Overlapping the Exodus story is another large text segment that is less well defined, but still bears God’s unique signature in numbers Numerics Gematria. This is the journey from Egypt to Sinai. It begins in chapter 10 verse 21, and ends in chapter 19 verse 1. Israel travels from the darkness of Egypt to the mountain of light.1
Then the LORD said to Moses, Stretch out your hand toward heaven that there may be darkness over the land of Egypt, a darkness to be felt. (Exodus 10:21)
On the third new moon after the people of Israel had gone forth out of the land of Egypt, on that day they came into the wilderness of Sinai. (Exodus 19:1)
This text segment covers 230 verses, and has 3400 words comprising 12803 letters.
Primary Features
(Derived from Revelation 1:8 and grouped for easy reference.)
A.1Numeric total of the passage: 834715 = 5 x 7 x 7 x 3407. (See feature 3.4.)
A.5Number of letters: 12803 = 7 x 31 x 59. (See feature 3.3.)
B.1.2Every other chapter (even positions): 247299 = 3 x 13 x 17 x 373. (See feature 1.2.2.)
B.3Every other word (odd positions): 417284 = 2 x 2 x 7 x 7 x 2129. (See feature 4.1.)
B.3.2Every other word (even positions): 417431 = 7 x 7 x 7 x 1217. (See feature 4.2.)
B.4Every other letter (odd positions): 412874 = 2 x 7 x 7 x 11 x 383. (See feature 5.1.)
B.4.2Every other letter (even positions): 421841 = 7 x 7 x 8609. (See feature 5.2.)
C.1First and last chapter: 33789 = 3 x 7 x 1609. (See feature 1.1.)
C.1.4First and last letter of each chapter: 875 = 5 x 5 x 5 x 7. (See feature 1.4.)
C.3.2First and last letter of each word: 374997 = 3 x 7 x 7 x 2551. (See feature 6.3.)
D.2First verse: 3066 = 2 x 3 x 7 x 73. (See feature 2.1.1.)
D.2.2First word of each verse: 63315 = 3 x 3 x 3 x 5 x 7 x 67. (See feature 2.1.2.)
D.3.3First letter of each word: 121485 = 3 x 5 x 7 x 13 x 89. (See feature 6.1.)
E.3.3Last letter of each word: 253512 = 2 x 2 x 2 x 3 x 3 x 7 x 503. (See feature 6.2.)
F.1First half of the verses: 415842 = 2 x 3 x 7 x 9901. (See feature 2.5.3.2.)
F.2.2Last half of the verses: 418873 = 7 x 13 x 4603. (See feature 2.5.3.3.)
Chapter Features
a) Chapter count.
b) Chapter number.
c) Chapter total.
a) 1 2 3 4 5 6 7 8 9 10
b) 10 11 12 13 14 15 16 17 18 19
c) 30525 40019 199295 70380 107204 77936 138437 55700 111955 3264
1.1The first and last chapters: 33789 = 3 x 7 x 1609. (This means the middle 8 chapters would be 800926 = 2 x 7 x 19 x 3011.)
1.2.1The first chapter and every third after: 242606 = 2 x 7 x 13 x 31 x 43.
1.2.2Even positioned chapters: 247299 = 3 x 13 x 17 x 373. SF: 406 = 2 x 7 x 29.
1.2.3Every third chapter: 389186 = 2 x 7 x 27799.
1.3Odd positioned segments two chapters long: 370903 = 13 x 103 x 277.
1.4First and last letter of each chapter: 875 = 5 x 5 x 5 x 7.
2.1Number of verses: 230 = 2 x 5 x 23. SF: 30 = 2 x 3 x 5. SF: 10 = 2 x 5. SF: 7. (While God is not seen in any of the factors, He is seen at the very end of the chain of factors.) The number 23 is humanity's number, representing our chromosomes.
2.1.1First verse: 3066 = 2 x 3 x 7 x 73.
2.1.2First word of each verse: 63315 = 3 x 3 x 3 x 5 x 7 x 67.
2.2If the 230 verses are numbered from 1 to 230, the sum of these numbers would be 26565 = 3 x 5 x 7 x 11 x 23. SF: 49 = 7 x 7. SF: 14 = 2 x 7.
2.2.2When the 12803 letter positions are added together, the sum is 81964806 = 2 x 3 x 7 x 11 x 31 x 59 x 97. Since the number of letters is divisible by 7, it is only natural that their sum is as well. However, what cannot be anticipated is whether or not the sum of the factors is also divisible by 7. In this case, it is: 210 = 2 x 3 x 5 x 7.
2.3The first word of each verse in this segment yields a total of 56104, and this has no features. It represents the beginning of the journey, which is in the darkness of Egypt. The last word of each verse is different: 63315 = 3 x 3 x 3 x 5 x 7 x 67. This represents the arrival at the wilderness of Sinai. Israel has left the darkness of Egypt. (The sum of the factors is 88. While this is not divisible by 7 or 13, its symmetrical digits are reminiscent of the one same God who is at the beginning and end of every journey.)
2.4There are no features for the first letter of each verse, or for the last letter. First (6275) and last (13620) total 19895 = 5 x 23 x 173. In this case, factor 23 represents humanity and points to Israel on the journey.
2.5.1The first and last 7 verses: 49693 = 7 x 31 x 229. This breaks down perfectly individually.
2.5.1.2First 7 verses: 23772 = 2 x 2 x 3 x 7 x 283.
2.5.1.3Last 7 verses: 25921 = 7 x 7 x 23 x 23.
2.5.2The first and last 52 verse totals: 416122 = 2 x 7 x 29723. This also breaks down perfectly.
2.5.2.2First 52 verses: 212436 = 2 x 2 x 3 x 3 x 3 x 7 x 281. SF: 301 = 7 x 43.
2.5.2.3Last 52 verses: 203686 = 2 x 7 x 14549.
2.5.3The first and last 115 verses (N.B. 115 = 23 x 5) actually covers the entire passage: 834715 = 5 x 7 x 7 x 3407. Once again first and last separately work as well. (This is the numeric total of the passage.)
2.5.3.2First 115 verses: 415842 = 2 x 3 x 7 x 9901.
2.5.3.3Last 115 verses: 418873 = 7 x 13 x 4603.
2.6This can also be done after the verse totals have been sorted from least to greatest.
2.6.1From the sorted list look for the first N totals and last N totals where the results of the first and last together are divisible by 7 or 13, and where they individually are also divisible by the same. Four sets work first and last: 29, 33, 75, and 94.
2.6.2The sum of these four numbers: 231 = 3 x 7 x 11. SF: 21 = 3 x 7. SF: 10 = 2 x 5. SF: 7.
2.6.3The letters of the divine name are used to count through the sorted list eight times: 107954 = 2 x 7 x 11 x 701. SF: 721 = 7 x 103.
2.6.4Every tenth total of the sorted list: 87685 = 5 x 13 x 19 x 71.
2.6.5Every 23rd total starting with the first: 32344 = 2 x 2 x 2 x 13 x 311.
2.6.6This time, look at the first N totals and the last N totals. Note all those that produce sums divisible by 7 or 13 when first and last are added together, whether or not they individually are divisible by 7 or 13. The ones that worked: 7 20 22 33 41 46 67 73 74 81 87 90 91 111 115 8 11 42 43 45 86 88 110. (Again there are 23 of them to represent Israel.) The sum of the twenty-three numbers: 1391 = 13 x 107.
2.7Revelation 1:8's statement is, was, and is to come led to the principle of every other instant in time. Features elsewhere in this study were of odd and even positioned words and letters. This is now applied to the verses. Since Israel's journey covers quite a length of time, we look at longer segments within the passage and not just every other verse. How long a segment? This is determined by the number of verses.
2.7.1The entire passage can be broken into alternating segments of paired verses. The first pair of verses is in an odd position, while the second pair is in an even position. The sum of all the odd positioned pairs: 422240 = 2 x 2 x 2 x 2 x 2 x 5 x 7 x 13 x 29. Both factors associated with God appear. The sum of all the even positioned pairs: 412475 = 5 x 5 x 7 x 2357.
2.7.2This can also be done by breaking the entire passage into segments 10 verses long. In this case, all the odd positioned segments total 439383 = 3 x 7 x 7 x 7 x 7 x 61 (four factors of 7!). And all the even positioned segments: 2 x 2 x 7 x 7 x 2017 (two factors of 7).
2.8Twenty-eight verses begin and end with the same letter. The sum of their totals: 89037 = 3 x 3 x 13 x 761. SF: 78 = 2 x 3 x 13
2.9God is the beginning and end (Revelation 1:8). This shows in the relationship between the verse totals at the beginning of the segment, and at the end. Six verse totals are related by their positions from the beginning and end of the text segment.
2.9.1The 24th verse from the beginning plus the 24th verse from the end: 6853 = 7 x 11 x 89. They are also individually divisible by 7. The 24th verse has a total of 2758 (2 x 7 x 197), and 24th verse from the end has a total of 4095 (3 x 3 x 5 x 7 x 13). Note: The 24th verse from the end is actually the 207th verse from the beginning.
2.9.2The 35th verse from beginning plus the 35th verse from the end: 8722 = 2 x 7 x 7 x 89. SF: 105 = 3 x 5 x 7. Like the 24th verse, each are also individually divisible by 7. The 35th from the beginning: 4928 = 2 x 2 x 2 x 2 x 2 x 2 x 7 x 11. The 35th from the end (or 196th from the beginning): 3794 = 2 x 7 x 271. SF: 280 = 2 x 2 x 2 x 5 x 7.
2.9.3And finally, the 74th verse from beginning plus the 74th verse from the end: 5159 = 7 x 11 x 67. The 74th verse from the beginning: 987 = 3 x 7 x 47. The 74th verse from the end (or 157th from the beginning): 4172 = 2 x 2 x 7 x 149. (The relationship is shown in the following chart.)
a) Beginning position b) Verse total
c) End position d) Verse total
e) Verse values together
a) 24 35 74 = 133 = 7 x 19. SF: 26 = 2 x 13.
b) 2758 4928 987
c) 207 196 157 = 560 = 2 x 2 x 2 x 2 x 5 x 7.
d) 4095 3794 4172
e) 6853 8722 5159
The beginning verse positions (133) are divisible by 7 as are the end verse positions (560). Naturally, combining the positions together would also produce a sum divisible by 7: 693 = 3 x 3 x 7 x 11.
2.9.4A wider search can be made using the technique above by relaxing the restriction that the pair must individually be divisible by 7. The chart below presents the second relationship.
a) Beginning position b) Verse total
c) End position d) Verse total
e) Verse values together
a) 4 9 11 15 18 24 26 31 35 36
b) 3264 2297 3562 3177 3573 2758 4292 4460 4928 7254
c) 227 222 220 216 213 207 205 200 196 195
d) 7306 6089 3060 6532 2160 4095 3723 5179 3794 3477
e) 10570 8386 6622 9709 5733 6853 8015 9639 8722 10731
a) 65 66 74 76 91 97 98 114 = 890
b) 3392 1858 987 2381 2929 4322 1683 2306
c) 166 165 157 155 140 134 133 117 = 3268
d) 5106 3742 4172 3016 3854 2608 2531 4120
e) 8498 5600 5159 5397 6783 6930 4214 6426
As can be seen, the positions individually yield no features (890 = 2 x 5 x 89 and 3268 = 2 x 2 x 19 x 43). But this is because the verses from the beginning and from the end have to stand together. Following the same pattern, the sum of the positions are put together: 890 + 3268 = 4158 = 2 x 3 x 3 x 3 x 7 x 11.
2.9.5The third relation is found by finding totals divisible by 13 (the number Numerics Gematria associated with God's name in Hebrew). A search from the beginning and from the end finds two pairs of verse totals, which together are divisible by 13, and which individually are also divisible by 13.
a) Beginning position b) Verse total
c) End position d) Verse total
e) Verse values together
a) 63 106 = 169 = 13 x 13. SF: 26 = 2 x 13.
b) 2158 1625
c) 168 125 = 293 = 293.
d) 1963 1781
e) 4121 3406
The beginning positions are the square of 13, but the end positions have no feature. Together: 169 + 293 = 462 = 2 x 3 x 7 x 11.
2.9.6The fourth relation is found by finding verse pairs from beginning and end which must stand together before they are divisible by 13.
a) Beginning position b) Verse total
c) End position d) Verse total
e) Sum of the two ends
a) 14 18 21 22 41 43 52 55 63 70 72
b) 4533 3573 2658 4923 7872 2141 3058 2994 2158 2797 2073
c) 217 213 210 209 190 188 179 176 168 161 159
d) 1915 2160 6793 4281 1982 4996 5756 2882 1963 895 4583
e) 6448 5733 9451 9204 9854 7137 8814 5876 4121 3692 6656
a) 104 106 = 681 = 3 x 227.
b) 4606 1625
c) 127 125 = 2322 = 2 x 3 x 3 x 3 x 43.
d) 2531 1781
e) 7137 3406
Once again the beginning and end number of verses has to be put together: 681 + 2322 = 3003 = 3 x 7 x 11 x 13.
2.10.1The first eight and last eight verses together have a combined total divisible by thirteen. The same holds true for the first and last 11, 42, 43, 45, 86, 88, and 110 verses.
The numbers that define these groups of first and last verses add up to 441 (8 + 433), and 441 = 3 x 3 x 7 x 7.
2.10.2The previous feature concentrated on starting from the very first verse and very last verse. But the search can be expanded to start from the second verse from the beginning, and the second verse from the end, or any other verse. This produces a much longer list of sections divisible by 7 or 13.
930 paired groups (beginning and end) are together divisible by seven. Exactly thirteen of the 930 are divisible by 343. (These pairs were chosen to be divisible by 7. Thus the odds would suggest one in seven of the 930 would be divisible by 49, and one in forty-nine would be divisible by 343. This means there could have been 18 or 19. Rather than have a higher number, there are only thirteen.) The thirteen are listed below.
a) Group's start position. b) Group's end position.
c) Total of both groups (beginning & end).
a) 2 4 6 13 13 20 26
b) 107 54 51 58 103 45 93
c) 774494 407827 370097 367010 661990 208201 501123
a) 28 33 41 59 71 96
b) 106 102 65 103 99 110
c) 564578 500437 184191 294980 194824 93982
The sum of the positions (line A plus line B): 1508 = 22 x 13 x 29.
The sum of line C: 5123734 = 2 x 74 x 11 x 97. (These were chosen because they were already divisible by 343. Now there is an extra factor of 7.)
2.10.3491 paired groups (beginning and end) are together divisible by 13. Only one is divisible by 13 three times. This first group ranges from the 53rd verse to the 107th verse, and the second group from the 53rd last verse to the 107th last verse. The total of both groups: 364702 = 2 x 133 x 83.
These paired groups have an additional feature. Four sets can be chosen from 491 whose beginning and end positions add up to totals divisible by 7. Each set also has the special characteristic of either beginning or ending with the same position.
a) Group's start position. b) Group's end position.
c) Total of both groups (beginning & end).
a) 32 59 = 91 = 7 x 13
b) 63 63 = 126 = 2 x 3 x 3 x 7
c) 251355 30589 = 281944 = 2 x 2 x 2 x 13 x 2711
a) 16 18 19 36 38 55 56 = 238 = 2 x 7 x 17
b) 65 65 65 65 65 65 65 = 455 = 5 x 7 x 13
c) 386022 369421 363688 227227 210704 72787 66911 = 1696760 = 2 x 2 x 2 x 5 x 13 x 13 x 251
a) 6 33 52 53 61 68 = 273 = 3 x 7 x 13
b) 70 70 70 70 70 70 = 420 = 2 x 2 x 3 x 5 x 7
c) 496769 286676 126672 117858 60697 19851 = 1108523 = 13 x 71 x 1201
a) 11 13 21 22 23 50 58 72 73 = 343 = 7 x 7 x 7
b) 77 77 77 77 77 77 77 77 77 = 693 = 3 x 3 x 7 x 11
c) 505050 491881 430495 421044 411840 189098 138918 46774 40118 = 2675218 = 2 x 7 x 13 x 14699
The sum of lines A and B: 2639 = 7 x 13 x 29. These were chosen to be divisible by 7, but now they are also divisible by 13.
2.10.4This might all seem coincidental until the total number found for both 7 and 13 are put together (features 2.10.2 and 2.10.3). 930 + 491 = 1421 = 72 x 29.
2.10.5Employing a stricter rule where the beginning and end groups must also be individually divisible by 7 produces a smaller result of 123. Applying the same where the groups must individually be divisible by 13 finds 38. And once again 123 + 38 = 161 = 7 x 23.
2.11Fourteen (2 x 7) sequences of verses can be pulled from the segment to produce sums divisible by 7 (every 8th, 10th, 14th, 21st, 33rd, 49th, 50th, 54th, 64th, 66th, 72nd, 74th, 80th, and every 82nd verse).
8 96376 = 2 x 2 x 2 x 7 x 1721.
10 77819 = 7 x 11117.
14 61509 = 3 x 7 x 29 x 101. SF: 140 = 2 x 2 x 5 x 7.
21 38941 = 7 x 5563.
33 20013 = 3 x 7 x 953.
49 11347 = 7 x 1621.
50 17010 = 2 x 3 x 3 x 3 x 3 x 3 x 5 x 7.
54 19873 = 7 x 17 x 167.
64 8197 = 7 x 1171.
66 9954 = 2 x 3 x 3 x 7 x 79.
72 10773 = 3 x 3 x 3 x 3 x 7 x 19.
74 10703 = 7 x 11 x 139.
80 4935 = 3 x 5 x 7 x 47.
82 6146 = 2 x 7 x 439. SF: 448 = 2 x 2 x 2 x 2 x 2 x 2 x 7.
2.12Every 13th verse: 61529 = 13 x 4733. SF: 4746 = 2 x 3 x 7 x 113.
2.13.1Revelation 1:8 describes God with complementary opposites. In mathematics, odd and even numbers are also complementary. Ninety-seven verse totals are odd. The sum of these verses: 346203 = 3 x 3 x 11 x 13 x 269. SF: 299 = 13 x 23.
2.13.2A hundred and thirty-three (7 x 19. SF: 26 = 2 x 13) verse totals are even. While the sum of these verses has no feature, the number of the verses does.
2.14The sum of the positions of the verses whose totals are prime numbers: 3354 = 2 x 3 x 13 x 43.
2.15Twenty-five verses have totals divisible by 13. The sum of these totals: 82628 = 2 x 2 x 7 x 13 x 227. (An extra factor of 7 appears.)
2.16Five verses are divisible by 7 and 13: 17199 = 3 x 3 x 3 x 7 x 7 x 13. (Their combined total produces an extra factor of 7.)
2.17Load the 230 verse totals into a 23 x 5 x 2 block (two rectangles 23 x 5).
2.17.1The first rectangle: 415842 = 2 x 3 x 7 x 9901.
2.17.2The second rectangle: 418873 = 7 x 13 x 4603.
2.17.3Eight corners: 23870 = 2 x 5 x 7 x 11 x 31.
2.17.4The perimeter of the top rectangle: 180882 = 2 x 3 x 3 x 13 x 773.
2.17.5The perimeter of the second: 183517 = 23 x 79 x 101.
2.17.6The perimeter of both rectangles: 364399 = 7 x 52057.
2.17.7Every other row: 485530 = 2 x 5 x 23 x 2111.
The Words And Letters
3.2Number of words: 3400 = 2 x 2 x 2 x 5 x 5 x 17. (Can this be pointing to the 34th chapter where God's proclamation resides?)
3.3Number of letters: 12803 = 7 x 31 x 59.
3.4Numeric total: 834715 = 5 x 7 x 7 x 3407.
4.1Odd positioned words: 417284 = 2 x 2 x 7 x 7 x 2129.
4.2Even positioned words: 417431 = 7 x 7 x 7 x 1217.
5.1Odd positioned letters: 412874 = 2 x 7 x 7 x 11 x 383.
5.2Even positioned letters: 421841 = 7 x 7 x 8609. (Four features have two factors of seven in each of them. One has three!)
6.1Total of the first letter of each word: 121485 = 3 x 5 x 7 x 13 x 89. SF: 117 = 3 x 3 x 13.
6.2Total of the last letter of each word: 253512 = 2 x 2 x 2 x 3 x 3 x 7 x 503.
6.3First and last letters of each word: 374997 = 3 x 7 x 7 x 2551. (An extra factor of 7 appears.)
7Use the factors of 3400 to selectively choose words from the passage.
7.1Begin with the first word and take every fifth after: 154035 = 3 x 3 x 3 x 5 x 7 x 163.
7.2Take every fifth word: 172193 = 7 x 17 x 1447.
7.3Every 25th word: 32928 = 2 x 2 x 2 x 2 x 2 x 3 x 7 x 7 x 7.
7.4Begin with the first word and take every 40th after: 16016 = 2 x 2 x 2 x 2 x 7 x 11 x 13. SF: 39 = 3 x 13.
7.5Every 50th word: 16419 = 3 x 13 x 421.
7.6Every 100th word: 10017 = 3 x 3 x 3 x 7 x 53.
7.7Start with the first word and take every 200th after: 3878 = 2 x 7 x 277. SF: 286 = 2 x 11 x 13. SF: 26 = 2 x 13.
7.8Every 68th word: 13000 = 2 x 2 x 2 x 5 x 5 x 5 x 13.
7.9Every 136th word: 6615 = 3 x 3 x 3 x 5 x 7 x 7. SF: 28 = 2 x 2 x 7.
7.10Take the first word and every 85th word after: 9338 = 2 x 7 x 23 x 29.
8Use the factors of the letters to pull sequences of letters.
8.1Every 31st letter: 25956 = 2 x 2 x 3 x 3 x 7 x 103.
8.2Begin with the first letter and take every 59th after: 13237 = 7 x 31 x 61.
9The number of words is such a round number yielding paired factors it invites further investigation by loading the word values into a 10 x 10 x 34 block (34 squares of 10 x 10). Each layer is loaded row by row from top to bottom, and each row is loaded with words from left to right.
Layer 1 (10 x 10 x 34)
257
26
31
345
64
34
100
395
31
328
100
291
380
356
328
25
345
401
20
100
395
31
328
116
52
291
380
1030
100
31
207
311
401
25
37
146
311
864
1030
100
86
62
541
20
207
790
317
355
31
345
257
56
82
401
26
300
201
368
103
43
149
60
170
257
345
43
406
850
72
67
512
442
56
102
49
246
60
166
31
901
345
30
136
158
106
401
26
102
121
31
124
45
126
401
26
74
59
345
131
26
Layer 2
401
32
355
37
8
408
257
36
355
50
150
545
50
31
540
607
140
30
58
621
140
846
257
345
70
606
31
141
80
607
160
257
26
31
345
80
123
13
14
100
355
106
380
219
70
348
461
52
364
55
503
513
461
52
206
51
70
115
353
311
441
281
312
441
681
60
160
66
14
466
26
401
58
115
142
380
43
316
345
43
45
293
380
142
86
355
148
115
257
345
25
241
26
518
80
61
107
428
380
446
Layer 3
50
228
293
380
268
355
317
100
87
74
228
398
501
209
263
56
228
52
426
265
42
52
291
380
501
71
31
470
77
31
540
86
62
541
31
308
52
386
381
80
52
190
530
501
125
26
62
380
68
541
226
50
106
36
41
731
40
271
91
406
56
115
501
265
225
70
92
107
150
355
220
81
257
26
31
345
31
420
101
355
190
608
536
293
380
351
262
376
401
50
575
41
170
355
131
26
401
32
355
37
Layer 4
338
401
62
541
337
257
26
31
345
37
256
293
380
271
317
17
90
501
362
557
12
90
352
360
212
31
50
474
541
271
572
342
17
130
75
311
305
442
403
305
442
47
129
417
455
345
144
12
382
307
31
418
522
830
311
120
57
486
100
310
305
490
227
52
355
30
90
90
377
96
132
514
26
90
1010
74
278
570
56
342
17
329
407
50
135
474
541
62
327
150
90
49
512
100
710
465
106
531
100
457
Layer 5
501
67
407
47
63
401
507
77
17
130
301
542
100
490
72
31
457
136
51
338
372
92
30
41
130
301
507
100
306
106
308
37
1022
136
74
302
661
136
74
302
303
986
51
457
407
560
261
220
305
236
76
497
407
153
148
12
56
688
293
380
77
17
451
50
228
293
380
85
80
52
58
46
380
376
439
61
26
26
49
90
431
100
457
501
441
340
627
401
49
564
160
37
30
62
133
788
437
293
380
26
Layer 6
61
17
90
313
457
407
11
56
704
508
146
422
772
100
536
457
21
58
562
1118
501
512
30
50
51
138
681
435
17
581
96
556
74
56
387
64
562
341
404
64
397
341
404
30
90
50
96
31
385
47
21
501
61
80
430
12
42
385
90
986
401
541
30
202
61
17
512
401
569
331
380
986
401
61
17
704
508
146
553
280
570
56
342
274
457
530
74
56
18
626
342
274
772
100
501
31
141
474
30
50
Layer 7
51
578
681
435
17
514
541
205
224
296
50
578
31
457
52
818
457
536
317
345
80
167
541
257
76
366
120
90
141
928
329
153
584
408
16
487
46
501
142
524
31
531
37
710
465
90
49
501
142
447
31
497
311
528
418
74
302
278
26
163
401
380
212
401
49
100
531
106
710
465
154
26
100
493
37
460
763
33
31
472
163
986
401
211
17
138
50
118
74
146
26
30
409
31
296
501
460
26
90
521
Layer 8
206
986
401
86
413
26
30
257
101
122
45
86
413
90
687
17
148
12
56
501
148
100
412
62
541
382
141
401
380
407
468
135
120
115
736
72
392
62
541
521
101
26
401
345
262
70
376
31
110
80
32
30
50
228
293
380
262
355
317
100
87
74
228
317
501
414
213
56
228
52
156
355
75
12
56
92
56
380
421
265
42
382
30
61
412
501
61
340
440
317
375
292
75
257
152
97
466
120
43
441
Layer 9
43
62
541
62
82
401
26
286
43
201
43
362
114
521
646
62
668
43
411
521
380
100
115
275
408
90
296
30
247
106
490
317
115
401
198
249
148
981
890
812
100
400
68
541
376
226
345
353
420
60
160
66
14
776
32
500
401
58
115
142
380
393
192
401
380
152
62
541
470
485
620
447
111
243
260
36
129
49
272
202
105
441
147
308
195
26
45
103
401
197
501
118
420
473
536
30
31
138
30
509
Layer 10
420
37
66
525
49
99
31
376
75
354
62
541
501
318
382
680
355
279
447
355
31
230
680
355
279
447
355
31
202
61
17
107
50
499
26
331
380
70
590
12
56
182
331
380
12
80
17
56
590
80
62
541
674
257
26
31
345
262
408
508
153
50
52
270
31
61
8
56
76
311
590
160
481
407
8
61
8
708
536
31
61
8
414
13
61
31
507
90
417
90
507
109
206
31
908
8
50
474
541
386
Layer 11
407
36
219
421
203
381
148
56
81
36
50
227
14
312
806
26
236
296
56
300
31
61
8
611
409
30
246
239
208
488
392
50
62
541
521
101
26
401
345
407
256
70
376
31
202
61
17
112
26
401
62
541
331
380
100
533
222
26
31
345
271
404
40
50
228
289
50
248
64
541
47
60
40
12
257
345
31
115
233
401
61
17
501
541
420
452
126
30
117
14
112
26
461
52
37
61
138
61
441
151
Layer 12
314
20
26
30
43
26
31
291
205
429
262
35
99
501
422
463
830
50
291
409
40
312
482
401
86
413
314
17
772
100
451
530
64
397
11
56
536
61
401
772
105
37
216
50
138
37
216
50
501
52
55
418
102
58
17
271
280
12
375
26
40
503
420
26
50
437
100
34
319
62
160
190
420
1006
26
112
30
16
120
122
26
420
946
401
118
413
155
140
105
26
30
33
26
31
291
205
521
422
50
469
Layer 13
511
50
683
50
289
248
56
56
289
503
52
501
30
50
282
56
56
289
248
489
307
47
31
489
762
56
228
45
84
489
26
30
361
72
248
271
45
408
647
47
117
14
168
26
420
452
126
31
30
410
355
424
224
26
50
228
293
380
262
45
80
228
52
100
70
61
17
56
50
289
248
282
56
228
62
90
26
437
100
39
540
62
160
30
117
14
168
26
420
31
340
355
401
115
37
98
86
224
291
860
Layer 14
30
308
12
30
241
86
130
108
115
643
123
314
385
78
86
401
115
224
251
50
146
404
106
62
541
331
380
124
345
401
606
156
116
30
377
387
401
62
541
271
184
194
86
461
561
401
610
52
461
152
520
80
443
197
251
32
55
215
96
122
170
528
229
81
122
301
246
75
480
96
81
31
360
120
175
96
126
306
75
170
115
222
26
31
345
271
206
31
62
541
324
80
170
90
623
62
77
68
55
170
Layer 15
102
220
84
464
100
55
247
355
92
541
122
45
293
263
155
251
531
401
32
355
290
264
38
357
58
54
96
380
30
61
26
392
70
23
120
380
30
210
115
121
34
355
98
31
115
263
45
408
436
30
394
401
541
172
277
401
228
407
116
138
116
124
600
447
222
216
56
222
380
676
100
56
131
26
401
32
355
90
380
300
219
62
541
68
541
151
16
245
306
380
264
335
447
108
100
55
50
126
222
355
Layer 16
602
60
100
90
623
170
102
220
361
317
323
62
541
401
185
66
380
180
264
233
45
282
62
541
31
26
263
31
345
87
61
352
382
594
476
248
45
408
780
86
198
420
36
12
211
501
262
61
382
271
42
136
137
401
380
30
17
86
76
401
380
536
248
257
345
31
115
31
617
513
213
401
786
26
501
385
90
61
30
501
651
401
380
61
31
556
671
80
74
146
26
88
90
447
974
257
26
31
345
45
Layer 17
660
41
206
31
62
541
152
412
245
401
69
70
401
34
100
55
189
25
62
541
428
55
319
67
115
155
401
32
380
25
264
38
357
58
54
230
604
96
380
30
61
26
43
357
230
604
146
91
91
60
170
103
541
66
304
146
120
175
225
130
304
19
62
103
380
68
103
541
31
175
339
217
401
80
37
302
12
31
12
50
80
25
345
401
20
100
55
72
26
401
55
216
154
82
50
80
356
401
55
245
Layer 18
194
95
25
62
541
428
55
319
101
75
53
190
457
306
380
25
264
50
126
355
228
602
31
426
55
31
943
307
496
26
31
103
380
122
301
176
61
401
103
380
276
401
131
678
85
428
257
380
122
180
541
30
26
128
75
382
257
26
31
345
64
401
34
100
55
324
95
100
380
100
228
106
596
25
345
401
20
100
55
318
55
566
302
497
386
160
737
336
26
401
380
428
55
324
95
102
401
227
407
635
Layer 19
80
48
355
58
264
52
31
551
47
74
13
68
541
61
319
428
55
101
75
53
190
457
392
26
58
17
401
541
54
380
217
541
401
380
440
100
780
55
217
541
401
19
47
501
375
26
382
233
115
401
26
123
28
353
82
8
520
345
68
541
401
520
413
56
263
271
516
56
30
9
9
126
234
245
52
87
653
15
31
40
421
12
41
74
46
13
348
26
311
123
26
346
662
355
60
215
52
256
646
87
Layer 20
52
146
845
146
220
568
66
53
130
26
265
30
130
26
760
19
210
80
665
170
738
278
107
420
222
111
366
90
148
66
54
137
187
845
34
50
241
19
285
314
139
360
517
440
311
220
962
24
830
236
126
50
156
776
92
265
50
85
73
26
50
85
255
406
257
835
375
111
469
130
548
291
468
94
110
13
434
485
99
31
61
424
416
160
276
48
16
322
810
8
93
127
51
51
49
72
274
99
50
322
Layer 21
190
510
155
456
98
39
303
60
73
74
282
130
26
74
282
110
13
560
449
531
207
508
116
752
580
26
444
65
132
44
26
100
170
80
30
3
126
355
230
604
52
318
26
145
401
50
55
68
541
61
319
428
55
514
290
73
415
256
401
485
21
547
50
405
224
532
486
526
75
290
516
56
30
9
9
126
234
245
52
146
345
401
541
90
146
113
31
246
506
72
1030
100
248
37
137
90
25
645
37
66
Layer 22
1130
90
285
30
290
45
100
70
301
345
245
102
115
100
345
271
45
755
276
31
26
233
26
160
366
31
95
562
95
340
340
36
108
435
346
121
257
41
416
810
166
26
66
521
148
775
469
582
946
50
124
50
88
501
750
382
31
351
130
30
61
26
301
25
86
346
750
575
530
90
428
690
80
340
100
95
152
121
25
50
474
62
541
31
246
120
501
62
81
68
130
355
570
56
342
365
561
331
380
112
Layer 23
50
474
62
541
100
345
106
256
248
263
76
62
541
50
460
502
16
26
293
380
760
100
270
507
109
78
402
30
542
457
31
251
17
485
401
50
140
17
274
257
26
31
345
115
299
90
78
90
395
107
115
151
206
56
64
190
167
65
1018
41
31
26
58
615
97
401
501
29
26
395
100
501
155
56
56
257
345
262
31
50
62
541
272
530
30
26
112
461
331
380
308
657
401
32
26
418
401
950
100
26
Layer 24
120
45
30
492
166
257
345
802
26
90
274
502
81
84
304
402
412
26
401
950
501
441
170
116
120
45
31
166
950
30
100
26
257
345
31
256
241
31
50
474
62
541
308
170
26
30
410
401
950
31
226
256
31
50
474
62
541
152
31
251
66
32
26
256
172
222
26
31
345
271
820
401
886
62
541
206
76
271
62
327
457
502
310
778
78
530
30
61
26
106
31
274
506
341
486
401
108
310
420
722
Layer 25
44
74
133
506
722
44
66
100
140
251
104
248
104
320
100
296
223
62
541
263
311
31
25
90
12
30
31
90
45
12
257
345
76
12
83
501
500
26
90
86
12
211
501
101
26
145
136
311
120
57
310
496
380
900
311
531
44
514
392
70
62
541
161
252
180
66
312
37
169
252
180
31
283
311
120
57
145
257
345
76
311
31
616
136
74
302
37
416
31
345
628
401
136
74
302
256
556
319
286
145
Layer 26
345
161
407
304
304
311
110
57
54
645
156
31
58
615
145
78
395
360
315
43
25
50
371
84
39
375
257
76
12
501
206
26
758
702
404
56
248
401
501
487
87
407
501
738
338
407
50
159
79
90
1010
74
307
90
407
74
307
521
101
345
37
318
251
31
420
8
257
345
62
61
30
702
61
56
61
31
542
311
1000
100
550
64
397
702
31
30
8
31
58
397
107
90
115
169
37
137
257
26
31
345
Layer 27
74
56
531
570
546
1022
207
30
26
500
90
707
100
70
12
500
90
58
615
78
106
308
311
824
31
101
311
226
58
397
724
115
58
387
323
412
541
401
346
90
18
297
7
82
131
608
308
257
345
12
211
501
101
26
71
315
136
1010
704
190
217
401
83
501
466
461
248
124
461
331
380
257
345
31
256
108
680
409
456
345
71
315
90
69
407
170
26
1010
704
521
101
26
31
345
95
256
170
479
1010
68
Layer 28
541
57
401
95
323
355
74
43
31
291
758
401
95
57
74
43
31
195
291
190
321
980
101
12
152
50
474
62
541
286
120
255
100
90
26
80
346
67
90
1130
115
218
115
110
345
263
456
86
90
761
257
75
345
45
668
124
45
566
401
26
147
340
115
120
96
115
100
345
257
75
12
571
420
485
411
407
62
407
200
133
276
345
31
26
271
45
376
140
17
80
119
256
257
26
31
345
272
170
115
114
Layer 29
421
207
541
75
501
435
8
401
216
108
36
461
115
114
190
340
100
301
212
441
298
113
136
90
711
115
386
70
345
170
167
541
317
340
191
105
263
100
212
62
541
106
550
401
26
271
315
26
360
41
61
19
240
94
110
541
336
257
345
31
391
210
86
401
97
83
242
248
81
142
100
501
85
60
91
26
386
391
521
241
36
345
113
242
351
256
220
106
501
85
26
521
260
345
20
211
541
527
78
20
Layer 30
211
240
30
345
76
130
53
372
824
318
115
262
220
466
32
52
13
58
13
31
30
102
74
3
645
354
391
401
240
407
116
120
210
257
26
31
345
422
408
283
342
356
70
391
30
53
54
401
227
240
848
395
68
345
57
317
346
26
120
257
30
14
100
80
15
123
56
242
244
204
426
616
75
104
458
345
401
50
501
375
86
375
577
116
30
112
26
401
541
420
124
616
458
345
401
375
701
345
209
359
Layer 31
407
360
67
501
340
18
543
30
241
203
435
293
285
346
18
318
30
46
13
289
196
250
355
19
616
458
345
74
713
31
345
31
251
501
12
63
340
205
91
257
31
345
61
478
616
3
61
727
366
67
115
107
345
731
464
730
416
36
353
311
311
406
25
46
356
345
494
401
50
501
375
26
385
416
100
411
541
401
50
441
501
571
226
176
26
28
616
100
50
27
501
375
26
571
501
141
54
380
257
616
Layer 32
228
26
501
135
461
54
380
60
355
501
135
401
115
848
14
380
475
494
30
43
26
90
91
30
208
501
17
155
124
616
458
345
105
73
116
19
256
56
167
541
81
78
110
458
345
170
91
31
688
318
345
419
401
115
130
115
100
345
90
307
74
277
217
458
345
401
50
501
12
375
140
257
45
211
17
501
406
375
140
120
406
318
56
56
115
142
130
90
302
74
272
257
345
494
30
13
41
115
534
86
Layer 33
30
30
75
206
3
41
805
62
311
68
281
501
401
118
91
407
1022
257
458
345
47
31
17
211
501
406
375
82
432
43
406
43
115
17
501
130
30
26
100
211
31
456
381
56
475
410
142
191
31
86
130
20
406
140
76
91
414
406
401
261
31
91
628
446
401
163
407
1011
491
75
401
229
66
7
407
420
501
436
412
420
90
115
361
48
221
86
361
441
361
162
746
145
510
161
510
447
510
398
516
970
Layer 34
401
401
115
52
470
26
50
211
42
29
61
56
211
164
405
45
141
170
363
421
41
401
211
17
775
122
86
466
114
49
50
115
17
100
186
13
378
426
345
166
464
386
50
501
241
226
345
361
48
90
541
466
441
551
100
115
510
161
510
447
510
398
516
970
401
401
115
52
470
401
211
410
79
31
345
56
211
164
411
45
354
345
401
464
66
36
31
297
314
655
521
62
541
331
380
58
17
9
246
130
Pass the mouse slowly over the tables to bring out each layer. For each feature below, click the button to see how the totals were found.
9.1The words marked the perimeter of every layer: 295243 = 13 x 13 x 1747.
9.2While the total of the very first layer has no features: 22531, it is a prime number revealing Israel's unique position in history. The journey from darkness to light ends with the bottom layer: 25921 = 7 x 7 x 23 x 23 (a perfect square showing God and man).
9.3Every 13th layer beginning with the first layer: 74464 = 2 x 2 x 2 x 2 x 2 x 13 x 179. (God's hand guided Israel through the journey.)
9.4Here is another feature showing the steadiness of God's hand. Every other column slicing through the layers: 417284 = 2 x 2 x 7 x 7 x 2129.
9.5Every 5th column starting with the first and slicing through the layers: 154035 = 3 x 3 x 3 x 5 x 7 x 163. (The number 5 was not chosen at random because it worked. It was chosen because the layers are set as 10 columns and 10 rows.)
9.6.1A rectangle can be drawn inside the marked perimeter. Carry this pattern through the block's layers. All the words marked: 454608 = 2 x 2 x 2 x 2 x 3 x 3 x 7 x 11 x 41.
9.6.2Draw a third rectangle inside the first two and carry this pattern through the block: 487949 = 7 x 11 x 6337. (Words not marked: 346766 = 2 x 7 x 17 x 31 x 47.)
9.7.1On the top layer, mark the first four and last four columns. Run this through each layer: 676234 = 2 x 13 x 31 x 839.
9.7.2The same can be done with the first four and last four rows. Run this through each layer: 666328 = 2 x 2 x 2 x 13 x 43 x 149.
9.7.3Divide the top layer into four equal squares each 5 x 5. Mark the large 5 x 5 upper left square and the one in the lower right. Carry this pattern through the 34 layers. The total of the marked words: 411320 = 2 x 2 x 2 x 5 x 7 x 13 x 113. (Those not marked: 413511 = 3 x 7 x 7 x 29 x 97.)
9.7.4Using the technique in 7.7.3, but switching halfway through the layers, the checkered block yields this total: 408156 = 2 x 2 x 3 x 7 x 43 x 113.
9.8All of feature 7's numbers Numerics Gematria have been developed while looking down on the block as if at a building. We could move down to ground level to the west of the building (on the left side) and look at a 10 x 34 structure.
The perimeter on the west side is a rectangle, not a square. Words selected by this perimeter have no feature. However, if the perimeter was carried through to the other end, the total is 206227 = 7 x 17 x 1733. Unlike features 7.1, 7.6.1 and 7.6.2, no further features are found when smaller rectangles are drawn within this perimeter. (And if we move to the south of the building, no features are found at all.)
It's almost as if the numbers Numerics Gematria are saying perfect (or divine) protection only comes from above, from God. Protection from any other source is open and imperfect. This does not mean Israel could not be attacked or was invincible (see Exodus 17:16). We live in an imperfect world where people have free will and the devil wages war against God.
10The words could have been loaded into a 5 x 5 x 136 block.
Layer 1
257
26
31
345
64
34
100
395
31
328
100
291
380
356
328
25
345
401
20
100
395
31
328
116
52
Layer 2
291
380
1030
100
31
207
311
401
25
37
146
311
864
1030
100
86
62
541
20
207
790
317
355
31
345
Layer 3
257
56
82
401
26
300
201
368
103
43
149
60
170
257
345
43
406
850
72
67
512
442
56
102
49
Layer 4
246
60
166
31
901
345
30
136
158
106
401
26
102
121
31
124
45
126
401
26
74
59
345
131
26
Layer 5
401
32
355
37
8
408
257
36
355
50
150
545
50
31
540
607
140
30
58
621
140
846
257
345
70
Layer 6
606
31
141
80
607
160
257
26
31
345
80
123
13
14
100
355
106
380
219
70
348
461
52
364
55
Layer 7
503
513
461
52
206
51
70
115
353
311
441
281
312
441
681
60
160
66
14
466
26
401
58
115
142
Layer 8
380
43
316
345
43
45
293
380
142
86
355
148
115
257
345
25
241
26
518
80
61
107
428
380
446
Layer 9
50
228
293
380
268
355
317
100
87
74
228
398
501
209
263
56
228
52
426
265
42
52
291
380
501
Layer 10
71
31
470
77
31
540
86
62
541
31
308
52
386
381
80
52
190
530
501
125
26
62
380
68
541
Layer 11
226
50
106
36
41
731
40
271
91
406
56
115
501
265
225
70
92
107
150
355
220
81
257
26
31
Layer 12
345
31
420
101
355
190
608
536
293
380
351
262
376
401
50
575
41
170
355
131
26
401
32
355
37
Layer 13
338
401
62
541
337
257
26
31
345
37
256
293
380
271
317
17
90
501
362
557
12
90
352
360
212
Layer 14
31
50
474
541
271
572
342
17
130
75
311
305
442
403
305
442
47
129
417
455
345
144
12
382
307
Layer 15
31
418
522
830
311
120
57
486
100
310
305
490
227
52
355
30
90
90
377
96
132
514
26
90
1010
Layer 16
74
278
570
56
342
17
329
407
50
135
474
541
62
327
150
90
49
512
100
710
465
106
531
100
457
Layer 17
501
67
407
47
63
401
507
77
17
130
301
542
100
490
72
31
457
136
51
338
372
92
30
41
130
Layer 18
301
507
100
306
106
308
37
1022
136
74
302
661
136
74
302
303
986
51
457
407
560
261
220
305
236
Layer 19
76
497
407
153
148
12
56
688
293
380
77
17
451
50
228
293
380
85
80
52
58
46
380
376
439
Layer 20
61
26
26
49
90
431
100
457
501
441
340
627
401
49
564
160
37
30
62
133
788
437
293
380
26
Layer 21
61
17
90
313
457
407
11
56
704
508
146
422
772
100
536
457
21
58
562
1118
501
512
30
50
51
Layer 22
138
681
435
17
581
96
556
74
56
387
64
562
341
404
64
397
341
404
30
90
50
96
31
385
47
Layer 23
21
501
61
80
430
12
42
385
90
986
401
541
30
202
61
17
512
401
569
331
380
986
401
61
17
Layer 24
704
508
146
553
280
570
56
342
274
457
530
74
56
18
626
342
274
772
100
501
31
141
474
30
50
Layer 25
51
578
681
435
17
514
541
205
224
296
50
578
31
457
52
818
457
536
317
345
80
167
541
257
76
Layer 26
366
120
90
141
928
329
153
584
408
16
487
46
501
142
524
31
531
37
710
465
90
49
501
142
447
Layer 27
31
497
311
528
418
74
302
278
26
163
401
380
212
401
49
100
531
106
710
465
154
26
100
493
37
Layer 28
460
763
33
31
472
163
986
401
211
17
138
50
118
74
146
26
30
409
31
296
501
460
26
90
521
Layer 29
206
986
401
86
413
26
30
257
101
122
45
86
413
90
687
17
148
12
56
501
148
100
412
62
541
Layer 30
382
141
401
380
407
468
135
120
115
736
72
392
62
541
521
101
26
401
345
262
70
376
31
110
80
Layer 31
32
30
50
228
293
380
262
355
317
100
87
74
228
317
501
414
213
56
228
52
156
355
75
12
56
Layer 32
92
56
380
421
265
42
382
30
61
412
501
61
340
440
317
375
292
75
257
152
97
466
120
43
441
Layer 33
43
62
541
62
82
401
26
286
43
201
43
362
114
521
646
62
668
43
411
521
380
100
115
275
408
Layer 34
90
296
30
247
106
490
317
115
401
198
249
148
981
890
812
100
400
68
541
376
226
345
353
420
60
Layer 35
160
66
14
776
32
500
401
58
115
142
380
393
192
401
380
152
62
541
470
485
620
447
111
243
260
Layer 36
36
129
49
272
202
105
441
147
308
195
26
45
103
401
197
501
118
420
473
536
30
31
138
30
509
Layer 37
420
37
66
525
49
99
31
376
75
354
62
541
501
318
382
680
355
279
447
355
31
230
680
355
279
Layer 38
447
355
31
202
61
17
107
50
499
26
331
380
70
590
12
56
182
331
380
12
80
17
56
590
80
Layer 39
62
541
674
257
26
31
345
262
408
508
153
50
52
270
31
61
8
56
76
311
590
160
481
407
8
Layer 40
61
8
708
536
31
61
8
414
13
61
31
507
90
417
90
507
109
206
31
908
8
50
474
541
386
Layer 41
407
36
219
421
203
381
148
56
81
36
50
227
14
312
806
26
236
296
56
300
31
61
8
611
409
Layer 42
30
246
239
208
488
392
50
62
541
521
101
26
401
345
407
256
70
376
31
202
61
17
112
26
401
Layer 43
62
541
331
380
100
533
222
26
31
345
271
404
40
50
228
289
50
248
64
541
47
60
40
12
257
Layer 44
345
31
115
233
401
61
17
501
541
420
452
126
30
117
14
112
26
461
52
37
61
138
61
441
151
Layer 45
314
20
26
30
43
26
31
291
205
429
262
35
99
501
422
463
830
50
291
409
40
312
482
401
86
Layer 46
413
314
17
772
100
451
530
64
397
11
56
536
61
401
772
105
37
216
50
138
37
216
50
501
52
Layer 47
55
418
102
58
17
271
280
12
375
26
40
503
420
26
50
437
100
34
319
62
160
190
420
1006
26
Layer 48
112
30
16
120
122
26
420
946
401
118
413
155
140
105
26
30
33
26
31
291
205
521
422
50
469
Layer 49
511
50
683
50
289
248
56
56
289
503
52
501
30
50
282
56
56
289
248
489
307
47
31
489
762
Layer 50
56
228
45
84
489
26
30
361
72
248
271
45
408
647
47
117
14
168
26
420
452
126
31
30
410
Layer 51
355
424
224
26
50
228
293
380
262
45
80
228
52
100
70
61
17
56
50
289
248
282
56
228
62
Layer 52
90
26
437
100
39
540
62
160
30
117
14
168
26
420
31
340
355
401
115
37
98
86
224
291
860
Layer 53
30
308
12
30
241
86
130
108
115
643
123
314
385
78
86
401
115
224
251
50
146
404
106
62
541
Layer 54
331
380
124
345
401
606
156
116
30
377
387
401
62
541
271
184
194
86
461
561
401
610
52
461
152
Layer 55
520
80
443
197
251
32
55
215
96
122
170
528
229
81
122
301
246
75
480
96
81
31
360
120
175
Layer 56
96
126
306
75
170
115
222
26
31
345
271
206
31
62
541
324
80
170
90
623
62
77
68
55
170
Layer 57
102
220
84
464
100
55
247
355
92
541
122
45
293
263
155
251
531
401
32
355
290
264
38
357
58
Layer 58
54
96
380
30
61
26
392
70
23
120
380
30
210
115
121
34
355
98
31
115
263
45
408
436
30
Layer 59
394
401
541
172
277
401
228
407
116
138
116
124
600
447
222
216
56
222
380
676
100
56
131
26
401
Layer 60
32
355
90
380
300
219
62
541
68
541
151
16
245
306
380
264
335
447
108
100
55
50
126
222
355
Layer 61
602
60
100
90
623
170
102
220
361
317
323
62
541
401
185
66
380
180
264
233
45
282
62
541
31
Layer 62
26
263
31
345
87
61
352
382
594
476
248
45
408
780
86
198
420
36
12
211
501
262
61
382
271
Layer 63
42
136
137
401
380
30
17
86
76
401
380
536
248
257
345
31
115
31
617
513
213
401
786
26
501
Layer 64
385
90
61
30
501
651
401
380
61
31
556
671
80
74
146
26
88
90
447
974
257
26
31
345
45
Layer 65
660
41
206
31
62
541
152
412
245
401
69
70
401
34
100
55
189
25
62
541
428
55
319
67
115
Layer 66
155
401
32
380
25
264
38
357
58
54
230
604
96
380
30
61
26
43
357
230
604
146
91
91
60
Layer 67
170
103
541
66
304
146
120
175
225
130
304
19
62
103
380
68
103
541
31
175
339
217
401
80
37
Layer 68
302
12
31
12
50
80
25
345
401
20
100
55
72
26
401
55
216
154
82
50
80
356
401
55
245
Layer 69
194
95
25
62
541
428
55
319
101
75
53
190
457
306
380
25
264
50
126
355
228
602
31
426
55
Layer 70
31
943
307
496
26
31
103
380
122
301
176
61
401
103
380
276
401
131
678
85
428
257
380
122
180
Layer 71
541
30
26
128
75
382
257
26
31
345
64
401
34
100
55
324
95
100
380
100
228
106
596
25
345
Layer 72
401
20
100
55
318
55
566
302
497
386
160
737
336
26
401
380
428
55
324
95
102
401
227
407
635
Layer 73
80
48
355
58
264
52
31
551
47
74
13
68
541
61
319
428
55
101
75
53
190
457
392
26
58
Layer 74
17
401
541
54
380
217
541
401
380
440
100
780
55
217
541
401
19
47
501
375
26
382
233
115
401
Layer 75
26
123
28
353
82
8
520
345
68
541
401
520
413
56
263
271
516
56
30
9
9
126
234
245
52
Layer 76
87
653
15
31
40
421
12
41
74
46
13
348
26
311
123
26
346
662
355
60
215
52
256
646
87
Layer 77
52
146
845
146
220
568
66
53
130
26
265
30
130
26
760
19
210
80
665
170
738
278
107
420
222
Layer 78
111
366
90
148
66
54
137
187
845
34
50
241
19
285
314
139
360
517
440
311
220
962
24
830
236
Layer 79
126
50
156
776
92
265
50
85
73
26
50
85
255
406
257
835
375
111
469
130
548
291
468
94
110
Layer 80
13
434
485
99
31
61
424
416
160
276
48
16
322
810
8
93
127
51
51
49
72
274
99
50
322
Layer 81
190
510
155
456
98
39
303
60
73
74
282
130
26
74
282
110
13
560
449
531
207
508
116
752
580
Layer 82
26
444
65
132
44
26
100
170
80
30
3
126
355
230
604
52
318
26
145
401
50
55
68
541
61
Layer 83
319
428
55
514
290
73
415
256
401
485
21
547
50
405
224
532
486
526
75
290
516
56
30
9
9
Layer 84
126
234
245
52
146
345
401
541
90
146
113
31
246
506
72
1030
100
248
37
137
90
25
645
37
66
Layer 85
1130
90
285
30
290
45
100
70
301
345
245
102
115
100
345
271
45
755
276
31
26
233
26
160
366
Layer 86
31
95
562
95
340
340
36
108
435
346
121
257
41
416
810
166
26
66
521
148
775
469
582
946
50
Layer 87
124
50
88
501
750
382
31
351
130
30
61
26
301
25
86
346
750
575
530
90
428
690
80
340
100
Layer 88
95
152
121
25
50
474
62
541
31
246
120
501
62
81
68
130
355
570
56
342
365
561
331
380
112
Layer 89
50
474
62
541
100
345
106
256
248
263
76
62
541
50
460
502
16
26
293
380
760
100
270
507
109
Layer 90
78
402
30
542
457
31
251
17
485
401
50
140
17
274
257
26
31
345
115
299
90
78
90
395
107
Layer 91
115
151
206
56
64
190
167
65
1018
41
31
26
58
615
97
401
501
29
26
395
100
501
155
56
56
Layer 92
257
345
262
31
50
62
541
272
530
30
26
112
461
331
380
308
657
401
32
26
418
401
950
100
26
Layer 93
120
45
30
492
166
257
345
802
26
90
274
502
81
84
304
402
412
26
401
950
501
441
170
116
120
Layer 94
45
31
166
950
30
100
26
257
345
31
256
241
31
50
474
62
541
308
170
26
30
410
401
950
31
Layer 95
226
256
31
50
474
62
541
152
31
251
66
32
26
256
172
222
26
31
345
271
820
401
886
62
541
Layer 96
206
76
271
62
327
457
502
310
778
78
530
30
61
26
106
31
274
506
341
486
401
108
310
420
722
Layer 97
44
74
133
506
722
44
66
100
140
251
104
248
104
320
100
296
223
62
541
263
311
31
25
90
12
Layer 98
30
31
90
45
12
257
345
76
12
83
501
500
26
90
86
12
211
501
101
26
145
136
311
120
57
Layer 99
310
496
380
900
311
531
44
514
392
70
62
541
161
252
180
66
312
37
169
252
180
31
283
311
120
Layer 100
57
145
257
345
76
311
31
616
136
74
302
37
416
31
345
628
401
136
74
302
256
556
319
286
145
Layer 101
345
161
407
304
304
311
110
57
54
645
156
31
58
615
145
78
395
360
315
43
25
50
371
84
39
Layer 102
375
257
76
12
501
206
26
758
702
404
56
248
401
501
487
87
407
501
738
338
407
50
159
79
90
Layer 103
1010
74
307
90
407
74
307
521
101
345
37
318
251
31
420
8
257
345
62
61
30
702
61
56
61
Layer 104
31
542
311
1000
100
550
64
397
702
31
30
8
31
58
397
107
90
115
169
37
137
257
26
31
345
Layer 105
74
56
531
570
546
1022
207
30
26
500
90
707
100
70
12
500
90
58
615
78
106
308
311
824
31
Layer 106
101
311
226
58
397
724
115
58
387
323
412
541
401
346
90
18
297
7
82
131
608
308
257
345
12
Layer 107
211
501
101
26
71
315
136
1010
704
190
217
401
83
501
466
461
248
124
461
331
380
257
345
31
256
Layer 108
108
680
409
456
345
71
315
90
69
407
170
26
1010
704
521
101
26
31
345
95
256
170
479
1010
68
Layer 109
541
57
401
95
323
355
74
43
31
291
758
401
95
57
74
43
31
195
291
190
321
980
101
12
152
Layer 110
50
474
62
541
286
120
255
100
90
26
80
346
67
90
1130
115
218
115
110
345
263
456
86
90
761
Layer 111
257
75
345
45
668
124
45
566
401
26
147
340
115
120
96
115
100
345
257
75
12
571
420
485
411
Layer 112
407
62
407
200
133
276
345
31
26
271
45
376
140
17
80
119
256
257
26
31
345
272
170
115
114
Layer 113
421
207
541
75
501
435
8
401
216
108
36
461
115
114
190
340
100
301
212
441
298
113
136
90
711
Layer 114
115
386
70
345
170
167
541
317
340
191
105
263
100
212
62
541
106
550
401
26
271
315
26
360
41
Layer 115
61
19
240
94
110
541
336
257
345
31
391
210
86
401
97
83
242
248
81
142
100
501
85
60
91
Layer 116
26
386
391
521
241
36
345
113
242
351
256
220
106
501
85
26
521
260
345
20
211
541
527
78
20
Layer 117
211
240
30
345
76
130
53
372
824
318
115
262
220
466
32
52
13
58
13
31
30
102
74
3
645
Layer 118
354
391
401
240
407
116
120
210
257
26
31
345
422
408
283
342
356
70
391
30
53
54
401
227
240
Layer 119
848
395
68
345
57
317
346
26
120
257
30
14
100
80
15
123
56
242
244
204
426
616
75
104
458
Layer 120
345
401
50
501
375
86
375
577
116
30
112
26
401
541
420
124
616
458
345
401
375
701
345
209
359
Layer 121
407
360
67
501
340
18
543
30
241
203
435
293
285
346
18
318
30
46
13
289
196
250
355
19
616
Layer 122
458
345
74
713
31
345
31
251
501
12
63
340
205
91
257
31
345
61
478
616
3
61
727
366
67
Layer 123
115
107
345
731
464
730
416
36
353
311
311
406
25
46
356
345
494
401
50
501
375
26
385
416
100
Layer 124
411
541
401
50
441
501
571
226
176
26
28
616
100
50
27
501
375
26
571
501
141
54
380
257
616
Layer 125
228
26
501
135
461
54
380
60
355
501
135
401
115
848
14
380
475
494
30
43
26
90
91
30
208
Layer 126
501
17
155
124
616
458
345
105
73
116
19
256
56
167
541
81
78
110
458
345
170
91
31
688
318
Layer 127
345
419
401
115
130
115
100
345
90
307
74
277
217
458
345
401
50
501
12
375
140
257
45
211
17
Layer 128
501
406
375
140
120
406
318
56
56
115
142
130
90
302
74
272
257
345
494
30
13
41
115
534
86
Layer 129
30
30
75
206
3
41
805
62
311
68
281
501
401
118
91
407
1022
257
458
345
47
31
17
211
501
Layer 130
406
375
82
432
43
406
43
115
17
501
130
30
26
100
211
31
456
381
56
475
410
142
191
31
86
Layer 131
130
20
406
140
76
91
414
406
401
261
31
91
628
446
401
163
407
1011
491
75
401
229
66
7
407
Layer 132
420
501
436
412
420
90
115
361
48
221
86
361
441
361
162
746
145
510
161
510
447
510
398
516
970
Layer 133
401
401
115
52
470
26
50
211
42
29
61
56
211
164
405
45
141
170
363
421
41
401
211
17
775
Layer 134
122
86
466
114
49
50
115
17
100
186
13
378
426
345
166
464
386
50
501
241
226
345
361
48
90
Layer 135
541
466
441
551
100
115
510
161
510
447
510
398
516
970
401
401
115
52
470
401
211
410
79
31
345
Layer 136
56
211
164
411
45
354
345
401
464
66
36
31
297
314
655
521
62
541
331
380
58
17
9
246
130
10.1.1First layer: 4879 = 7 x 17 x 41. SF: 65 = 5 x 13.
10.1.2The last layer by itself has no feature, but first and last together does: 6145 + 4879 = 11024 = 2 x 2 x 2 x 2 x 13 x 53.
10.2Eight corners: 1057 = 7 x 151.
10.3.1From every layer, the sum of the column positions of column totals divisible by 13: 161 = 7 x 23.
10.3.2From every layer, the sum of the row positions of row totals divisible by 7: 259 = 7 x 37.
10.4.1The west side of the building (hidden on the left): 154035 = 3 x 3 x 3 x 5 x 7 x 163.
10.4.2The east side of the building: 172193 = 7 x 17 x 1447.
10.4.3North and south sides individually have no feature, but together they do: 166968 + 167429 = 334397 = 7 x 23 x 31 x 67.
10.5.1Every fourth layer starting with the first: 206626 = 2 x 7 x 14759.
10.5.2Every 7th layer beginning with the first: 121436 = 2 x 2 x 7 x 4337.
10.5.3Every 17th layer beginning with the first: 52955 = 5 x 7 x 17 x 89.
10.6Checkered layers: 417284 = 2 x 2 x 7 x 7 x 2129.
10.7.1Cross through every layer: 301652 = 2 x 2 x 13 x 5801.
10.7.2Centre line through the block: 31369 = 13 x 19 x 127.
10.8.1Nine pillars: 289646 = 2 x 7 x 17 x 1217.
10.8.2Four inner pillars: 130715 = 5 x 13 x 2011.
10.9.1Diamond: 290661 = 3 x 7 x 13841.
10.9.2Solid diamond (covering 13 of each layer's 25 squares): 432367 = 13 x 79 x 421.
11Loading the words into a 25 x 17 x 8 block.
Layer 1 (25 x 17 x 8)
257
26
31
345
64
34
100
395
31
328
100
291
380
356
328
25
345
401
20
100
395
31
328
116
52
291
380
1030
100
31
207
311
401
25
37
146
311
864
1030
100
86
62
541
20
207
790
317
355
31
345
257
56
82
401
26
300
201
368
103
43
149
60
170
257
345
43
406
850
72
67
512
442
56
102
49
246
60
166
31
901
345
30
136
158
106
401
26
102
121
31
124
45
126
401
26
74
59
345
131
26
401
32
355
37
8
408
257
36
355
50
150
545
50
31
540
607
140
30
58
621
140
846
257
345
70
606
31
141
80
607
160
257
26
31
345
80
123
13
14
100
355
106
380
219
70
348
461
52
364
55
503
513
461
52
206
51
70
115
353
311
441
281
312
441
681
60
160
66
14
466
26
401
58
115
142
380
43
316
345
43
45
293
380
142
86
355
148
115
257
345
25
241
26
518
80
61
107
428
380
446
50
228
293
380
268
355
317
100
87
74
228
398
501
209
263
56
228
52
426
265
42
52
291
380
501
71
31
470
77
31
540
86
62
541
31
308
52
386
381
80
52
190
530
501
125
26
62
380
68
541
226
50
106
36
41
731
40
271
91
406
56
115
501
265
225
70
92
107
150
355
220
81
257
26
31
345
31
420
101
355
190
608
536
293
380
351
262
376
401
50
575
41
170
355
131
26
401
32
355
37
338
401
62
541
337
257
26
31
345
37
256
293
380
271
317
17
90
501
362
557
12
90
352
360
212
31
50
474
541
271
572
342
17
130
75
311
305
442
403
305
442
47
129
417
455
345
144
12
382
307
31
418
522
830
311
120
57
486
100
310
305
490
227
52
355
30
90
90
377
96
132
514
26
90
1010
74
278
570
56
342
17
329
407
50
135
474
541
62
327
150
90
49
512
100
710
465
106
531
100
457
501
67
407
47
63
401
507
77
17
130
301
542
100
490
72
31
457
136
51
338
372
92
30
41
130
Layer 2
301
507
100
306
106
308
37
1022
136
74
302
661
136
74
302
303
986
51
457
407
560
261
220
305
236
76
497
407
153
148
12
56
688
293
380
77
17
451
50
228
293
380
85
80
52
58
46
380
376
439
61
26
26
49
90
431
100
457
501
441
340
627
401
49
564
160
37
30
62
133
788
437
293
380
26
61
17
90
313
457
407
11
56
704
508
146
422
772
100
536
457
21
58
562
1118
501
512
30
50
51
138
681
435
17
581
96
556
74
56
387
64
562
341
404
64
397
341
404
30
90
50
96
31
385
47
21
501
61
80
430
12
42
385
90
986
401
541
30
202
61
17
512
401
569
331
380
986
401
61
17
704
508
146
553
280
570
56
342
274
457
530
74
56
18
626
342
274
772
100
501
31
141
474
30
50
51
578
681
435
17
514
541
205
224
296
50
578
31
457
52
818
457
536
317
345
80
167
541
257
76
366
120
90
141
928
329
153
584
408
16
487
46
501
142
524
31
531
37
710
465
90
49
501
142
447
31
497
311
528
418
74
302
278
26
163
401
380
212
401
49
100
531
106
710
465
154
26
100
493
37
460
763
33
31
472
163
986
401
211
17
138
50
118
74
146
26
30
409
31
296
501
460
26
90
521
206
986
401
86
413
26
30
257
101
122
45
86
413
90
687
17
148
12
56
501
148
100
412
62
541
382
141
401
380
407
468
135
120
115
736
72
392
62
541
521
101
26
401
345
262
70
376
31
110
80
32
30
50
228
293
380
262
355
317
100
87
74
228
317
501
414
213
56
228
52
156
355
75
12
56
92
56
380
421
265
42
382
30
61
412
501
61
340
440
317
375
292
75
257
152
97
466
120
43
441
43
62
541
62
82
401
26
286
43
201
43
362
114
521
646
62
668
43
411
521
380
100
115
275
408
90
296
30
247
106
490
317
115
401
198
249
148
981
890
812
100
400
68
541
376
226
345
353
420
60
Layer 3
160
66
14
776
32
500
401
58
115
142
380
393
192
401
380
152
62
541
470
485
620
447
111
243
260
36
129
49
272
202
105
441
147
308
195
26
45
103
401
197
501
118
420
473
536
30
31
138
30
509
420
37
66
525
49
99
31
376
75
354
62
541
501
318
382
680
355
279
447
355
31
230
680
355
279
447
355
31
202
61
17
107
50
499
26
331
380
70
590
12
56
182
331
380
12
80
17
56
590
80
62
541
674
257
26
31
345
262
408
508
153
50
52
270
31
61
8
56
76
311
590
160
481
407
8
61
8
708
536
31
61
8
414
13
61
31
507
90
417
90
507
109
206
31
908
8
50
474
541
386
407
36
219
421
203
381
148
56
81
36
50
227
14
312
806
26
236
296
56
300
31
61
8
611
409
30
246
239
208
488
392
50
62
541
521
101
26
401
345
407
256
70
376
31
202
61
17
112
26
401
62
541
331
380
100
533
222
26
31
345
271
404
40
50
228
289
50
248
64
541
47
60
40
12
257
345
31
115
233
401
61
17
501
541
420
452
126
30
117
14
112
26
461
52
37
61
138
61
441
151
314
20
26
30
43
26
31
291
205
429
262
35
99
501
422
463
830
50
291
409
40
312
482
401
86
413
314
17
772
100
451
530
64
397
11
56
536
61
401
772
105
37
216
50
138
37
216
50
501
52
55
418
102
58
17
271
280
12
375
26
40
503
420
26
50
437
100
34
319
62
160
190
420
1006
26
112
30
16
120
122
26
420
946
401
118
413
155
140
105
26
30
33
26
31
291
205
521
422
50
469
511
50
683
50
289
248
56
56
289
503
52
501
30
50
282
56
56
289
248
489
307
47
31
489
762
56
228
45
84
489
26
30
361
72
248
271
45
408
647
47
117
14
168
26
420
452
126
31
30
410
355
424
224
26
50
228
293
380
262
45
80
228
52
100
70
61
17
56
50
289
248
282
56
228
62
Layer 4
90
26
437
100
39
540
62
160
30
117
14
168
26
420
31
340
355
401
115
37
98
86
224
291
860
30
308
12
30
241
86
130
108
115
643
123
314
385
78
86
401
115
224
251
50
146
404
106
62
541
331
380
124
345
401
606
156
116
30
377
387
401
62
541
271
184
194
86
461
561
401
610
52
461
152
520
80
443
197
251
32
55
215
96
122
170
528
229
81
122
301
246
75
480
96
81
31
360
120
175
96
126
306
75
170
115
222
26
31
345
271
206
31
62
541
324
80
170
90
623
62
77
68
55
170
102
220
84
464
100
55
247
355
92
541
122
45
293
263
155
251
531
401
32
355
290
264
38
357
58
54
96
380
30
61
26
392
70
23
120
380
30
210
115
121
34
355
98
31
115
263
45
408
436
30
394
401
541
172
277
401
228
407
116
138
116
124
600
447
222
216
56
222
380
676
100
56
131
26
401
32
355
90
380
300
219
62
541
68
541
151
16
245
306
380
264
335
447
108
100
55
50
126
222
355
602
60
100
90
623
170
102
220
361
317
323
62
541
401
185
66
380
180
264
233
45
282
62
541
31
26
263
31
345
87
61
352
382
594
476
248
45
408
780
86
198
420
36
12
211
501
262
61
382
271
42
136
137
401
380
30
17
86
76
401
380
536
248
257
345
31
115
31
617
513
213
401
786
26
501
385
90
61
30
501
651
401
380
61
31
556
671
80
74
146
26
88
90
447
974
257
26
31
345
45
660
41
206
31
62
541
152
412
245
401
69
70
401
34
100
55
189
25
62
541
428
55
319
67
115
155
401
32
380
25
264
38
357
58
54
230
604
96
380
30
61
26
43
357
230
604
146
91
91
60
170
103
541
66
304
146
120
175
225
130
304
19
62
103
380
68
103
541
31
175
339
217
401
80
37
302
12
31
12
50
80
25
345
401
20
100
55
72
26
401
55
216
154
82
50
80
356
401
55
245
Layer 5
194
95
25
62
541
428
55
319
101
75
53
190
457
306
380
25
264
50
126
355
228
602
31
426
55
31
943
307
496
26
31
103
380
122
301
176
61
401
103
380
276
401
131
678
85
428
257
380
122
180
541
30
26
128
75
382
257
26
31
345
64
401
34
100
55
324
95
100
380
100
228
106
596
25
345
401
20
100
55
318
55
566
302
497
386
160
737
336
26
401
380
428
55
324
95
102
401
227
407
635
80
48
355
58
264
52
31
551
47
74
13
68
541
61
319
428
55
101
75
53
190
457
392
26
58
17
401
541
54
380
217
541
401
380
440
100
780
55
217
541
401
19
47
501
375
26
382
233
115
401
26
123
28
353
82
8
520
345
68
541
401
520
413
56
263
271
516
56
30
9
9
126
234
245
52
87
653
15
31
40
421
12
41
74
46
13
348
26
311
123
26
346
662
355
60
215
52
256
646
87
52
146
845
146
220
568
66
53
130
26
265
30
130
26
760
19
210
80
665
170
738
278
107
420
222
111
366
90
148
66
54
137
187
845
34
50
241
19
285
314
139
360
517
440
311
220
962
24
830
236
126
50
156
776
92
265
50
85
73
26
50
85
255
406
257
835
375
111
469
130
548
291
468
94
110
13
434
485
99
31
61
424
416
160
276
48
16
322
810
8
93
127
51
51
49
72
274
99
50
322
190
510
155
456
98
39
303
60
73
74
282
130
26
74
282
110
13
560
449
531
207
508
116
752
580
26
444
65
132
44
26
100
170
80
30
3
126
355
230
604
52
318
26
145
401
50
55
68
541
61
319
428
55
514
290
73
415
256
401
485
21
547
50
405
224
532
486
526
75
290
516
56
30
9
9
126
234
245
52
146
345
401
541
90
146
113
31
246
506
72
1030
100
248
37
137
90
25
645
37
66
1130
90
285
30
290
45
100
70
301
345
245
102
115
100
345
271
45
755
276
31
26
233
26
160
366
Layer 6
31
95
562
95
340
340
36
108
435
346
121
257
41
416
810
166
26
66
521
148
775
469
582
946
50
124
50
88
501
750
382
31
351
130
30
61
26
301
25
86
346
750
575
530
90
428
690
80
340
100
95
152
121
25
50
474
62
541
31
246
120
501
62
81
68
130
355
570
56
342
365
561
331
380
112
50
474
62
541
100
345
106
256
248
263
76
62
541
50
460
502
16
26
293
380
760
100
270
507
109
78
402
30
542
457
31
251
17
485
401
50
140
17
274
257
26
31
345
115
299
90
78
90
395
107
115
151
206
56
64
190
167
65
1018
41
31
26
58
615
97
401
501
29
26
395
100
501
155
56
56
257
345
262
31
50
62
541
272
530
30
26
112
461
331
380
308
657
401
32
26
418
401
950
100
26
120
45
30
492
166
257
345
802
26
90
274
502
81
84
304
402
412
26
401
950
501
441
170
116
120
45
31
166
950
30
100
26
257
345
31
256
241
31
50
474
62
541
308
170
26
30
410
401
950
31
226
256
31
50
474
62
541
152
31
251
66
32
26
256
172
222
26
31
345
271
820
401
886
62
541
206
76
271
62
327
457
502
310
778
78
530
30
61
26
106
31
274
506
341
486
401
108
310
420
722
44
74
133
506
722
44
66
100
140
251
104
248
104
320
100
296
223
62
541
263
311
31
25
90
12
30
31
90
45
12
257
345
76
12
83
501
500
26
90
86
12
211
501
101
26
145
136
311
120
57
310
496
380
900
311
531
44
514
392
70
62
541
161
252
180
66
312
37
169
252
180
31
283
311
120
57
145
257
345
76
311
31
616
136
74
302
37
416
31
345
628
401
136
74
302
256
556
319
286
145
345
161
407
304
304
311
110
57
54
645
156
31
58
615
145
78
395
360
315
43
25
50
371
84
39
375
257
76
12
501
206
26
758
702
404
56
248
401
501
487
87
407
501
738
338
407
50
159
79
90
Layer 7
1010
74
307
90
407
74
307
521
101
345
37
318
251
31
420
8
257
345
62
61
30
702
61
56
61
31
542
311
1000
100
550
64
397
702
31
30
8
31
58
397
107
90
115
169
37
137
257
26
31
345
74
56
531
570
546
1022
207
30
26
500
90
707
100
70
12
500
90
58
615
78
106
308
311
824
31
101
311
226
58
397
724
115
58
387
323
412
541
401
346
90
18
297
7
82
131
608
308
257
345
12
211
501
101
26
71
315
136
1010
704
190
217
401
83
501
466
461
248
124
461
331
380
257
345
31
256
108
680
409
456
345
71
315
90
69
407
170
26
1010
704
521
101
26
31
345
95
256
170
479
1010
68
541
57
401
95
323
355
74
43
31
291
758
401
95
57
74
43
31
195
291
190
321
980
101
12
152
50
474
62
541
286
120
255
100
90
26
80
346
67
90
1130
115
218
115
110
345
263
456
86
90
761
257
75
345
45
668
124
45
566
401
26
147
340
115
120
96
115
100
345
257
75
12
571
420
485
411
407
62
407
200
133
276
345
31
26
271
45
376
140
17
80
119
256
257
26
31
345
272
170
115
114
421
207
541
75
501
435
8
401
216
108
36
461
115
114
190
340
100
301
212
441
298
113
136
90
711
115
386
70
345
170
167
541
317
340
191
105
263
100
212
62
541
106
550
401
26
271
315
26
360
41
61
19
240
94
110
541
336
257
345
31
391
210
86
401
97
83
242
248
81
142
100
501
85
60
91
26
386
391
521
241
36
345
113
242
351
256
220
106
501
85
26
521
260
345
20
211
541
527
78
20
211
240
30
345
76
130
53
372
824
318
115
262
220
466
32
52
13
58
13
31
30
102
74
3
645
354
391
401
240
407
116
120
210
257
26
31
345
422
408
283
342
356
70
391
30
53
54
401
227
240
848
395
68
345
57
317
346
26
120
257
30
14
100
80
15
123
56
242
244
204
426
616
75
104
458
Layer 8
345
401
50
501
375
86
375
577
116
30
112
26
401
541
420
124
616
458
345
401
375
701
345
209
359
407
360
67
501
340
18
543
30
241
203
435
293
285
346
18
318
30
46
13
289
196
250
355
19
616
458
345
74
713
31
345
31
251
501
12
63
340
205
91
257
31
345
61
478
616
3
61
727
366
67
115
107
345
731
464
730
416
36
353
311
311
406
25
46
356
345
494
401
50
501
375
26
385
416
100
411
541
401
50
441
501
571
226
176
26
28
616
100
50
27
501
375
26
571
501
141
54
380
257
616
228
26
501
135
461
54
380
60
355
501
135
401
115
848
14
380
475
494
30
43
26
90
91
30
208
501
17
155
124
616
458
345
105
73
116
19
256
56
167
541
81
78
110
458
345
170
91
31
688
318
345
419
401
115
130
115
100
345
90
307
74
277
217
458
345
401
50
501
12
375
140
257
45
211
17
501
406
375
140
120
406
318
56
56
115
142
130
90
302
74
272
257
345
494
30
13
41
115
534
86
30
30
75
206
3
41
805
62
311
68
281
501
401
118
91
407
1022
257
458
345
47
31
17
211
501
406
375
82
432
43
406
43
115
17
501
130
30
26
100
211
31
456
381
56
475
410
142
191
31
86
130
20
406
140
76
91
414
406
401
261
31
91
628
446
401
163
407
1011
491
75
401
229
66
7
407
420
501
436
412
420
90
115
361
48
221
86
361
441
361
162
746
145
510
161
510
447
510
398
516
970
401
401
115
52
470
26
50
211
42
29
61
56
211
164
405
45
141
170
363
421
41
401
211
17
775
122
86
466
114
49
50
115
17
100
186
13
378
426
345
166
464
386
50
501
241
226
345
361
48
90
541
466
441
551
100
115
510
161
510
447
510
398
516
970
401
401
115
52
470
401
211
410
79
31
345
56
211
164
411
45
354
345
401
464
66
36
31
297
314
655
521
62
541
331
380
58
17
9
246
130
11.1.1Every other layer (starting with the first): 403368 = 2 x 2 x 2 x 3 x 7 x 7 x 7 x 7 x 7.
11.1.2Every other layer (beginning with the second): 431347 = 7 x 7 x 8803.
11.1.3.1Top (first) layer: 101660 = 2 x 2 x 5 x 13 x 17 x 23.
11.1.3.2Last (bottom) layer: 113540 = 2 x 2 x 5 x 7 x 811.
11.2Every 5th column (starting with the first): 154035 = 3 x 3 x 3 x 5 x 7 x 163.
11.3Zigzags through every layer: 179025 = 3 x 5 x 5 x 7 x 11 x 31.
11.4Right (east) side: 32928 = 2 x 2 x 2 x 2 x 2 x 3 x 7 x 7 x 7.
11.5Top (north side): 52955 = 5 x 7 x 17 x 89.
11.6Surface area: 327145 = 5 x 7 x 13 x 719.
11.7.1Pillars: 220857 = 3 x 7 x 13 x 809.
11.7.2Inside pillars: 193326 = 2 x 3 x 7 x 4603. SF: 4615 = 5 x 13 x 71.
11.8Draw two rectangles on the first layer: 34559 = 7 x 4937. Carry this through to the other layers: 282139 = 11 x 13 x 1973.
11.9Partial diamond (first layer): 20398 = 2 x 7 x 31 x 47. Copy this through the other layers: 158949 = 3 x 3 x 3 x 7 x 29 x 29.
11.10Inner rectangle: 145089 = 3 x 3 x 7 x 7 x 7 x 47.
11.11Pyramid: 323771 = 7 x 23 x 2011.
11.12.1From every layer, the sum of the column positions of columns with totals divisible by 13: 196 = 2 x 2 x 7 x 7.
11.12.2From every layer, the sum of the row positions of rows with totals divisible by 13: 70 = 2 x 5 x 7.
Conclusion
One might say these three diagrams visually demonstrate God’s guiding hand and protection during Israel's journey. The first diagram is a picture of Israel camped around the tent of meeting (Numbers 2). The second shows Israel on its journey through narrow valleys, while the third is of Israel traveling through broad open spaces. No matter where Israel is, God is there at the beginning and at the end. God is with them in every stage of their journey from darkness to light.
Why doesn't the numeric section include the events of God descending on Mount Sinai, the giving of the Ten Commandments, the law, and the elders going up to sup with Elohim? (Exodus 19:17-21; 20:1-17; 24:9-12) Why doesn't it continue until chapter 34 when Moses sees all God’s glory? Because the numbers Numerics Gematria anticipate what happens next. Aaron and the people of Israel fail catastrophically by constructing a golden calf to worship (Exodus 32:4). This incident negates everything before it. If the numbers Numerics Gematria had continued, it would give the wrong impression of Israel's fall into idolatry. It would seem as if Israel had been forgiven, or that nothing had gone wrong.
Out of approximately two million people only three succeeded on the journey from darkness to light. Moses had the privilege of witnessing God’s magnificent glory and hearing The Proclamation of His name; Joshua led the next generation into conquering Canaan, and Caleb inherited land in the Negev, which he then proceeded to completely purge of Canaanite influence to set the stage for the tribe of Judah's preeminence later.
At this point, Israel has just entered the wilderness of Sinai. The mountain is in sight, but God has not yet descended upon Sinai with fire and light. Nevertheless, Israel's journey from the darkness of Egypt is essentially over.
presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)