20 50 5 8 200 6 50 2 1 5 70 10 2 10 40 50 10 20 200
300 10 1 50 8 400 300 6 5 6 70 2

Total: 2653 = 7 x 379.

2.2.1.1.4.1           Odd positioned groups of 2 from 2.2.1.1.4:

1 400 30 20 8 200 2 1 10 2 50 10 300 10 8 400 5 6

Total: 1463 = 7 x 11 x 19.

2.2.1.1.4.1.1           First half of 9 from 2.2.1.1.4.1:

1 400 30 20 8 200 2 1 10

Total: 672 = 2 x 2 x 2 x 2 x 2 x 3 x 7.

2.2.1.1.4.1.2           Last half of 9 from 2.2.1.1.4.1:

2 50 10 300 10 8 400 5 6

Total: 791 = 7 x 113.

2.2.1.1.4.2           Even positioned groups of 2 from 2.2.1.1.4:

5 300 50 5 6 50 5 70 10 40 20 200 1 50 300 6 70 2

Total: 1190 = 2 x 5 x 7 x 17.

2.2.1.1.4.2.1           Odd positioned groups of 3 from 2.2.1.1.4.2:

5 6 50 40 20 200 6 70 2

Total: 399 = 3 x 7 x 19.

2.2.1.1.4.2.2           Even positioned groups of 3 from 2.2.1.1.4.2:

5 300 50 5 70 10 1 50 300

Total: 791 = 7 x 113.

2.2.1.1.4.3           Odd positioned 2 from 2.2.1.1.4:

2 1 5 70 10 2 10 40 50 10 20 200

Total: 420 = 2 x 2 x 3 x 5 x 7.

2.2.1.1.4.4           Even positioned 2 from 2.2.1.1.4:

1 400 5 300 30 20 50 5 8 200 6 50 300 10 1 50 8 400 300 6 5 6 70 2

Total: 2233 = 7 x 11 x 29.

2.2.1.1.4.4.1           Odd positioned from 2.2.1.1.4.4:

1 5 30 50 8 6 300 1 8 300 5 70

Total: 784 = 2 x 2 x 2 x 2 x 7 x 7.

2.2.1.1.4.4.1.1           Odd positioned groups of 4 from 2.2.1.1.4.4.1:

1 5 30 50 8 300 5 70

Total: 469 = 7 x 67.

2.2.1.1.4.4.1.2           Even positioned groups of 4 from 2.2.1.1.4.4.1:

8 6 300 1

Total: 315 = 3 x 3 x 5 x 7.

2.2.1.1.4.4.1.2.1           Odd positioned from 2.2.1.1.4.4.1.2:

8 300

Total: 308 = 2 x 2 x 7 x 11.

2.2.1.1.4.4.1.2.2           Even positioned from 2.2.1.1.4.4.1.2:

6 1

Total: 7 = 7. SF: 7.

2.2.1.1.4.4.1.2.3           First half of 2 from 2.2.1.1.4.4.1.2:

8 6

Total: 14 = 2 x 7.

2.2.1.1.4.4.1.2.4           Last half of 2 from 2.2.1.1.4.4.1.2:

300 1

Total: 301 = 7 x 43.

2.2.1.1.4.4.2           Even positioned from 2.2.1.1.4.4:

400 300 20 5 200 50 10 50 400 6 6 2

Total: 1449 = 3 x 3 x 7 x 23.

2.2.1.1.4.4.2.1           Odd positioned from 2.2.1.1.4.4.2:

400 20 200 10 400 6

Total: 1036 = 2 x 2 x 7 x 37.

2.2.1.1.4.4.2.1.1           Odd positioned groups of 2 from 2.2.1.1.4.4.2.1:

400 20 400 6

Total: 826 = 2 x 7 x 59.

2.2.1.1.4.4.2.1.1.1           First half of 2 from 2.2.1.1.4.4.2.1.1:

400 20

Total: 420 = 2 x 2 x 3 x 5 x 7.

2.2.1.1.4.4.2.1.1.2           Last half of 2 from 2.2.1.1.4.4.2.1.1:

400 6

Total: 406 = 2 x 7 x 29.

2.2.1.1.4.4.2.1.2           Even positioned groups of 2 from 2.2.1.1.4.4.2.1:

200 10

Total: 210 = 2 x 3 x 5 x 7.

2.2.1.1.4.4.2.2           Even positioned from 2.2.1.1.4.4.2:

300 5 50 50 6 2

Total: 413 = 7 x 59.

2.2.1.2           Even positioned groups of 36 from 2.2.1:

6 50 5 2 90 4 4 300 6 400 6 400 30 40 90 1 200 30 10 40 70 5 2 70 300
300 6 300 40 400 2 6 5 300 10 40

Total: 3570 = 2 x 3 x 5 x 7 x 17.

2.2.1.2.1           Odd positioned from 2.2.1.2:

6 5 90 4 6 6 30 90 200 10 70 2 300 6 40 2 5 10

Total: 882 = 2 x 3 x 3 x 7 x 7.

2.2.1.2.2           Even positioned from 2.2.1.2:

50 2 4 300 400 400 40 1 30 40 5 70 300 300 400 6 300 40

Total: 2688 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 3 x 7.

2.2.1.2.2.1           Odd positioned groups of 2 from 2.2.1.2.2:

50 2 400 400 30 40 300 300 300 40

Total: 1862 = 2 x 7 x 7 x 19. SF: 35 = 5 x 7.

2.2.1.2.2.1.1           Odd positioned groups of 2 from 2.2.1.2.2.1:

50 2 30 40 300 40

Total: 462 = 2 x 3 x 7 x 11.

2.2.1.2.2.1.1.1           Odd positioned groups of 2 from 2.2.1.2.2.1.1:

50 2 300 40

Total: 392 = 2 x 2 x 2 x 7 x 7.

2.2.1.2.2.1.1.1.1           Odd positioned from 2.2.1.2.2.1.1.1:

50 300

Total: 350 = 2 x 5 x 5 x 7.

2.2.1.2.2.1.1.1.2           Even positioned from 2.2.1.2.2.1.1.1:

2 40

Total: 42 = 2 x 3 x 7.

2.2.1.2.2.1.1.2           Even positioned groups of 2 from 2.2.1.2.2.1.1:

30 40

Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

2.2.1.2.2.1.2           Even positioned groups of 2 from 2.2.1.2.2.1:

400 400 300 300

Total: 1400 = 2 x 2 x 2 x 5 x 5 x 7.

2.2.1.2.2.1.2.1           Odd positioned from 2.2.1.2.2.1.2:

400 300

Total: 700 = 2 x 2 x 5 x 5 x 7. SF: 21 = 3 x 7.

2.2.1.2.2.1.2.2           Even positioned from 2.2.1.2.2.1.2:

400 300

Total: 700 = 2 x 2 x 5 x 5 x 7. SF: 21 = 3 x 7.

2.2.1.2.2.1.3           First half of 5 from 2.2.1.2.2.1:

40 300 300 300 40

Total: 980 = 2 x 2 x 5 x 7 x 7.

2.2.1.2.2.1.4           Last half of 5 from 2.2.1.2.2.1:

50 2 400 400 30

Total: 882 = 2 x 3 x 3 x 7 x 7.

2.2.1.2.2.2           Even positioned groups of 2 from 2.2.1.2.2:

4 300 40 1 5 70 400 6

Total: 826 = 2 x 7 x 59.

2.2.1.2.2.3           Odd positioned groups of 3 from 2.2.1.2.2:

300 400 400 40 5 70 6 300 40

Total: 1561 = 7 x 223.

2.2.1.2.2.4           Even positioned groups of 3 from 2.2.1.2.2:

50 2 4 40 1 30 300 300 400

Total: 1127 = 7 x 7 x 23.

2.2.1.2.3           Odd positioned 2 from 2.2.1.2:

30 40 90 1 200 30 10 40 70 5 2 70

Total: 588 = 2 x 2 x 3 x 7 x 7. SF: 21 = 3 x 7.

2.2.1.2.3.1           Odd positioned groups of 3 from 2.2.1.2.3:

30 40 90 10 40 70

Total: 280 = 2 x 2 x 2 x 5 x 7.

2.2.1.2.3.2           Even positioned groups of 3 from 2.2.1.2.3:

1 200 30 5 2 70

Total: 308 = 2 x 2 x 7 x 11.

2.2.1.2.3.2.1           Odd positioned groups of 2 from 2.2.1.2.3.2:

1 200 2 70

Total: 273 = 3 x 7 x 13.

2.2.1.2.3.2.2           Even positioned groups of 2 from 2.2.1.2.3.2:

30 5

Total: 35 = 5 x 7.

2.2.1.2.3.2.3           First half of 3 from 2.2.1.2.3.2:

5 2 70

Total: 77 = 7 x 11.

2.2.1.2.3.2.4           Last half of 3 from 2.2.1.2.3.2:

1 200 30

Total: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.

2.2.1.2.3.3           Odd positioned groups of 4 from 2.2.1.2.3:

30 40 90 1 70 5 2 70

Total: 308 = 2 x 2 x 7 x 11.

2.2.1.2.3.3.1           First half of 4 from 2.2.1.2.3.3:

30 40 90 1

Total: 161 = 7 x 23.

2.2.1.2.3.3.1.1           First half of 2 from 2.2.1.2.3.3.1:

30 40

Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

2.2.1.2.3.3.1.2           Last half of 2 from 2.2.1.2.3.3.1:

90 1

Total: 91 = 7 x 13.

2.2.1.2.3.3.2           Last half of 4 from 2.2.1.2.3.3:

70 5 2 70

Total: 147 = 3 x 7 x 7.

2.2.1.2.3.4           Even positioned groups of 4 from 2.2.1.2.3:

200 30 10 40

Total: 280 = 2 x 2 x 2 x 5 x 7.

2.2.1.2.3.4.1           Odd positioned from 2.2.1.2.3.4:

200 10

Total: 210 = 2 x 3 x 5 x 7.

2.2.1.2.3.4.2           Even positioned from 2.2.1.2.3.4:

30 40

Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

2.2.1.2.4           Even positioned 2 from 2.2.1.2:

6 50 5 2 90 4 4 300 6 400 6 400 300 300 6 300 40 400 2 6 5 300 10 40

Total: 2982 = 2 x 3 x 7 x 71.

2.2.1.2.4.1           Odd positioned groups of 4 from 2.2.1.2.4:

6 50 5 2 6 400 6 400 40 400 2 6

Total: 1323 = 3 x 3 x 3 x 7 x 7.

2.2.1.2.4.1.1           Odd positioned groups of 4 from 2.2.1.2.4.1:

6 50 5 2 40 400 2 6

Total: 511 = 7 x 73.

2.2.1.2.4.1.1.1           First half of 4 from 2.2.1.2.4.1.1:

6 50 5 2

Total: 63 = 3 x 3 x 7. SF: 13.

2.2.1.2.4.1.1.1.1           First half of 2 from 2.2.1.2.4.1.1.1:

6 50

Total: 56 = 2 x 2 x 2 x 7. SF: 13.

2.2.1.2.4.1.1.1.2           Last half of 2 from 2.2.1.2.4.1.1.1:

5 2

Total: 7 = 7. SF: 7.

2.2.1.2.4.1.1.2           Last half of 4 from 2.2.1.2.4.1.1:

40 400 2 6

Total: 448 = 2 x 2 x 2 x 2 x 2 x 2 x 7.

2.2.1.2.4.1.1.2.1           Odd positioned from 2.2.1.2.4.1.1.2:

40 2

Total: 42 = 2 x 3 x 7.

2.2.1.2.4.1.1.2.2           Even positioned from 2.2.1.2.4.1.1.2:

400 6

Total: 406 = 2 x 7 x 29.

2.2.1.2.4.1.2           Even positioned groups of 4 from 2.2.1.2.4.1:

6 400 6 400

Total: 812 = 2 x 2 x 7 x 29.

2.2.1.2.4.1.2.1           First half of 2 from 2.2.1.2.4.1.2:

6 400

Total: 406 = 2 x 7 x 29.

2.2.1.2.4.1.2.2           Last half of 2 from 2.2.1.2.4.1.2:

6 400

Total: 406 = 2 x 7 x 29.

2.2.1.2.4.1.3           First half of 6 from 2.2.1.2.4.1:

6 400 40 400 2 6

Total: 854 = 2 x 7 x 61. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

2.2.1.2.4.1.4           Last half of 6 from 2.2.1.2.4.1:

6 50 5 2 6 400

Total: 469 = 7 x 67.

2.2.1.2.4.1.4.1           Odd positioned groups of 2 from 2.2.1.2.4.1.4:

6 50 6 400

Total: 462 = 2 x 3 x 7 x 11.

2.2.1.2.4.1.4.1.1           First half of 2 from 2.2.1.2.4.1.4.1:

6 50

Total: 56 = 2 x 2 x 2 x 7. SF: 13.

2.2.1.2.4.1.4.1.2           Last half of 2 from 2.2.1.2.4.1.4.1:

6 400

Total: 406 = 2 x 7 x 29.

2.2.1.2.4.1.4.2           Even positioned groups of 2 from 2.2.1.2.4.1.4:

5 2

Total: 7 = 7. SF: 7.

2.2.1.2.4.2           Even positioned groups of 4 from 2.2.1.2.4:

90 4 4 300 300 300 6 300 5 300 10 40

Total: 1659 = 3 x 7 x 79.

2.2.2           Even positioned groups of 2 from 2.2:

10 30 20 10 2 10 2 400 400 400 6 50 10 400 2 10 4 2 5 2 40 200 300 2
40 300 300 70 8 400 9 1 6 30 200 70 6 30 10 1 300 100 10 40 4 70 300
20 50 40 4 2 5 300 300 2 6 300 10 40 10 40 50 10 300 6 50 10 2 70 300
300 6 300 40 10 400 40 8 6 6 100 2 300 6 70 90 40 40 5 200 90 40 40
300 2 10 300 400 7 6 40 5 6 20 50 100 6

Total: 9940 = 2 x 2 x 5 x 7 x 71.

2.2.2.1           Odd positioned from 2.2.2:

10 20 2 2 400 6 10 2 4 5 40 300 40 300 8 9 6 200 6 10 300 10 4 300 50
4 5 300 6 10 10 50 300 50 2 300 6 40 400 8 6 2 6 90 40 200 40 300 10
400 6 5 20 100

Total: 4760 = 2 x 2 x 2 x 5 x 7 x 17. SF: 35 = 5 x 7.

2.2.2.1.1           Odd positioned groups of 9 from 2.2.2.1:

10 20 2 2 400 6 10 2 4 6 10 300 10 4 300 50 4 5 6 40 400 8 6 2 6 90 40

Total: 1743 = 3 x 7 x 83.

2.2.2.1.2           Even positioned groups of 9 from 2.2.2.1:

5 40 300 40 300 8 9 6 200 300 6 10 10 50 300 50 2 300 200 40 300 10
400 6 5 20 100

Total: 3017 = 7 x 431.

2.2.2.10           Even positioned groups of 27 from 2.2.2:

70 8 400 9 1 6 30 200 70 6 30 10 1 300 100 10 40 4 70 300 20 50 40 4
2 5 300 100 2 300 6 70 90 40 40 5 200 90 40 40 300 2 10 300 400 7 6
40 5 6 20 50 100 6

Total: 4361 = 7 x 7 x 89.

2.2.2.10.1           First half of 27 from 2.2.2.10:

100 2 300 6 70 90 40 40 5 200 90 40 40 300 2 10 300 400 7 6 40 5 6 20
50 100 6

Total: 2275 = 5 x 5 x 7 x 13.

2.2.2.10.2           Last half of 27 from 2.2.2.10:

70 8 400 9 1 6 30 200 70 6 30 10 1 300 100 10 40 4 70 300 20 50 40 4
2 5 300

Total: 2086 = 2 x 7 x 149.

2.2.2.10.2.1           Odd positioned groups of 3 from 2.2.2.10.2:

9 1 6 6 30 10 10 40 4 50 40 4

Total: 210 = 2 x 3 x 5 x 7.

2.2.2.10.2.1.1           Odd positioned groups of 3 from 2.2.2.10.2.1:

9 1 6 10 40 4

Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

2.2.2.10.2.1.2           Even positioned groups of 3 from 2.2.2.10.2.1:

6 30 10 50 40 4

Total: 140 = 2 x 2 x 5 x 7.

2.2.2.10.2.1.2.1           Odd positioned from 2.2.2.10.2.1.2:

6 10 40

Total: 56 = 2 x 2 x 2 x 7. SF: 13.

2.2.2.10.2.1.2.2           Even positioned from 2.2.2.10.2.1.2:

30 50 4

Total: 84 = 2 x 2 x 3 x 7. SF: 14 = 2 x 7.

2.2.2.10.2.2           Even positioned groups of 3 from 2.2.2.10.2:

70 8 400 30 200 70 1 300 100 70 300 20 2 5 300

Total: 1876 = 2 x 2 x 7 x 67. SF: 78 = 2 x 3 x 13.

2.2.2.2           Even positioned from 2.2.2:

30 10 10 400 400 50 400 10 2 2 200 2 300 70 400 1 30 70 30 1 100 40
70 20 40 2 300 2 300 40 40 10 6 10 70 300 300 10 40 6 100 300 70 40 5
90 40 2 300 7 40 6 50 6

Total: 5180 = 2 x 2 x 5 x 7 x 37.

2.2.2.2.1           Odd positioned groups of 9 from 2.2.2.2:

30 10 10 400 400 50 400 10 2 30 1 100 40 70 20 40 2 300 300 10 40 6
100 300 70 40 5

Total: 2786 = 2 x 7 x 199. SF: 208 = 2 x 2 x 2 x 2 x 13. SF: 21 = 3 x 7.

2.2.2.2.1.1           Odd positioned groups of 3 from 2.2.2.2.1:

400 400 50 30 1 100 40 2 300 6 100 300

Total: 1729 = 7 x 13 x 19. SF: 39 = 3 x 13.

2.2.2.2.1.1.1           Odd positioned groups of 4 from 2.2.2.2.1.1:

400 400 50 30 300 6 100 300

Total: 1586 = 2 x 13 x 61.

2.2.2.2.1.1.2           Even positioned groups of 4 from 2.2.2.2.1.1:

1 100 40 2

Total: 143 = 11 x 13.

2.2.2.2.1.2           Even positioned groups of 3 from 2.2.2.2.1:

30 10 10 400 10 2 40 70 20 300 10 40 70 40 5

Total: 1057 = 7 x 151.

2.2.2.2.2           Even positioned groups of 9 from 2.2.2.2:

2 200 2 300 70 400 1 30 70 2 300 40 40 10 6 10 70 300 90 40 2 300 7
40 6 50 6

Total: 2394 = 2 x 3 x 3 x 7 x 19.

2.2.2.2.2.1           Odd positioned from 2.2.2.2.2:

2 2 70 1 70 300 40 6 70 90 2 7 6 6

Total: 672 = 2 x 2 x 2 x 2 x 2 x 3 x 7.

2.2.2.2.2.1.1           Odd positioned groups of 2 from 2.2.2.2.2.1:

2 2 70 300 70 90 6 6

Total: 546 = 2 x 3 x 7 x 13.

2.2.2.2.2.1.2           Even positioned groups of 2 from 2.2.2.2.2.1:

70 1 40 6 2 7

Total: 126 = 2 x 3 x 3 x 7.

2.2.2.2.2.1.2.1           Odd positioned from 2.2.2.2.2.1.2:

70 40 2

Total: 112 = 2 x 2 x 2 x 2 x 7.

2.2.2.2.2.1.2.2           Even positioned from 2.2.2.2.2.1.2:

1 6 7

Total: 14 = 2 x 7.

2.2.2.2.2.2           Even positioned from 2.2.2.2.2:

200 300 400 30 2 40 10 10 300 40 300 40 50

Total: 1722 = 2 x 3 x 7 x 41.

2.2.2.3           Odd positioned groups of 4 from 2.2.2:

10 30 20 10 400 400 6 50 4 2 5 2 40 300 300 70 6 30 200 70 300 100 10
40 50 40 4 2 6 300 10 40 300 6 50 10 6 300 40 10 6 100 2 300 40 5 200
90 10 300 400 7 20 50 100 6

Total: 5215 = 5 x 7 x 149. SF: 161 = 7 x 23.

2.2.2.3.1           Odd positioned groups of 8 from 2.2.2.3:

10 30 20 10 400 400 6 50 6 30 200 70 300 100 10 40 300 6 50 10 6 300
40 10 10 300 400 7 20 50 100 6

Total: 3297 = 3 x 7 x 157.

2.2.2.3.1.1           Odd positioned groups of 2 from 2.2.2.3.1:

10 30 400 400 6 30 300 100 300 6 6 300 10 300 20 50

Total: 2268 = 2 x 2 x 3 x 3 x 3 x 3 x 7.

2.2.2.3.1.2           Even positioned groups of 2 from 2.2.2.3.1:

20 10 6 50 200 70 10 40 50 10 40 10 400 7 100 6

Total: 1029 = 3 x 7 x 7 x 7.

2.2.2.3.1.2.1           Odd positioned from 2.2.2.3.1.2:

20 6 200 10 50 40 400 100

Total: 826 = 2 x 7 x 59.

2.2.2.3.1.2.2           Even positioned from 2.2.2.3.1.2:

10 50 70 40 10 10 7 6

Total: 203 = 7 x 29.

2.2.2.3.1.2.3           Odd positioned groups of 4 from 2.2.2.3.1.2:

20 10 6 50 50 10 40 10

Total: 196 = 2 x 2 x 7 x 7.

2.2.2.3.1.2.4           Even positioned groups of 4 from 2.2.2.3.1.2:

200 70 10 40 400 7 100 6

Total: 833 = 7 x 7 x 17.

2.2.2.3.1.2.5           First half of 8 from 2.2.2.3.1.2:

20 10 6 50 200 70 10 40

Total: 406 = 2 x 7 x 29.

2.2.2.3.1.2.6           Last half of 8 from 2.2.2.3.1.2:

50 10 40 10 400 7 100 6

Total: 623 = 7 x 89.

2.2.2.3.2           Even positioned groups of 8 from 2.2.2.3:

4 2 5 2 40 300 300 70 50 40 4 2 6 300 10 40 6 100 2 300 40 5 200 90

Total: 1918 = 2 x 7 x 137.

2.2.2.3.2.1           First half of 12 from 2.2.2.3.2:

6 300 10 40 6 100 2 300 40 5 200 90

Total: 1099 = 7 x 157.

2.2.2.3.2.1.1           Odd positioned groups of 3 from 2.2.2.3.2.1:

6 300 10 2 300 40

Total: 658 = 2 x 7 x 47. SF: 56 = 2 x 2 x 2 x 7. SF: 13.

2.2.2.3.2.1.2           Even positioned groups of 3 from 2.2.2.3.2.1:

40 6 100 5 200 90

Total: 441 = 3 x 3 x 7 x 7.

2.2.2.3.2.1.2.1           Odd positioned groups of 2 from 2.2.2.3.2.1.2:

40 6 200 90

Total: 336 = 2 x 2 x 2 x 2 x 3 x 7.

2.2.2.3.2.1.2.2           Even positioned groups of 2 from 2.2.2.3.2.1.2:

100 5

Total: 105 = 3 x 5 x 7.

2.2.2.3.2.1.3           First half of 6 from 2.2.2.3.2.1:

2 300 40 5 200 90

Total: 637 = 7 x 7 x 13.

2.2.2.3.2.1.4           Last half of 6 from 2.2.2.3.2.1:

6 300 10 40 6 100

Total: 462 = 2 x 3 x 7 x 11.

2.2.2.3.2.2           Last half of 12 from 2.2.2.3.2:

4 2 5 2 40 300 300 70 50 40 4 2

Total: 819 = 3 x 3 x 7 x 13. SF: 26 = 2 x 13.

2.2.2.3.2.2.1           Odd positioned from 2.2.2.3.2.2:

4 5 40 300 50 4

Total: 403 = 13 x 31.

2.2.2.3.2.2.2           Even positioned from 2.2.2.3.2.2:

2 2 300 70 40 2

Total: 416 = 2 x 2 x 2 x 2 x 2 x 13.

2.2.2.4           Even positioned groups of 4 from 2.2.2:

2 10 2 400 10 400 2 10 40 200 300 2 8 400 9 1 6 30 10 1 4 70 300 20 5
300 300 2 10 40 50 10 2 70 300 300 400 40 8 6 6 70 90 40 40 40 300 2
6 40 5 6

Total: 4725 = 3 x 3 x 3 x 5 x 5 x 7. SF: 26 = 2 x 13.

2.2.2.5           Odd positioned groups of 9 from 2.2.2:

400 6 50 10 400 2 10 4 2 70 8 400 9 1 6 30 200 70 70 300 20 50 40 4 2
5 300 10 300 6 50 10 2 70 300 300 100 2 300 6 70 90 40 40 5 7 6 40 5
6 20 50 100 6

Total: 4410 = 2 x 3 x 3 x 5 x 7 x 7.

2.2.2.5.1           Odd positioned groups of 6 from 2.2.2.5:

10 4 2 70 8 400 70 300 20 50 40 4 50 10 2 70 300 300 40 40 5 7 6 40

Total: 1848 = 2 x 2 x 2 x 3 x 7 x 11.

2.2.2.5.1.1           Odd positioned from 2.2.2.5.1:

10 2 8 70 20 40 50 2 300 40 5 6

Total: 553 = 7 x 79.

2.2.2.5.1.1.1           Odd positioned groups of 4 from 2.2.2.5.1.1:

10 2 8 70 300 40 5 6

Total: 441 = 3 x 3 x 7 x 7.

2.2.2.5.1.1.2           Even positioned groups of 4 from 2.2.2.5.1.1:

20 40 50 2

Total: 112 = 2 x 2 x 2 x 2 x 7.

2.2.2.5.1.1.2.1           Odd positioned from 2.2.2.5.1.1.2:

20 50

Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

2.2.2.5.1.1.2.2           Even positioned from 2.2.2.5.1.1.2:

40 2

Total: 42 = 2 x 3 x 7.

2.2.2.5.1.2           Even positioned from 2.2.2.5.1:

4 70 400 300 50 4 10 70 300 40 7 40

Total: 1295 = 5 x 7 x 37. SF: 49 = 7 x 7. SF: 14 = 2 x 7.

2.2.2.5.1.2.1           Odd positioned groups of 3 from 2.2.2.5.1.2:

4 70 400 10 70 300

Total: 854 = 2 x 7 x 61. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

2.2.2.5.1.2.2           Even positioned groups of 3 from 2.2.2.5.1.2:

300 50 4 40 7 40

Total: 441 = 3 x 3 x 7 x 7.

2.2.2.5.1.3           Odd positioned groups of 3 from 2.2.2.5.1:

10 4 2 70 300 20 50 10 2 40 40 5

Total: 553 = 7 x 79.

2.2.2.5.1.3.1           First half of 6 from 2.2.2.5.1.3:

50 10 2 40 40 5

Total: 147 = 3 x 7 x 7.

2.2.2.5.1.3.1.1           Odd positioned groups of 2 from 2.2.2.5.1.3.1:

50 10 40 5

Total: 105 = 3 x 5 x 7.

2.2.2.5.1.3.1.2           Even positioned groups of 2 from 2.2.2.5.1.3.1:

2 40

Total: 42 = 2 x 3 x 7.

2.2.2.5.1.3.2           Last half of 6 from 2.2.2.5.1.3:

10 4 2 70 300 20

Total: 406 = 2 x 7 x 29.

2.2.2.5.1.4           Even positioned groups of 3 from 2.2.2.5.1:

70 8 400 50 40 4 70 300 300 7 6 40

Total: 1295 = 5 x 7 x 37. SF: 49 = 7 x 7. SF: 14 = 2 x 7.

2.2.2.5.1.4.1           Odd positioned groups of 3 from 2.2.2.5.1.4:

70 8 400 70 300 300

Total: 1148 = 2 x 2 x 7 x 41. SF: 52 = 2 x 2 x 13.

2.2.2.5.1.4.1.1           Odd positioned from 2.2.2.5.1.4.1:

70 400 300

Total: 770 = 2 x 5 x 7 x 11.

2.2.2.5.1.4.1.2           Even positioned from 2.2.2.5.1.4.1:

8 70 300

Total: 378 = 2 x 3 x 3 x 3 x 7.

2.2.2.5.1.4.1.2.1           Odd positioned from 2.2.2.5.1.4.1.2:

8 300

Total: 308 = 2 x 2 x 7 x 11.

2.2.2.5.1.4.1.2.2           Even positioned from 2.2.2.5.1.4.1.2:

70

Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

2.2.2.5.1.4.2           Even positioned groups of 3 from 2.2.2.5.1.4:

50 40 4 7 6 40

Total: 147 = 3 x 7 x 7.

2.2.2.5.2           Even positioned groups of 6 from 2.2.2.5:

400 6 50 10 400 2 9 1 6 30 200 70 2 5 300 10 300 6 100 2 300 6 70 90
5 6 20 50 100 6

Total: 2562 = 2 x 3 x 7 x 61.

2.2.2.5.2.1           First half of 15 from 2.2.2.5.2:

10 300 6 100 2 300 6 70 90 5 6 20 50 100 6

Total: 1071 = 3 x 3 x 7 x 17.

2.2.2.5.2.2           Last half of 15 from 2.2.2.5.2:

400 6 50 10 400 2 9 1 6 30 200 70 2 5 300

Total: 1491 = 3 x 7 x 71.

2.2.2.6           Even positioned groups of 9 from 2.2.2:

10 30 20 10 2 10 2 400 400 5 2 40 200 300 2 40 300 300 6 30 10 1 300
100 10 40 4 300 2 6 300 10 40 10 40 50 6 300 40 10 400 40 8 6 6 200
90 40 40 300 2 10 300 400

Total: 5530 = 2 x 5 x 7 x 79.

2.2.2.6.1           Odd positioned groups of 2 from 2.2.2.6:

10 30 2 10 400 5 200 300 300 300 10 1 10 40 2 6 40 10 6 300 400 40 6
200 40 300 300 400

Total: 3668 = 2 x 2 x 7 x 131.

2.2.2.6.1.1           Odd positioned groups of 2 from 2.2.2.6.1:

10 30 400 5 300 300 10 40 40 10 400 40 40 300

Total: 1925 = 5 x 5 x 7 x 11. SF: 28 = 2 x 2 x 7.

2.2.2.6.1.2           Even positioned groups of 2 from 2.2.2.6.1:

2 10 200 300 10 1 2 6 6 300 6 200 300 400

Total: 1743 = 3 x 7 x 83.

2.2.2.6.1.2.1           Odd positioned groups of 2 from 2.2.2.6.1.2:

2 10 10 1 6 300 300 400

Total: 1029 = 3 x 7 x 7 x 7.

2.2.2.6.1.2.2           Even positioned groups of 2 from 2.2.2.6.1.2:

200 300 2 6 6 200

Total: 714 = 2 x 3 x 7 x 17.

2.2.2.6.1.2.3           First half of 7 from 2.2.2.6.1.2:

6 6 300 6 200 300 400

Total: 1218 = 2 x 3 x 7 x 29.

2.2.2.6.1.2.4           Last half of 7 from 2.2.2.6.1.2:

2 10 200 300 10 1 2

Total: 525 = 3 x 5 x 5 x 7.

2.2.2.6.1.3           Odd positioned groups of 7 from 2.2.2.6.1:

300 300 300 10 1 10 40 40 6 200 40 300 300 400

Total: 2247 = 3 x 7 x 107. SF: 117 = 3 x 3 x 13.

2.2.2.6.1.3.1           Odd positioned from 2.2.2.6.1.3:

300 300 1 40 6 40 300

Total: 987 = 3 x 7 x 47.

2.2.2.6.1.3.2           Even positioned from 2.2.2.6.1.3:

300 10 10 40 200 300 400

Total: 1260 = 2 x 2 x 3 x 3 x 5 x 7.

2.2.2.6.1.3.2.1           Odd positioned from 2.2.2.6.1.3.2:

300 10 200 400

Total: 910 = 2 x 5 x 7 x 13.

2.2.2.6.1.3.2.2           Even positioned from 2.2.2.6.1.3.2:

10 40 300

Total: 350 = 2 x 5 x 5 x 7.

2.2.2.6.1.4           Even positioned groups of 7 from 2.2.2.6.1:

10 30 2 10 400 5 200 2 6 40 10 6 300 400

Total: 1421 = 7 x 7 x 29.

2.2.2.6.2           Even positioned groups of 2 from 2.2.2.6:

20 10 2 400 2 40 2 40 6 30 300 100 4 300 300 10 40 50 40 10 8 6 90 40
2 10

Total: 1862 = 2 x 7 x 7 x 19. SF: 35 = 5 x 7.

2.2.2.7           Odd positioned 8 from 2.2.2:

10 30 20 10 2 10 2 400 400 400 6 50 10 400 2 10 4 2 6 30 10 1 300 100
10 40 4 70 300 20 50 40 4 2 5 300 6 300 40 10 400 40 8 6 6 100 2 300
6 70 90 40 40 5

Total: 4529 = 7 x 647.

2.2.2.7.1           Odd positioned from 2.2.2.7:

10 20 2 2 400 6 10 2 4 6 10 300 10 4 300 50 4 5 6 40 400 8 6 2 6 90 40

Total: 1743 = 3 x 7 x 83.

2.2.2.7.2           Even positioned from 2.2.2.7:

30 10 10 400 400 50 400 10 2 30 1 100 40 70 20 40 2 300 300 10 40 6
100 300 70 40 5

Total: 2786 = 2 x 7 x 199. SF: 208 = 2 x 2 x 2 x 2 x 13. SF: 21 = 3 x 7.

2.2.2.7.2.1           Odd positioned groups of 3 from 2.2.2.7.2:

400 400 50 30 1 100 40 2 300 6 100 300

Total: 1729 = 7 x 13 x 19. SF: 39 = 3 x 13.

2.2.2.7.2.1.1           Odd positioned groups of 4 from 2.2.2.7.2.1:

400 400 50 30 300 6 100 300

Total: 1586 = 2 x 13 x 61.

2.2.2.7.2.1.2           Even positioned groups of 4 from 2.2.2.7.2.1:

1 100 40 2

Total: 143 = 11 x 13.

2.2.2.7.2.2           Even positioned groups of 3 from 2.2.2.7.2:

30 10 10 400 10 2 40 70 20 300 10 40 70 40 5

Total: 1057 = 7 x 151.

2.2.2.8           Even positioned 8 from 2.2.2:

5 2 40 200 300 2 40 300 300 70 8 400 9 1 6 30 200 70 300 2 6 300 10
40 10 40 50 10 300 6 50 10 2 70 300 300 200 90 40 40 300 2 10 300 400
7 6 40 5 6 20 50 100 6

Total: 5411 = 7 x 773. SF: 780 = 2 x 2 x 3 x 5 x 13.

2.2.2.8.1           Odd positioned from 2.2.2.8:

5 40 300 40 300 8 9 6 200 300 6 10 10 50 300 50 2 300 200 40 300 10
400 6 5 20 100

Total: 3017 = 7 x 431.

2.2.2.8.2           Even positioned from 2.2.2.8:

2 200 2 300 70 400 1 30 70 2 300 40 40 10 6 10 70 300 90 40 2 300 7
40 6 50 6

Total: 2394 = 2 x 3 x 3 x 7 x 19.

2.2.2.8.2.1           Odd positioned from 2.2.2.8.2:

2 2 70 1 70 300 40 6 70 90 2 7 6 6

Total: 672 = 2 x 2 x 2 x 2 x 2 x 3 x 7.

2.2.2.8.2.1.1           Odd positioned groups of 2 from 2.2.2.8.2.1:

2 2 70 300 70 90 6 6

Total: 546 = 2 x 3 x 7 x 13.

2.2.2.8.2.1.2           Even positioned groups of 2 from 2.2.2.8.2.1:

70 1 40 6 2 7

Total: 126 = 2 x 3 x 3 x 7.

2.2.2.8.2.1.2.1           Odd positioned from 2.2.2.8.2.1.2:

70 40 2

Total: 112 = 2 x 2 x 2 x 2 x 7.

2.2.2.8.2.1.2.2           Even positioned from 2.2.2.8.2.1.2:

1 6 7

Total: 14 = 2 x 7.

2.2.2.8.2.2           Even positioned from 2.2.2.8.2:

200 300 400 30 2 40 10 10 300 40 300 40 50

Total: 1722 = 2 x 3 x 7 x 41.

2.2.2.8.3           Odd positioned 8 from 2.2.2.8:

5 2 40 200 300 2 40 300 300 70 8 400 9 1 6 30 200 70 200 90 40 40 300
2 10 300 400 7 6 40 5 6 20 50 100 6

Total: 3605 = 5 x 7 x 103.

2.2.2.8.3.1           Odd positioned groups of 4 from 2.2.2.8.3:

5 2 40 200 300 70 8 400 200 70 200 90 10 300 400 7 20 50 100 6

Total: 2478 = 2 x 3 x 7 x 59.

2.2.2.8.3.1.1           Odd positioned groups of 5 from 2.2.2.8.3.1:

70 8 400 200 70 7 20 50 100 6

Total: 931 = 7 x 7 x 19.

2.2.2.8.3.1.2           Even positioned groups of 5 from 2.2.2.8.3.1:

5 2 40 200 300 200 90 10 300 400

Total: 1547 = 7 x 13 x 17.

2.2.2.8.3.1.2.1           Odd positioned from 2.2.2.8.3.1.2:

5 40 300 90 300

Total: 735 = 3 x 5 x 7 x 7.

2.2.2.8.3.1.2.2           Even positioned from 2.2.2.8.3.1.2:

2 200 200 10 400

Total: 812 = 2 x 2 x 7 x 29.

2.2.2.8.3.1.2.2.1           Odd positioned from 2.2.2.8.3.1.2.2:

2 200 400

Total: 602 = 2 x 7 x 43. SF: 52 = 2 x 2 x 13.

2.2.2.8.3.1.2.2.2           Even positioned from 2.2.2.8.3.1.2.2:

200 10

Total: 210 = 2 x 3 x 5 x 7.

2.2.2.8.3.1.3           First half of 10 from 2.2.2.8.3.1:

200 90 10 300 400 7 20 50 100 6

Total: 1183 = 7 x 13 x 13.

2.2.2.8.3.1.4           Last half of 10 from 2.2.2.8.3.1:

5 2 40 200 300 70 8 400 200 70

Total: 1295 = 5 x 7 x 37. SF: 49 = 7 x 7. SF: 14 = 2 x 7.

2.2.2.8.3.1.4.1           Odd positioned from 2.2.2.8.3.1.4:

5 40 300 8 200

Total: 553 = 7 x 79.

2.2.2.8.3.1.4.2           Even positioned from 2.2.2.8.3.1.4:

2 200 70 400 70

Total: 742 = 2 x 7 x 53.

2.2.2.8.3.2           Even positioned groups of 4 from 2.2.2.8.3:

300 2 40 300 9 1 6 30 40 40 300 2 6 40 5 6

Total: 1127 = 7 x 7 x 23.

2.2.2.8.4           Even positioned 8 from 2.2.2.8:

300 2 6 300 10 40 10 40 50 10 300 6 50 10 2 70 300 300

Total: 1806 = 2 x 3 x 7 x 43.

2.2.2.9           Odd positioned groups of 27 from 2.2.2:

10 30 20 10 2 10 2 400 400 400 6 50 10 400 2 10 4 2 5 2 40 200 300 2
40 300 300 300 2 6 300 10 40 10 40 50 10 300 6 50 10 2 70 300 300 6
300 40 10 400 40 8 6 6

Total: 5579 = 7 x 797.

2.2.2.9.1           Odd positioned from 2.2.2.9:

10 20 2 2 400 6 10 2 4 5 40 300 40 300 2 300 40 40 10 6 10 70 300 300
10 40 6

Total: 2275 = 5 x 5 x 7 x 13.

2.2.2.9.1.1           Odd positioned from 2.2.2.9.1:

10 2 400 10 4 40 40 2 40 10 10 300 10 6

Total: 884 = 2 x 2 x 13 x 17.

2.2.2.9.1.2           Even positioned from 2.2.2.9.1:

20 2 6 2 5 300 300 300 40 6 70 300 40

Total: 1391 = 13 x 107.

2.2.2.9.1.2.1           Odd positioned from 2.2.2.9.1.2:

20 6 5 300 40 70 40

Total: 481 = 13 x 37.

2.2.2.9.1.2.2           Even positioned from 2.2.2.9.1.2:

2 2 300 300 6 300

Total: 910 = 2 x 5 x 7 x 13.

2.2.2.9.1.2.2.1           Odd positioned from 2.2.2.9.1.2.2:

2 300 6

Total: 308 = 2 x 2 x 7 x 11.

2.2.2.9.1.2.2.2           Even positioned from 2.2.2.9.1.2.2:

2 300 300

Total: 602 = 2 x 7 x 43. SF: 52 = 2 x 2 x 13.

2.2.2.9.2           Even positioned from 2.2.2.9:

30 10 10 400 400 50 400 10 2 2 200 2 300 300 6 10 10 50 300 50 2 300
6 40 400 8 6

Total: 3304 = 2 x 2 x 2 x 7 x 59.

2.2.2.9.2.1           Odd positioned from 2.2.2.9.2:

30 10 400 400 2 200 300 6 10 300 2 6 400 6

Total: 2072 = 2 x 2 x 2 x 7 x 37.

2.2.2.9.2.2           Even positioned from 2.2.2.9.2:

10 400 50 10 2 2 300 10 50 50 300 40 8

Total: 1232 = 2 x 2 x 2 x 2 x 7 x 11. SF: 26 = 2 x 13.

2.2.2.9.2.3           Odd positioned groups of 3 from 2.2.2.9.2:

400 400 50 2 200 2 10 10 50 300 6 40

Total: 1470 = 2 x 3 x 5 x 7 x 7.

2.2.2.9.2.4           Even positioned groups of 3 from 2.2.2.9.2:

30 10 10 400 10 2 300 300 6 300 50 2 400 8 6

Total: 1834 = 2 x 7 x 131. SF: 140 = 2 x 2 x 5 x 7.

2.2.2.9.2.4.1           Odd positioned from 2.2.2.9.2.4:

30 10 10 300 6 50 400 6

Total: 812 = 2 x 2 x 7 x 29.

2.2.2.9.2.4.1.1           First half of 4 from 2.2.2.9.2.4.1:

30 10 10 300

Total: 350 = 2 x 5 x 5 x 7.

2.2.2.9.2.4.1.2           Last half of 4 from 2.2.2.9.2.4.1:

6 50 400 6

Total: 462 = 2 x 3 x 7 x 11.

2.2.2.9.2.4.1.2.1           Odd positioned from 2.2.2.9.2.4.1.2:

6 400

Total: 406 = 2 x 7 x 29.

2.2.2.9.2.4.1.2.2           Even positioned from 2.2.2.9.2.4.1.2:

50 6

Total: 56 = 2 x 2 x 2 x 7. SF: 13.

2.2.2.9.2.4.1.2.3           First half of 2 from 2.2.2.9.2.4.1.2:

6 50

Total: 56 = 2 x 2 x 2 x 7. SF: 13.

2.2.2.9.2.4.1.2.4           Last half of 2 from 2.2.2.9.2.4.1.2:

400 6

Total: 406 = 2 x 7 x 29.

2.2.2.9.2.4.2           Even positioned from 2.2.2.9.2.4:

10 400 2 300 300 2 8

Total: 1022 = 2 x 7 x 73.

2.2.3           Odd positioned groups of 6 from 2.2:

1 400 10 30 5 300 50 5 2 400 8 30 10 20 10 400 5 6 200 6 5 2 50 2 70
10 40 300 2 70 40 8 9 1 6 400 6 50 6 30 5 2 4 300 10 40 6 400 30 40
50 40 90 1 10 40 300 2 70 5 300 300 10 40 6 300 2 6 50 10 5 300 10 40
6 300 50 10 300 10 8 6 1 10 9 80 6 70 4 100 50 8 200 90 400 300 6 70
10 300 2 10 50 8 5 6 70 30

Total: 8414 = 2 x 7 x 601.

2.2.3.1           Odd positioned 2 from 2.2.3:

10 20 10 400 5 6 200 6 5 2 50 2 6 50 6 30 5 2 4 300 10 40 6 400 300
300 10 40 6 300 2 6 50 10 5 300 9 80 6 70 4 100 50 8 200 90 400 300

Total: 4221 = 3 x 3 x 7 x 67.

2.2.3.1.1           Odd positioned groups of 2 from 2.2.3.1:

10 20 5 6 5 2 6 50 5 2 10 40 300 300 6 300 50 10 9 80 4 100 200 90

Total: 1610 = 2 x 5 x 7 x 23.

2.2.3.1.1.1           First half of 12 from 2.2.3.1.1:

300 300 6 300 50 10 9 80 4 100 200 90

Total: 1449 = 3 x 3 x 7 x 23.

2.2.3.1.1.1.1           First half of 6 from 2.2.3.1.1.1:

9 80 4 100 200 90

Total: 483 = 3 x 7 x 23.

2.2.3.1.1.1.2           Last half of 6 from 2.2.3.1.1.1:

300 300 6 300 50 10

Total: 966 = 2 x 3 x 7 x 23. SF: 35 = 5 x 7.

2.2.3.1.1.2           Last half of 12 from 2.2.3.1.1:

10 20 5 6 5 2 6 50 5 2 10 40

Total: 161 = 7 x 23.

2.2.3.1.1.2.1           Odd positioned groups of 4 from 2.2.3.1.1.2:

10 20 5 6 5 2 10 40

Total: 98 = 2 x 7 x 7.

2.2.3.1.1.2.2           Even positioned groups of 4 from 2.2.3.1.1.2:

5 2 6 50

Total: 63 = 3 x 3 x 7. SF: 13.

2.2.3.1.1.2.2.1           First half of 2 from 2.2.3.1.1.2.2:

5 2

Total: 7 = 7. SF: 7.

2.2.3.1.1.2.2.2           Last half of 2 from 2.2.3.1.1.2.2:

6 50

Total: 56 = 2 x 2 x 2 x 7. SF: 13.

2.2.3.1.2           Even positioned groups of 2 from 2.2.3.1:

10 400 200 6 50 2 6 30 4 300 6 400 10 40 2 6 5 300 6 70 50 8 400 300

Total: 2611 = 7 x 373.

2.2.3.1.2.1           Odd positioned from 2.2.3.1.2:

10 200 50 6 4 6 10 2 5 6 50 400

Total: 749 = 7 x 107.

2.2.3.1.2.1.1           Odd positioned groups of 2 from 2.2.3.1.2.1:

10 200 4 6 5 6

Total: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.

2.2.3.1.2.1.2           Even positioned groups of 2 from 2.2.3.1.2.1:

50 6 10 2 50 400

Total: 518 = 2 x 7 x 37.

2.2.3.1.2.2           Even positioned from 2.2.3.1.2:

400 6 2 30 300 400 40 6 300 70 8 300

Total: 1862 = 2 x 7 x 7 x 19. SF: 35 = 5 x 7.

2.2.3.1.2.2.1           Odd positioned from 2.2.3.1.2.2:

400 2 300 40 300 8

Total: 1050 = 2 x 3 x 5 x 5 x 7.

2.2.3.1.2.2.2           Even positioned from 2.2.3.1.2.2:

6 30 400 6 70 300

Total: 812 = 2 x 2 x 7 x 29.

2.2.3.1.2.2.2.1           Odd positioned from 2.2.3.1.2.2.2:

6 400 70

Total: 476 = 2 x 2 x 7 x 17. SF: 28 = 2 x 2 x 7.

2.2.3.1.2.2.2.2           Even positioned from 2.2.3.1.2.2.2:

30 6 300

Total: 336 = 2 x 2 x 2 x 2 x 3 x 7.

2.2.3.1.2.2.2.3           Odd positioned groups of 2 from 2.2.3.1.2.2.2:

6 30 70 300

Total: 406 = 2 x 7 x 29.

2.2.3.1.2.2.2.4           Even positioned groups of 2 from 2.2.3.1.2.2.2:

400 6

Total: 406 = 2 x 7 x 29.

2.2.3.1.2.3           First half of 12 from 2.2.3.1.2:

10 40 2 6 5 300 6 70 50 8 400 300

Total: 1197 = 3 x 3 x 7 x 19.

2.2.3.1.2.3.1           Odd positioned groups of 2 from 2.2.3.1.2.3:

10 40 5 300 50 8

Total: 413 = 7 x 59.

2.2.3.1.2.3.2           Even positioned groups of 2 from 2.2.3.1.2.3:

2 6 6 70 400 300

Total: 784 = 2 x 2 x 2 x 2 x 7 x 7.

2.2.3.1.2.3.2.1           First half of 3 from 2.2.3.1.2.3.2:

70 400 300

Total: 770 = 2 x 5 x 7 x 11.

2.2.3.1.2.3.2.2           Last half of 3 from 2.2.3.1.2.3.2:

2 6 6

Total: 14 = 2 x 7.

2.2.3.1.2.4           Last half of 12 from 2.2.3.1.2:

10 400 200 6 50 2 6 30 4 300 6 400

Total: 1414 = 2 x 7 x 101.

2.2.3.1.3           First half of 24 from 2.2.3.1:

300 300 10 40 6 300 2 6 50 10 5 300 9 80 6 70 4 100 50 8 200 90 400
300

Total: 2646 = 2 x 3 x 3 x 3 x 7 x 7.

2.2.3.1.3.1           Odd positioned groups of 2 from 2.2.3.1.3:

300 300 6 300 50 10 9 80 4 100 200 90

Total: 1449 = 3 x 3 x 7 x 23.

2.2.3.1.3.1.1           First half of 6 from 2.2.3.1.3.1:

9 80 4 100 200 90

Total: 483 = 3 x 7 x 23.

2.2.3.1.3.1.2           Last half of 6 from 2.2.3.1.3.1:

300 300 6 300 50 10

Total: 966 = 2 x 3 x 7 x 23. SF: 35 = 5 x 7.

2.2.3.1.3.2           Even positioned groups of 2 from 2.2.3.1.3:

10 40 2 6 5 300 6 70 50 8 400 300

Total: 1197 = 3 x 3 x 7 x 19.

2.2.3.1.3.2.1           Odd positioned groups of 2 from 2.2.3.1.3.2:

10 40 5 300 50 8

Total: 413 = 7 x 59.

2.2.3.1.3.2.2           Even positioned groups of 2 from 2.2.3.1.3.2:

2 6 6 70 400 300

Total: 784 = 2 x 2 x 2 x 2 x 7 x 7.

2.2.3.1.3.2.2.1           First half of 3 from 2.2.3.1.3.2.2:

70 400 300

Total: 770 = 2 x 5 x 7 x 11.

2.2.3.1.3.2.2.2           Last half of 3 from 2.2.3.1.3.2.2:

2 6 6

Total: 14 = 2 x 7.

2.2.3.1.3.3           Odd positioned groups of 6 from 2.2.3.1.3:

300 300 10 40 6 300 9 80 6 70 4 100

Total: 1225 = 5 x 5 x 7 x 7.

2.2.3.1.3.4           Even positioned groups of 6 from 2.2.3.1.3:

2 6 50 10 5 300 50 8 200 90 400 300

Total: 1421 = 7 x 7 x 29.

2.2.3.1.3.4.1           Odd positioned from 2.2.3.1.3.4:

2 50 5 50 200 400

Total: 707 = 7 x 101.

2.2.3.1.3.4.2           Even positioned from 2.2.3.1.3.4:

6 10 300 8 90 300

Total: 714 = 2 x 3 x 7 x 17.

2.2.3.1.3.4.2.1           Odd positioned groups of 2 from 2.2.3.1.3.4.2:

6 10 90 300

Total: 406 = 2 x 7 x 29.

2.2.3.1.3.4.2.2           Even positioned groups of 2 from 2.2.3.1.3.4.2:

300 8

Total: 308 = 2 x 2 x 7 x 11.

2.2.3.1.4           Last half of 24 from 2.2.3.1:

10 20 10 400 5 6 200 6 5 2 50 2 6 50 6 30 5 2 4 300 10 40 6 400

Total: 1575 = 3 x 3 x 5 x 5 x 7.

2.2.3.1.4.1           Odd positioned groups of 2 from 2.2.3.1.4:

10 20 5 6 5 2 6 50 5 2 10 40

Total: 161 = 7 x 23.

2.2.3.1.4.1.1           Odd positioned groups of 4 from 2.2.3.1.4.1:

10 20 5 6 5 2 10 40

Total: 98 = 2 x 7 x 7.

2.2.3.1.4.1.2           Even positioned groups of 4 from 2.2.3.1.4.1:

5 2 6 50

Total: 63 = 3 x 3 x 7. SF: 13.

2.2.3.1.4.1.2.1           First half of 2 from 2.2.3.1.4.1.2:

5 2

Total: 7 = 7. SF: 7.

2.2.3.1.4.1.2.2           Last half of 2 from 2.2.3.1.4.1.2:

6 50

Total: 56 = 2 x 2 x 2 x 7. SF: 13.

2.2.3.1.4.2           Even positioned groups of 2 from 2.2.3.1.4:

10 400 200 6 50 2 6 30 4 300 6 400

Total: 1414 = 2 x 7 x 101.

2.2.3.2           Even positioned 2 from 2.2.3:

1 400 10 30 5 300 50 5 2 400 8 30 70 10 40 300 2 70 40 8 9 1 6 400 30
40 50 40 90 1 10 40 300 2 70 5 10 40 6 300 50 10 300 10 8 6 1 10 6 70
10 300 2 10 50 8 5 6 70 30

Total: 4193 = 7 x 599.

2.2.3.2.1           Odd positioned groups of 3 from 2.2.3.2:

1 400 10 50 5 2 70 10 40 40 8 9 30 40 50 10 40 300 10 40 6 300 10 8 6
70 10 50 8 5

Total: 1638 = 2 x 3 x 3 x 7 x 13. SF: 28 = 2 x 2 x 7.

2.2.3.2.1.1           Odd positioned groups of 3 from 2.2.3.2.1:

50 5 2 40 8 9 10 40 300 300 10 8 50 8 5

Total: 845 = 5 x 13 x 13.

2.2.3.2.1.2           Even positioned groups of 3 from 2.2.3.2.1:

1 400 10 70 10 40 30 40 50 10 40 6 6 70 10

Total: 793 = 13 x 61.

2.2.3.2.2           Even positioned groups of 3 from 2.2.3.2:

30 5 300 400 8 30 300 2 70 1 6 400 40 90 1 2 70 5 300 50 10 6 1 10
300 2 10 6 70 30

Total: 2555 = 5 x 7 x 73.

2.2.3.2.3           Odd positioned groups of 6 from 2.2.3.2:

50 5 2 400 8 30 40 8 9 1 6 400 10 40 300 2 70 5 300 10 8 6 1 10 50 8
5 6 70 30

Total: 1890 = 2 x 3 x 3 x 3 x 5 x 7.

2.2.3.2.3.1           First half of 15 from 2.2.3.2.3:

2 70 5 300 10 8 6 1 10 50 8 5 6 70 30

Total: 581 = 7 x 83.

2.2.3.2.3.1.1           Odd positioned from 2.2.3.2.3.1:

2 5 10 6 10 8 6 30

Total: 77 = 7 x 11.

2.2.3.2.3.1.1.1           Odd positioned from 2.2.3.2.3.1.1:

2 10 10 6

Total: 28 = 2 x 2 x 7.

2.2.3.2.3.1.1.2           Even positioned from 2.2.3.2.3.1.1:

5 6 8 30

Total: 49 = 7 x 7. SF: 14 = 2 x 7.

2.2.3.2.3.1.2           Even positioned from 2.2.3.2.3.1:

70 300 8 1 50 5 70

Total: 504 = 2 x 2 x 2 x 3 x 3 x 7.

2.2.3.2.3.2           Last half of 15 from 2.2.3.2.3:

50 5 2 400 8 30 40 8 9 1 6 400 10 40 300

Total: 1309 = 7 x 11 x 17. SF: 35 = 5 x 7.

2.2.3.2.4           Even positioned groups of 6 from 2.2.3.2:

1 400 10 30 5 300 70 10 40 300 2 70 30 40 50 40 90 1 10 40 6 300 50
10 6 70 10 300 2 10

Total: 2303 = 7 x 7 x 47.

2.2.3.2.4.1           First half of 15 from 2.2.3.2.4:

40 90 1 10 40 6 300 50 10 6 70 10 300 2 10

Total: 945 = 3 x 3 x 3 x 5 x 7. SF: 21 = 3 x 7.

2.2.3.2.4.2           Last half of 15 from 2.2.3.2.4:

1 400 10 30 5 300 70 10 40 300 2 70 30 40 50

Total: 1358 = 2 x 7 x 97.

2.2.3.2.4.2.1           Odd positioned groups of 3 from 2.2.3.2.4.2:

30 5 300 300 2 70

Total: 707 = 7 x 101.

2.2.3.2.4.2.2           Even positioned groups of 3 from 2.2.3.2.4.2:

1 400 10 70 10 40 30 40 50

Total: 651 = 3 x 7 x 31.

2.2.3.3           Odd positioned 8 from 2.2.3:

1 400 10 30 5 300 50 5 2 400 8 30 10 20 10 400 5 6 6 50 6 30 5 2 4
300 10 40 6 400 30 40 50 40 90 1 10 40 6 300 50 10 300 10 8 6 1 10 9
80 6 70 4 100

Total: 3822 = 2 x 3 x 7 x 7 x 13.

2.2.3.3.1           Odd positioned from 2.2.3.3:

1 10 5 50 2 8 10 10 5 6 6 5 4 10 6 30 50 90 10 6 50 300 8 1 9 6 4

Total: 702 = 2 x 3 x 3 x 3 x 13.

2.2.3.3.2           Even positioned from 2.2.3.3:

400 30 300 5 400 30 20 400 6 50 30 2 300 40 400 40 40 1 40 300 10 10
6 10 80 70 100

Total: 3120 = 2 x 2 x 2 x 2 x 3 x 5 x 13.

2.2.3.3.2.1           Odd positioned from 2.2.3.3.2:

400 300 400 20 6 30 300 400 40 40 10 6 80 100

Total: 2132 = 2 x 2 x 13 x 41.

2.2.3.3.2.1.1           First half of 7 from 2.2.3.3.2.1:

400 40 40 10 6 80 100

Total: 676 = 2 x 2 x 13 x 13.

2.2.3.3.2.1.1.1           Odd positioned from 2.2.3.3.2.1.1:

400 40 6 100

Total: 546 = 2 x 3 x 7 x 13.

2.2.3.3.2.1.1.1.1           Odd positioned from 2.2.3.3.2.1.1.1:

400 6

Total: 406 = 2 x 7 x 29.

2.2.3.3.2.1.1.1.2           Even positioned from 2.2.3.3.2.1.1.1:

40 100

Total: 140 = 2 x 2 x 5 x 7.

2.2.3.3.2.1.1.2           Even positioned from 2.2.3.3.2.1.1:

40 10 80

Total: 130 = 2 x 5 x 13.

2.2.3.3.2.1.2           Last half of 7 from 2.2.3.3.2.1:

400 300 400 20 6 30 300

Total: 1456 = 2 x 2 x 2 x 2 x 7 x 13. SF: 28 = 2 x 2 x 7.

2.2.3.3.2.1.2.1           Odd positioned from 2.2.3.3.2.1.2:

400 400 6 300

Total: 1106 = 2 x 7 x 79.

2.2.3.3.2.1.2.1.1           Odd positioned from 2.2.3.3.2.1.2.1:

400 6

Total: 406 = 2 x 7 x 29.

2.2.3.3.2.1.2.1.2           Even positioned from 2.2.3.3.2.1.2.1:

400 300

Total: 700 = 2 x 2 x 5 x 5 x 7. SF: 21 = 3 x 7.

2.2.3.3.2.1.2.2           Even positioned from 2.2.3.3.2.1.2:

300 20 30

Total: 350 = 2 x 5 x 5 x 7.

2.2.3.3.2.2           Even positioned from 2.2.3.3.2:

30 5 30 400 50 2 40 40 1 300 10 10 70

Total: 988 = 2 x 2 x 13 x 19.

2.2.3.3.2.3           Odd positioned groups of 3 from 2.2.3.3.2:

5 400 30 50 30 2 40 40 1 10 6 10

Total: 624 = 2 x 2 x 2 x 2 x 3 x 13.

2.2.3.3.2.4           Even positioned groups of 3 from 2.2.3.3.2:

400 30 300 20 400 6 300 40 400 40 300 10 80 70 100

Total: 2496 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 13. SF: 28 = 2 x 2 x 7.

2.2.3.3.3           Odd positioned groups of 9 from 2.2.3.3:

1 400 10 30 5 300 50 5 2 6 50 6 30 5 2 4 300 10 10 40 6 300 50 10 300
10 8

Total: 1950 = 2 x 3 x 5 x 5 x 13. SF: 28 = 2 x 2 x 7.

2.2.3.3.4           Even positioned groups of 9 from 2.2.3.3:

400 8 30 10 20 10 400 5 6 40 6 400 30 40 50 40 90 1 6 1 10 9 80 6 70
4 100

Total: 1872 = 2 x 2 x 2 x 2 x 3 x 3 x 13.

2.2.3.4           Even positioned 8 from 2.2.3:

200 6 5 2 50 2 70 10 40 300 2 70 40 8 9 1 6 400 10 40 300 2 70 5 300
300 10 40 6 300 2 6 50 10 5 300 50 8 200 90 400 300 6 70 10 300 2 10
50 8 5 6 70 30

Total: 4592 = 2 x 2 x 2 x 2 x 7 x 41. SF: 56 = 2 x 2 x 2 x 7. SF: 13.

2.2.3.4.1           Odd positioned groups of 3 from 2.2.3.4:

2 50 2 300 2 70 1 6 400 2 70 5 40 6 300 10 5 300 90 400 300 300 2 10
6 70 30

Total: 2779 = 7 x 397.

2.2.3.4.2           Even positioned groups of 3 from 2.2.3.4:

200 6 5 70 10 40 40 8 9 10 40 300 300 300 10 2 6 50 50 8 200 6 70 10
50 8 5

Total: 1813 = 7 x 7 x 37.

2.2.4           Even positioned groups of 6 from 2.2:

20 10 30 20 2 10 400 400 8 50 6 50 2 10 50 2 4 2 40 200 1 5 300 2 300
70 6 30 8 400 6 30 20 80 200 70 10 1 90 4 300 100 4 70 6 400 300 20 4
2 200 30 5 300 6 300 2 70 10 40 50 10 40 400 300 6 2 70 10 40 300 300
40 10 20 200 400 40 6 100 90 6 2 300 90 40 30 8 40 5 40 40 6 5 300 2
400 7 2 8 6 40 20 50 80 300 100 6

Total: 9485 = 5 x 7 x 271.

2.2.4.1           Odd positioned groups of 6 from 2.2.4:

400 400 8 50 6 50 40 200 1 5 300 2 6 30 20 80 200 70 4 70 6 400 300
20 6 300 2 70 10 40 2 70 10 40 300 300 6 100 90 6 2 300 40 40 6 5 300
2 20 50 80 300 100 6

Total: 5271 = 3 x 7 x 251.

2.2.4.2           Even positioned groups of 6 from 2.2.4:

20 10 30 20 2 10 2 10 50 2 4 2 300 70 6 30 8 400 10 1 90 4 300 100 4
2 200 30 5 300 50 10 40 400 300 6 40 10 20 200 400 40 90 40 30 8 40 5
400 7 2 8 6 40

Total: 4214 = 2 x 7 x 7 x 43.

2.2.4.2.1           First half of 27 from 2.2.4.2:

30 5 300 50 10 40 400 300 6 40 10 20 200 400 40 90 40 30 8 40 5 400 7
2 8 6 40

Total: 2527 = 7 x 19 x 19.

2.2.4.2.2           Last half of 27 from 2.2.4.2:

20 10 30 20 2 10 2 10 50 2 4 2 300 70 6 30 8 400 10 1 90 4 300 100 4
2 200

Total: 1687 = 7 x 241.

2.2.4.2.2.1           Odd positioned groups of 3 from 2.2.4.2.2:

20 2 10 2 4 2 30 8 400 4 300 100

Total: 882 = 2 x 3 x 3 x 7 x 7.

2.2.4.2.2.2           Even positioned groups of 3 from 2.2.4.2.2:

20 10 30 2 10 50 300 70 6 10 1 90 4 2 200

Total: 805 = 5 x 7 x 23. SF: 35 = 5 x 7.

2.2.4.3           First half of 54 from 2.2.4:

6 300 2 70 10 40 50 10 40 400 300 6 2 70 10 40 300 300 40 10 20 200
400 40 6 100 90 6 2 300 90 40 30 8 40 5 40 40 6 5 300 2 400 7 2 8 6
40 20 50 80 300 100 6

Total: 4795 = 5 x 7 x 137.

2.2.4.3.1           Odd positioned groups of 2 from 2.2.4.3:

6 300 10 40 40 400 2 70 300 300 20 200 6 100 2 300 30 8 40 40 300 2 2
8 20 50 100 6

Total: 2702 = 2 x 7 x 193.

2.2.4.3.1.1           Odd positioned groups of 2 from 2.2.4.3.1:

6 300 40 400 300 300 6 100 30 8 300 2 20 50

Total: 1862 = 2 x 7 x 7 x 19. SF: 35 = 5 x 7.

2.2.4.3.1.2           Even positioned groups of 2 from 2.2.4.3.1:

10 40 2 70 20 200 2 300 40 40 2 8 100 6

Total: 840 = 2 x 2 x 2 x 3 x 5 x 7. SF: 21 = 3 x 7.

2.2.4.3.1.3           Odd positioned groups of 4 from 2.2.4.3.1:

6 300 10 40 300 300 20 200 30 8 40 40 20 50 100 6

Total: 1470 = 2 x 3 x 5 x 7 x 7.

2.2.4.3.1.3.1           First half of 8 from 2.2.4.3.1.3:

6 300 10 40 300 300 20 200

Total: 1176 = 2 x 2 x 2 x 3 x 7 x 7.

2.2.4.3.1.3.1.1           Odd positioned from 2.2.4.3.1.3.1:

6 10 300 20

Total: 336 = 2 x 2 x 2 x 2 x 3 x 7.

2.2.4.3.1.3.1.2           Even positioned from 2.2.4.3.1.3.1:

300 40 300 200

Total: 840 = 2 x 2 x 2 x 3 x 5 x 7. SF: 21 = 3 x 7.

2.2.4.3.1.3.2           Last half of 8 from 2.2.4.3.1.3:

30 8 40 40 20 50 100 6

Total: 294 = 2 x 3 x 7 x 7.

2.2.4.3.1.4           Even positioned groups of 4 from 2.2.4.3.1:

40 400 2 70 6 100 2 300 300 2 2 8

Total: 1232 = 2 x 2 x 2 x 2 x 7 x 11. SF: 26 = 2 x 13.

2.2.4.3.2           Even positioned groups of 2 from 2.2.4.3:

2 70 50 10 300 6 10 40 40 10 400 40 90 6 90 40 40 5 6 5 400 7 6 40 80
300

Total: 2093 = 7 x 13 x 23.

2.2.4.3.3           Odd positioned groups of 3 from 2.2.4.3:

70 10 40 400 300 6 40 300 300 200 400 40 6 2 300 8 40 5 5 300 2 8 6
40 300 100 6

Total: 3234 = 2 x 3 x 7 x 7 x 11.

2.2.4.3.3.1           Odd positioned groups of 9 from 2.2.4.3.3:

70 10 40 400 300 6 40 300 300 5 300 2 8 6 40 300 100 6

Total: 2233 = 7 x 11 x 29.

2.2.4.3.3.2           Even positioned groups of 9 from 2.2.4.3.3:

200 400 40 6 2 300 8 40 5

Total: 1001 = 7 x 11 x 13.

2.2.4.3.3.2.1           Odd positioned groups of 3 from 2.2.4.3.3.2:

6 2 300

Total: 308 = 2 x 2 x 7 x 11.

2.2.4.3.3.2.2           Even positioned groups of 3 from 2.2.4.3.3.2:

200 400 40 8 40 5

Total: 693 = 3 x 3 x 7 x 11.

2.2.4.3.3.2.2.1           Odd positioned from 2.2.4.3.3.2.2:

200 40 40

Total: 280 = 2 x 2 x 2 x 5 x 7.

2.2.4.3.3.2.2.2           Even positioned from 2.2.4.3.3.2.2:

400 8 5

Total: 413 = 7 x 59.

2.2.4.3.4           Even positioned groups of 3 from 2.2.4.3:

6 300 2 50 10 40 2 70 10 40 10 20 6 100 90 90 40 30 40 40 6 400 7 2
20 50 80

Total: 1561 = 7 x 223.

2.2.4.3.4.1           Odd positioned from 2.2.4.3.4:

6 2 10 2 10 10 6 90 40 40 6 7 20 80

Total: 329 = 7 x 47.

2.2.4.3.4.1.1           Odd positioned from 2.2.4.3.4.1:

6 10 10 6 40 6 20

Total: 98 = 2 x 7 x 7.

2.2.4.3.4.1.2           Even positioned from 2.2.4.3.4.1:

2 2 10 90 40 7 80

Total: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.

2.2.4.3.4.2           Even positioned from 2.2.4.3.4:

300 50 40 70 40 20 100 90 30 40 400 2 50

Total: 1232 = 2 x 2 x 2 x 2 x 7 x 11. SF: 26 = 2 x 13.

2.2.4.4           Last half of 54 from 2.2.4:

20 10 30 20 2 10 400 400 8 50 6 50 2 10 50 2 4 2 40 200 1 5 300 2 300
70 6 30 8 400 6 30 20 80 200 70 10 1 90 4 300 100 4 70 6 400 300 20 4
2 200 30 5 300

Total: 4690 = 2 x 5 x 7 x 67.

2.3           Odd positioned 53 from 1:

6 10 2 50 6 10 4 2 200 70 40 10 6 10 1 40 200 4 50 10 1 30 70 400 5
10 90 1 400 10 30 5 300 20 10 30 20 2 10 50 5 2 400 8 30 400 400 8 50
6 50 10 20 10 90 1 4 2 200 6 1 50 10 2 1 400 10 30 5 3 10 4 20 10 8
40 6 4 6 400 1 400 5 6 2 10 50 2 4 2 200 6 5 2 50 2 40 200 1 5 300 2
70 10 40 300 2 70 10 40 50 8 400 20 70 30 70 40 20 6 70 30 70 10 200
100 4 300 20 30 20 30 1 5 80 300 70 6 30 8 400 40 8 9 1 6 400 6 30 20
80 200 70 10 40 6 300 50 10 40 10 20 200 400 40 300 10 8 6 1 10 50 30
6 6 5 70 10 200 6 5 100 4 300 10 300 8 10 400 70 40 50 3 10 4 5 2 1 6
100 90 6 2 300 9 80 6 70 4 100 90 40 30 8 40 5 50 8 200 90 400 300 40
40 6 400 6 5 3 2 10 200 2 200 10 400 30 200 2 10 40 300 2 6 70 1 8 4
6 8 90 10 5 300 2 6 70 10 300 2 10 400 7 2 8 6 40 50 8 5 6 70 30 20
50 80 300 100 6 90 10 40 40 300 40 40 6 70 4 20 30 5 6 50 8 200 90 5
400 400 20 70 30 300 40 40

Total: 21710 = 2 x 5 x 13 x 167.

2.3.1           Odd positioned groups of 3 from 2.3:

50 6 10 70 40 10 40 200 4 30 70 400 1 400 10 20 10 30 50 5 2 400 400
8 10 20 10 2 200 6 2 1 400 3 10 4 40 6 4 400 5 6 2 4 2 2 50 2 5 300 2
300 2 70 8 400 20 40 20 6 10 200 100 30 20 30 300 70 6 40 8 9 6 30 20
10 40 6 40 10 20 300 10 8 50 30 6 10 200 6 300 10 300 70 40 50 5 2 1
6 2 300 70 4 100 8 40 5 90 400 300 400 6 5 200 2 200 200 2 10 6 70 1
8 90 10 6 70 10 400 7 2 50 8 5 20 50 80 90 10 40 40 6 70 5 6 50 5 400
400 300 40 40

Total: 11778 = 2 x 3 x 13 x 151. SF: 169 = 13 x 13. SF: 26 = 2 x 13.

2.3.2           Even positioned groups of 3 from 2.3:

6 10 2 4 2 200 6 10 1 50 10 1 5 10 90 30 5 300 20 2 10 400 8 30 50 6
50 90 1 4 1 50 10 10 30 5 20 10 8 6 400 1 2 10 50 200 6 5 40 200 1 70
10 40 10 40 50 70 30 70 70 30 70 4 300 20 1 5 80 30 8 400 1 6 400 80
200 70 300 50 10 200 400 40 6 1 10 6 5 70 5 100 4 8 10 400 3 10 4 6
100 90 9 80 6 90 40 30 50 8 200 40 40 6 3 2 10 10 400 30 40 300 2 8 4
6 5 300 2 300 2 10 8 6 40 6 70 30 300 100 6 40 300 40 4 20 30 8 200
90 20 70 30

Total: 9932 = 2 x 2 x 13 x 191. SF: 208 = 2 x 2 x 2 x 2 x 13. SF: 21 = 3 x 7.

2.4           Even positioned 53 from 1:

6 50 6 30 5 2 10 1 90 4 100 70 30 40 10 40 6 30 8 400 40 8 7 6 50 6
50 2 10 1 6 30 40 300 8 100 4 300 100 4 300 10 40 6 400 4 70 6 400
300 20 30 40 50 40 90 1 4 2 200 30 5 300 10 2 6 30 2 50 6 400 10 200
6 300 30 40 70 4 40 300 10 8 50 3 10 4 300 2 70 10 40 300 2 70 5 6
300 2 70 10 40 300 300 10 40 6 300 50 10 40 400 300 6 2 6 50 2 50 400
5 200 8 6 2 6 8 200 6 90 6 2 90 6 100 5 70 400 10 40 6 1 8 200 10 5
300 2 70 10 40 300 300

Total: 11960 = 2 x 2 x 2 x 5 x 13 x 23.

The First And The Last Letters

Revelation 1:8's Alpha and Omega point to the first and last letters of each word. These features are not as consistent because Daniel 9:22-27 is not about God.

This section begins with the positions of the first letter of each word.

Positions of the first letter of each word:
1 5 10 13 18 23 26 31 38
42 47 54 57 60 64 68 73 75 81 84 88 92 96
101 106 111 115 117 120 123
126 130 134 138 143 148 153 156 162 165
170 175 179 184 189 192 197
201 206 208 211 214 219 225 231 233 237
241 246 250 256 260 265 269
275 279 284 289 294 299 305 309 314 318
322 326 328 333 338 343 345
349 352 356 360 363 365 370 375 380 386
390 395 399 402 406 411 416
419 424 427 430 436 440 443 446 452 455
457 

3The positions of the first letter of each word can be collected into three groups, a group of 28, a group of 53, and a final group of 28.

3.1The two groups of 28 at the beginning and end:

1 5 10 13 18 23 26 31 38 42 47 54 57 60 64 68 73 75 81 84 88 92 96
101 106 111 115 117 
349 352 356 360 363 365 370 375 380 386 390 395 399 402 406 411 416
419 424 427 430 436 440 443 446 452 455 457 

Total: 13000 = 23 x 53 x 13.

3.2The one group of 53 in the middle:

120 123 126 130 134 138 143 148 153 156 162 165 170 175 179 184 189
192 197 201 206 208 211 214 219 225 231 233 237 241 246 250 256 260
265 269 275 279 284 289 294 299 305 309 314 318 322 326 328 333 338
343 345 

Total: 12257 = 7 x 17 x 103.

No features are found with the values of the first letter of each word.

3.3Now turning to the positions of the last letter of each word.

Positions of the last letter of each word:
4 9 12 17 22 25 30 37 41
46 53 56 59 63 67 72 74 80 83 87 91 95 100 105 110 114 116 119 122
125 129 133 137 142 147 152 155 161 164 169 174 178 183 188 191 196
200 205 207 210 213 218 224 230 232 236 240 245 249 255 259 264 268
274 278 283 288 293 298 304 308 313 317 321 325 327 332 337 342 344
348 351 355 359 362 364 369 374 379 385 389 394 398 401 405 410 415
418 423 426 429 435 439 442 445 451 454 456 459 

The positions of the last letter of each word can be collected three ways into alternating groups.

3.3.1In the first method, the positions are in alternating groups of 13 and 3.

3.3.1.1Seven groups of 13 positions:

4 9 12 17 22 25 30 37 41 46 53 56 59
74 80 83 87 91 95 100 105 110 114 116 119 122
137 142 147 152 155 161 164 169 174 178 183 188 191
207 210 213 218 224 230 232 236 240 245 249 255 259
278 283 288 293 298 304 308 313 317 321 325 327 332
348 351 355 359 362 364 369 374 379 385 389 394 398
415 418 423 426 429 435 439 442 445 451 454 456 459

Total: 21372 = 22 x 3 x 13 x 137.

3.3.1.2Six groups of 3 positions:

63 67 72
125 129 133
196 200 205
264 268 274
337 342 344
401 405 410

Total: 4235 = 5 x 7 x 112. (Curiously, there are a total of 13 groups.)

3.3.2In the second method, the positions are in alternating groups of 51 and 7.

3.3.2.1Groups of 51:

4 9 12 17 22 25 30 37 41 46 53 56 59 63 67 72 74 80 83 87 91 95 100
105 110 114 116 119 122 125 129 133 137 142 147 152 155 161 164 169
174 178 183 188 191 196 200 205 207 210 213 
249 255 259 264 268 274 278 283 288 293 298 304 308 313 317 321 325
327 332 337 342 344 348 351 355 359 362 364 369 374 379 385 389 394
398 401 405 410 415 418 423 426 429 435 439 442 445 451 454 456 459 

Total: 23982 = 2 x 3 x 7 x 571.

3.3.2.2Groups of 7:

218 224 230 232 236 240 245

Total: 1625 = 53 x 13. SF: 28 = 22 x 7.

3.3.3In the final method, the positions are in alternating groups of 19 and 26.

3.3.3.1Groups of 19:

4 9 12 17 22 25 30 37 41 46 53 56 59 63 67 72 74 80 83
196 200 205 207 210 213 218 224 230 232 236 240 245 249 255 259 264
268 274 
389 394 398 401 405 410 415 418 423 426 429 435 439 442 445 451 454
456 459 

13364 = 22 x 13 x 257.

3.3.3.2Groups of 26:

87 91 95 100 105 110 114 116 119 122 125 129 133 137 142 147 152 155
161 164 169 174 178 183 188 191 
278 283 288 293 298 304 308 313 317 321 325 327 332 337 342 344 348
351 355 359 362 364 369 374 379 385 

Total: 12243 = 3 x 7 x 11 x 53.

3.4Turning of the values of the last letter of each word... (No features are found for the values of the first letter of each word.)

Values of the last letter of each word:
50 200 10 200 30 5 10 20 5
400 20 1 200 10 10 4 10 400 5 50 200 50 5 40 40 20 30 20 30 200 20 1
70 40 400 200 50 1 100 40 40 50 1 8 300 40 70 30 50 1 200 2 400 40 4
8 4 40 5 40 40 40 2 5 2 90 100 40 10 40 40 40 400 8 50 6 200 300 400
40 4 1 6 80 4 90 5 400 400 200 400 40 70 4 10 70 400 8 5 30 80 40 40
4 5 5 20 30 40 

3.4.1The values of the last letter of each word can be placed in alternating groups of 35 and 2.

3.4.1.1Groups of 35:

50 200 10 200 30 5 10 20 5 400 20 1 200 10 10 4 10 400 5 50 200 50 5
40 40 20 30 20 30 200 20 1 70 40 400 
1 100 40 40 50 1 8 300 40 70 30 50 1 200 2 400 40 4 8 4 40 5 40 40 40
2 5 2 90 100 40 10 40 40 40 
50 6 200 300 400 40 4 1 6 80 4 90 5 400 400 200 400 40 70 4 10 70 400
8 5 30 80 40 40 4 5 5 20 30 40 

Total: 8216 = 23 x 13 x 79. SF: 98 = 2 x 72

3.4.1.2Groups of 2:

200 50
400 8

Total: 658 = 2 x 7 x 47. SF: 56 = 23 x 7. SF: 13.

3.4.2The values of the last letter of each word can also be gathered in alternating groups of 27 and 14.

3.4.2.1Groups of 27:

50 200 10 200 30 5 10 20 5 400 20 1 200 10 10 4 10 400 5 50 200 50 5
40 40 20 30 
50 1 8 300 40 70 30 50 1 200 2 400 40 4 8 4 40 5 40 40 40 2 5 2 90
100 40 
6 80 4 90 5 400 400 200 400 40 70 4 10 70 400 8 5 30 80 40 40 4 5 5
20 30 40 

Total: 6123 = 3 x 13 x 157.

3.4.2.2Groups of 14:

20 30 200 20 1 70 40 400 200 50 1 100 40 40
10 40 40 40 400 8 50 6 200 300 400 40 4 1

Total: 2751 = 3 x 7 x 131.

3.5The positions of the first and last letters of each word can be added together.

5 14s 22 30 40 48 56s 68 79 88 100 110 116 123 131 140s 147s 155 164
171 179 187 196s 206 216 225 231s 236 242 248 255 263 271 280s 290
300 308s 317 326 334 344 353 362 372 380 388 397 406s 413s 418 424
432 443 455s 463 469s 477 486 495 505 515 524 533t 543 553s 562 572t
582 592 603 613 622 631 639 647 653 660 670 680 687 693s 700s 707s
715t 722 727 734 744 754t 765 775 784s 793t 800 807 816 826s 834 842
850 856 865 875s 882s 888 897t 906 911 916 

3.5.1From the list in 3.5, take the odd positioned totals. (Unfortunately, the even positioned words show nothing.

5 22 40 56s 79 100 116 131 147s 164 179 196s 216 231s 242 255 271 290
308s 326 344 362 380 397 413s 424 443 463 477 495 515 533t 553s 572t
592 613 631 647 660 680 693s 707s 722 734 754t 775 793t 807 826s 842
856 875s 888 906 916 

Total: 25662 = 2 x 3 x 7 x 13 x 47.

3.6The values first and last letters of each word can be added together.

56s 206 80 206 34 75 20 50 7s 402 420s 11 204 16 12 34 30 408 6 56s
202 56s 7s 340 340 70s 100 90 36 270 120 31 75 46 408 206 120 7s 190
110 46 58 7s 14s 400 140s 76 36 90 41 204 32 406s 50 74 48 54 340 305
46 340 46 402 11 202 96 106 45 16 45 340 46 410 48 56s 36 206 306 410
110 54 6 12 82 10 190 45 450 700s 206 402 70s 370 5 16 75 410 15 11
36 100 340 80 10 25 11 420s 100 340 

3.6.1Even positioned totals from 3.6:

206 206 75 50 402 11 16 34 408 56s 56s 340 70s 90 270 31 46 206 7s
110 58 14s 140s 36 41 32 50 48 340 46 46 11 96 45 45 46 48 36 306 110
6 82 190 450 206 70s 5 75 15 36 340 10 11 100 

Total: 5880 = 23 x 3 x 5 x 72.

3.6.2.1Odd valued totals from 3.6:

75 7 11 7 31 75 7 7 41 305 11 45 45 45 5 75 15 11 25 11

Total: 854 = 2 x 7 x 61.

3.6.2.2Even valued totals from 3.6:

56 206 80 206 34 20 50 402 420 204 16 12 34 30 408 6 56 202 56 340
340 70 100 90 36 270 120 46 408 206 120 190 110 46 58 14 400 140 76
36 90 204 32 406 50 74 48 54 340 46 340 46 402 202 96 106 16 340 46
410 48 56 36 206 306 410 110 54 6 12 82 10 190 450 700 206 402 70 370
16 410 36 100 340 80 10 420 100 340 

Total: 14638 = 2 x 13 x 563.

3.6.2.3Totals in 3.6 where the first digit is odd:

56 34 75 50 7 11 16 12 34 30 56 56 7 340 340 70 100 90 36 120 31 75
120 7 190 110 58 7 14 140 76 36 90 32 50 74 54 340 305 340 11 96 106
16 340 56 36 306 110 54 12 10 190 700 70 370 5 16 75 15 11 36 100 340
10 11 100 340 

Total: 7231 = 7 x 1033.

3.7Features can also be found for the letters (and their positions) that are not first or last in a word.

Positions of letters that are not first or last:
2 3 6 7 8 11 14 15
16 19 20 21 24 27 28 29 32 33 34 35 36 39 40 43 44 45 48 49 50 51 52
55 58 61 62 65 66 69 70 71 76 77 78 79 82 85 86 89 90 93 94 97 98 99
102 103 104 107 108 109 112 113 118 121 124 127 128 131 132 135 136
139 140 141 144 145 146 149 150 151 154 157 158 159 160 163 166 167
168 171 172 173 176 177 180 181 182 185 186 187 190 193 194 195 198
199 202 203 204 209 212 215 216 217 220 221 222 223 226 227 228 229
234 235 238 239 242 243 244 247 248 251 252 253 254 257 258 261 262
263 266 267 270 271 272 273 276 277 280 281 282 285 286 287 290 291
292 295 296 297 300 301 302 303 306 307 310 311 312 315 316 319 320
323 324 329 330 331 334 335 336 339 340 341 346 347 350 353 354 357
358 361 366 367 368 371 372 373 376 377 378 381 382 383 384 387 388
391 392 393 396 397 400 403 404 407 408 409 412 413 414 417 420 421
422 425 428 431 432 433 434 437 438 441 444 447 448 449 450 453 458 

3.7.1Groups of 21:

2 3 6 7 8 11 14 15 16 19 20 21 24 27 28 29 32 33 34 35 36
103 104 107 108 109 112 113 118 121 124 127 128 131 132 135 136 139
140 141 144 145 
212 215 216 217 220 221 222 223 226 227 228 229 234 235 238 239 242
243 244 247 248 
307 310 311 312 315 316 319 320 323 324 329 330 331 334 335 336 339
340 341 346 347 
414 417 420 421 422 425 428 431 432 433 434 437 438 441 444 447 448
449 450 453 458 

Total: 23870 = 2 x 5 x 7 x 11 x 31. SF: 56 = 23 x 7. SF: 13.

3.7.2Groups of 34:

39 40 43 44 45 48 49 50 51 52 55 58 61 62 65 66 69 70 71 76 77 78 79
82 85 86 89 90 93 94 97 98 99 102 
146 149 150 151 154 157 158 159 160 163 166 167 168 171 172 173 176
177 180 181 182 185 186 187 190 193 194 195 198 199 202 203 204 209 
251 252 253 254 257 258 261 262 263 266 267 270 271 272 273 276 277
280 281 282 285 286 287 290 291 292 295 296 297 300 301 302 303 306 
350 353 354 357 358 361 366 367 368 371 372 373 376 377 378 381 382
383 384 387 388 391 392 393 396 397 400 403 404 407 408 409 412 413 

Total: 30836 = 22 x 13 x 593.

All The Letters

The letters are loaded into a block (3 columns x 9 rows x 17 layers), left to right across each row first, and top to bottom row by row. (Slowly pass mouse along the right or bottom edges to riffle through the deck.)

Layer 1
6102
50610
42200
704010
6101
402004
50101
3070400
51090
Layer 2
140010
305300
201030
20210
5052
400830
4004008
50650
102010
Layer 3
9014
22006
15010
21400
10305
3104
20108
4064
64001
Layer 4
40056
21050
242
20065
2502
402001
53002
701040
300270
Layer 5
104050
840020
703070
40206
703070
10200100
430020
302030
1580
Layer 6
300706
308400
4089
16400
63020
8020070
6506
3052
10190
Layer 7
410070
304010
40630
840040
876
50650
2101
63040
3008100
Layer 8
4300100
430010
406400
4706
40030020
304050
40901
42200
305300
Layer 9
1026
30250
640010
2006300
304070
440300
10850
3104
300270
Layer 10
1040300
2705
63002
701040
30030010
406300
501040
4003006
2650
Layer 11
250400
52008
626
82006
9062
906100
570400
10406
18200
Layer 12
105300
27010
40300300
10406
3005010
401020
20040040
300108
6110
Layer 13
50306
6570
102006
51004
30010300
810400
704050
3104
521
Layer 14
610090
62300
9806
704100
904030
8405
508200
90400300
40406
Layer 15
40065
3210
2002200
1040030
200210
403002
6701
846
89010
Layer 16
53002
67010
300210
40072
8640
5085
67030
205080
3001006
Layer 17
901040
4030040
40670
42030
5650
820090
5400400
207030
3004040

4.1.1 The surface area, or outside of this block: 24885 = 32 x 5 x 7 x 79.

4.1.2 The inside of the block: 8785 = 5 x 7 x 251. Not only are the inside letters a total divisible by 7, but the inside is also a block of 105 (7 x 15) letters.

4.1.3 The difference between the outside and inside would naturally be divisible by seven as well, but it also produces a very well rounded number, and a number with symmetry: 24885 − 8785 = 16100 = 22 x 52 x 7 x 23.

4.2.1 First and last columns: 21336 = 23 x 3 x 7 x 127. SF: 143 = 11 x 13.

4.2.2 The middle columns (not first or last): 12334 = 2 x 7 x 881.

4.3.1 The total of the first and last columns was divisible by 7, but the total of the first and last rows yields nothing. However, the first and last columns are also the odd positioned columns. Apply this to the rows. The odd positioned rows: 19243 = 7 x 2749. SF: 2756 = 22 x 13 x 53. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

4.3.2 The even positioned rows: 14427 = 32 x 7 x 229.

4.4.1 Odd positioned layers: 15771 = 3 x 7 x 751.

4.4.2 Even positioned layers: 17899 = 7 x 2557.

4.5.1 Numbers can be written on each layer, from 1 to 9, 0 to 7. The total of the letters marked: 18980 = 22 x 5 x 13 x 73. The numbers conveniently end with 7.

4.5.2 The letters not marked by numbers: 14690 = 2 x 5 x 13 x 113. SF: 133 = 7 x 19. SF: 26 = 2 x 13.

Note: For this exercise, the digit 9 was written with a straight downward stem, and no curve at the bottom. The digit 6 was written with an overhang as the curve at the top. If these two digits were written differently, the total of the letters marked would no longer be divisible by 13. This all seems arbitrary as everything depends on the way a number digit is written. However, there is an extra coincidence. All the digits written on the layers of the block form one large number: 12345678901234567. This number factors: 7 x 1763668414462081.

Odd and even positioned columns represent the X-axis. Odd and even positioned rows represent the Y-axis. Odd and even positioned layers represent the Z-axis. All three dimensions have been covered perfectly with complementary features.

Outside and inside represent a fourth dimension. It is as if the numeric features confirm the solidity of the prophecy.

4.6Extract the inside of the block (feature 4.1.2):

The Inside Of The Block
5102584006
2005013010106
10465020030010
40030203020030020
88630200505
406400761030
30067030040902
240064040810
7030010300610300
2002200667040
7030040501040010
520010010104010
280440408400
224002300704
7027687050

4.6.1 This rectangle (or flat block) has no outside because it came from within the block in feature 4.1.2, and its thickness is only one. What it does have is a series of insides a perimeter and inner border: 4515 = 3 x 5 x 7 x 43.

4.6.2 The opposite of the previous feature: 4270 = 2 x 5 x 7 x 61.

4.6.3 The rectangle can be split into five bands. The odd positioned bands: 5200 = 24 x 52 x 13. (There is no corresponding feature with the even positioned bands.)

4.6.4 The first and last two columns: 5523 = 3 x 7 x 263. SF: 273 = 3 x 7 x 13.

4.6.5.1 The first and last two rows: 1736 = 23 x 7 x 31.

4.6.5.2 The first and last six rows: 6475 = 52 x 7 x 37.

4.7.Since the angel Gabriel mentions seventy sevens, the letters 7 and 70 are marked in the table below. The letter 7, appears only twice and is marked in green. The letter 70 appears many times and is marked in grey.

Appearances Of The Letters 7 & 70
61025061042200704010610140200450101307040051090
140010305300201030202105052400830400400850650102010
901422006150102140010305310420108406464001
400562105024220065250240200153002701040300270
10405084002070307040206703070102001004300203020301580
3007063084004089164006302080200706506305210190
41007030401040630840040876506502101630403008100
43001004300104064004706400300203040504090142200305300
1026302506400102006300304070440300108503104300270
10403002705630027010403003001040630050104040030062650
250400520086268200690629061005704001040618200
1053002701040300300104063005010401020200400403001086110
50306657010200651004300103008104007040503104521
61009062300980670410090403084055082009040030040406
40065321020022001040030200210403002670184689010
53002670103002104007286405085670302050803001006
90104040300404067042030565082009054004002070303004040

4.7.1.1 Nine letters are before the first 70. The total of these nine letters: 290. Four letters are after the last 70. The total of these four letters: 410. Thus all the letters before and after 70 amount to 700 = 22 x 52 x 7. SF: 21 = 3 x 7.

4.7.1.2 This means all the letters between the first and last 70 are also divisible by 7: 32830 = 2 x 5 x 72 x 67.

4.7.2.1 One hundred and seventy-five letters are before the first appearance of the letter 7. The total of these letters: 11138. Forty-three letters are after the last appearance of the letter 7. The total of these letters: 3135. Thus all the letters before and after 7 amount to 14273 = 7 x 2039.

4.7.2.2 All the letters between the first and last appearances of the letter 7: 19383 = 3 x 7 x 13 x 71.

4.7.3 The difference between the results of the letters 7 and 70 (features 4.7.1.1 and 4.7.2.1): 14273 − 700 = 13573 (7 x 7 x 277). There is an extra factor of seven.

In other words, the first and last appearances of the letters 7 and 70 are perfectly positioned.

4.7.4.1 The fourth letter 70 from the beginning, and the fourth letter 70 from the end mark off 301 (7 x 43) letters between them. The sum of these 301 letters: 23002 = 2 x 7 x 31 x 53.

4.7.4.2 The letters before and after the fourth 70 from the beginning and the fourth 70 from the end: 10528 = 25 x 7 x 47.

4.7.5.1 All the letters before the sixth appearance of the letter 70, and all the letters after the sixth last appearance of the letter 70: 15085 = 5 x 7 x 431.

4.7.5.2 All the letters between the sixth and sixth last appearances of the letter 70: 18445 = 5 x 7 x 17 x 31.

4.7.6.1 All the letters before or after the 8th and 8th last appearances of the letter 70: 17528 = 23 x 7 x 313.

4.7.6.2 All the letters between the eighth and eighth last appearances of the letter 70: 16002 = 2 x 32 x 7 x 127.

4.7.7.1 All the letters before the 13th and 13th last appearances of the letter 70: 32799 = 3 x 13 x 292 Notice the symmetry.

4.7.7.2 The 13th and 13th last appearances of the letter 70 span exactly thirteen letters. In this case, all thirteen letters are added rather than leaving out the two 70s: 871 = 13 x 67. SF: 80 = 24 x 5. SF: 13. The line is precisely positioned.

4.7.8.1 The thirteen letters in last half of the middle of the rectangle draws attention. Extend this line across the entire middle: 1963 = 13 x 151.

4.7.8.2 This means everything that is not the middle is also divisible by 13: 31707 = 3 x 3 x 13 x 271.

There were 26 appearances of the letter 70 in the passage. Twenty-six is related to the value of God’s name in Hebrew. This is why the letter 70 can be paired first and last as in Revelation 1:8. Of the thirteen pairs, the first, fourth, sixth, and eighth all produced multiples of 7. The odds would have suggested only two successes out of thirteen. And although out of thirteen pairs the odds would favour one success for something divisible by thirteen, it just so happens to be the very last pair, the thirteenth pair that produces a total divisible by 13. Coincidence? It can't be when it keeps happening.

Note: All the letters that are divisible by 7 (7 and 70) number 28: 22 x 7.

4.8What about the rest of the letters? Can they also be paired Nth and Nth last? In this case, the Nth occurrence of a letter is included with what went before it, and the Nth last occurrence is included with what goes after it.

Nth & Nth Last Letter Features
61025061042200704010610140200450101307040051090
140010305300201030202105052400830400400850650102010
901422006150102140010305310420108406464001
400562105024220065250240200153002701040300270
10405084002070307040206703070102001004300203020301580
3007063084004089164006302080200706506305210190
41007030401040630840040876506502101630403008100
43001004300104064004706400300203040504090142200305300
1026302506400102006300304070440300108503104300270
10403002705630027010403003001040630050104040030062650
250400520086268200690629061005704001040618200
1053002701040300300104063005010401020200400403001086110
50306657010200651004300103008104007040503104521
61009062300980670410090403084055082009040030040406
40065321020022001040030200210403002670184689010
53002670103002104007286405085670302050803001006
90104040300404067042030565082009054004002070303004040
Features Of The Letters & Their Appearances
#LetterPairedTotal
(Before & After)
ShowTotal
(In Between)
Show
4.8.117th & 7th last28357 = 7 x 4051.5313 = 3 x 7 x 11 x 23.
4.8.2.127th & 7th last11219 = 13 x 863.22451 = 11 x 13 x 157.
4.8.2.211th & 11th last19227 = 3 x 13 x 17 x 29.14443 = 11 x 13 x 101.
4.8.3.14first & last1806 = 2 x 3 x 7 x 43.31864 = 23 x 7 x 569.
4.8.3.24th & 4th last12857 = 13 x 23 x 43.20813 = 13 x 1601.
4.8.4.155th & 5th last11219 = 13 x 863.22451 = 11 x 13 x 157.
4.8.4.28th & 8th last18102 = 2 x 3 x 7 x 431.15568 = 24 x 7 x 139. SF: 154 = 2 x 7 x 11.
4.8.4.39th & 9th last20254 = 2 x 13 x 19 x 41.13416 = 23 x 3 x 13 x 43. SF: 65 = 5 x 13.
4.8.5.166th & 6th last8477 = 72 x 173.25193 = 7 x 59 x 61.
4.8.5.210th & 10th last13776 = 24 x 3 x 7 x 41.19894 = 2 x 73 x 29. SF: 52 = 22 x 13.
4.8.5.312th & 12th last17542 = 2 x 72 x 179. SF: 195 = 3 x 5 x 13. SF: 21 = 3 x 7.16128 = 28 x 32 x 7.
4.8.5.413th & 13th last18144 = 25 x 34 x 7.15526 = 2 x 7 x 1109. SF: 1118 = 2 x 13 x 43.
4.8.5.518th & 18th last22715 = 5 x 7 x 11 x 59.10955 = 5 x 7 x 313. SF: 325 = 52 x 13.
4.8.5.621th & 21th last26537 = 7 x 17 x 223. SF: 247 = 13 x 19.7133 = 7 x 1019.
4.8.67first & last14287 = 7 x 13 x 157.19383 = 3 x 7 x 13 x 71.
4.8.7811th & 11th last33656 = 23 x 7 x 601.14 = 2 x 7.
4.8.89first & last17227 = 7 x 23 x 107.16443 = 34 x 7 x 29.
4.8.9.1104th & 4th last4683 = 3 x 7 x 223.28987 = 7 x 41 x 101.
4.8.9.219th & 19th last20538 = 2 x 32 x 7 x 163.13132 = 22 x 72 x 67.
4.8.9.320th & 20th last25597 = 11 x 13 x 179. SF: 203 = 7 x 29.8073 = 33 x 13 x 23.
4.8.9.421th & 21th last26348 = 22 x 7 x 941. SF: 952 = 23 x 7 x 17.7322 = 2 x 7 x 523. SF: 532 = 22 x 7 x 19.
4.8.10203rd & 3rd last6524 = 22 x 7 x 233.27146 = 2 x 72 x 277.
4.8.11.1302nd & 2nd last3472 = 24 x 7 x 31.30198 = 2 x 3 x 7 x 719.
4.8.11.23rd & 3rd last5083 = 13 x 17 x 23.28587 = 3 x 13 x 733. SF: 749 = 7 x 107.
4.8.11.36th & 6th last17409 = 3 x 7 x 829.16261 = 7 x 23 x 101.
4.8.11.410th & 10th last28826 = 2 x 7 x 29 x 71.4844 = 22 x 7 x 173.
4.8.12.1407th & 7th last10591 = 7 x 17 x 89.23079 = 3 x 72 x 157.
4.8.12.210th & 10th last17004 = 22 x 3 x 13 x 109.16666 = 2 x 13 x 641.
4.8.13.1503rd & 3rd last5304 = 23 x 3 x 13 x 17. SF: 39 = 3 x 13.28366 = 2 x 13 x 1091. SF: 1106 = 2 x 7 x 79.
4.8.13.24th & 4th last10934 = 2 x 7 x 11 x 71. SF: 91 = 7 x 13.22736 = 24 x 72 x 29.
4.8.13.35th & 5th last12051 = 32 x 13 x 103.21619 = 13 x 1663.
4.8.13.49th & 9th last21406 = 2 x 7 x 11 x 139.12264 = 23 x 3 x 7 x 73.
4.8.14.170first & last840 = 23 x 3 x 5 x 7. SF: 21 = 3 x 7.32830 = 2 x 5 x 72 x 67.
4.8.14.24th & 4th last10668 = 22 x 3 x 7 x 127.23002 = 2 x 7 x 31 x 53.
4.8.14.36th & 6th last15225 = 3 x 52 x 7 x 29. SF: 49 = 72 SF: 14 = 2 x 7.18445 = 5 x 7 x 17 x 31.
4.8.14.48th & 8th last17668 = 22 x 7 x 631.16002 = 2 x 32 x 7 x 127.
4.8.14.511th & 11th last26988 = 22 x 3 x 13 x 173.6682 = 2 x 13 x 257.
4.8.15.1200first & last1885 = 5 x 13 x 29.31785 = 3 x 5 x 13 x 163.
4.8.15.27th & 7th last21154 = 2 x 7 x 1511.12516 = 22 x 3 x 7 x 149.
4.8.16.13002nd & 2nd last8414 = 2 x 7 x 601.25256 = 23 x 7 x 11 x 41. SF: 65 = 5 x 13.
4.8.16.23rd & 3rd last9422 = 2 x 7 x 673.24248 = 23 x 7 x 433.
4.8.16.38th & 8th last20650 = 2 x 52 x 7 x 59. SF: 78 = 2 x 3 x 13.13020 = 22 x 3 x 5 x 7 x 31.
4.8.16.410th & 10th last24115 = 5 x 7 x 13 x 53. SF: 78 = 2 x 3 x 13.9555 = 3 x 5 x 72 x 13. SF: 35 = 5 x 7.
4.8.16.513th & 13th last28259 = 7 x 11 x 367. SF: 385 = 5 x 7 x 11.5411 = 7 x 773. SF: 780 = 22 x 3 x 5 x 13.
4.8.16.617th & 17th last33614 = 2 x 7556 = 23 x 7. SF: 13.
4.8.17.1400first & last2132 = 22 x 13 x 41.31538 = 2 x 13 x 1213.
4.8.17.22nd & 2nd last3038 = 2 x 72 x 31.30632 = 23 x 7 x 547. SF: 560 = 24 x 5 x 7.
4.8.17.33rd & 3rd last6174 = 2 x 32 x 73.27496 = 23 x 7 x 491. SF: 504 = 23 x 32 x 7.
4.8.17.411th & 11th last25032 = 23 x 3 x 7 x 149.8638 = 2 x 7 x 617.

4.8.18.1All the possible pairs represent 225 tries at obtaining a total divisible by 7 or 13. The odds would favour 32 results divisible by 7, 17 results divisible by 13, and two or three results divisible by 91.

Letter:         1  2  3 4  5  6  7 8  9 10 20 30 40 50 70 80 90 100 200 300 400
Appearances:    17 35 4 19 23 52 2 22 2 50 14 25 39 25 26 4  12 9   19  34  26
Possible Pairs: 8  17 2 9  11 26 1 11 1 25 7  12 19 12 13 2  6  4   9   17  13

Out of 225 tries there were a total of 49 with results. Thirty-six of them were divisible by 7. (Slightly more than the odds would suggest.) Fifteen were divisible by 13. (This is slightly less than the odds, but the results are so close as to be the odds.) And two results were divisible by 91, which is in line with the odds. The skeptic would say this was all random chance since everything is close to what the odds would suggest. Is it simply the odds, or coincidence?

4.8.18.2What the odds cannot predict is which letters of the alphabet would succeed or fail. Only seventeen of the twenty-two Hebrew letters had results.

1 2 4 5 6 7 8 9 10 20 30 40 50 70 200 300 400

The total of these letters: 1162 = 2 x 7 x 83. It is a one in seven chance that the total of the letters that would succeed be a multiple of 7.

4.8.18.3Six letters had pairs that were either the 7th and 7th last, or the 21st and 21st last. In other words, by the sequence of pairs, they were in positions divisible by 7. The six letters:

1 2 6 10 40 200

The total of these letters: 259 = 7 x 37.

4.8.18.4Only three letters (6, 70, 400) have a number of pairs that is a multiple of 13. The three numbers total: 476 = 22 x 7 x 1. SF: 28 = 22 x 7.

4.8.18.5If the odd positioned letters from the figure in 4.8.18.1 are extracted, this is the result:

1 3 5 7 9 20 40 70 90 200 400

Total: 845 = 5 x 132. There is no correlating feature with the even positioned letters, but the result here more than makes up for it with two factors of 13.

4.8.18.6High and low, or the most and the least, form a different complementary opposite. The letter 7 appeared the least, with only two occurrences. The letter 6 appeared the most with 52 occurrences. These two letters together: 13.

These additional features show a relationship tying this section together. This makes coincidence less likely.

4.7.9The letters can also be loaded into a 17 x 27 rectangle.

The Letters In A 17 x 27 Rectangle
61025061042200704010610140200
45010130704005109014001030530020
1030202105052400830400400850650
10201090142200615010214001030
5310420108406464001400562
105024220065250240200153002
7010403002701040508400207030704020
6703070102001004300203020301580300
706308400408916400630208020070
6506305210190410070304010406
3084004087650650210163040300
81004300100430010406400470640030020
30405040901422003053001026302
506400102006300304070440300108503
1043002701040300270563002701040
3003001040630050104040030062650250
400520086268200690629061005
7040010406182001053002701040300300
1040630050104010202004004030010861
1050306657010200651004300103008
10400704050310452161009062300
9806704100904030840550820090400
3004040640065321020022001040030200
21040300267018468901053002
670103002104007286405085670
3020508030010069010404030040406704
2030565082009054004002070303004040

4.7.9.1The four corners of the large rectangle: 266 = 2 x 7 x 19. SF: 28 = 22 x 7.

4.7.9.2In this rectangle, the two appearances of the letter 7 mark out a smaller 3 x 15 rectangle inside. The total of this inner rectangle: 2555 = 5 x 7 x 73.

4.7.9.2.1The area outside this inner rectangle: 31115 = 5 x 72 x 127.

4.7.9.2.2The difference between the outside of the small rectangle and the small rectangle: 30849 = 3 x 7 x 13 x 113.

4.7.9.3.1The inner rectangle expands: 8736 = 25 x 3 x 7 x 13.

4.7.9.3.2And the inner rectangle expands again: 13871 = 11 x 13 x 97.

4.7.9.5.1The inner rectangle sets the pattern for alternating small rectangles: 15834 = 2 x 3 x 7 x 13 x 29.

4.7.9.5.2The reverse of this pattern: 17836 = 22 x 73 x 13.

4.7.9.6Various pictures can be drawn: 15778 = 2 x 73 x 23.

4.7.9.6.2The reverse: 17892 = 22 x 32 x 7 x 71.

4.7.9.7.1The other side: 16597 = 7 x 2371.

4.7.9.7.2Reverse: 17073 = 32 x 7 x 271.

4.7.9.8.1White diamond: 24921 = 33 x 13 x 71.

4.7.9.8.2Black diamond: 8749 = 13 x 673. SF: 686 = 2 x 73.

4.8When the letters are added up one by one, there are forty-three instances when the accumulating total will be divisible by 13. The first time this happens is with the 13th letter. The positions where this occurs are listed below.

13 23 53 62 65 77 87 91 94 96 101 108 115 125 127 141 150 157 166 199 
212 221 234 245 249 256 266 284 290 313 321 338 355 376 388 402 417 
421 423 439 444 451 459

Total of the positions: 9854 = 2 x 13 x 379.

4.9The 459 letters can be divided into groups of 3 letters each. Individual groups are added, with odd valued groups all listed together and all even valued groups listed in another group.

4.9.1Odd valued groups of 3:

6   10  1       6   400 1       40  90  1       3   10  4
50  10  1       400 5   6       30  5   300     9   80  6
5   10  90      200 6   5       3   10  4       8   40  5
1   400 10      40  200 1       2   70  5       400 6   5
30  5   300     5   300 2       5   200 8       3   2   10
50  5   2       40  8   9       5   70  400     6   70  1
90  1   4       1   6   400     1   8   200     5   300 2
1   50  10      30  5   2       10  5   300     400 7   2
2   1   400     10  1   90      6   1   10      50  8   5
10  30  5       8   7   6       6   5   70      5   6   50
3   10  4       2   10  1       5   100 4       5   400 400

Total: 8112 = 24 x 3 x 132.

4.9.2Even valued groups of 3:

6   10  2       1   5   80      300 2   70      5   2   1
50  6   10      300 70  6       10  40  300     6   100 90
4   2   200     30  8   400     6   300 2       6   2   300
70  40  10      6   30  20      70  10  40      70  4   100
40  200 4       80  200 70      300 300 10      90  40  30
30  70  400     6   50  6       40  6   300     50  8   200
20  10  30      4   100 70      50  10  40      90  400 300
20  2   10      30  40  10      400 300 6       40  40  6
400 8   30      40  6   30      2   6   50      200 2   200
400 400 8       8   400 40      2   50  400     10  400 30
50  6   50      50  6   50      6   2   6       200 2   10
10  20  10      6   30  40      8   200 6       40  300 2
2   200 6       300 8   100     90  6   2       8   4   6
20  10  8       4   300 100     90  6   100     8   90  10
40  6   4       4   300 10      10  40  6       6   70  10
2   10  50      40  6   400     2   70  10      300 2   10
2   4   2       4   70  6       40  300 300     8   6   40
2   50  2       400 300 20      10  40  6       6   70  30
70  10  40      30  40  50      300 50  10      20  50  80
300 2   70      4   2   200     40  10  20      300 100 6
10  40  50      10  2   6       200 400 40      90  10  40
8   400 20      30  2   50      300 10  8       40  300 40
70  30  70      6   400 10      50  30  6       40  6   70
40  20  6       200 6   300     10  200 6       4   20  30
70  30  70      30  40  70      300 10  300     8   200 90
10  200 100     4   40  300     8   10  400     20  70  30
4   300 20      10  8   50      70  40  50      300 40  40
30  20  30

Total: 25558 = 2 x 13 x 983.

4.10The 459 letters form three groups of 153 letters each.

4.10.1The first and last groups (odd positioned groups): 21710 = 2 x 5 x 13 x 167.

4.10.2The middle group (even positioned): 11960 = 23 x 5 x 13 x 23.

Conclusion

All these numeric features can't be coincidence. They aren't by chance because many are paired as complementary opposites following Revelation 1:8. The many features that are multiples of 13 tie the prophecy to God. Features divisible by 7 in the text are exactly what the angel Gabriel described of seventy sevens as a part of Israel's history. Jesus has already fulfilled the most important part. He showed the way to end transgression. He paid the price of sin. He atoned for iniquity. Through him anyone can have everlasting righteousness. His death and resurrection completed the vision of many prophets, and anointed a most holy place.

Notes

  1. Unless otherwise stated, all reference quotes are from The Revised Standard Version, Thomas Nelson Inc., New York, 1972.
  2. The 109 words can also be collected into these alternating groups:
    4 and 17
    9 and 11
    9 and 16
    25 and 3
    40 and 29
    Each of these paired groups will be divisible by 13.

    They can also be gathered into these alternating groups:

    9 and 41
    15 and 32
    19 and 11
    23 and 20
    29 and 51
    34 and 41
    38 and 33
    41 and 27
    46 and 17
    Each of these paired groups will be divisible by 7.

    As the number of words in each of these groups are not divisible by 7 or 13 they are listed in the notes and not in the main study above.

    Curiously of these possible groupings, there are five pairs yielding totals divisible by 13, and nine pairs yielding totals divisible by 7 for a grand total of 14 (2 x 7).

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




The foolishness of God is greater than anything we can imagine (1 Corinthians 1:25). On the off chance the numbers are a form of foolishness, do not spend too much time on them.