Bible Numbers 2.0

Caleb: Following With A Whole Heart

God keeps those who love Him. Among over a million Israelites, only Joshua and Caleb wholly followed God. For his faithfulness, Caleb's life is preserved for all time in the Bible. His health and strength were kept through the forty years of wandering, five years of war and even into old age. Like his life, his story in the Bible is marked with God’s numeric signature.

Not only is Joshua 14:6-14 the summation of Caleb's miraculous life, but it is also the fulfillment of prophecy. Caleb saw God’s great acts in Egypt, and he believed God and His messenger Moses. This was not blind faith. And he believed that if God said Israel was to fight to take Canaan, then he believed Israel would win no matter what. For his unswerving faith, he was given an entire city. Even giants could not withstand him.

Then the people of Judah came to Joshua at Gilgal; and Caleb the son of Jephunneh the Kenizzite said to him, "You know what the LORD said to Moses the man of God in Kadeshbarnea concerning you and me. I was forty years old when Moses the servant of the LORD sent me from Kadeshbarnea to spy out the land; and I brought him word again as it was in my heart. But my brethren who went up with me made the heart of the people melt; yet I wholly followed the LORD my God. And Moses swore on that day, saying, `Surely the land on which your foot has trodden shall be an inheritance for you and your children for ever, because you have wholly followed the LORD my God.' And now, behold, the LORD has kept me alive, as he said, these forty-five years since the time that the LORD spoke this word to Moses, while Israel walked in the wilderness; and now, lo, I am this day eighty-five years old. I am still as strong to this day as I was in the day that Moses sent me; my strength now is as my strength was then, for war, and for going and coming. So now give me this hill country of which the LORD spoke on that day; for you heard on that day how the Anakim were there, with great fortified cities: it may be that the LORD will be with me, and I shall drive them out as the LORD said." Then Joshua blessed him; and he gave Hebron to Caleb the son of Jephunneh for an inheritance. So Hebron became the inheritance of Caleb the son of Jephunneh the Kenizzite to this day, because he wholly followed the LORD, the God of Israel. (Joshua 14:6-14)1)
Joshua 14:6-142
54321
391313062325
2019181716151413121110987654321
7030065103015465101050263003106
יהושעאליהודהבניויגשו
109876
52524725768
39383736353433323130292827262524232221
502230206103012004011063033032
בןכלבאליוויאמרבגלגל
1514131211
401484406172145
575655545352515049484746454443424140
400140070410540011075010055508010
אתידעתאתההקנזייפנה
212019181716
3453126206501211
76757473727170696867666564636261605958
53004030156510200242003001200245
משהאליהוהדבראשרהדבר
2625242322
10642110091311
95949392919089888786858483828180797877
30706104006413070401053015300101
ועלאדותיעלהאלהיםאיש
30292827
52322406441
11111010910810710610510410310210110099989796
50270502002300410022010400641
בןברנעבקדשאדותיך
3534333231
34534081355323
131130129128127126125124123122121120119118117116115114113112
5300408303002102050155030040107022001
משהבשלחאנכישנהארבעים
4039383736
3224444112676
149148147146145144143142141140139138137136135134133132
70502002300410040104001565104270
ברנעמקדשאתייהוהעבד
464544434241
206407309296401263
169168167166165164163162161160159158157156155154153152151150
20024640012300169020015400130320030
דבראתוואשבהארץאתלרגל
525150494847
1065012544110521
189188187186185184183182181180179178177176175174173172171170
630702003001108161022304070200300120
עלואשרואחילבביעםכאשר
585756555453
8711532401121120
209208207206205204203202201200199198197196195194193192191190
1020501640705230400161060405104070
ואנכיהעםלבאתהמסיועמי
62616059
4626219481
226225224223222221220219218217216215214213212211210
1053015651010200811040013040
אלהייהוהאחרימלאתי
6766656463
2711758345388
246245244243242241240239238237236235234233232231230229228227
200401301655406102530040702300106
לאמרההואביוםמשהוישבע
74737271706968
72532295012963141
267266265264263262261260259258257256255254253252251250249248247
5220303200520200420030019020015130401
בהרגלךדרכהאשרהארץלאאם
7978777675
7411812342050
286285284283282281280279278277276275274273272271270269268
47020105023065308503051054002030
עדולבניךלנחלהתהיהלך
8483828180
2621947130146
304303302301300299298297296295294293292291290289288287
5651010200814001304010204030670
יהוהאחרימלאתכיעולם
8988878685
26286048146
323322321320319318317316315314313312311310309308307306305
565105108555055400706105301
יהוההחיההנהועתהאלהי
9493929190
32312206521417
342341340339338337336335334333332331330329328327326325324
4010702200157200242003001201040061
ארבעיםזהדברכאשראותי
1009998979695
4012620648355354
361360359358357356355354353352351350349348347346345344343
4001565102002471405503003004086
אתיהוהדברמאזשנהוחמש
106105104103102101
555013453117211
379378377376375374373372371370369368367366365364363362
203052003001530040301575200245
הלךאשרמשהאלהזההדבר
111110109108107
8160481248541
400399398397396395394393392391390389388387386385384383382381380
1020501550554007062002440230120030010
אנכיהנהועתהבמדברישראל
116115114113112
3554523485261
419418417416415414413412411410409408407406405404403402401
5503004010506403006300408502406105
שנהושמוניםחמשבןהיום
121120119118117
5852111561140
439438437436435434433432431430429428427426425424423422421420
4061022003001201007840610510504670
ביוםכאשרחזקהיוםעודני
127126125124123122
64858345417338
460459458457456455454453452451450449448447446445444443442441440
108202067110820205300401040061830300
וככחיאזככחימשהאותישלח
131130129128
45527153475
479478477476475474473472471470469468467466465464463462461
1623064001903065408304030540070
ולבואולצאתלמלחמהעתה
138137136135134133132
5011721040140455481
499498497496495494493492491490489488487486485484483482481480
200300157520055400110305504005400706
אשרהזהההראתליתנהועתה
144143142141140139
40630175826206
519518517516515514513512511510509508507506505504503502501500
54001102016554061025651020024
אתהכיההואביוםיהוהדבר
150149148147146145
340270301758810
540539538537536535534533532531530529528527526525524523522521520
4030040101005070102016554061024007040300
שםענקיםכיההואביוםשמעת
154153152151
47698443326
559558557556555554553552551550549548547546545544543542541
1030614006200902400630434010200706
אוליבצרותגדלותוערים
158157156155
52196741726
579578577576575574573572571570569568567566565564563562561560
2003001204010400300200656104006156510
כאשרוהורשתיםאותייהוה
162161160159
39124926206
598597596595594593592591590589588587586585584583582581580
703006510652020021065651020024
יהושעויברכהויהוהדבר
168167166165164163
1455282266401466
619618617616615614613612611610609608607606605604603602601600599
5508010502230203050620028400150400106
יפנהבןלכלבחברוןאתויתן
173172171170169
26642070100123
637636635634633632631630629628627626625624623622621620
5062002854001055020307053085030
חברוןהיתהכןעללנחלה
178177176175174
1231721455282
657656655654653652651650649648647646645644643642641640639638
5308503010750100555080105022302030
לנחלההקנזייפנהבןלכלב
184183182181180179
71501130176174
675674673672671670669668667666665664663662661660659658
130402003001507010575406105470
מלאאשריעןהזההיוםעד
Word position:188187186185
Word value:5414626219
Letter position:692691690689688687686685684683682681680679678677676
Letter value:30120030010105301565101020081
Hebrewישראלאלהייהוהאחרי

1Total of the passage: 42182 = 2 x 7 x 23 x 131.

The average human has 23 pairs of chromosomes. The factor of 23 from the total fits the subject of the passage as dealing with people, specifically Caleb.

Caleb

Caleb (From Joshua 14:6)
172145525247
הקנזייפנהבןכלבאליו
the-KenizziteJephunnehson-ofCalebthese/this

1.1These five words are from verse six. The language clearly identifies Caleb. His name is divisible by 13, and the total of these five words is 468 (22 x 32 x 13). The sum of these factors is 23.

1.2Since Caleb's name has the value 52, and there are six words in the passage with this value, this means 52 can divide the passage into seven groups.

1.3Words with value 52 appear in the following order: 9, 10, 30, 113, 167, and 175. The sum of these positions: 504 = 23 x 32 x 7. The first and last times this value appears (9 + 175): 184 = 23 x 23.

1.4In Hebrew, Caleb's name begins with the letter 20, and ends with the letter 2. The letter 20 first appears as the 35th letter (5 x 7). The letter 2 last appears as the 642nd letter. Between these two points are exactly 606 letters. The sum of these 606 letters: 38773 = 7 x 29 x 191. (This means everything from the beginning of the passage up to and including the first 20, and everything from the last 2 to the end would also be a multiple of 7: 3409 = 7 x 487. SF: 494 = 2 x 13 x 19.)

One could almost say Caleb's name is specially tied in with his own passage.3

First & Last

2.1Following Revelation 1:8's principle of complementary opposites, add up the first and last letters of each word: 18809 = 7 x 2687.

a) 1 6 9  14 16 21 26 31 35 38 40 44 49 52 56 58 62 65 68 72 74 77 80 86 88 93 96 102 106 110 112 118 121 125 129
b) 6 2 10 1  10 2  6  1  20 2  10 5  1  10 1  5  1  4  10 1  40 1  5  70 1  6  1  2   2   2   1   300 1   2   40

a) 132 135 139 142 146 150 154 156 160 164 167 170 174 176 180 184 187 190 193 198 200 202 205 210 215 219 223 227
b) 70  10  1   40  2   30  1   5   6   1   4   20  70  30  6   1   70  70  5   1   30  5   6   40  1   10  1   6

a) 232 235 239 243 247 249 251 255 258 262 266 268 270 274 279 285 287 291 293 297 301 305 309 313 316 320 324 328
b) 40  2   5   30  1   30  5   1   4   200 2   30  400 30  6   70  70  20  40  1   10  1   6   5   5   10  1   20

a) 332 335 337 343 347 350 353 356 360 362 366 369 371 374 377 380 385 390 394 397 401 405 407 410 417 420 425 429
b) 4   7   1   6   300 40  4   10  1   5   5   1   40  1   5   10  2   6   5   1   5   2   8   6   300 70  5   8

a) 432 436 440 443 447 450 454 456 461 464 470 475 480 484 487 489 491 494 497 500 503 507 511 515 517 520 524 528
b) 20  2   300 1   40  20  1   6   70  30  6   6   6   400 30  1   5   5   1   4   10  2   5   20  1   300 2   5

a) 532 534 539 541 546 551 556 560 564 568 576 580 583 587 594 599 603 605 610 614 616 620 625 627 629 633 638 642
b) 20  70  300 6   3   2   1   10  1   6   20  4   10  6   10  6   1   8   30  2   10  30  70  20  5   8   30  2

a) 644 648 653 658 660 664 667 670 673 676 680 684 688     (Letter position.)
b) 10  5   30  70  5   5   10  1   40  1   10  1   10      (Letter value.)

2.2Add the first letter of each word: 5215 = 5 x 7 x 149. SF: 161 = 7 x 23.

2.2.1From 2.2 take only those that are odd valued: 169 = 132. SF: 26 = 2 x 13.

2.2.2From 2.2, take the letter positions that are even valued: 35378 = 2 x 72 x 192.

2.2.3The previous feature 2.2.2 looked at the last digit of the position. Now look at positions where the first digit is odd: 28371 = 3 x 72 x 193. SF: 210 = 2 x 3 x 5 x 7.

a) 5 8  13 15 20 25 30  34 37 39 43 48 51 55  57  61  64  67  71 73 76 79  85 87 92 95 101 105 109 111 117 120 124
b) 6 10 5  30 70 30 200 6  2  50 5  10 5  400 400 200 200 200 5  30 5  300 40 30 10 30 20  300 70  50  40  5   10

a) 128 131 134 138 141 145 149 153 155 159 163 166 169 173 175 179 183 186 189 192 197 199 201 204 209 214 218 222
b) 8   5   4   5   10  300 70  30  400 90  2   6   200 200 40  10  10  200 6   10  6   400 2   40  10  10  10  5

a) 226 231 234 238 242 246 248 250 254 257 261 265 267 269 273 278 284 286 290 292 296 300 304 308 312 315 319 323
b) 10  70  5   40  1   200 40  1   90  200 5   20  5   20  5   5   20  4   40  10  400 10  5   10  5   5   5   5

a) 327 331 334 336 342 346 349 352 355 359 361 365 368 370 373 376 379 384 389 393 396 400 404 406 409 416 419 424
b) 10  200 200 5   40  300 5   7   200 5   400 200 5   30  5   200 20  30  200 5   5   10  40  50  300 40  5   10

a) 428 431 435 439 442 446 449 453 455 460 463 469 474 479 483 486 488 490 493 496 499 502 506 510 514 516 519 523
b) 40  100 200 40  8   10  5   10  7   10  5   5   400 1   5   5   10  400 200 5   200 200 5   40  1   10  5   400

a) 527 531 533 538 540 545 550 555 559 563 567 575 579 582 586 593 598 602 604 609 613 615 619 624 626 628 632 637
b) 40  1   10  40  40  40  400 400 10  5   10  40  200 200 5   6   70  50  400 50  2   50  5   5   30  50  5   50

a) 641 643 647 652 657 659 663 666 669 672 675 679 683 687 692     (Letter position.)
b) 2   50  5   10  5   4   40  5   50  200 1   10  5   10  30      (Letter value.)

2.3The last letter of each word: 13594 = 2 x 7 x 971. SF: 980 = 22 x 5 x 72.

2.3.1From 2.3, take every other letter (odd positioned): 6608 = 24 x 7 x 59.

2.3.1.1Add up the letter positions in 2.3.1: 32227 = 13 x 37 x 67. SF: 117 = 32 x 13.

2.3.2From 2.3, take the even positioned letters: 6986 = 2 x 7 x 499.

2.3.2.1From 2.3.2 take the letter positions that are odd valued: 35273 = 7 x 5039.

2.3.2.2From 2.3.2 take the letter positions that are even valued:
29510 = 2 x 5 x 13 x 227

2.3.3The 188 letters from the end of each word can be grouped 53 different ways to produce totals divisible by 7.

2.4.1The first and last letters of the first and last words: 52 = 22 x 13.

2.4.2The difference between the totals of the first and last letters of each word produces an extra factor of 7: 8379 = 32 x 72 x 19. SF: 39 = 3 x 13.

2.4.3The positions of these letters had no feature, but their difference does:
504 = 23 x 32 x 7.

2.4.4For each word, add the first and last letters.

12 12 15 31 80 32 206 7 22 52 15 15 6 410 401 205 201 204 15 31 45
301 45 100 11 36 21 302 72 52 41 305 11 10 45 74 15 11 340 72 60 401
95 8 7 204 220 110 40 16 201 76 80 11 401 32 45 16 50 11 15 11 76 45
42 6 230 41 31 95 201 9 220 7 50 405 35 26 74 110 30 440 11 15 11 11
10 10 15 11 220 204 12 41 306 305 47 204 15 401 205 10 31 45 201 25
40 202 11 10 11 45 52 308 46 305 80 45 108 220 42 308 11 45 30 8 16
75 35 406 7 11 405 40 401 205 10 201 204 15 42 6 30 6 700 42 6 30 110
340 46 403 402 11 15 11 46 220 204 15 12 80 56 401 58 32 52 15 35 100
70 10 58 32 52 15 15 35 74 45 10 60 201 41 11 15 11 40

2.4.4.1From 2.4.4 totals having an odd valued first digit: 7042 = 2 x 7 x 503.

2.4.4.2From 2.4.4 totals having an even valued first digit: 11767 = 7 x 412.

2.4.4.3The difference between 2.4.4.1 and 2.4.4.2 produces a new level of factors: 4725 = 33 x 52 x 7. SF: 26 = 2 x 13.

2.4.5Add the positions of the first and last letters of each word.

6 14 22 29 36 46 56 65 72 77 83 92 100 107 113 119 126 132 139 145
150 156 165 173 180 188 197 207 215 221 229 238 245 253 260 266 273
280 287 295 303 309 315 323 330 336 343 349 355 363 370 376 382 390
397 401 406 414 424 433 441 449 458 466 473 481 489 495 499 505 512
519 527 533 537 543 552 563 571 577 583 589 597 605 613 621 628 635
643 651 659 666 671 679 689 696 702 708 715 721 727 734 739 744 750
756 764 774 783 790 797 805 811 816 826 836 844 853 860 867 875 882
889 896 903 909 916 924 933 944 954 963 970 975 979 984 990 996 1002
1009 1017 1025 1031 1036 1043 1051 1059 1065 1072 1079 1086 1096 1106
1115 1123 1131 1143 1155 1162 1169 1180 1192 1201 1207 1214 1223 1229
1235 1244 1251 1255 1261 1270 1279 1285 1291 1300 1310 1317 1323 1330
1336 1342 1348 1355 1363 1371 1380

2.4.5.1The positions of the first and last letters of the first and last words:
1386 = 2 x 32 x 7 x 11. SF: 26 = 2 x 13.

2.4.5.2All numbers from 2.4.5 having an odd valued first digit: 99697 = 13 x 7669.

2.4.5.3All numbers from 2.4.5 having an even valued first digit:
29365 = 5 x 7 x 839.

316 letters are not first or last in a word:
10 3 300 50 5 6 4 5 6 300 3 30 3 10 1 40 30 10 30 80 50 100 50 7 400
4 70 4 2 300 2 5 6 300 10 1 30 5 10 4 6 400 70 4 6 400 10 100 4 200
50 200 2 70 10 50 50 20 300 30 300 2 5 6 400 100 4 200 50 200 3 1
200 1 300 400 2 1 300 2 2 1 8 300 30 40 40 60 10 70 1 50 20 30 1 400
8 200 5 6 30 5 10 300 2 300 10 6 5 6 1 40 1 200 300 200 20 3 30 5 10
50 8 30 30 2 50 10 6 30 30 1 8 200 5 6 30 5 70 400 50 8 10 5 6 6 400
1 300 2 200 2 70 10 8 40 50 1 2 5 6 4 2 7 300 300 30 300 200 1 40 4
2 70 400 50 50 20 10 6 40 300 40 6 50 10 50 6 4 50 10 6 7 1 300 10 6
30 6 400 300 20 8 20 20 8 400 40 30 8 40 30 90 1 30 2 6 70 400 50 5
7 300 2 5 6 10 6 5 6 400 40 70 10 6 5 6 50 100 10 70 200 10 4 30 6
90 200 6 6 30 5 6 6 400 5 6 200 300 400 10 1 300 2 5 6 10 2 200 20 5
5 6 300 10 400 2 200 6 20 30 80 50 50 8 30 10 400 2 200 6 20 30 80
50 100 50 7 50 8 30 10 6 7 70 300 30 8 200 5 6 30 5 300 200 1

2.5Since the first and last letters together (and separately) were multiples of 7, this means letters that are not first or last are also a multiple of 7:
23373 = 32 x 72 x 53. (They are divisible by 7 twice.)

2.5.1Divide the 316 letters that are not first or last into alternating groups of 130 and 56. (N.B. There is no other way of dividing the 316 letters so that the number of letters in both groups is either a multiple of 13 or 7.)

2.5.1.1The groups of 130: 19194 = 2 x 3 x 7 x 457. SF: 469 = 7 x 67.

2.5.1.2The groups of 56: 4179 = 3 x 7 x 199.

2.5.2The first letter that is not first or last in a word is the second letter (position 2). The position of the last letter that is not first or last in a word is 691. Thus first and last: 693 = 32 x 7 x 11.

2.5.3From the list of letters that are not first or last in a word, take the first and every other position after (odd): 55174 = 2 x 72 x 563. (Since the total of the positions is not divisible by 7, the remainder has no feature.)

2.5.4The first and last letters of Caleb's name are 20 and 2. (See feature 1.4.) In the list of letters that are not first or last in a word, the first appearance of the letter 20, and the last appearance of the letter 2 sandwich exactly 230 letters between them. The total of these 230 letters have no feature, but the very first letter after 20 is 300, and the last letter is before 2 is 400: 300 + 400 = 700. (22 x 52 x 7. SF: 21 = 3 x 7)

2.5.5In the previous feature, the first and last Hebrew letters of Caleb's name produced a feature on letters that were not first or last in a word. But Caleb in Hebrew has three letters. Wouldn't the middle letter, which is not first or last in Caleb's name, be more appropriate? Indeed, the middle letter with a value of 30 is also applicable to letters that are not first and last. The first and last appearances of the letter 30 sandwich exactly 299 letters in between them. Once again the total of these letters have no feature, but 299 is unique in itself: 299 = 13 x 23. The result is a factor of 13 revealing God’s name, and the factor of 23 which is the number of a human being.

The Words Of Joshua 14:6-14

List of words:
325 62 30 31 391 68 257 47 52 52 145 172 406 484 401 211 501 206 26
31 345 311 91 100 421 106 441 406 322 52 323 355 81 340 345 76 26
411 444 322 263 401 296 309 407 206 521 110 44 25 501 106 120 121
401 32 115 87 481 219 26 46 388 345 58 17 271 41 31 296 501 229 253
7 50 420 123 118 74 146 30 471 219 26 46 481 60 28 26 417 521 206 12
323 354 355 48 206 26 401 211 17 31 345 501 55 541 248 481 60 81 61
52 348 452 355 140 61 115 521 58 338 417 345 58 8 64 475 153 527 45
481 455 40 401 210 17 501 206 26 58 17 30 406 810 58 17 30 270 340
326 443 698 47 26 417 967 521 206 26 249 391 466 401 266 82 52 145
123 100 70 420 266 82 52 145 172 123 74 61 17 130 501 71 219 26 46
541

3.Revelation 1:8's is, was, and is to come with the present tense out of order leads to selecting every other word.

3.1.1The odd positioned words:

325 30 391 257 52 145 406 401 501 26 345 91 421 441 322 323 81 345 26 
444 263 296 407 521 44 501 120 401 115 481 26 388 58 271 31 501 253 
50 123 74 30 219 46 60 26 521 12 354 48 26 211 31 501 541 481 81 52 
452 140 115 58 417 58 64 153 45 455 401 17 206 58 30 810 17 270 326 
698 26 967 206 249 466 266 52 123 70 266 52 172 74 17 501 219 46

Total: 22099 = 72 x 11 x 41.

3.1.2The even positioned words:

62 31 68 47 52 172 484 211 206 31 311 100 106 406 52 355 340 76 411 
322 401 309 206 110 25 106 121 32 87 219 46 345 17 41 296 229 7 420 
118 146 471 26 481 28 417 206 323 355 206 401 17 345 55 248 60 61 348 
355 61 521 338 345 8 475 527 481 40 210 501 26 17 406 58 30 340 443 
47 417 521 26 391 401 82 145 100 420 82 145 123 61 130 71 26 541

Total: 20083 = 7 x 19 x 151.

3.1.3The difference between these two groups: 2016 = 25 x 32 x 7. SF: 23.

3.1.4Odd positioned groups of 47 words:

110 44 25 501 106 120 121 401 32 115 87 481 219 26 46 388 345 58 17 
271 41 31 296 501 229 253 7 50 420 123 118 74 146 30 471 219 26 46 
481 60 28 26 417 521 206 12 323 17 30 406 810 58 17 30 270 340 326 
443 698 47 26 417 967 521 206 26 249 391 466 401 266 82 52 145 123 
100 70 420 266 82 52 145 172 123 74 61 17 130 501 71 219 26 46 541

Total: 19614 = 2 x 3 x 7 x 467.

3.1.5Even positioned groups of 47 words:

325 62 30 31 391 68 257 47 52 52 145 172 406 484 401 211 501 206 26 
31 345 311 91 100 421 106 441 406 322 52 323 355 81 340 345 76 26 411 
444 322 263 401 296 309 407 206 521 354 355 48 206 26 401 211 17 31 
345 501 55 541 248 481 60 81 61 52 348 452 355 140 61 115 521 58 338 
417 345 58 8 64 475 153 527 45 481 455 40 401 210 17 501 206 26 58

Total: 22568 = 23 x 7 x 13 x 31.

3.1.5.1Odd positioned words from 3.1.5:

325 30 391 257 52 145 406 401 501 26 345 91 421 441 322 323 81 345 26 
444 263 296 407 521 355 206 401 17 345 55 248 60 61 348 355 61 521 
338 345 8 475 527 481 40 210 501 26

Total: 12844 = 22 x 132 x 19. SF: 49 = 72 SF: 14 = 2 x 7.

3.1.5.2Even positioned words from 3.1.5:

62 31 68 47 52 172 484 211 206 31 311 100 106 406 52 355 340 76 411 
322 401 309 206 354 48 26 211 31 501 541 481 81 52 452 140 115 58 417 
58 64 153 45 455 401 17 206 58

Total: 9724 = 22 x 11 x 13 x 17.

3.2Begin with the first word, and take every Nth word after. The following values of N produce totals divisible by 13.

5 10 34 47 55 67 70 83 84

The total of N: 455 = 5 x 7 x 13.

3.3God’s name is seen written in this passage. The letter values of God’s name in Hebrew (10-5-6-5) point to four words in the passage, and also count through the words eight times, seven times, and thirteen times.

3.3.1God’s name points to four words in the passage.

Word position: 10 5   6  5
Word found:    52 391 68 391

Total: 902 = 2 x 11 x 41. This is not divisible by 7 or 13, but the factor of 11 is a visual representation of the one God who is first and last.

3.3.2God’s name is applied eight times to count through the entire passage, overshooting the number of words only at the end.

a) 10 5   6   5   10 5   6   5   10 5   6   5   10 5  6  5   10  5
b) 10 15  21  26  36 41  47  52  62 67  73  78  88 93 99 104 114 119
c) 10 15  21  26  36 41  47  52  62 67  73  78  88 93 99 104 114 119
d) 52 401 345 106 76 263 521 106 46 271 253 118 28 12 26 345 348 115

a) 6   5   10  5   6   5   10  5   6   5   10  5  6   5
b) 125 130 140 145 151 156 166 171 177 182 192 9  15  20
c) 125 130 140 145 151 156 166 171 177 182 4   9  15  20
d) 58  527 26  810 326 417 82  70  172 130 31  52 401 31

a) Letter from the Name.
b) Count.
c) Count adjusted to 188 words.
d) Word found.

Total: 6565 = 5 x 13 x 101. SF: 119 = 7 x 17.

3.3.3God’s name is applied seven times.

a) 10 5   6   5   10 5   6   5   10 5   6   5   10 5  6  5   10  5
b) 10 15  21  26  36 41  47  52  62 67  73  78  88 93 99 104 114 119
c) 52 401 345 106 76 263 521 106 46 271 253 118 28 12 26 345 348 115

a) 6   5   10  5   6   5   10  5   6   5
b) 125 130 140 145 151 156 166 171 177 182
c) 58  527 26  810 326 417 82  70  172 130

a) Letter from the Name.
b) Count.
c) Word found.

Total: 6050 = 2 x 52 x 112. This time there are two elevens.

3.3.4God’s name is applied thirteen times.

a) 10 5   6   5   10 5   6   5   10 5   6   5   10 5  6  5   10  5
b) 10 15  21  26  36 41  47  52  62 67  73  78  88 93 99 104 114 119
c) 10 15  21  26  36 41  47  52  62 67  73  78  88 93 99 104 114 119
d) 52 401 345 106 76 263 521 106 46 271 253 118 28 12 26 345 348 115

a) 6   5   10  5   6   5   10  5   6   5   10  5  6   5  10 5   6   5
b) 125 130 140 145 151 156 166 171 177 182 192 9  15  20 30 35  41  46
c) 125 130 140 145 151 156 166 171 177 182 4   9  15  20 30 35  41  46
d) 58  527 26  810 326 417 82  70  172 130 31  52 401 31 52 345 263 206

a) 10 5  6   5   10  5  6  5   10  5   6   5   10  5   6   5
b) 56 61 67  72  82  87 93 98  108 113 119 124 134 139 145 150
c) 56 61 67  72  82  87 93 98  108 113 119 124 134 139 145 150
d) 32 26 271 229 471 60 12 206 248 52  115 345 40  206 810 340

a) Letter from the Name.
b) Count.
c) Count adjusted to 188 words.
d) Word found.

Total: 10894 = 2 x 13 x 419. SF: 434 = 2 x 7 x 31.

3.4.1The Nth and Nth last words together are divisible by 7 when N is one of the following values:

a) 3   5   10  15  19  20  21  35  37  39  48  49  50  55
b) 30  391 52  401 26  31  345 345 26  444 110 44  25  401
c) 186 184 179 174 170 169 168 154 152 150 141 140 139 134
d) 26  71  74  82  100 123 145 47  443 340 58  26  206 40
e) 56  462 126 483 126 154 490 392 469 784 168 70  231 441

a) 59   66  67  87  89   (Nth from the beginning.)
b) 481  17  271 60  26   (Word found.)
c) 130  123 122 102 100  (Equivalent to Nth from the end.)
d) 527  417 338 17  401  (Word found.)
e) 1008 434 609 77  427  (Sum of both words.)

Total of the positions (lines a + c): 3591 = 33 x 7 x 19. SF: 35 = 5 x 7.

3.4.2The Nth and Nth last words together are a multiple of 13 when N is one of the following values:

a) Nth from the beginning:         26  27  64  65
b) Word found:                     106 441 345 58
c) Equivalent to Nth from the end: 163 162 125 124
d) Word found:                     466 391 58  345
e) Sum of both words:              572 832 403 403

Total of the positions (lines a + c): 756 = 22 x 33 x 7.
Total of line a: 182 = 2 x 7 x 13.
Total of line c: 574 = 2 x 7 x 41.

3.5Adding up the middle N words of the passage produces a total divisible by 13 when N is one of the following:

176 94 82 52 22 16

Total of N: 442 = 2 x 13 x 17.

3.6When the words are added one by one, sometimes the accumulated total will be an odd or even number. This divides the passage into two groups.

3.6.1Where the accumulated total is odd (97 of them):

A  B   C      A  B   C       A  B   C       A   B   C       A   B   C       A   B   C       A   B   C
1  325 325t   27 441 5713    53 120 12525   80  146 17421   113 52  24361   137 17  30445   176 145 40201s
2  62  387    28 406 6119    55 401 13047   81  30  17451s  114 348 24709   142 17  31253   177 172 40373
3  30  417    29 322 6441    56 32  13079   83  219 18141   115 452 25161   143 30  31283s  180 61  40631
5  391 839    30 52  6493    58 87  13281   84  26  18167   118 61  25717   144 406 31689s  183 501 41279s
6  68  907    32 355 7171    60 219 13981   85  46  18213t  120 521 26353   145 810 32499   185 219 41569
8  47  1211s  35 345 7937    61 26  14007s  90  417 19225   121 58  26411s  146 58  32557s  186 26  41595
9  52  1263   36 76  8013    62 46  14053t  94  323 20287   122 338 26749   152 443 33983   187 46  41641
10 52  1315   37 26  8039    63 388 14441s  95  354 20641   124 345 27511   153 698 34681
15 401 2923   41 263 9479    66 17  14861s  100 401 21677   125 58  27569   156 417 35171
17 501 3635   44 309 10485   68 41  15173   102 17  21905t  126 8   27577   158 521 36659s
18 206 3841   47 521 11619   71 501 16001   104 345 22281s  127 64  27641   159 206 36865
19 26  3867   48 110 11729   73 253 16483   106 55  22837   129 153 28269   160 26  36891
21 345 4243   49 44  11773   77 123 17083   109 481 24107   131 45  28841   162 391 37531t
23 91  4645   51 501 12299s  78 118 17201   110 60  24167t  133 455 29777   163 466 37997
24 100 4745t  52 106 12405   79 74  17275   112 61  24309   134 40  29817   168 145 38943

A: Word position.     B: Word value.     C: Accumulated total.

Total of the word positions (column A): 8596 = 2 x 2 x 7 x 307.

3.6.2Where the accumulated total is even (91 of them):

A   B   C       A   B   C        A   B   C        A   B   C        A   B   C        A   B   C        A   B   C
4   31  448     38  411 8450     69  31  15204    96  355 20996    128 475 28116    154 47  34728    175 52  40056
7   257 1164    39  444 8894     70  296 15500    97  48  21044    130 527 28796    155 26  34754    178 123 40496
11  145 1460    40  322 9216     72  229 16230    98  206 21250    132 481 29322    157 967 36138    179 74  40570
12  172 1632    42  401 9880     74  7   16490    99  26  21276    135 401 30218    161 249 37140    181 17  40648
13  406 2038    43  296 10176    75  50  16540    101 211 21888    136 210 30428    164 401 38398    182 130 40778
14  484 2522    45  407 10892    76  420 16960    103 31  21936    138 501 30946    165 266 38664    184 71  41350
16  211 3134    46  206 11098    82  471 17922    105 501 22782    139 206 31152    166 82  38746    188 541 42182
20  31  3898    50  25  11798    86  481 18694    107 541 23378    140 26  31178    167 52  38798
22  311 4554    54  121 12646    87  60  18754    108 248 23626    141 58  31236    169 123 39066
25  421 5166    57  115 13194    88  28  18782    111 81  24248    147 17  32574    170 100 39166
26  106 5272    59  481 13762    89  26  18808    116 355 25516    148 30  32604    171 70  39236
31  323 6816    64  345 14786    91  521 19746    117 140 25656    149 270 32874    172 420 39656
33  81  7252    65  58  14844    92  206 19952    119 115 25832    150 340 33214    173 266 39922
34  340 7592    67  271 15132    93  12  19964    123 417 27166    151 326 33540    174 82  40004

A: Word position.     B: Word value.     C: Accumulated total.

Total of the word positions (column A): 9170 = 2 x 5 x 7 x 131.

How is it possible that the odd or even value of the accumulated total would select the proper positions so they would produce a total divisible by 7? Is this just a matter of chance?

3.6.3The previous exercise could be tried again, except this time columns A and C are both checked for odd and even values. The words are collected into four groups:

Word Group              Position Total
A and C are both odd         4040
A and C are both even        4374
A is odd and C is even       4796
A is even and C is odd       4556

There isn't anything here because Revelation 1:8 is of complementary opposites (two groups) and not something divided four ways. The four groups are refined into two groups: 1) purely odd or purely even, and 2) mixed.

3.6.3.1Purely odd or purely even: 4040 + 4374 = 8414 = 2 x 7 x 601.

3.6.3.2Mixed: 4796 + 4556 = 9352 = 23 x 7 x 167.

3.6.4The last feature checked for odd/even values in columns A and C. This time the check is with columns A and B.

Word Group              Position Total
A and B are both odd         3863
A and B are both even        3998
A is odd and B is even       4973
A is even and B is odd       4932

3.6.4.1Purely odd or purely even: 3863 + 3998 = 7861 = 7 x 1123.

3.6.4.2Mixed: 4973 + 4932 = 9905 = 5 x 7 x 283.

3.6.4.3This time there is an added feature with the difference:
9905 − 7861 = 2044 = 22 x 7 x 73. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

The most natural next step would be a check for odd/even on columns B and C. However, this does not work. If feature 3.6.1 is included then there were four tries with three successes. This is way beyond the odds. Even if 3.6.1 is not included, there were three tries with two successes. Again this is more than the odds would expect. Most of the other numeric studies on this site are similar. Results push beyond the odds but are not 100%. When one remembers these numeric features were obtained by following Revelation 1:8, 100% isn't really necessary.

3.6.5Find entries where columns A, B, and C are all odd valued. And find entries where all columns are even valued.

All Odd           All Even

A   B   C         A   B   C
1   325 325       12  172 1632
5   391 839       14  484 2522
15  401 2923      26  106 5272
17  501 3635      34  340 7592
21  345 4243      40  322 9216
23  91  4645      46  206 11098
27  441 5713      70  296 15500
35  345 7937      76  420 16960
41  263 9479      88  28  18782
47  521 11619     92  206 19952
51  501 12299     98  206 21250
55  401 13047     108 248 23626
71  501 16001     136 210 30428
73  253 16483     140 26  31178
77  123 17083     148 30  32604
83  219 18141     150 340 33214
109 481 24107     166 82  38746
129 153 28269     170 100 39166
131 45  28841     172 420 39656
133 455 29777     174 82  40004
137 17  30445     182 130 40778
183 501 41279
185 219 41569

A) Word position.     B) Word value.
C) Accumulated total.

Total of the words from both groups (column B): 11947 = 13 x 919. (N.B. This is separate from the previous three features because the result is from the words, not from their positions.)

3.7Divide the 188 words into groups of four and add up each group.

3.7.1Odd valued groups of 4:

391 68 257 47       123 118 74 146      58 17 30 406
52 52 145 172       46 481 60 28        810 58 17 30
345 311 91 100      48 206 26 401       270 340 326 443
26 411 444 322      501 55 541 248      249 391 466 401
263 401 296 309     481 60 81 61        266 82 52 145
26 46 388 345       52 348 452 355      123 100 70 420
58 17 271 41        140 61 115 521      266 82 52 145
31 296 501 229      58 8 64 475         17 130 501 71

Total of the odd valued groups: 20020 = 22 x 5 x 7 x 11 x 13.

3.7.2Even valued groups of 4:

325 62 30 31        120 121 401 32      153 527 45 481
406 484 401 211     115 87 481 219      455 40 401 210
501 206 26 31       253 7 50 420        17 501 206 26
421 106 441 406     30 471 219 26       698 47 26 417
322 52 323 355      26 417 521 206      967 521 206 26
81 340 345 76       12 323 354 355      172 123 74 61
407 206 521 110     211 17 31 345       219 26 46 541
44 25 501 106       58 338 417 345

Total of the even valued groups: 22162 = 2 x 7 x 1583.

3.8There is only one way of arranging the words in alternating groups of M and N number of words where M is a multiple of 13 and N a multiple of 7.

3.8.1Groups of 52 words:

325 62 30 31 391 68 257 47 52 52 145 172 406 484 401 211 501 206 26
31 345 311 91 100 421 106 441 406 322 52 323 355 81 340 345 76 26
411 444 322 263 401 296 309 407 206 521 110 44 25 501 106

354 355 48 206 26 401 211 17 31 345 501 55 541 248 481 60 81 61 52
348 452 355 140 61 115 521 58 338 417 345 58 8 64 475 153 527 45 481
455 40 401 210 17 501 206 26 58 17 30 406 810 58

Total: 24675 = 3 x 52 x 7 x 47.

3.8.2Groups of 42 words:

120 121 401 32 115 87 481 219 26 46 388 345 58 17 271 41 31 296 501
229 253 7 50 420 123 118 74 146 30 471 219 26 46 481 60 28 26 417
521 206 12 323

17 30 270 340 326 443 698 47 26 417 967 521 206 26 249 391 466 401
266 82 52 145 123 100 70 420 266 82 52 145 172 123 74 61 17 130 501
71 219 26 46 541

Total: 17507 = 7 x 41 x 61.

3.9Find the first and last appearances of word values that appeared more than once. (This ensures it isn't the same word position.) Add up the words in between the first and last appearances, and note only those that are divisible by 7. These are the instances where from the beginning up to and including the first appearance, plus everything from the end up to and including the last appearance would also be divisible by 7.

3.9.1.1From the beginning of the passage up to and including the first appearance of word value 211, plus everything from the end of the passage up to and including the last appearance of 211: 23639. (7 x 11 x 307. SF: 325 = 52 x 13.) This is the outer section marked by the boundary of 211.

3.9.1.2The words in between the first and last appearances of 211: 18543 = 3 x 7 x 883. This is the inner section inside the boundary.

3.9.2.1Outer section marked by the word value 26: 4480 . (27 x 5 x 7. SF: 26 = 2 x 13.)

3.9.2.2Inner section between 26s: 37702 = 2 x 7 x 2693. SF: 2702 = 2 x 7 x 193.

3.9.3.1The outer section marked by word value 100: 7861 = 7 x 1123.

3.9.3.2The inner section between the 100s: 34321 = 7 x 4903.

3.9.4.1The outer section marked by the word 355: 24192 = 27 x 33 x 7.

3.9.4.2The inner section between 355s: 17990 = 2 x 5 x 7 x 257.

3.9.5.1The outer section marked by 115: 29659 = 7 x 19 x 223.

3.9.5.2The inner section between 115s: 12523 = 7 x 1789.

3.9.6.1The outer section marked by 541: 23919 = 3 x 7 x 17 x 67.

3.9.6.2The inner section between 541s: 18263 = 7 x 2609.

3.9.7.1The outer section marked by 61: 25921 = 72 x 232.

3.9.7.2The inner section between 61s: 16261 = 7 x 23 x 101.

3.9.8.1The outer section marked by 82: 41006 = 2 x 7 x 29 x 101.

3.9.8.2The nner section between 82s: 1176 = 23 x 3 x 72.

3.9.9Is this all random chance? Thirty-eight word values appeared more than once in the passage. This means one would expect five or six of these numbers to succeed. Instead, eight word values succeeded. This appears to be more than just chance. What follows below makes it very unlikely to be coincidence.

Word values that succeeded: 211 26 100 355 115 541 61 82
Number of appearances:      2   10 2   3   2   2   3  2

3.9.9.1Total of the word values that succeeded: 1491 = 3 x 7 x 71.

3.9.9.2Total of their appearances: 26 = 2 x 13.

3.9.9.3The highest and lowest values that succeeded: 541 + 26 = 567 (34 x 7).

3.9.10Word 26 appeared the most at ten times. Its first and last appearances produced a features. (3.9.2.1 and 3.9.2.2) The same technique also works for its second and second last appearances, and also for its fourth and fourth last appearances. Is this coincidence? It doesn't seem to be coincidence when any of the ten appearances of 26, first and last, second and second last, third and third last, fourth and fourth last, and fifth and fifth last could have worked, but only the 1st, 2nd, and 4th worked: 1 + 2 + 4 = 7.

The Letters Of Joehua 14:6-14

List of letters:
6 10 3 300 6 2 50 10 10 5 6 4 5 1 30 10 5 6 300 70 2 3 30 3 30 6 10
1 40 200 1 30 10 6 20 30 2 2 50 10 80 50 5 5 100 50 7 10 1 400 5 10
4 70 400 1 400 5 4 2 200 1 300 200 4 2 200 10 5 6 5 1 30 40 300 5 1
10 300 5 1 30 5 10 40 70 30 1 4 6 400 10 6 70 30 1 4 6 400 10 20 2
100 4 300 2 200 50 70 2 50 1 200 2 70 10 40 300 50 5 1 50 20 10 2
300 30 8 40 300 5 70 2 4 10 5 6 5 1 400 10 40 100 4 300 2 200 50 70
30 200 3 30 1 400 5 1 200 90 6 1 300 2 1 400 6 4 2 200 20 1 300 200
70 40 30 2 2 10 6 1 8 10 1 300 200 70 30 6 70 40 10 5 40 60 10 6 1
400 30 2 5 70 40 6 1 50 20 10 40 30 1 400 10 1 8 200 10 10 5 6 5 1
30 5 10 6 10 300 2 70 40 300 5 2 10 6 40 5 5 6 1 30 1 40 200 1 40 30
1 5 1 200 90 1 300 200 4 200 20 5 200 3 30 20 2 5 30 20 400 5 10 5
30 50 8 30 5 6 30 2 50 10 20 70 4 70 6 30 40 20 10 40 30 1 400 1 8
200 10 10 5 6 5 1 30 5 10 6 70 400 5 5 50 5 5 8 10 5 10 5 6 5 1 6
400 10 20 1 300 200 4 2 200 7 5 1 200 2 70 10 40 6 8 40 300 300 50 5
40 1 7 4 2 200 10 5 6 5 1 400 5 4 2 200 5 7 5 1 30 40 300 5 1 300
200 5 30 20 10 300 200 1 30 2 40 4 2 200 6 70 400 5 5 50 5 1 50 20
10 5 10 6 40 2 50 8 40 300 6 300 40 6 50 10 40 300 50 5 70 6 4 50 10
5 10 6 40 8 7 100 20 1 300 200 2 10 6 40 300 30 8 1 6 400 10 40 300
5 20 20 8 10 1 7 6 20 20 8 10 70 400 5 30 40 30 8 40 5 6 30 90 1 400
6 30 2 6 1 6 70 400 5 400 50 5 30 10 1 400 5 5 200 5 7 5 1 300 200 4
2 200 10 5 6 5 2 10 6 40 5 5 6 1 20 10 1 400 5 300 40 70 400 2 10 6
40 5 5 6 1 20 10 70 50 100 10 40 300 40 6 70 200 10 40 3 4 30 6 400
2 90 200 6 400 1 6 30 10 10 5 6 5 1 6 400 10 6 5 6 200 300 400 10 40
20 1 300 200 4 2 200 10 5 6 5 6 10 2 200 20 5 6 10 5 6 300 70 6 10
400 50 1 400 8 2 200 6 50 30 20 30 2 2 50 10 80 50 5 30 50 8 30 5 70
30 20 50 5 10 400 5 8 2 200 6 50 30 20 30 2 2 50 10 80 50 5 5 100 50
7 10 30 50 8 30 5 70 4 5 10 6 40 5 7 5 10 70 50 1 300 200 40 30 1 1
8 200 10 10 5 6 5 1 30 5 10 10 300 200 1 30

4.1The letter values of God’s name in Hebrew (10-5-6-5) can count through the letters of Caleb's passage 13 times.

a) 10 5  6  5  10 5  6  5  10 5   6  5  10 5  6   5   10  5   6   5
b) 10 15 21 26 36 41 47 52 62 67  73 78 88 93 99  104 114 119 125 130
c) 5  30 2  6  30 80 7  10 1  200 30 10 1  6  400 4   2   50  2   300

a) 10  5   6   5   10  5   6   5   10  5   6   5   10  5   6   5   10
b) 140 145 151 156 166 171 177 182 192 197 203 208 218 223 229 234 244
c) 400 300 200 5   6   1   2   8   10  6   70  20  10  1   300 5   1

a) 5   6   5   10  5   6   5   10  5   6   5   10  5   6   5
b) 249 255 260 270 275 281 286 296 301 307 312 322 327 333 338
c) 30  1   20  400 50  2   4   400 10  5   5   6   10  2   200

a) Letter from the Name.
b) Count.
c) Letter found.

Total: 3666 = 2 x 3 x 13 x 47. SF: 65 = 5 x 13.

4.2Like the words, the letters can also be separated into two groups by taking every other letter.

4.2.1Odd positioned letters:

6 3 6 50 10 6 5 30 5 300 2 30 30 10 40 1 10 20 2 50 80 5 100 7 1 5 4
400 400 4 200 300 4 200 5 5 30 300 1 300 1 5 40 30 4 400 6 30 4 400
20 100 300 200 70 50 200 70 40 50 1 20 2 30 40 5 2 10 6 1 10 100 300
200 70 200 30 400 1 90 1 2 400 4 200 1 200 40 2 10 1 10 300 70 6 40 5
60 6 400 2 70 6 50 10 30 400 1 200 10 6 1 5 6 300 70 300 2 6 5 6 30
40 1 30 5 200 1 200 200 5 3 20 5 20 5 5 50 30 6 2 10 70 70 30 20 40 1
1 200 10 6 1 5 6 400 5 5 8 5 5 5 6 10 1 200 2 7 1 2 10 6 40 300 5 1 4
200 5 5 400 4 200 7 1 40 5 300 5 20 300 1 2 4 200 70 5 50 1 20 5 6 2
8 300 300 6 10 300 5 6 50 5 6 8 100 1 200 10 40 30 1 400 40 5 20 10 7
20 8 70 5 40 8 5 30 1 6 2 1 70 5 50 30 1 5 200 7 1 200 2 10 6 2 6 5 6
20 1 5 40 400 10 40 5 1 10 50 10 300 6 200 40 4 6 2 200 400 6 10 5 5
6 10 5 200 400 40 1 200 2 10 6 6 2 20 6 5 300 6 400 1 8 200 50 20 2
50 80 5 50 30 70 20 5 400 8 200 50 20 2 50 80 5 100 7 30 8 5 4 10 40
7 10 50 300 40 1 8 10 5 5 30 10 300 1

Total: 22421 = 7 x 3203.

4.2.1.1The resulting list in 4.2.1 can be split in half. The first half:

6 3 6 50 10 6 5 30 5 300 2 30 30 10 40 1 10 20 2 50 80 5 100 7 1 5 4
400 400 4 200 300 4 200 5 5 30 300 1 300 1 5 40 30 4 400 6 30 4 400
20 100 300 200 70 50 200 70 40 50 1 20 2 30 40 5 2 10 6 1 10 100 300
200 70 200 30 400 1 90 1 2 400 4 200 1 200 40 2 10 1 10 300 70 6 40 5
60 6 400 2 70 6 50 10 30 400 1 200 10 6 1 5 6 300 70 300 2 6 5 6 30
40 1 30 5 200 1 200 200 5 3 20 5 20 5 5 50 30 6 2 10 70 70 30 20 40 1
1 200 10 6 1 5 6 400 5 5 8 5 5 5 6 10 1 200 2 7 1 2 10 6 40

Total: 11795 = 5 x 7 x 337.

4.2.1.2The last half of 4.2.1

300 5 1 4 200 5 5 400 4 200 7 1 40 5 300 5 20 300 1 2 4 200 70 5 50 1
20 5 6 2 8 300 300 6 10 300 5 6 50 5 6 8 100 1 200 10 40 30 1 400 40
5 20 10 7 20 8 70 5 40 8 5 30 1 6 2 1 70 5 50 30 1 5 200 7 1 200 2 10
6 2 6 5 6 20 1 5 40 400 10 40 5 1 10 50 10 300 6 200 40 4 6 2 200 400
6 10 5 5 6 10 5 200 400 40 1 200 2 10 6 6 2 20 6 5 300 6 400 1 8 200
50 20 2 50 80 5 50 30 70 20 5 400 8 200 50 20 2 50 80 5 100 7 30 8 5
4 10 40 7 10 50 300 40 1 8 10 5 5 30 10 300 1

Total: 10626 = 2 x 3 x 7 x 11 x 23. SF: 46 = 2 x 23.

4.2.2Even positioned letters:

10 300 2 10 5 4 1 10 6 70 3 3 6 1 200 30 6 30 2 10 50 5 50 10 400 10
70 1 5 2 1 200 2 10 6 1 40 5 10 5 30 10 70 1 6 10 70 1 6 10 2 4 2 50
2 1 2 10 300 5 50 10 300 8 300 70 4 5 5 400 40 4 2 50 30 3 1 5 200 6
300 1 6 2 20 300 70 30 2 6 8 1 200 30 70 10 40 10 1 30 5 40 1 20 40 1
10 8 10 5 5 30 10 10 2 40 5 10 40 5 1 1 200 40 1 1 90 300 4 20 200 30
2 30 400 10 30 8 5 30 50 20 4 6 40 10 30 400 8 10 5 5 30 10 70 5 50 5
10 10 6 1 400 20 300 4 200 5 200 70 40 8 300 50 40 7 2 10 6 1 5 2 5 5
30 300 1 200 30 10 200 30 40 2 6 400 5 5 50 10 10 40 50 40 6 40 50 40
50 70 4 10 10 40 7 20 300 2 6 300 8 6 10 300 20 8 1 6 20 10 400 30 30
40 6 90 400 30 6 6 400 400 5 10 400 5 5 5 300 4 200 5 5 10 40 5 1 10
400 300 70 2 6 5 6 20 70 100 40 40 70 10 3 30 400 90 6 1 30 10 6 1
400 6 6 300 10 20 300 4 200 5 5 10 200 5 10 6 70 10 50 400 2 6 30 30
2 10 50 30 8 5 30 50 10 5 2 6 30 30 2 10 50 5 50 10 50 30 70 5 6 5 5
70 1 200 30 1 200 10 6 1 5 10 200 30

Total: 19761 = 3 x 7 x 941

4.3.1Every Nth letter produces a multiple of 13 when N is one of the following values:

11 15 16 41 44 71 73 96 102 109 111 112 114 119 125 130 160 169 179 
182 201 206 208 214 217 225 265 268 284 288

Total of N: 4355 = 5 x 13 x 67.

4.3.2Every Nth letter produces a multiple of 91 (7 x 13), when N is one of the following:

44 73 96 102 109 112 206

Total of N: 742 = 2 x 7 x 53.

4.3.2.1Every other N from the list in 4.3.2:

44 96 109 206

Total: 455 = 5 x 7 x 13.

4.3.2.2The remainder from list 4.3.2:

73 102 112

Total: 287 = 7 x 41.

4.4Odd and even depends on the last digit. The letters here are separated depending on their first digit.

4.4.1Letters whose first digit is odd valued:

10 3 300 50 10 10 5 5 1 30 10 5 300 70 3 30 3 30 10 1 1 30 10 30 50
10 50 5 5 100 50 7 10 1 5 10 70 1 5 1 300 10 5 5 1 30 300 5 1 10 300
5 1 30 5 10 70 30 1 10 70 30 1 10 100 300 50 70 50 1 70 10 300 50 5 1
50 10 300 30 300 5 70 10 5 5 1 10 100 300 50 70 30 3 30 1 5 1 90 1
300 1 1 300 70 30 10 1 10 1 300 70 30 70 10 5 10 1 30 5 70 1 50 10 30
1 10 1 10 10 5 5 1 30 5 10 10 300 70 300 5 10 5 5 1 30 1 1 30 1 5 1
90 1 300 5 3 30 5 30 5 10 5 30 50 30 5 30 50 10 70 70 30 10 30 1 1 10
10 5 5 1 30 5 10 70 5 5 50 5 5 10 5 10 5 5 1 10 1 300 7 5 1 70 10 300
300 50 5 1 7 10 5 5 1 5 5 7 5 1 30 300 5 1 300 5 30 10 300 1 30 70 5
5 50 5 1 50 10 5 10 50 300 300 50 10 300 50 5 70 50 10 5 10 7 100 1
300 10 300 30 1 10 300 5 10 1 7 10 70 5 30 30 5 30 90 1 30 1 70 5 50
5 30 10 1 5 5 5 7 5 1 300 10 5 5 10 5 5 1 10 1 5 300 70 10 5 5 1 10
70 50 100 10 300 70 10 3 30 90 1 30 10 10 5 5 1 10 5 300 10 1 300 10
5 5 10 5 10 5 300 70 10 50 1 50 30 30 50 10 50 5 30 50 30 5 70 30 50
5 10 5 50 30 30 50 10 50 5 5 100 50 7 10 30 50 30 5 70 5 10 5 7 5 10
70 50 1 300 30 1 1 10 10 5 5 1 30 5 10 10 300 1 30

Total: 18284 = 22 x 7 x 653.

4.4.2Letters whose first digit it even valued:

6 6 2 6 4 6 2 6 40 200 6 20 2 2 80 400 4 400 400 4 2 200 200 4 2 200
6 40 40 4 6 400 6 4 6 400 20 2 4 2 200 2 200 2 40 20 2 8 40 2 4 6 400
40 4 2 200 200 400 200 6 2 400 6 4 2 200 20 200 40 2 2 6 8 200 6 40
40 60 6 400 2 40 6 20 40 400 8 200 6 6 2 40 2 6 40 6 40 200 40 200
200 4 200 20 200 20 2 20 400 8 6 2 20 4 6 40 20 40 400 8 200 6 6 400
8 6 6 400 20 200 4 2 200 200 2 40 6 8 40 40 4 2 200 6 400 4 2 200 40
200 20 200 2 40 4 2 200 6 400 20 6 40 2 8 40 6 40 6 40 6 4 6 40 8 20
200 2 6 40 8 6 400 40 20 20 8 6 20 20 8 400 40 8 40 6 400 6 2 6 6 400
400 400 200 200 4 2 200 6 2 6 40 6 20 400 40 400 2 6 40 6 20 40 40 6
200 40 4 6 400 2 200 6 400 6 6 6 400 6 6 200 400 40 20 200 4 2 200 6
6 2 200 20 6 6 6 400 400 8 2 200 6 20 2 2 80 8 20 400 8 2 200 6 20 2
2 80 8 4 6 40 200 40 8 200 6 200

Total: 23898 = 2 x 3 x 7 x 569. SF: 581 = 7 x 83.

4.4.3Total of the positions the letters in 4.4.2: 100776 = 23 x 3 x 13 x 17 x 19.

4.5Thirty-seven letters are divisible by 7.

a) 20 47 54 86 94 109 115 132 149 174 187 190 203 231 285 287 310 335
b) 70 7  70 70 70 70  70  70  70  70  70  70  70  70  70  70  70  7

a) 340 352 367 391 420 430 455 461 481 495 522 534 542 598 625 651 658
b) 70  7   7   70  70  7   7   70  70  7   70  70  70  70  70  7   70

a) 665 668   (Letter position.)
b) 7   70    (Letter value.)

Since these letters were chosen specifically because they were multiples of 7, there is no feature with the total of the letters. The feature is in the total of their positions: 12663 = 33 x 7 x 67.

4.5.1The positions have an added feature. Divide them into two groups depending on the odd/even value of the first digit.

4.5.1.1First digit odd:

54 94 109 115 132 149 174 187 190 310 335 340 352 367 391 522 534 542 598

Total: 5495 = 5 x 7 x 157.

4.5.1.2First digit even:

20 47 86 203 231 285 287 420 430 455 461 481 495 625 651 658 665 668

Total: 7168 = 210 x 7

4.5.1.2.1The list in 4.5.1.2 is now separated into odd and even values. Odd valued:

47 203 231 285 287 455 461 481 495 625 651 665

Total: 4886 = 2 x 7 x 349.

4.5.1.2.2Even valued from 4.5.1.2:

20 86 420 430 658 668

Total: 2282 = 2 x 7 x 163.

4.6.1When the letters are added one by one, there are five instances where the accumulated total will be divisible by 7 and 13.

Letter   Letter   Accumulative
position            Total
289        30       17381
343        6        20293
480        6        28847
601        400      37947
689        300      41951

Total of the letters: 742 = 2 x 7 x 53.

4.6.2There are precisely 49 instances where the accumulated total will be a multiple of 13.

4.6.3There are 87 times when the accumulated total will be a multiple of 7.

A   B   C         A   B   C         A   B   C
15  30  448       282 50  17171     467 8   28224
18  6   469       289 30  17381     478 6   28840
28  1   924       292 10  17451     480 6   28847
34  6   1211      294 30  17521     481 70  28917
88  1   4746      301 10  18151     484 400 29722
92  10  5166      317 8   18767     506 5   31178
107 200 6321      324 1   18809     511 5   31241
116 10  6776      326 400 19215     516 10  31283
124 10  7252      336 5   19964     519 5   31689
164 1   10486     339 2   20167     524 2   32501
166 6   10892     340 70  20237     527 40  32557
182 8   11788     343 6   20293     551 2   33985
186 200 12299     363 4   21686     564 1   34755
187 70  12369     373 5   22281     566 400 35161
193 5   12530     375 300 22582     569 5   35182
207 50  13251     385 2   23380     579 200 36659
210 40  13321     390 6   23632     587 6   36897
214 10  13762     391 70  23702     601 400 37947
222 5   14007     400 10  24248     616 10  38808
230 2   14371     403 6   24269     627 20  39186
231 70  14441     405 2   24311     636 6   39872
236 10  14798     408 40  24409     647 5   40201
240 5   14854     421 6   25592     649 100 40306
242 1   14861     429 8   25725     654 50  40453
250 1   15204     430 7   25732     672 200 41279
259 200 16205     436 2   26355     674 30  41349
266 2   16485     439 40  26411     678 200 41559
268 30  16520     450 20  27531     689 300 41951
270 400 16940     452 8   27559     692 30  42182

A: Letter position.      B: Letter value.
C: Accumulated total.

Total of the positions (column A): 32522 = 2 x 7 x 23 x 101. SF: 133 = 7 x 19. SF: 26 = 2 x 13.
Total of the letters (column B): 5070 = 2 x 3 x 5 x 132.
Adding the accumulated totals (column C): 1989960 = 23 x 3 x 5 x 7 x 23 x 103. SF: 147 = 3 x 72.
(That this is divisible by 7 is not a feature since the totals individually were already divisible by 7. The feature is in the sum of the factors. On a side note, the total is a multiple of 23, the number of man.)

4.6.4Exactly 35 times the accumulated total will be a multiple of 23 (the number of man). Providentially, the very first time this happens is with the 23rd letter. The last time this happens is with the 692nd letter. Thus first and last: 23 + 692 = 715 (5 x 11 x 13).

A   B   C          A   B   C          A   B   C
23  30  874        249 30  15203      474 400 28796
38  2   1265       253 200 15410      523 400 32499
49  1   1633       256 300 15801      622 8   39031
67  200 3841       279 6   17089      644 10  40066
79  300 4554       283 10  17181      670 1   40779
86  70  4715       313 5   18699      681 5   41584
104 4   5819       336 5   19964      692 30  42182
108 50  6371       405 2   24311
122 50  7222       417 300 25461    A: Letter position.
150 30  9246       432 20  25852    B: Letter value.
184 1   11799      442 8   26749    C: Accumulated total.
208 20  13271      450 20  27531
222 5   14007      455 7   27577
226 10  14053      458 20  27623

4.6.4.1The total of the positions (column A): 11000. This is not divisible by 7 or 13, but it is an amazingly round number.

4.6.4.2The total of the letters (column B): 2560 = 29 x 5. This is also not a multiple of 7 or 13, but the nine repeating factors of 2 are a reminder of the original commandment for humans to be fruitful and multiply (Genesis 1:28).

4.6.5.1A hundred and eighty-four letters have an odd valued position and accumulated total. A hundred and sixty-seven letters have an even valued position and accumulated total. Together, these 351 letters, that are purely odd or purely even, total 22330 (2 x 5 x 7 x 11 x 29).

4.6.5.2From 4.6.5.1, the remaining letters having mixed odd/even values in columns A and C total 19852 (22 x 7 x 709).

4.6.6Exactly 49 letters have an odd value, an odd position, and an odd accumulated total. And exactly 126 letters have an even value, an even position, and an even accumulated total. Together, the positions of these 175 letters total 63119 (7 x 71 x 127). The total of these 175 letters: 10049 (13 x 773).

4.7The number of times a letter appears in the passage has numeric features.

a) 1  2  3 4  5  6  7 8  10 20 30 40 50 60 70 80 90 100 200 300 400
b) 63 43 6 21 92 64 9 18 76 25 50 40 34 1  28 3  4  6   42  36  31

a) Letter value.
b) Number of occurrences.

4.7.1Letter 60 appeared the least (one time). Letter 5 appeared the most (92 times). The total of all these letters: 520 = 23 x 5 x 13.

4.7.2.1Letters that occurred an odd number of times:

A     B    C

60  x 1  = 60
80  x 3  = 240
7   x 9  = 63
4   x 21 = 84
20  x 25 = 500
400 x 31 = 12400
2   x 43 = 86
1   x 63 = 63

A: Letter value.     B: Number of occurrences.
C: Total in the passage.

Total of the letters (C): 13496 = 23 x 7 x 241.

4.7.2.2Letters that occurred an even number of times:

A     B    C

90  x 4  = 360
3   x 6  = 18
100 x 6  = 600
8   x 18 = 144
70  x 28 = 1960
50  x 34 = 1700
300 x 36 = 10800
40  x 40 = 1600
200 x 42 = 8400
30  x 50 = 1500
6   x 64 = 384
10  x 76 = 760
5   x 92 = 460

A: Letter value.     B: Number of occurrences.
C: Total in the passage.

Total of the letters (C): 28686 = 2 x 3 x 7 x 683.

4.7.2.3The difference between letters that appeared an odd or even number of times: 15190 = 2 x 5 x 72 x 31. SF: 52 = 22 x 13.

4.7.3The number of occurrences point to twenty-two letters.

a) 63  43 6 21 92 64  9  18 76 25 50  40 34 1 28 3 4   6 42 36 31
b) 300 5  2 2  10 200 10 6  5  30 400 10 6  6 1  3 300 2 50 30 1

a) Number of occurrences as a letter position.
b) Letter found.

Total of the letters found: 1379 = 7 x 197.

4.7.4Add up the number of occurrences to find more letters.

a) 63  43  6   21  92  64  9   18  76  25  50  40  34  1   28  3   4   6
b) 63  106 112 133 225 289 298 316 392 417 467 507 541 542 570 573 577 583
c) 300 2   1   2   5   30  8   5   400 300 8   2   6   70  6   400 1   10

a) 42  36  31   Number of occurrences.
b) 625 661 692  Number of occurrences added.
c) 70  10  30   Letter found.

Total of the letters found: 1666 = 2 x 72 x 17.

4.7.5The number of times a letter appears multiplied by its value also uncovers more letters.

a) 1   2  3  4  5   6   7   8   9   10  20   30   40   50 60   70
b) 63  86 18 84 460 384 63  144 760 500 1500 1600 1700 60 1960 240
c) 63  86 18 84 460 384 63  144 68  500 116  216  316  60 576  240
d) 300 70 6  10 10  30  300 4   10  4   10   8    5    2  20   5

a)  80  90  100  200   300    Letter value.
b)  360 600 8400 10800 12400  Letter × number of occurrences.
c)  360 600 96   420   636    Line B adjusted to 692 letters.
d)  1   10  1    70    6      Letter found.

Total of letters found: 882 = 2 x 32 x 72.

4.8Divide the letters into segments of two and add each segment.

4.8.1Odd valued segments of 2:

3 300    300 5    1 300    6 1      5 10     5 10     200 5    6 5
10 5     1 30     2 1      30 1     400 5    5 70     1 300    20 5
5 6      5 10     1 300    1 40     5 50     5 10     10 5     5 6
2 3      30 1     1 8      30 1     5 10     8 7      6 5      1 400
30 3     30 1     10 1     1 300    5 6      1 300    6 1      5 30
10 1     50 1     5 40     5 200    1 300    1 6      1 400    30 5
1 30     50 5     6 1      3 30     1 200    5 20     5 300    5 10
7 10     1 50     2 5      5 30     5 40     10 1     40 5     400 5
1 400    5 70     6 1      5 10     5 6      7 6      5 6      7 10
5 10     10 5     30 1     5 30     400 5    5 30     1 20     5 70
400 1    6 5      1 8      30 5     200 5    5 6      40 3     4 5
400 5    1 400    10 5     1 400    1 30     1 400    400 1    40 5
200 1    200 3    6 5      1 8      5 30     1 6      5 6      50 1
5 6      30 1     1 30     10 5     1 30     5 400    5 6      5 6
300 5    400 5    5 10     6 5      50 5     50 5     1 300    30 5
1 10     1 200    300 5    1 30     1 50     1 400    10 5     1 30

Total: 13412 = 22 x 7 x 479. SF: 490 = 2 x 5 x 72. SF: 21 = 3 x 7.

4.8.2Even valued segments of 2:

6 10       4 70       200 50     400 6      400 10     6 30       2 200      20 10      6 4        30 90      10 70      400 10     80 50      7 5
6 2        4 2        70 2       4 2        200 10     2 50       7 5        300 200    50 10      6 30       50 100     40 20      50 8       10 70
50 10      300 200    200 2      200 20     6 10       10 20      2 70       2 40       6 40       2 6        10 40      200 4      70 30      300 200
6 4        4 2        70 10      200 70     300 2      70 4       10 40      4 2        100 20     70 400     300 40     2 200      20 50      40 30
5 1        200 10     40 300     40 30      70 40      70 6       6 8        200 6      200 2      30 10      6 70       6 10       8 2        1 1
30 10      5 1        20 10      2 2        2 10       30 40      40 300     70 400     10 6       5 5        200 10     2 200      200 6      8 200
300 70     30 40      2 300      10 6       6 40       20 10      300 50     5 5        40 300     7 5        4 30       6 10       50 30      10 10
30 6       40 70      30 8       300 200    5 5        40 30      1 7        20 10      30 8       200 4      6 400      300 70     20 30      5 1
40 200     4 6        40 300     70 30      40 200     200 10     4 2        6 40       400 10     2 200      2 90       6 10       2 2        10 10
10 6       400 10     2 4        6 70       5 1        6 70       200 10     2 50       40 300     2 10       200 6      400 50     50 10      300 200
20 30      6 70       10 40      40 10      200 90     5 5        5 1        8 40       20 8       6 40       6 30       8 2        80 50
2 2        4 6        100 4      60 10      200 4      8 10       4 2        300 6      20 20      5 5        10 10      200 6      5 5
50 10      400 10     300 2      400 30     200 20     5 1        7 5        300 40     8 10       20 10      5 1        50 30      100 50
80 50      20 2       200 50     70 40      20 2       6 400      40 300     6 50       70 400     40 70      6 400      20 30      30 50
5 5        100 4      70 30      50 20      20 400     10 20      5 1        10 40      40 30      400 2      10 6       2 2        8 30
100 50     300 2      90 6       10 40      50 8       200 4      300 200    300 50     8 40       10 6       200 300    50 10      10 6

Total: 28770 = 2 x 3 x 5 x 7 x 137. SF: 154 = 2 x 7 x 11.

4.9.1The letters can be gathered into alternating groups of 21 and 325. (21 = 3 x 7. 325 = 52 x 13.)

4.9.1.1Groups of 21:

6 10 3 300 6 2 50 10 10 5 6 4 5 1 30 10 5 6 300 70 2

300 50 5 40 1 7 4 2 200 10 5 6 5 1 400 5 4 2 200 5 7

Total: 2100 = 22 x 3 x 52 x 7.

4.9.1.2Groups of 325:

3 30 3 30 6 10 1 40 200 1 30 10 6 20 30 2 2 50 10 80 50 5 5 100 50 7
10 1 400 5 10 4 70 400 1 400 5 4 2 200 1 300 200 4 2 200 10 5 6 5 1
30 40 300 5 1 10 300 5 1 30 5 10 40 70 30 1 4 6 400 10 6 70 30 1 4 6
400 10 20 2 100 4 300 2 200 50 70 2 50 1 200 2 70 10 40 300 50 5 1 50
20 10 2 300 30 8 40 300 5 70 2 4 10 5 6 5 1 400 10 40 100 4 300 2 200
50 70 30 200 3 30 1 400 5 1 200 90 6 1 300 2 1 400 6 4 2 200 20 1 300
200 70 40 30 2 2 10 6 1 8 10 1 300 200 70 30 6 70 40 10 5 40 60 10 6
1 400 30 2 5 70 40 6 1 50 20 10 40 30 1 400 10 1 8 200 10 10 5 6 5 1
30 5 10 6 10 300 2 70 40 300 5 2 10 6 40 5 5 6 1 30 1 40 200 1 40 30
1 5 1 200 90 1 300 200 4 200 20 5 200 3 30 20 2 5 30 20 400 5 10 5 30
50 8 30 5 6 30 2 50 10 20 70 4 70 6 30 40 20 10 40 30 1 400 1 8 200
10 10 5 6 5 1 30 5 10 6 70 400 5 5 50 5 5 8 10 5 10 5 6 5 1 6 400 10
20 1 300 200 4 2 200 7 5 1 200 2 70 10 40 6 8 40 300

5 1 30 40 300 5 1 300 200 5 30 20 10 300 200 1 30 2 40 4 2 200 6 70
400 5 5 50 5 1 50 20 10 5 10 6 40 2 50 8 40 300 6 300 40 6 50 10 40
300 50 5 70 6 4 50 10 5 10 6 40 8 7 100 20 1 300 200 2 10 6 40 300
30 8 1 6 400 10 40 300 5 20 20 8 10 1 7 6 20 20 8 10 70 400 5 30 40
30 8 40 5 6 30 90 1 400 6 30 2 6 1 6 70 400 5 400 50 5 30 10 1 400
5 5 200 5 7 5 1 300 200 4 2 200 10 5 6 5 2 10 6 40 5 5 6 1 20 10 1 
400 5 300 40 70 400 2 10 6 40 5 5 6 1 20 10 70 50 100 10 40 300 40 
6 70 200 10 40 3 4 30 6 400 2 90 200 6 400 1 6 30 10 10 5 6 5 1 6 400
10 6 5 6 200 300 400 10 40 20 1 300 200 4 2 200 10 5 6 5 6 10 2 200
20 5 6 10 5 6 300 70 6 10 400 50 1 400 8 2 200 6 50 30 20 30 2 2 50
10 80 50 5 30 50 8 30 5 70 30 20 50 5 10 400 5 8 2 200 6 50 30 20 30
2 2 50 10 80 50 5 5 100 50 7 10 30 50 8 30 5 70 4 5 10 6 40 5 7 5 10
70 50 1 300 200 40 30 1 1 8 200 10 10 5 6 5 1 30 5 10 10 300 200 1 30

Total: 40082 = 2 x 72 x 409.

4.9.2They can also be gathered into alternating groups of 203 and 143. (203 = 7 x 29. 143 = 11 x 13.)

4.9.2.1Groups of 203:

6 10 3 300 6 2 50 10 10 5 6 4 5 1 30 10 5 6 300 70 2 3 30 3 30 6 10 1
40 200 1 30 10 6 20 30 2 2 50 10 80 50 5 5 100 50 7 10 1 400 5 10 4
70 400 1 400 5 4 2 200 1 300 200 4 2 200 10 5 6 5 1 30 40 300 5 1 10
300 5 1 30 5 10 40 70 30 1 4 6 400 10 6 70 30 1 4 6 400 10 20 2 100 4
300 2 200 50 70 2 50 1 200 2 70 10 40 300 50 5 1 50 20 10 2 300 30 8
40 300 5 70 2 4 10 5 6 5 1 400 10 40 100 4 300 2 200 50 70 30 200 3
30 1 400 5 1 200 90 6 1 300 2 1 400 6 4 2 200 20 1 300 200 70 40 30 2
2 10 6 1 8 10 1 300 200 70 30 6 70 40 10 5 40 60 10 6 1 400 30 2 5
70

300 50 5 40 1 7 4 2 200 10 5 6 5 1 400 5 4 2 200 5 7 5 1 30 40
300 5 1 300 200 5 30 20 10 300 200 1 30 2 40 4 2 200 6 70 400 5 5 50
5 1 50 20 10 5 10 6 40 2 50 8 40 300 6 300 40 6 50 10 40 300 50 5 70
6 4 50 10 5 10 6 40 8 7 100 20 1 300 200 2 10 6 40 300 30 8 1 6 400
10 40 300 5 20 20 8 10 1 7 6 20 20 8 10 70 400 5 30 40 30 8 40 5 6 30
90 1 400 6 30 2 6 1 6 70 400 5 400 50 5 30 10 1 400 5 5 200 5 7 5 1
300 200 4 2 200 10 5 6 5 2 10 6 40 5 5 6 1 20 10 1 400 5 300 40 70
400 2 10 6 40 5 5 6 1 20 10 70 50 100 10 40 300 40 6 70 200 10 40 3 4
30 6

Total: 26096 = 24 x 7 x 233.

4.9.2.2Groups of 143:

40 6 1 50 20 10 40 30 1 400 10 1 8 200 10 10 5 6 5 1 30 5 10 6 10 300
2 70 40 300 5 2 10 6 40 5 5 6 1 30 1 40 200 1 40 30 1 5 1 200 90 1
300 200 4 200 20 5 200 3 30 20 2 5 30 20 400 5 10 5 30 50 8 30 5 6 30
2 50 10 20 70 4 70 6 30 40 20 10 40 30 1 400 1 8 200 10 10 5 6 5 1 30
5 10 6 70 400 5 5 50 5 5 8 10 5 10 5 6 5 1 6 400 10 20 1 300 200 4 2
200 7 5 1 200 2 70 10 40 6 8 40 300

400 2 90 200 6 400 1 6 30 10 10 5 6 5 1 6 400 10 6 5 6 200 300 400 10 
40 20 1 300 200 4 2 200 10 5 6 5 6 10 2 200 20 5 6 10 5 6 300 70 6 10 
400 50 1 400 8 2 200 6 50 30 20 30 2 2 50 10 80 50 5 30 50 8 30 5 70 
30 20 50 5 10 400 5 8 2 200 6 50 30 20 30 2 2 50 10 80 50 5 5 100 50 
7 10 30 50 8 30 5 70 4 5 10 6 40 5 7 5 10 70 50 1 300 200 40 30 1 1 8 
200 10 10 5 6 5 1 30 5 10 10 300 200 1 30

Total: 16086 = 2 x 3 x 7 x 383.

4.10The letter 80 appeared only three times in the passage. It is the only letter where its first and last appearances sandwich an inner group of letters between them that is divisible by 7.

4.10.1Total of the letters sandwiched between the first and last appearances of the letter 80: 38661 = 3 x 72 x 263. SF: 280 = 23 x 5 x 7..

4.10.2Total of the letters outside of this group: 3521 = 7 x 503.

4.10.3The first appearance of the letter 80 is in the 41st position. The last appearance is in position 645. 41 + 645 = 686 (2 x 73).

4.10.4The letter 80 resides within the three appearances of the word Jephunneh, which has a value of 145. These are the 11th, 168th, and 176th words. They serve to break the passage into four sections. (Note: Since the word Jephunneh is the line break, it is removed from three of the sections.)

325 62 30 31 391 68 257 47 52 52  Total: 1315.

172 406 484 401 211 501 206 26 31 345 311 91 100 421 106 441 406 322
52 323 355 81 340 345 76 26 411 444 322 263 401 296 309 407 206 521
110 44 25 501 106 120 121 401 32 115 87 481 219 26 46 388 345 58 17
271 41 31 296 501 229 253 7 50 420 123 118 74 146 30 471 219 26 46
481 60 28 26 417 521 206 12 323 354 355 48 206 26 401 211 17 31 345
501 55 541 248 481 60 81 61 52 348 452 355 140 61 115 521 58 338 417
345 58 8 64 475 153 527 45 481 455 40 401 210 17 501 206 26 58 17 30
406 810 58 17 30 270 340 326 443 698 47 26 417 967 521 206 26 249
391 466 401 266 82 52  Total: 37338 = 2 x 3 x 7 x 7 x 127.

123 100 70 420 266 82 52  Total: 1113 = 3 x 7 x 53. SF: 63 = 3 x 3 x 7.
                                                    SF: 13.

172 123 74 61 17 130 501 71 219 26 46 541  Total: 1981 = 7 x 283.

How is it possible that out of four totals three are divisible by 7? Only the first section is not divisible by 7. It would appear the word Jephunneh is strategically positioned in the passage to fix the letter 80.

4.10.4.1The 168th word, a multiple of 7, draws attention to the second appearance of Jephunneh as another possible break point in dividing the passage into two sections. But it doesn't work. This leads to examining the letter 80 within it. If the letter 80 divides the passage in two, does it go with the first part, or with the second part? This letter 80 is the 617th letter of the passage. If it had been the 616th letter, its position would have been divisible by 7. Since it is the 617th letter, this is one more than a number divisible by 7. This means if this letter divides the passage in two, it is added with the second part. Thus all letters from the beginning of the passage up to (but not including this 80) totals 38808 = (23 x 32 x 72 x 11). From this letter 80 to the end of the passage totals 3374 (2 x 7 x 241).

Conclusion

Caleb trusted God, and believed God would deliver. God did deliver. He kept Caleb through forty years of wandering. He preserved Caleb through five years of war. He gave Caleb victory over the Anakim, the giants of Hebron. Caleb was an 85 year old man with the peak physical health and strength of a 40 year old. Caleb's life was marked by God’s saving hand, and the story of his life is marked with God’s signature for all time for all to see.

Notes

  1. English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.
  2. The Hebrew text is from Bibleworks 3.0 by Hermeneutika, Michael S. Bushell, 1995, translated into HTML entities. Vowel marks and punctuation from the Hebrew have been removed. Greek accent marks and punctuation have also been removed.
  3. The five Hebrew words for these/this Caleb son-of Jephunneh the-Kenizzite have a providential feature when their values are strung together into a larger number: 475252145172 = 22 x 32 x 7 x 2749 x 686039. SF: 688805 = 5 x 13 x 10597.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




Applying God’s word is more important than applying numbers to God’s word.