One GOD
Confirmation From China
(可 惜 這 頁 沒 有 中 文 繙 譯)
Most of the numeric studies in Chinese are of translations into Chinese. This study, and the one on the Dao De Jing are from the original Chinese. The essay below is from a scholar/official written circa 1800 A.D. It explains the Chinese understanding of the nature of God, and the annual sacrifices carried out by the emperors of China through thousands of years of history. It links filial piety along with ancestral sacrifices to the imperial sacrifices, and explains them as service or worship of God.
There is only one God, and He is not a trinity. This can be seen in many ancient Chinese writings, and even in writings, like this one, that are practically contemporary with today.
It is one matter when writings, ancient or modern, just make a statement of claim with no support. But it is an entirely different matter when there is supporting evidence of divine providence.
James Legge's The Notions Of The Chinese Concerning God And Spirits, (Hong Kong Register Office, HK 1852) presents an extensive passage written by a Chinese official 朱宗元 explaining God as a single being, and the ultimate creator. The passage also explains what Westerners call ancestral worship and relates it to the worship of 上帝 (Shang-Te; Chinese title for the one supreme God).
帝不有二則郊社之專言帝者非省文也夫上 帝者天之主也為天之主則亦為地之主故郊 社雖異禮而統之曰事上帝云爾今夫國家之 禮莫重於祭而後世之悖禮則莫亂於祭尤莫 亂於天地之祭分天與地而二之又復分天而 五之於是舉一切怪誕不經之屬咸以為禍福 之柄而圭璧牲牷之祭殊不知天地特兩大形 體耳固非靈覺之體而能歆人祀也有生之者 有制之者形氣可區為兩主宰不可區為兩
古人知始造萬物者唯上帝日起化育者惟上 帝臨下有赫者惟上帝降殃降祥者惟上帝吾 何所事哉事上帝已爾吾何以事上帝哉以郊 社之禮事之已爾
夫論達孝而及上帝蓋謂人之事帝猶子之事 親也然郊之禮夫人而知為事上帝也社之禮 而亦為事上帝何上帝者無所不在亦無所不 主在天則為天之主在地則為地之主在人身 則為人身之主在萬物則為萬物之主雖日月 運行而一寒一暑水土交成百穀蕃植各有鬼 神為運動護守然皆受上帝之命而行者也亦 倚上帝之能而動者也則不必當為鬼神報而 應當為上帝報也
至一之為帝使郊有一帝而社又復有一帝是 二之也試問此二帝者其智勇才能均敵而無 差乎抑或大小不齊乎其間凡為陰陽變化之 事必相咨度而後行乎抑各出其號令乎夫天 地為屬一帝搏捖故一施一生莫不順氣而應 若各自為帝則如兩君分域而處其政教號令 亦不相屬何以歲序功成百物哉
且至尊之為帝卽一為至尊二卽為次尊可以 序進而較猶為失尊夫上帝之懸乎百神其視 大臣相去人主尚不啻千萬也
則郊社之禮所用之物異所行之地異而所以 事之則不異也然旣郊事之而又於社事之何 也蓋各就其功用昭明之處而加禮以報焉高 明上覆我得以蒙其光帡者上帝功用之著於 天者也沉厚下載我得以享其美利者上帝功 用之著於地者也則郊以荅生天之德而社以 荅生地之德也
今夫穀者地之產也而先王祈穀於郊不祈於 后土則郊社之統為事上帝也明矣是故生人 皆當事帝而天子則以郊社之禮代人事帝太 上而降不得用享之禮以事帝而各得以其身 心事帝猶祀親也若因郊社不同而疑所事有 異亦可因禴祀蒸嘗其禮不同而疑所事有二 親哉1
There are not two Tes. When the text speaks simply of Te, in connection with both the celestial and terrestrial sacrifices, there is no elliptical mode of expression. Now, Shang-Te is the Lord of heaven. Being the Lord of heaven, He is also the Lord of earth. Therefore, although the celestial and terrestrial sacrifices are different ceremonies, it is said equally of them both, that by them men serve Shang-Te. Of all the ceremonies practised in the empire, there are none more important than sacrifices. None, however, have been more perverted and confused by after ages, and of all sacrifices this has happened to none more than to those to heaven and earth. Heaven and earth have been separated, and considered as two. Heaven again has been divided, and considered as five. From this there have arisen many strange, nonsensical and unclassical practices. It has been thought, that so many different beings had the power of causing happiness and misery, and they have been sacrificed to with precious stones (the kwei and peih), and with animal victims. But heaven and earth are only two material bodies, and not intelligent beings, which could enjoy the sacrifices of men. They have a Producer; they have a Director. That which has form and is material may be divided into two, but Lordship and Governing cannot be divided into two. "The ancients knew that it was Shang-Te, who made all things in the beginning; that it is Shang-Te, who daily sustains all nurturing influences; that it is Shang-Te, who descends to men in majesty; that it is Shang-Te, who visits with calamities and with blessings. Whom should we serve then? We should serve Shang-Te, and Him alone. How should we serve Shang-Te? We should serve Him with the celestial and terrestrial sacrifices, and with those alone. "Confucius proceeds from discoursing of the universally acknowledged filial piety (of Woo and Chow-kung) to speak of Shang-Te, indicating that men's service of Te, is like the service which a son renders to his father. As to the celestial sacrifice, men know that in it Shang-Ts is served, but how does it appear that He is served also in the terrestrial sacrifice? Shang-Te is present everywhere, and there is nothing over which He does not rule. Speak of heaven, He is the Lord of heaven. Speak of earth, He is the Lord of earth. Speak of the persons of men, He is the Lord of the persons of men. Speak of all things, He is the Lord of all things. Although the revolutions of the sun and moon, causing heat and cold, and the admixture of earth and water, causing the abundant growth of all the kinds of grain, are occasioned by the moving power and guardianship of spirits, yet these all act as they receive the commands of Shang-Te, and for their movements are dependent on His power. Men ought not to give thanks to the spirits; they ought to give thanks to Shang-Te. Te is a perfect One. If there be one Te contemplated in the celestial sacrifice, and another contemplated in the terrestrial, this makes two Tes. I would ask, are there two Tes, equal in knowledge, strength and ability, without any difference or, Are they unequal, the one great and the other small? In all the changes and transformations taking place of the Yin and Yang, must they first consult between themselves? or, Does each of them issue his own orders? Heaven and earth are the workmanship of one Te, and therefore every forth-putting of His power, and every consequent production, happen in perfect obedience to His energy. If there were two Tes, it would be like two sovereigns occupying a divided territory. Their government, instructions, and orders, being different, how could there be the seasons of the year, and the regular production of all things? "Moreover, Te is supremely honourable. But only One can be supremely honourable. A second is honourable only in a secondary degree. How can there be this comparison of degrees, which would take away from the honour? The difference between Shang-Te and the various spirits, is more than a thousand, yea than ten thousand times the difference between a Sovereign and his great ministers. The things used at the two sacrifices are different; the places where they are performed are also different; but the service is not different. How is it then that the service is performed on the two occasions? The ceremonies are regulated by the different services rendered by the two objects, and thanks given accordingly. The high and bright heaven covers us above; we receive its light and shelter; this is the manifestation of what Shang-Te does for us, given by the heavens. The deep and broad earth supports all on it; we enjoy the beautiful advantages which it yields; this is the manifestation of what Shang-Te does for us, given by the earth. Thus, in the celestial sacrifice, thanks are given to Shang-Te for His creation of heaven, and in the terrestrial sacrifice, thanks are given for the creation of the earth. "Grain is the production of the earth. Now, the former kings prayed for grain at the celestial sacrifice, and not from the Empress earth, which makes it clear that in the celestial and terrestrial sacrifices the service is equally to Shang-Te. Therefore all living men ought to serve Shang-Te, and the Emperor on their behalf serves Him by these two sacrifices. No one below the highest can serve Te with these ceremonies, but every man can serve Him with his body and his heart, as he sacrifices to his parents. If it be doubted, that because the celestial and terrestrial sacrifices are different, there are different beings served by them, then, because the seasonal sacrifices of the ancestral temple are different, it may be doubted whether there are not different sets of parents.
The passage begins with 帝不有二, which Legge translated as There are not two Tes.
(上帝 is often abbreviated as simply 帝.) Legge's translation of this opening phrase was most likely influenced by his adherence to the doctrine/theory of the Trinity. Consider the following example:
他 | 給 | 我 | 一 | 本 | 書 |
He | gave | me | one | na | book. |
Subject | verb | indirect-object | object | ||
本 is a classifier for books. |
Thus the subject in the phrase 帝不有二 has to be 帝. Legge's translation There are not two Tes
, makes 帝, or 上帝 the object, not the subject as written. Legge's translation is that there cannot be two Tes
and nothing is stated of the nature of Te. It leaves open what that nature might be. This hides what the Chinese author actually wrote.
Legge's interpretation of There are not two Tes
is more appropriate to this Chinese phrase: 沒有兩個帝.
沒 | 有 | 兩 | 個 | 帝 |
not | have | two | na | sovereigns/gods |
verb | object | |||
There are not two Tes. | ||||
個 is a general classifier for people and objects. |
The English idea there are
is understood in Chinese. See the next example.
房子 | 後頭 | 沒有 | 湖 |
house | behind | not-have | lake |
There is no lake behind the house. |
The phrase, 帝不有二, could be, There are not two Tes
, but the Chinese writer could also be literally stating, Te is not two
, or even Te has not two.
Since there can be a clear direct statement 沒有兩個帝
stating only one thing, the fact that the writer chose a more cryptic phrase most likely means, the writer meant all three with this brief phrase. (Another example is the cryptic Hebrew phrase in Deuteronomy 6:4.) This would be in line with the Chinese understanding of the actual nature of 上帝. If 上帝 is not two, then 上帝 is also not three, or four or more. 上帝 is also unique, and the only one. This is a definitive and categorical anti-Trinity opening statement. (N.B. There is no hint of a Trinity anywhere in the essay.)
Chinese theology states clearly there is only one God, not a binary or trinity. Chinese thought insists that by definition, the supreme God must be unique and therefore can only be one with no equal.
朱宗元's Text | Legge's Translation | Significance |
---|---|---|
夫國家之禮莫重於祭而後世之悖禮則莫亂於祭尤莫亂於天地之祭分天與地而二之又復分天而 五之於是舉一切怪誕不經之屬咸以為禍福之柄而圭璧牲牷之祭殊不知天地特兩大形體耳固非靈覺之體而能歆人祀也有生之者有制之者形氣可區為兩主宰不可區為兩 | Of all the ceremonies practised in the empire, there are none more important than sacrifices. None, however, have been more perverted and confused by after ages, and of all sacrifices this has happened to none more than to those to heaven and earth. Heaven and earth have been separated, and considered as two. Heaven again has been divided, and considered as five. From this there have arisen many strange, nonsensical and unclassical practices. It has been thought, that so many different beings had the power of causing happiness and misery, and they have been sacrificed to with precious stones (the kwei and peih), and with animal victims. But heaven and earth are only two material bodies, and not intelligent beings, which could enjoy the sacrifices of men. They have a Producer; they have a Director. That which has form and is material may be divided into two, but Lordship and Governing cannot be divided into two. |
The writer confesses that over time corruption and confusion crept into the rites and the understanding of those rites. |
古人知始造萬物者唯上帝 | The ancients knew that it was Shang-Te, who made all things in the beginning. | This parallels the Bible's account in Genesis 1:1. |
吾何所事哉事上帝已爾吾何以事上帝哉以郊 社之禮事之已爾 | Whom should we serve then? We should serve Shang-Te, and Him alone. How should we serve Shang-Te? We should serve Him with the celestial and terrestrial sacrifices, and with these alone. | This agrees with the first commandment of having no other gods (Exodus 20:2-3). |
雖日月運行而一寒一暑水土交成百穀蕃植各有鬼神為運動護守然皆受上帝之命而行者也亦倚上帝之能而動者也則不必當為鬼神報而應當為上帝報也 | Although the revolutions of the sun and moon, causing heat and cold, and the admixture of earth and water, causing the abundant growth of all the kinds of grain, are occasioned by the moving power and guardianship of spirits, yet these all act as they receive the commands of Shang-Te, and for their movements are dependent on His power. Men ought not to give thanks to the spirits; they ought to give thanks to Shang-Te. | The Chinese recognize the existence of other spirits and beings (termed 鬼神), but they are all under the command of Shang-Te, inferior (see next point), and any power they have is from Him. |
夫上帝之懸乎百神其視大臣相去人主尚不啻千萬也 | The difference between Shang-Te and the various spirits, is more than a thousand, yea than ten thousand times the difference between a Sovereign and his great ministers. | All other spirit beings are vastly inferior to Shang-Te (Psalm 82:6). |
先王祈穀於郊不祈於后土則郊社之統為事上帝 | Now, the former kings prayed for grain at the celestial sacrifice, and not from the Empress earth, which makes it clear that in the celestial and terrestrial sacrifices the service is equally to Shang-Te. | Many Westerners mistake the celestial sacrifices as sacrifices to heaven, and the terrestrial sacrifices as sacrifices to the earth. The writer makes it clear both sacrifices are to Shang-Te and Shang-Te alone, not to heaven and earth, which are simply a part of His creation. |
天子則以郊社之禮代人事帝太上而降不得用享之禮以事帝而各得以其身心事帝猶祀親 | -the Emperor on their behalf serves Him by these two sacrifices. No one below the highest can serve Te with these ceremonies, but every man can serve Him with his body and his heart, as he sacrifices to his parents. | This statement links filial piety, and sacrifices to ancestors and parents to the main sacrifice accorded Shang-Te, and ties filial piety to the fifth commandment (Exodus 20:12). |
As stated before, any writer can claim any thing. The question is whether there is independent support for truth or inspiration. In this case, there is. Divine providence can be seen when the Chinese text is converted to numbers.
(See Alphanumeric Substitutions for the conversion of Chinese characters to numbers.)
帝 | 不 | 有 | 二 | 則 | 郊 | 社 | 之 | 專 | 言 | 帝 | 者 | 非 | 省 | 文 |
1939 | 100 | 628 | 8 | 1833 | 2406 | 1665 | 104 | 3342 | 1126 | 1939 | 1677 | 1797 | 2202 | 166 |
也 | 夫 | 上 | 帝 | 者 | 天 | 之 | 主 | 也 | 為 | 天 | 之 | 主 | 則 | 亦 |
30 | 147 | 24 | 1939 | 1677 | 146 | 104 | 261 | 30 | 2161 | 146 | 104 | 261 | 1833 | 424 |
為 | 地 | 之 | 主 | 故 | 郊 | 社 | 雖 | 異 | 禮 | 而 | 統 | 之 | 曰 | 事 |
2161 | 546 | 104 | 261 | 2056 | 2406 | 1665 | 7607 | 3688 | 7784 | 660 | 3727 | 104 | 171 | 1159 |
上 | 帝 | 云 | 爾 | 今 | 夫 | 國 | 家 | 之 | 禮 | 莫 | 重 | 於 | 祭 | 而 |
24 | 1939 | 107 | 5753 | 118 | 147 | 3243 | 2594 | 104 | 7784 | 3767 | 2412 | 1460 | 3710 | 660 |
後 | 世 | 之 | 悖 | 禮 | 則 | 莫 | 亂 | 於 | 祭 | 尤 | 莫 | 亂 | 於 | 天 |
1954 | 257 | 104 | 2672 | 7784 | 1833 | 3767 | 4740 | 1460 | 3710 | 152 | 3767 | 4740 | 1460 | 146 |
地 | 之 | 祭 | 分 | 天 | 與 | 地 | 而 | 二 | 之 | 又 | 復 | 分 | 天 | 而 |
546 | 104 | 3710 | 129 | 146 | 5905 | 546 | 660 | 8 | 104 | 20 | 4128 | 129 | 146 | 660 |
五 | 之 | 於 | 是 | 舉 | 一 | 切 | 怪 | 誕 | 不 | 經 | 之 | 屬 | 咸 | 以 |
110 | 104 | 1460 | 2064 | 7485 | 1 | 130 | 1416 | 6544 | 100 | 5160 | 104 | 8350 | 1848 | 265 |
為 | 禍 | 福 | 之 | 柄 | 而 | 圭 | 璧 | 牲 | 牷 | 之 | 祭 | 殊 | 不 | 知 |
2161 | 5784 | 5783 | 104 | 2081 | 660 | 548 | 7739 | 2170 | 11874 | 104 | 3710 | 2734 | 100 | 1663 |
天 | 地 | 特 | 兩 | 大 | 形 | 體 | 耳 | 固 | 非 | 靈 | 覺 | 之 | 體 | 而 |
146 | 546 | 2836 | 1187 | 43 | 911 | 8618 | 662 | 1301 | 1797 | 8711 | 8306 | 104 | 8618 | 660 |
能 | 歆 | 人 | 祀 | 也 | 有 | 生 | 之 | 者 | 有 | 制 | 之 | 者 | 形 | 氣 |
2977 | 14774 | 9 | 1666 | 30 | 628 | 398 | 104 | 1677 | 628 | 1199 | 104 | 1677 | 911 | 2737 |
可 | 區 | 為 | 兩 | 主 | 宰 | 不 | 可 | 區 | 為 | 兩 | 古 | 人 | 知 | 始 |
298 | 3216 | 2161 | 1187 | 261 | 2592 | 100 | 298 | 3216 | 2161 | 1187 | 299 | 9 | 1663 | 1325 |
造 | 萬 | 物 | 者 | 唯 | 上 | 帝 | 日 | 起 | 化 | 育 | 者 | 惟 | 上 | 帝 |
3898 | 5142 | 1644 | 1677 | 3232 | 24 | 1939 | 170 | 3104 | 135 | 1085 | 1677 | 3434 | 24 | 1939 |
臨 | 下 | 有 | 赫 | 者 | 惟 | 上 | 帝 | 降 | 殃 | 降 | 祥 | 者 | 惟 | 上 |
7484 | 22 | 628 | 5999 | 1677 | 3434 | 24 | 1939 | 2417 | 2096 | 2417 | 3708 | 1677 | 3434 | 24 |
帝 | 吾 | 何 | 所 | 事 | 哉 | 事 | 上 | 帝 | 已 | 爾 | 吾 | 何 | 以 | 事 |
1939 | 799 | 692 | 1427 | 1159 | 1847 | 1159 | 24 | 1939 | 56 | 5753 | 799 | 692 | 265 | 1159 |
上 | 帝 | 哉 | 以 | 郊 | 社 | 之 | 禮 | 事 | 之 | 已 | 爾 | 夫 | 論 | 達 |
24 | 1939 | 1847 | 265 | 2406 | 1665 | 104 | 7784 | 1159 | 104 | 56 | 5753 | 147 | 6552 | 5383 |
孝 | 而 | 及 | 上 | 帝 | 蓋 | 謂 | 人 | 之 | 事 | 帝 | 猶 | 子 | 之 | 事 |
886 | 660 | 143 | 24 | 1939 | 5917 | 7064 | 9 | 104 | 1159 | 1939 | 4372 | 45 | 104 | 1159 |
親 | 也 | 然 | 郊 | 之 | 禮 | 夫 | 人 | 而 | 知 | 為 | 事 | 上 | 帝 | 也 |
7052 | 30 | 4366 | 2406 | 104 | 7784 | 147 | 9 | 660 | 1663 | 2161 | 1159 | 24 | 1939 | 30 |
社 | 之 | 禮 | 而 | 亦 | 為 | 事 | 上 | 帝 | 何 | 上 | 帝 | 者 | 無 | 所 |
1665 | 104 | 7784 | 660 | 424 | 2161 | 1159 | 24 | 1939 | 692 | 24 | 1939 | 1677 | 4365 | 1427 |
不 | 在 | 亦 | 無 | 所 | 不 | 主 | 在 | 天 | 則 | 為 | 天 | 之 | 主 | 在 |
100 | 547 | 424 | 4365 | 1427 | 100 | 261 | 547 | 146 | 1833 | 2161 | 146 | 104 | 261 | 547 |
地 | 則 | 為 | 地 | 之 | 主 | 在 | 人 | 身 | 則 | 為 | 人 | 身 | 之 | 主 |
546 | 1833 | 2161 | 546 | 104 | 261 | 547 | 9 | 1134 | 1833 | 2161 | 9 | 1134 | 104 | 261 |
在 | 萬 | 物 | 則 | 為 | 萬 | 物 | 之 | 主 | 雖 | 日 | 月 | 運 | 行 | 而 |
547 | 5142 | 1644 | 1833 | 2161 | 5142 | 1644 | 104 | 261 | 7607 | 170 | 172 | 5379 | 679 | 660 |
一 | 寒 | 一 | 暑 | 水 | 土 | 交 | 成 | 百 | 穀 | 蕃 | 植 | 各 | 有 | 鬼 |
1 | 4105 | 1 | 4220 | 181 | 40 | 423 | 617 | 651 | 6429 | 7036 | 4244 | 534 | 628 | 3182 |
神 | 為 | 運 | 動 | 護 | 守 | 然 | 皆 | 受 | 上 | 帝 | 之 | 命 | 而 | 行 |
2924 | 2161 | 5379 | 3211 | 8449 | 566 | 4366 | 2195 | 1213 | 24 | 1939 | 104 | 1299 | 660 | 679 |
者 | 也 | 亦 | 倚 | 上 | 帝 | 之 | 能 | 而 | 動 | 者 | 也 | 則 | 不 | 必 |
1677 | 30 | 424 | 2443 | 24 | 1939 | 104 | 2977 | 660 | 3211 | 1677 | 30 | 1833 | 100 | 371 |
當 | 為 | 鬼 | 神 | 報 | 而 | 應 | 當 | 為 | 上 | 帝 | 報 | 也 | 至 | 一 |
5038 | 2161 | 3182 | 2924 | 4025 | 660 | 7284 | 5038 | 2161 | 24 | 1939 | 4025 | 30 | 669 | 1 |
之 | 為 | 帝 | 使 | 郊 | 有 | 一 | 帝 | 而 | 社 | 又 | 復 | 有 | 一 | 帝 |
104 | 2161 | 1939 | 1168 | 2406 | 628 | 1 | 1939 | 660 | 1665 | 20 | 4128 | 628 | 1 | 1939 |
是 | 二 | 之 | 也 | 試 | 問 | 此 | 二 | 帝 | 者 | 其 | 智 | 勇 | 才 | 能 |
2064 | 8 | 104 | 30 | 5270 | 3230 | 634 | 8 | 1939 | 1677 | 1189 | 4221 | 1834 | 63 | 2977 |
均 | 敵 | 而 | 無 | 差 | 乎 | 抑 | 或 | 大 | 小 | 不 | 齊 | 乎 | 其 | 間 |
866 | 6277 | 660 | 4365 | 2613 | 264 | 942 | 1423 | 43 | 49 | 100 | 6069 | 264 | 1189 | 4706 |
凡 | 為 | 陰 | 陽 | 變 | 化 | 之 | 事 | 必 | 相 | 咨 | 度 | 而 | 後 | 行 |
27 | 2161 | 3954 | 4712 | 8605 | 135 | 104 | 1159 | 371 | 2204 | 1845 | 1944 | 660 | 1954 | 679 |
乎 | 抑 | 各 | 出 | 其 | 號 | 令 | 乎 | 夫 | 天 | 地 | 為 | 屬 | 一 | 帝 |
264 | 942 | 534 | 281 | 1189 | 5242 | 272 | 264 | 147 | 146 | 546 | 2161 | 8350 | 1 | 1939 |
搏 | 捖 | 故 | 一 | 施 | 一 | 生 | 莫 | 不 | 順 | 氣 | 而 | 應 | 若 | 各 |
4906 | 11636 | 2056 | 1 | 2058 | 1 | 398 | 3767 | 100 | 4727 | 2737 | 660 | 7284 | 2330 | 534 |
自 | 為 | 帝 | 則 | 如 | 兩 | 君 | 分 | 域 | 而 | 處 | 其 | 政 | 教 | 號 |
668 | 2161 | 1939 | 1833 | 561 | 1187 | 808 | 129 | 3245 | 660 | 3843 | 1189 | 2055 | 3473 | 5242 |
令 | 亦 | 不 | 相 | 屬 | 何 | 以 | 歲 | 序 | 功 | 成 | 百 | 物 | 哉 | 且 |
272 | 424 | 100 | 2204 | 8350 | 692 | 265 | 4980 | 904 | 285 | 617 | 651 | 1644 | 1847 | 259 |
至 | 尊 | 之 | 為 | 帝 | 卽 | 一 | 為 | 至 | 尊 | 二 | 卽 | 為 | 次 | 尊 |
669 | 4109 | 104 | 2161 | 1939 | -1413 | 1 | 2161 | 669 | 4109 | 8 | -1413 | 2161 | 633 | 4109 |
可 | 以 | 序 | 進 | 而 | 較 | 猶 | 為 | 失 | 尊 | 夫 | 上 | 帝 | 之 | 懸 |
298 | 265 | 904 | 4650 | 660 | 5308 | 4372 | 2161 | 355 | 4109 | 147 | 24 | 1939 | 104 | 8226 |
乎 | 百 | 神 | 其 | 視 | 大 | 臣 | 相 | 去 | 人 | 主 | 尚 | 不 | 啻 | 千 |
264 | 651 | 2924 | 1189 | 4537 | 43 | 667 | 2204 | 297 | 9 | 261 | 1341 | 100 | 3992 | 37 |
萬 | 也 | 則 | 郊 | 社 | 之 | 禮 | 所 | 用 | 之 | 物 | 異 | 所 | 行 | 之 |
5142 | 30 | 1833 | 2406 | 1665 | 104 | 7784 | 1427 | 399 | 104 | 1644 | 3688 | 1427 | 679 | 104 |
地 | 異 | 而 | 所 | 以 | 事 | 之 | 則 | 不 | 異 | 也 | 然 | 旣 | 郊 | 事 |
546 | 3688 | 660 | 1427 | 265 | 1159 | 104 | 1833 | 100 | 3688 | 30 | 4366 | 22677 | 2406 | 1159 |
之 | 而 | 又 | 於 | 社 | 事 | 之 | 何 | 也 | 蓋 | 各 | 就 | 其 | 功 | 用 |
104 | 660 | 20 | 1460 | 1665 | 1159 | 104 | 692 | 30 | 5917 | 534 | 4111 | 1189 | 285 | 399 |
昭 | 明 | 之 | 處 | 而 | 加 | 禮 | 以 | 報 | 焉 | 高 | 明 | 上 | 覆 | 我 |
2061 | 1467 | 104 | 3843 | 660 | 284 | 7784 | 265 | 4025 | 3627 | 3179 | 1467 | 24 | 7825 | 923 |
得 | 以 | 蒙 | 其 | 光 | 帡 | 者 | 上 | 帝 | 功 | 用 | 之 | 著 | 於 | 天 |
3376 | 265 | 5913 | 1189 | 443 | 10865 | 1677 | 24 | 1939 | 285 | 399 | 104 | 4508 | 1460 | 146 |
者 | 也 | 沉 | 厚 | 下 | 載 | 我 | 得 | 以 | 享 | 其 | 美 | 利 | 者 | 上 |
1677 | 30 | 1034 | 1841 | 22 | 5309 | 923 | 3376 | 265 | 1162 | 1189 | 2237 | 786 | 1677 | 24 |
帝 | 功 | 用 | 之 | 著 | 於 | 地 | 者 | 也 | 則 | 郊 | 以 | 荅 | 生 | 天 |
1939 | 285 | 399 | 104 | 4508 | 1460 | 546 | 1677 | 30 | 1833 | 2406 | 265 | 12144 | 398 | 146 |
之 | 德 | 而 | 社 | 以 | 荅 | 生 | 地 | 之 | 德 | 也 | 今 | 夫 | 穀 | 者 |
104 | 6200 | 660 | 1665 | 265 | 12144 | 398 | 546 | 104 | 6200 | 30 | 118 | 147 | 6429 | 1677 |
地 | 之 | 產 | 也 | 而 | 先 | 王 | 祈 | 穀 | 於 | 郊 | 不 | 祈 | 於 | 后 |
546 | 104 | 3684 | 30 | 660 | 446 | 190 | 2217 | 6429 | 1460 | 2406 | 100 | 2217 | 1460 | 539 |
土 | 則 | 郊 | 社 | 之 | 統 | 為 | 事 | 上 | 帝 | 也 | 明 | 矣 | 是 | 故 |
40 | 1833 | 2406 | 1665 | 104 | 3727 | 2161 | 1159 | 24 | 1939 | 30 | 1467 | 1072 | 2064 | 2056 |
生 | 人 | 皆 | 當 | 事 | 帝 | 而 | 天 | 子 | 則 | 以 | 郊 | 社 | 之 | 禮 |
398 | 9 | 2195 | 5038 | 1159 | 1939 | 660 | 146 | 45 | 1833 | 265 | 2406 | 1665 | 104 | 7784 |
代 | 人 | 事 | 帝 | 太 | 上 | 而 | 降 | 不 | 得 | 用 | 享 | 之 | 禮 | 以 |
271 | 9 | 1159 | 1939 | 148 | 24 | 660 | 2417 | 100 | 3376 | 399 | 1162 | 104 | 7784 | 265 |
事 | 帝 | 而 | 各 | 得 | 以 | 其 | 身 | 心 | 事 | 帝 | 猶 | 祀 | 親 | 也 |
1159 | 1939 | 660 | 534 | 3376 | 265 | 1189 | 1134 | 160 | 1159 | 1939 | 4372 | 1666 | 7052 | 30 |
若 | 因 | 郊 | 社 | 不 | 同 | 而 | 疑 | 所 | 事 | 有 | 異 | 亦 | 可 | 因 |
2330 | 542 | 2406 | 1665 | 100 | 529 | 660 | 5764 | 1427 | 1159 | 628 | 3688 | 424 | 298 | 542 |
禴 | 祀 | 蒸 | 嘗 | 其 | 禮 | 不 | 同 | 而 | 疑 | 所 | 事 | 有 | 二 | 親 |
21176 | 1666 | 5918 | 5506 | 1189 | 7784 | 100 | 529 | 660 | 5764 | 1427 | 1159 | 628 | 8 | 7052 |
哉 | ||||||||||||||
1847 |
Coincidence/Providence?
A.1766 characters (2 x 383. SF: 385 = 5 x 7 x 11. SF: 23.) The number of characters has no coincidence at first glance. The coincidence is in the next level, in the factors. A final coincidence is the number 23. This is the number of a human being. 朱宗元's explanation of Shang-Te's singular nature, the sacrifices and filial piety are all of the human relationship with God.4
A.2Why are there 766 characters? Because Revelation 1:8's Alpha and Omega would lead one to add the first and the last. If one took the very first character in position one, and added it to the very last character in position 766, the result would be 767 (13 x 59). Mathematics dictates that any pairing of N and Nth last positions would result in the same 767. And the factor 13 is important since it relates to the numeric value of God’s name in Hebrew.
A.3In Chinese, the digits 766 are written as 七六六. The numeric value of these characters (4, 124, 124) total 252 (22 x 32 x 7).
A.4The numeric total of the passage: 1458177 = 3 x 7 x 23 x 3019. SF: 3052 = 22 x 7 x 109. There are two levels of seven, and also the number 23 again.
Alpha And Omega
B.Revelation 1:8 starts with I am the Alpha and the Omega.
How does this apply to Chinese? Legge had the text conveniently arranged to show paragraphs
or sections. Since there are no letters in Chinese the only way to apply Revelation 1:8's principle of Alpha and Omega (first and last) would be to take the first and last character of each section.5
B.1There are seven sections.6
B.2The first section is the longest with 161 characters (7 x 23). The numeric total of the longest section: 326625 = 3 x 53 x 13 x 67. SF: 98 = 2 x 72.
B.3The fifth section is the shortest with 48 characters (nf). The numeric total of the shortest section: 77476 = 22 x 7 x 2767. SF: 2778 = 2 x 3 x 463. SF: 468 = 22 x 32 x 13.
It would have been nice if these two sections (longest and shortest) agreed and both were divisible by 7, or both divisible by 13. But this is not the case. Nevertheless, the longest is divisible by the higher number 13, and the shortest is divisible by the lower number 7. This is not perfect, but the pairing is not a complete failure either.
B.4The longest and shortest sections together have a numeric total of 404101 (101 x 4001. SF: 4102 = 2 x 7 x 293). 404101 is not divisible by seven or thirteen, but it is visually arresting. Its factor of 101 shows the one God who is Alpha and Omega. And the factor of seven appears in the next level.
B.5First and last characters of each section: 15988 = 22 x 7 x 571.
B.5.1The first character of each section:
帝 古 夫 至 且 則 今 1939 299 147 669 259 1833 118
Total: 5264 = 24 x 7 x 47.
B.5.2The last character of each section:
兩 爾 也 哉 也 也 哉 1187 5753 30 1847 30 30 1847
Total: 10724 = 22 x 7 x 383.
B.6The first and last characters of each section could be put together as a single group (first & last, first & last, first & last...).
1939 1187 299 5753 147 30 669 1847 259 30 1833 30 118 1847
B.6.1First half of these fourteen characters:
1939 1187 299 5753 147 30 669
Total: 10024 = 23 x 7 x 179.
B.6.2Last half of these fourteen characters:
1847 259 30 1833 30 118 1847
Total: 5964 = 22 x 3 x 7 x 71.
B.7The list can be split into odd and even valued characters. There are ten odd valued characters, and this larger list has no features. But there are four even valued characters: 30, 30, 30, and 118 (208 = 24 x 13. SF: 21 = 3 x 7.)
These fourteen characters also have several other unique coincidences.
ΑΩ characters from each section: | 帝 | 古 | 夫 | 至 | 且 | 則 | 今 | 兩 | 爾 | 也 | 哉 | 也 | 也 | 哉 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of strokes in each character: | 9 | 5 | 4 | 6 | 5 | 9 | 4 | 8 | 14 | 3 | 9 | 3 | 3 | 9 |
Dictionary radical: | 巾 | 口 | 大 | 至 | 一 | 刀 | 人 | 入 | 爻 | 乙 | 口 | 乙 | 乙 | 口 |
Dictionary radical order/number:7 | 50 | 30 | 37 | 133 | 1 | 18 | 9 | 11 | 89 | 5 | 30 | 5 | 5 | 30 |
Number of strokes in each radical: | 3 | 3 | 3 | 6 | 1 | 2 | 2 | 2 | 4 | 1 | 3 | 1 | 1 | 3 |
Radical numeric value: | 58 | 39 | 43 | 669 | 1 | 14 | 9 | 11 | 185 | 2 | 39 | 2 | 2 | 39 |
B.8These fourteen characters require 91 strokes to write them (91 = 7 x 13). But the interesting part is that the seven characters at the beginning of each section require 42 strokes (6 x 7), and the seven at the end of each section require 49 strokes (7 x 7). There is perfect balance in strokes between the characters at the beginning and at the end.
B.8.1In dictionaries, they are also classified under ten different radicals. The number of strokes required to write their radicals is 35 (5 x 7). The total of the numeric values of these radicals comes to 1113 = 3 x 7 x 53. SF: 63 = 3 x 3 x 7. SF: 13.
B.8.2At first glance, only the dictionary radical order numbers don't seem to produce anything. The total is 453. This is not divisible by seven or thirteen. However, 453 factors into 3 x 151. The coincidence is in this second level. The sum of the factors is 154 (2 x 7 x 11).
Amazingly all six characteristics from the table produce coincidences. Can this still be considered coincidence?
But why stop at just the first and last character of each section? How about the first and last two characters? Or how about the first and last seven or thirteen characters? The shortest section consists of 48 characters. Thus it would be possible to take up to the first 48 characters, and last 48 characters for each section. (In this case, the shortest section would be doubled.)
B.9Oddly enough, the only one that works is taking 25 characters from the beginning and end of each section. The shortest section would have two characters doubled.
The 25 characters from the beginning and end of each section: Α 帝不有二則郊社之專言帝者非省文也夫上帝者天之主也為 Ω 歆人祀也有生之者有制之者形氣可區為兩主宰不可區為兩 Α 古人知始造萬物者唯上帝日起化育者惟上帝臨下有赫者惟 Ω 何所事哉事上帝已爾吾何以事上帝哉以郊社之禮事之已爾 Α 夫論達孝而及上帝蓋謂人之事帝猶子之事親也然郊之禮夫 Ω 倚上帝之能而動者也則不必當為鬼神報而應當為上帝報也 Α 至一之為帝使郊有一帝而社又復有一帝是二之也試問此二 Ω 如兩君分域而處其政教號令亦不相屬何以歲序功成百物哉 Α 且至尊之為帝卽一為至尊二卽為次尊可以序進而較猶為失 Ω 為失尊夫上帝之懸乎百神其視大臣相去人主尚不啻千萬也 Α 則郊社之禮所用之物異所行之地異而所以事之則不異也然 Ω 功用之著於地者也則郊以荅生天之德而社以荅生地之德也 Α 今夫穀者地之產也而先王祈穀於郊不祈於后土則郊社之統 Ω 而疑所事有異亦可因禴祀蒸嘗其禮不同而疑所事有二親哉
B.9.1The total value of the first and last 25 characters from each section: 646074 = 2 x 32 x 11 x 13 x 251. This is not divisible by 7, but the thirteen is clearly related to God.
B.9.2The total value of the first 25 characters from each section: 291018 = 2 x 3 x 7 x 132 x 41. There are two factors of 13, and a factor of 7.
B.9.3The total value of the last 25 characters from each section: 355056 = 24 x 3 x 13 x 569.
A skeptic would say, So what? You tried from one to forty-eight, and only two worked. That's just the odds.
B.9.4But there is a reason why only 1 and 25 worked out of forty-eight tries: 1 + 25 = 26 (2 x 13). Twenty-six is the numeric total of God’s name in Hebrew.
B.10These 350 characters can all be taken together as one group.
B.10.1Odd positioned groups of 50 from the 350:
1939 100 628 8 1833 2406 1665 104 3342 1126 1939 1677 1797 2202 166 30 147 24 1939 1677 146 104 261 30 2161 14774 9 1666 30 628 398 104 1677 628 1199 104 1677 911 2737 298 3216 2161 1187 261 2592 100 298 3216 2161 1187 147 6552 5383 886 660 143 24 1939 5917 7064 9 104 1159 1939 4372 45 104 1159 7052 30 4366 2406 104 7784 147 2443 24 1939 104 2977 660 3211 1677 30 1833 100 371 5038 2161 3182 2924 4025 660 7284 5038 2161 24 1939 4025 30 259 669 4109 104 2161 1939-1413 1 2161 669 4109 8-1413 2161 633 4109 298 265 904 4650 660 5308 4372 2161 355 2161 355 4109 147 24 1939 104 8226 264 651 2924 1189 4537 43 667 2204 297 9 261 1341 100 3992 37 5142 30 118 147 6429 1677 546 104 3684 30 660 446 190 2217 6429 1460 2406 100 2217 1460 539 40 1833 2406 1665 104 3727 660 5764 1427 1159 628 3688 424 298 542 21176 1666 5918 5506 1189 7784 100 529 660 5764 1427 1159 628 8 7052 1847
Total: 381654 = 2 x 3 x 3 x 7 x 13 x 233.
B.10.2Even positioned groups of 50 from the 350:
299 9 1663 1325 3898 5142 1644 1677 3232 24 1939 170 3104 135 1085 1677 3434 24 1939 7484 22 628 5999 1677 3434 692 1427 1159 1847 1159 24 1939 56 5753 799 692 265 1159 24 1939 1847 265 2406 1665 104 7784 1159 104 56 5753 669 1 104 2161 1939 1168 2406 628 1 1939 660 1665 20 4128 628 1 1939 2064 8 104 30 5270 3230 634 8 561 1187 808 129 3245 660 3843 1189 2055 3473 5242 272 424 100 2204 8350 692 265 4980 904 285 617 651 1644 1847 1833 2406 1665 104 7784 1427 399 104 1644 3688 1427 679 104 546 3688 660 1427 265 1159 104 1833 100 3688 30 4366 285 399 104 4508 1460 546 1677 30 1833 2406 265 12144 398 146 104 6200 660 1665 265 12144 398 546 104 6200 30
Total: 264420 = 2 x 2 x 3 x 3 x 5 x 13 x 113.
B.10.3The number of strokes in these 350 characters: 2691 = 3 x 3 x 13 x 23. SF: 42 = 2 x 3 x 7. (The list can be reduced by removing duplicated characters. This would leave 141 unique characters. The number of strokes in this reduced list: 1222 = 2 x 13 x 47.)
C.The section above looked at only a few characters. Revelation 1:8's principle of complementary opposites can be applied to all 766 characters by grouping by radicals. There are radicals that have just one form, and there are radicals that have more than one form (e.g. 刀 and 刂 are both radicals for knife
).
C.1Of the 766 characters, exactly 208 (24 x 13. SF: 21 = 3 x 7) are classified under radicals having more than one form. These characters are listed below.
則社文也也為則為社禮今禮莫祭悖禮則莫亂祭尤莫亂祭分分切怪以為禍福璧牲牷祭殊特人 祀也制為為人造物惟惟降殃降祥惟何何以以社禮達蓋人猶也然禮人為也社禮為何無無則為 則為人則為人物則為物運水蕃神為運然也倚也則必為神應為也為使社也才無抑為陰陽必抑 令為搏捖莫應若為則分令何以物為卽為卽為以進猶為懸神視人也則社禮物以則也然社何也 蓋就禮以焉以蒙著也沉以利著也則以荅社以荅也今也王祈祈則社為也人則以社禮代人降禮 以以心猶祀也若社禴祀蒸禮覆 (The very last character in the list has a radical with three forms.)
The numeric value of these 208 characters is 550123 = 72 x 103 x 109.
This means the remaining characters that have only one radical form would be 1458177 − 550123 = 908054 (2 x 7 x 37 x 1753. SF: 1799 = 7 x 257).
Is this still just coincidence, or does 朱宗元's text describing and explaining 上帝 really follow the principles of Revelation 1:8?
C.2(The total of the positions of these characters in the passage [some have more than one appearance] is 707111. This is a prime number and is not divisible by seven or thirteen, but it is another visually arresting number. There are the digits 707, showing the same perfect God at the beginning and end. And there are the digits 111, showing the same one God through time.)
The first time each of these 208 characters appears in the passage is listed below:
5 7 15 16 16 25 5 25 7 40 50 40 56 59 64 40 5 56 68 59 71 56 68 59 79 79 97 98 105 25 107 108 113 114 115 59 118 123 138 139 16 146 25 25 138 166 168 178 178 189 190 189 192 178 198 198 105 105 7 40 225 231 138 237 16 243 40 138 25 16 7 40 25 198 269 269 5 25 5 25 138 5 25 138 168 5 25 168 313 320 326 331 25 313 243 16 349 16 5 360 25 331 367 25 16 25 379 7 16 404 269 412 25 423 424 360 412 442 25 451 452 56 367 464 25 5 79 442 198 105 168 25 501 25 501 25 105 514 237 25 525 331 530 138 16 5 7 40 168 105 5 16 243 7 198 16 231 582 40 105 595 105 603 613 16 618 105 628 613 16 5 105 643 7 105 643 16 50 16 667 668 668 5 7 25 16 138 5 105 7 40 706 138 189 40 105 105 729 237 139 16 464 7 751 139 753 40 599
Total of the positions: 36101 = 13 x 2777.
It would have been perfect if the positions of the last occurrence of these 208 characters also produced a number divisible by seven and or thirteen. Or it would have been better if the positions of the last occurrences plus the positions of the first occurrences worked. But this is not the case. Perhaps this is due to the fact that the text was written by a man, and he gives no indication whether what he wrote was inspired by a vision, an angel or God.
D.The characters can also be arranged into two complementary opposing groups by the dictionary numbers of the radicals associated with these characters.
D.1Of the 766 characters, 347 have dictionary radical numbers that are odd valued.
不二郊社專言者非省文也夫上者天主也天主主郊社禮曰上云爾今夫國禮祭世悖 禮亂祭尤亂天祭天二又天五一怪誕不以禍福柄牲牷祭不知天特兩大形固非靈覺 人祀也者者形區兩主不區兩人知物者上化者惟上臨下赫者惟上祥者惟上何所上 已爾何以上以郊社禮已爾夫論孝及上謂人子親也郊禮夫人知上也社禮上何上者 所不所不主天天主主人人主物物主一一水穀植神動護受上者也倚上動者也不必 神應上也至一使郊一社又一二也試此二者勇大不間變化必相度出號令夫天一一 一不順應兩處號令不相何以歲序功物且至尊一至尊二尊以序較失尊夫上懸神視 大臣相人主不也郊社禮所用物所所以不也旣郊又社何也就功用處加禮以高上以 者上功用天者也沉厚下載以美者上功用者也郊以天社以也今夫穀者也祈穀郊不 祈郊社上也矣人天子以郊社禮代人太上不用禮以以心祀親也因郊社不疑所因禴 祀禮不疑所二親
Numeric total of these 347 characters: 648130 = 2 x 5 x 7 x 47 x 197.
D.2The radicals associated with these 347 characters follows:
一二邑示寸言老非目文乙大一老大丶乙大丶丶邑示示曰一二爻人大囗示示一心 示乙示尢乙大示大二又大二一心言一人示示木牛牛示一矢大牛入大彡囗非雨見 人示乙老老彡匸入丶一匸入人矢牛老一匕老心一臣一赤老心一示老心一人戶一 己爻人人一人邑示示己爻大言子又一言人子見乙邑示大人矢一乙示示一人一老 戶一戶一丶大大丶丶人人丶牛牛丶一一水禾木示力言又一老乙人一力老乙一心 示心一乙至一人邑一示又一二乙言止二老力大一門言匕心目广凵虍人大大一一 一一頁心入虍虍人一目人人止广力牛一至寸一至寸二寸人广車大寸大一心示示 大臣目人丶一乙邑示示戶用牛戶戶人一乙无邑又示人乙尢力用虍力示人高一人 老一力用大老乙水厂一車人羊老一力用老乙邑人大示人乙人大禾老乙示禾邑一 示邑示一乙矢人大子人邑示示人人大一一用示人人心示見乙囗邑示一疋戶囗示 示示一疋戶二見
Numeric total of the 347 characters' radicals: 358501 = 11 x 13 x 23 x 109. SF: 156 = 2 x 2 x 3 x 13.
D.3The dictionary order of these radicals:
1 7 163 113 41 149 125 175 109 67 5 37 1 125 37 3 5 37 3 3 163 113 113 73 1 7 89 9 37 31 113 113 1 61 113 5 113 43 5 37 113 37 7 29 37 7 1 61 149 1 9 113 113 75 93 93 113 1 111 37 93 11 37 59 31 175 173 147 9 113 5 125 125 59 23 11 3 1 23 11 9 111 93 125 1 21 125 61 1 131 1 155 125 61 1 113 125 61 1 9 63 1 49 89 9 9 1 9 163 113 113 49 89 37 149 39 29 1 149 9 39 147 5 163 113 37 9 111 1 5 113 113 1 9 1 125 63 1 63 1 3 37 37 3 3 9 9 3 93 93 3 1 1 85 115 75 113 19 149 29 1 125 5 9 1 19 125 5 1 61 113 61 1 5 133 1 9 163 1 113 29 1 7 5 149 77 7 125 19 37 1 169 149 21 61 109 53 17 141 9 37 37 1 1 1 1 181 61 11 141 141 9 1 109 9 9 77 53 19 93 1 133 41 1 133 41 7 41 9 53 159 37 41 37 1 61 113 113 37 131 109 9 3 1 5 163 113 113 63 101 93 63 63 9 1 5 71 163 29 113 9 5 43 19 101 141 19 113 9 189 1 9 125 1 19 101 37 125 5 85 27 1 159 9 123 125 1 19 101 125 5 163 9 37 113 9 5 9 37 115 125 5 113 115 163 1 113 163 113 1 5 111 9 37 39 9 163 113 113 9 9 37 1 1 101 113 9 9 61 113 147 5 31 163 113 1 103 63 31 113 113 113 1 103 63 7 147
Total of the dictionary radical numbers for the 347 characters: 20629 = 72 x 421.
D.4This leaves 419 characters with even valued dictionary radical numbers.
帝有則之帝帝之為之則亦為地之故雖異而統之事帝家之莫重於而後之則莫於莫 於地之分與地而之復分而之於是舉切經之屬咸為之而圭璧之殊地體耳之體而能 歆有生之有制之氣可為宰可為古始造萬唯帝日起育帝有帝降殃降帝吾事哉事帝 吾事帝哉之事之達而帝蓋之事帝猶之事然之而為事帝之而亦為事帝帝無在亦無 在則為之在地則為地之在身則為身之在萬則為萬之雖日月運行而寒暑土交成百 蕃各有鬼為運守然皆帝之命而行亦帝之能而則當為鬼報而當為帝報之為帝有帝 而復有帝是之問帝其智才能均敵而無差乎抑或小齊乎其凡為陰陽之事咨而後行 乎抑各其乎地為屬帝搏捖故施生莫氣而若各自為帝則如君分域而其政教亦屬成 百哉之為帝卽為卽為次可進而猶為帝之乎百其去尚啻千萬則之之異行之地異而 事之則異然事之而於事之蓋各其昭明之而報焉明覆我得蒙其光帡帝之著於我得 享其利帝之著於地則荅生之德而荅生地之德地之產而先王於於后土則之統為事 帝明是故生皆當事帝而則之事帝而降得享之事帝而各得其身事帝猶若同而事有 異亦可蒸嘗其同而事有哉
Total numeric value of the 419 characters: 810047 = 7 x 97 x 1193.
D.5For this opposite group, the only other coincidence is in the number of strokes for the associated radicals.
3 4 2 1 3 3 1 4 1 2 2 4 3 1 4 8 5 6 6 1 1 3 3 1 6 7 4 6 3 1 2 6 4 6 4 3 1 2 6 3 6 1 3 2 6 1 4 4 6 2 6 1 3 3 4 1 6 3 4 1 4 3 10 6 1 10 6 6 4 4 5 1 4 2 1 4 3 4 3 3 4 3 3 7 5 3 3 4 7 6 3 4 3 8 4 8 3 3 1 3 1 3 3 1 3 3 1 1 1 7 6 3 6 1 1 3 4 1 1 4 1 6 4 1 3 1 6 2 4 1 3 3 4 3 2 4 3 2 4 1 3 3 2 4 3 1 3 7 2 4 7 1 3 5 2 4 5 1 8 4 4 7 6 6 3 4 3 2 4 5 6 3 4 10 4 7 3 4 5 3 1 3 6 6 2 3 1 6 6 2 5 4 10 3 6 5 4 3 3 1 4 3 4 3 6 3 4 3 4 1 3 3 2 4 4 6 3 4 6 4 3 1 4 4 3 14 1 2 2 4 8 8 1 1 3 6 3 6 1 4 3 2 1 3 4 3 3 4 4 4 4 5 6 4 6 6 3 6 4 3 2 3 3 2 3 6 2 4 4 2 3 4 5 3 1 4 3 2 4 2 4 4 3 7 6 4 4 3 1 1 5 2 2 3 3 2 5 2 1 1 5 6 1 3 5 6 1 1 2 5 4 1 1 6 4 1 1 6 3 2 4 4 1 6 3 4 4 6 4 3 6 2 2 3 3 1 6 4 4 3 2 2 2 3 1 6 4 3 2 6 5 1 3 6 6 5 3 1 3 3 1 5 6 2 4 4 4 3 3 2 1 6 4 1 3 4 4 4 5 5 5 1 3 6 2 1 1 3 6 8 3 2 1 1 3 6 3 3 2 7 1 3 4 6 3 6 1 4 5 2 3 4 3 2 3 6 1 4 3
Total of the radical strokes: 1491 = 3 x 7 x 71.
E.1Forty-four pairs of characters (Nth and Nth last) can be found that together are divisible by 7. Forty-four is not divisible by 7 or 13, but it factors into 4 x 11, and with the 11, there is a visual numeric representation of the same one God who is beginning and end.
a) Nth char: 9 11 14 18 25 30 46 51 67 82 112 b) Value: 3342 1939 2202 24 2161 424 24 147 3767 546 548 c) Nth last: 758 756 753 749 742 737 721 716 700 685 655 d) Value: 529 7784 5918 298 660 542 1159 399 1833 1939 6200 e) Sum: 3871 9723 8120 322 2821 966 1183 546 5600 2485 6748 a) 114 123 125 127 131 135 137 147 157 162 169 207 218 246 b) 2170 2836 43 8618 8711 660 14774 104 100 299 1677 799 7784 7784 c) 653 644 642 640 636 632 630 620 610 605 598 560 549 521 d) 546 398 265 1833 1460 285 24 22 285 443 24 265 399 147 e) 2716 3234 308 10451 10171 945 14798 126 385 742 1701 1064 8183 7931 a) 247 248 249 251 259 263 265 267 277 300 305 316 326 329 b) 147 9 660 2161 660 24 692 1939 261 261 2161 1 7036 628 c) 520 519 518 516 508 504 502 500 490 467 462 451 441 438 d) 4109 355 2161 5308 2161 669 1 1939 285 2161 660 4906 5242 534 e) 4256 364 2821 7469 2821 693 693 3878 546 2422 2821 4907 12278 1162 a) 334 362 365 370 382 = 8378 = 2 x 59 x 71. b) 3211 2161 4025 24 1 = 97545 = 3 x 5 x 7 x 929 c) 433 405 402 397 385 = 25370 = 2 x 5 x 43 x 59. d) 660 2977 4221 634 1665 = 74305 = 5 x 7 x 11 x 193 e) 3871 5138 8246 658 1666
Mathematics ensures that the Nth and Nth last positions would always be divisible by 13 since there are 766 characters (i.e. 1 + 766 = 767). The total for lines a) and c) together would be divisible by 13. But the laws of mathematics do not guarantee that these lines by themselves would also be divisible by 13. This means the totals for lines b) and d) are also not guaranteed and are open to chance. As can be seen, they are divisible by 7. This is a 1 in 49 chance.
E.2Four pairs (Nth and Nth last) together and individually are divisible by 13:
a) 1st Item: 63 133 217 224 = 637 = 7 x 7 x 13. b) Value: 104 104 104 6552 c) Last Item: 704 634 550 543 = 2431 = 11 x 13 x 17. d) Value: 104 104 104 1833 e) Sum: 208 208 208 8385
Why are there four pairs? Perhaps because there are four living creatures around God’s throne. In this case, lines a) and c) are by themselves divisible by 13. Line a) is also divisible by 49. The total of line e) is a suprise in itself: 9009 = 3 x 3 x 7 x 11 x 13. It is also divisible by 7 and 11.
E.3Twenty-five pairs (Nth and Nth last) together are divisible by 13:
a) 1st Item: 17 25 46 48 51 63 88 115 133 142 180 b) Value: 147 2161 24 107 147 104 129 11874 104 398 1939 c) Last Item: 750 742 721 719 716 704 679 652 634 625 587 d) Value: 542 660 1159 7784 399 104 1665 398 104 1162 1467 e) Sum: 689 2821 1183 7891 546 208 1794 12272 208 1560 3406 a) 187 200 208 217 224 248 249 256 259 272 277 305 364 372 b) 24 1159 692 104 6552 9 660 1665 660 547 261 2161 2924 4025 c) 580 567 559 550 543 519 518 511 508 495 490 462 403 395 d) 5917 4366 1427 104 1833 355 2161 298 2161 259 285 660 1834 5270 e) 5941 5525 2119 208 8385 364 2821 1963 2821 806 546 2821 4758 9295 a) 4546 = 2 x 2273. b) 38577 = 3 x 7 x 11 x 167. c) 14629 (prime number). d) 42374 = 2 x 21187. e) 80951 = 13 x 13 x 479.
There are few results here. The total in line e) has an extra 13.
Is, Was, Is To Come
F.Revelation 1:8 set the principle of complementary opposites. With its out of sequence phrase is, was, and is to come
this also set the principle of every other as in odd and even positioned words or letters. With Exodus 34:6-7 there were odd and even positioned letters. Here, odd and even valued characters stand in place of positions.
F.1There are 357 odd valued characters (3 x 7 x 17).
1939 1833 1665 1939 1677 1797 147 1939 1677 261 2161 261 1833 2161 261 1665 7607 3727 171 1159 1939 107 5753 147 3243 3767 257 1833 3767 3767 129 5905 129 7485 1 265 2161 5783 2081 7739 1663 1187 43 911 1301 1797 8711 2977 9 1677 1199 1677 911 2737 2161 1187 261 2161 1187 299 9 1663 1325 1677 1939 135 1085 1677 1939 5999 1677 1939 2417 2417 1677 1939 799 1427 1159 1847 1159 1939 5753 799 265 1159 1939 1847 265 1665 1159 5753 147 5383 143 1939 5917 9 1159 1939 45 1159 147 9 1663 2161 1159 1939 1665 2161 1159 1939 1939 1677 4365 1427 547 4365 1427 261 547 1833 2161 261 547 1833 2161 261 547 9 1833 2161 9 261 547 1833 2161 261 7607 5379 679 1 4105 1 181 423 617 651 6429 2161 5379 3211 8449 2195 1213 1939 1299 679 1677 2443 1939 2977 3211 1677 1833 371 2161 4025 2161 1939 4025 669 1 2161 1939 1 1939 1665 1 1939 1939 1677 1189 4221 63 2977 6277 4365 2613 1423 43 49 6069 1189 27 2161 8605 135 1159 371 1845 679 281 1189 147 2161 1 1939 1 1 3767 4727 2737 2161 1939 1833 561 1187 129 3245 3843 1189 2055 3473 265 285 617 651 1847 259 669 4109 2161 1939 -1413 1 2161 669 4109 -1413 2161 633 4109 265 2161 355 4109 147 1939 651 1189 4537 43 667 297 9 261 1341 37 1833 1665 1427 399 1427 679 1427 265 1159 1833 22677 1159 1665 1159 5917 4111 1189 285 399 2061 1467 3843 265 4025 3627 3179 1467 7825 923 265 5913 1189 443 10865 1677 1939 285 399 1677 1841 5309 923 265 1189 2237 1677 1939 285 399 1677 1833 265 1665 265 147 6429 1677 2217 6429 2217 539 1833 1665 3727 2161 1159 1939 1467 9 2195 1159 1939 45 1833 265 1665 271 9 1159 1939 2417 399 265 1159 1939 265 1189 1159 1939 1665 529 1427 1159 1189 529 1427 1159 1847
Total of the odd valued characters: 668073 = 3 x 7 x 29 x 1097.
F.1.1Odd positioned characters from F.1:
1939 1665 1677 147 1677 2161 1833 261 7607 171 1939 5753 3243 257 3767 129 129 1 2161 2081 1663 43 1301 8711 9 1199 911 2161 261 1187 9 1325 1939 1085 1939 1677 2417 1677 799 1159 1159 5753 265 1939 265 1159 147 143 5917 1159 45 147 1663 1159 1665 1159 1939 4365 547 1427 547 2161 547 2161 547 1833 9 547 2161 7607 679 4105 181 617 6429 5379 8449 1213 1299 1677 1939 3211 1833 2161 2161 4025 1 1939 1939 1 1939 1189 63 6277 2613 43 6069 27 8605 1159 1845 281 147 1 1 3767 2737 1939 561 129 3843 2055 265 617 1847 669 2161-1413 2161 4109 2161 4109 2161 4109 1939 1189 43 297 261 37 1665 399 679 265 1833 1159 1159 4111 285 2061 3843 4025 3179 7825 265 1189 10865 1939 399 1841 923 1189 1677 285 1677 265 265 6429 2217 2217 1833 3727 1159 1467 2195 1939 1833 1665 9 1939 399 1159 265 1159 1665 1427 1189 1427 1847
Total: 335895 = 3 x 5 x 72 x 457.
F.1.2Even positioned from F.1:
1833 1939 1797 1939 261 261 2161 1665 3727 1159 107 147 3767 1833 3767 5905 7485 265 5783 7739 1187 911 1797 2977 1677 1677 2737 1187 2161 299 1663 1677 135 1677 5999 1939 2417 1939 1427 1847 1939 799 1159 1847 1665 5753 5383 1939 9 1939 1159 9 2161 1939 2161 1939 1677 1427 4365 261 1833 261 1833 261 9 2161 261 1833 261 5379 1 1 423 651 2161 3211 2195 1939 679 2443 2977 1677 371 4025 1939 669 2161 1 1665 1939 1677 4221 2977 4365 1423 49 1189 2161 135 371 679 1189 2161 1939 1 4727 2161 1833 1187 3245 1189 3473 285 651 259 4109 1939 1 669-1413 633 265 355 147 651 4537 667 9 1341 1833 1427 1427 1427 1159 22677 1665 5917 1189 399 1467 265 3627 1467 923 5913 443 1677 285 1677 5309 265 2237 1939 399 1833 1665 147 1677 6429 539 1665 2161 1939 9 1159 45 265 271 1159 2417 265 1939 1189 1939 529 1159 529 1159
Total: 332178 = 2 x 3 x 7 x 11 x 719. SF: 742 = 2 x 7 x 53.
F.1.3Odd positioned groups of 21 from F.1:
1939 1833 1665 1939 1677 1797 147 1939 1677 261 2161 261 1833 2161 261 1665 7607 3727 171 1159 1939 43 911 1301 1797 8711 2977 9 1677 1199 1677 911 2737 2161 1187 261 2161 1187 299 9 1663 1325 265 1159 1939 1847 265 1665 1159 5753 147 5383 143 1939 5917 9 1159 1939 45 1159 147 9 1663 2161 261 547 9 1833 2161 9 261 547 1833 2161 261 7607 5379 679 1 4105 1 181 423 617 2161 1939 4025 669 1 2161 1939 1 1939 1665 1 1939 1939 1677 1189 4221 63 2977 6277 4365 2613 3767 4727 2737 2161 1939 1833 561 1187 129 3245 3843 1189 2055 3473 265 285 617 651 1847 259 669 43 667 297 9 261 1341 37 1833 1665 1427 399 1427 679 1427 265 1159 1833 22677 1159 1665 1159 1939 285 399 1677 1841 5309 923 265 1189 2237 1677 1939 285 399 1677 1833 265 1665 265 147 6429 9 1159 1939 2417 399 265 1159 1939 265 1189 1159 1939 1665 529 1427 1159 1189 529 1427 1159 1847
Total: 316813 = 7 x 45259. SF: 45266 = 2 x 13 x 1741.
F.1.3.1Odd positioned groups of 7 from F.1.3:
1939 1833 1665 1939 1677 1797 147 261 1665 7607 3727 171 1159 1939 1677 1199 1677 911 2737 2161 1187 265 1159 1939 1847 265 1665 1159 1159 1939 45 1159 147 9 1663 261 547 1833 2161 261 7607 5379 2161 1939 4025 669 1 2161 1939 1189 4221 63 2977 6277 4365 2613 1187 129 3245 3843 1189 2055 3473 43 667 297 9 261 1341 37 265 1159 1833 22677 1159 1665 1159 265 1189 2237 1677 1939 285 399 9 1159 1939 2417 399 265 1159 1427 1159 1189 529 1427 1159 1847
Total: 177912 = 23 x 32 x 7 x 353.
F.1.3.1.1Odd positioned from F.1.3.1:
1939 1665 1677 147 1665 3727 1159 1677 1677 2737 1187 1159 1847 1665 1159 45 147 1663 547 2161 7607 2161 4025 1 1939 4221 2977 4365 1187 3245 1189 3473 667 9 1341 265 1833 1159 1159 1189 1677 285 9 1939 399 1159 1159 529 1159
Total: 81977 = 73 x 239. SF: 260 = 22 x 5 x 13.
F.1.3.1.2Even positioned from F.1.3.1:
1833 1939 1797 261 7607 171 1939 1199 911 2161 265 1939 265 1159 1939 1159 9 261 1833 261 5379 1939 669 2161 1189 63 6277 2613 129 3843 2055 43 297 261 37 1159 22677 1665 265 2237 1939 399 1159 2417 265 1427 1189 1427 1847
Total: 95935 = 5 x 7 x 2741.
F.1.3.1.2.1Odd positioned groups of 7 from F.1.3.1.2:
1833 1939 1797 261 7607 171 1939 1939 1159 9 261 1833 261 5379 129 3843 2055 43 297 261 37 1159 2417 265 1427 1189 1427 1847
Total: 42784 = 25 x 7 x 191. SF: 208 = 24 x 13. SF: 21 = 3 x 7.
F.1.3.1.2.2Even positioned groups of 7 from F.1.3.1.2:
1199 911 2161 265 1939 265 1159 1939 669 2161 1189 63 6277 2613 1159 22677 1665 265 2237 1939 399
Total: 53151 = 3 x 7 x 2531. SF: 2541 = 3 x 7 x 112
F.1.3.1.3Odd positioned groups of 7 from F.1.3.1:
1939 1833 1665 1939 1677 1797 147 1677 1199 1677 911 2737 2161 1187 1159 1939 45 1159 147 9 1663 2161 1939 4025 669 1 2161 1939 1187 129 3245 3843 1189 2055 3473 265 1159 1833 22677 1159 1665 1159 9 1159 1939 2417 399 265 1159
Total: 93947 = 7 x 13421.
F.1.3.1.4Even positioned groups of 7 from F.1.3.1:
261 1665 7607 3727 171 1159 1939 265 1159 1939 1847 265 1665 1159 261 547 1833 2161 261 7607 5379 1189 4221 63 2977 6277 4365 2613 43 667 297 9 261 1341 37 265 1189 2237 1677 1939 285 399 1427 1159 1189 529 1427 1159 1847
Total: 83965 = 5 x 7 x 2399.
F.1.3.2Even positioned groups of 7 from F.1.3:
1939 1677 261 2161 261 1833 2161 43 911 1301 1797 8711 2977 9 261 2161 1187 299 9 1663 1325 5753 147 5383 143 1939 5917 9 2161 261 547 9 1833 2161 9 679 1 4105 1 181 423 617 1 1939 1665 1 1939 1939 1677 3767 4727 2737 2161 1939 1833 561 265 285 617 651 1847 259 669 1833 1665 1427 399 1427 679 1427 1939 285 399 1677 1841 5309 923 1677 1833 265 1665 265 147 6429 1939 265 1189 1159 1939 1665 529
Total: 138901 = 7 x 19843.
F.1.3.2.1Odd positioned from F.1.3.2:
1939 261 261 2161 911 1797 2977 261 1187 9 1325 147 143 5917 2161 547 1833 9 1 1 423 1 1665 1939 1677 4727 2161 1833 265 617 1847 669 1665 399 679 1939 399 1841 923 1833 1665 147 1939 1189 1939 529
Total: 58758 = 2 x 3 x 7 x 1399.
F.1.3.2.2Even positioned from F.1.3.2:
1677 2161 1833 43 1301 8711 9 2161 299 1663 5753 5383 1939 9 261 9 2161 679 4105 181 617 1939 1 1939 3767 2737 1939 561 285 651 259 1833 1427 1427 1427 285 1677 5309 1677 265 265 6429 265 1159 1665
Total: 80143 = 7 x 1072 SF: 221 = 13 x 17.
F.1.3.2.2.1Odd positioned groups of 5 from F.1.3.2.2:
1677 2161 1833 43 1301 5753 5383 1939 9 261 617 1939 1 1939 3767 259 1833 1427 1427 1427 265 6429 265 1159 1665
Total: 44779 = 7 x 6397.
F.1.3.2.2.2Even positioned groups of 5 from F.1.3.2.2:
8711 9 2161 299 1663 9 2161 679 4105 181 2737 1939 561 285 651 285 1677 5309 1677 265
Total: 35364 = 22 x 3 x 7 x 421.
F.1.3.2.2.2.1First half of F.1.3.2.2.2:
8711 9 2161 299 1663 9 2161 679 4105 181
Total: 19978 = 2 x 7 x 1427.
F.1.3.2.2.2.2Last half of F.1.3.2.2.2:
2737 1939 561 285 651 285 1677 5309 1677 265
Total: 15386 = 2 x 72 x 157.
F.1.3.2.2.3Odd positioned groups of 9 from F.1.3.2.2:
1677 2161 1833 43 1301 8711 9 2161 299 4105 181 617 1939 1 1939 3767 2737 1939 1677 5309 1677 265 265 6429 265 1159 1665
Total: 54131 = 7 x 11 x 19 x 37.
F.1.3.2.2.4Even positioned groups of 9 from F.1.3.2.2:
1663 5753 5383 1939 9 261 9 2161 679 561 285 651 259 1833 1427 1427 1427 285
Total: 26012 = 22 x 7 x 929.
F.1.3.2.2.4.1First half of F.1.3.2.2.4:
1663 5753 5383 1939 9 261 9 2161 679
Total: 17857 = 7 x 2551.
F.1.3.2.2.4.2Last half of F.1.3.2.2.4:
561 285 651 259 1833 1427 1427 1427 285
Total: 8155 = 5 x 7 x 233. SF: 245 = 5 x 72.
F.1.3.3Odd positioned groups of 21 from F.1.3:
1939 1833 1665 1939 1677 1797 147 1939 1677 261 2161 261 1833 2161 261 1665 7607 3727 171 1159 1939 265 1159 1939 1847 265 1665 1159 5753 147 5383 143 1939 5917 9 1159 1939 45 1159 147 9 1663 2161 1939 4025 669 1 2161 1939 1 1939 1665 1 1939 1939 1677 1189 4221 63 2977 6277 4365 2613 43 667 297 9 261 1341 37 1833 1665 1427 399 1427 679 1427 265 1159 1833 22677 1159 1665 1159 9 1159 1939 2417 399 265 1159 1939 265 1189 1159 1939 1665 529 1427 1159 1189 529 1427 1159 1847
Total: 181489 = 7 x 11 x 2357.
F.1.3.3.1Odd positioned groups of 7 from F.1.3.3:
1939 1833 1665 1939 1677 1797 147 261 1665 7607 3727 171 1159 1939 5753 147 5383 143 1939 5917 9 2161 1939 4025 669 1 2161 1939 1189 4221 63 2977 6277 4365 2613 1833 1665 1427 399 1427 679 1427 9 1159 1939 2417 399 265 1159 1427 1159 1189 529 1427 1159 1847
Total: 106358 = 2 x 7 x 71 x 107.
F.1.3.3.1.1Odd positioned from F.1.3.3.1:
1939 1665 1677 147 1665 3727 1159 5753 5383 1939 9 1939 669 2161 1189 63 6277 2613 1665 399 679 9 1939 399 1159 1159 529 1159
Total: 49070 = 2 x 5 x 7 x 701. SF: 715 = 5 x 11 x 13.
F.1.3.3.1.1.1Odd positioned groups of 7 from F.1.3.3.1.1:
1939 1665 1677 147 1665 3727 1159 1189 63 6277 2613 1665 399 679
Total: 24864 = 25 x 3 x 7 x 37.
F.1.3.3.1.1.2Even positioned groups of 7 from F.1.3.3.1.1:
5753 5383 1939 9 1939 669 2161 9 1939 399 1159 1159 529 1159
Total: 24206 = 2 x 72 x 13 x 19.
F.1.3.3.1.2Even positioned from F.1.3.3.1:
1833 1939 1797 261 7607 171 1939 147 143 5917 2161 4025 1 1939 4221 2977 4365 1833 1427 1427 1427 1159 2417 265 1427 1189 1427 1847
Total: 57288 = 23 x 3 x 7 x 11 x 31.
F.1.3.3.2Even positioned groups of 7 from F.1.3.3:
1939 1677 261 2161 261 1833 2161 265 1159 1939 1847 265 1665 1159 1159 1939 45 1159 147 9 1663 1 1939 1665 1 1939 1939 1677 43 667 297 9 261 1341 37 265 1159 1833 22677 1159 1665 1159 1939 265 1189 1159 1939 1665 529
Total: 75131 = 7 x 10733.
F.1.3.4Even positioned groups of 21 from F.1.3:
43 911 1301 1797 8711 2977 9 1677 1199 1677 911 2737 2161 1187 261 2161 1187 299 9 1663 1325 2161 261 547 9 1833 2161 9 261 547 1833 2161 261 7607 5379 679 1 4105 1 181 423 617 3767 4727 2737 2161 1939 1833 561 1187 129 3245 3843 1189 2055 3473 265 285 617 651 1847 259 669 1939 285 399 1677 1841 5309 923 265 1189 2237 1677 1939 285 399 1677 1833 265 1665 265 147 6429
Total: 135324 = 22 x 33 x 7 x 179.
F.1.3.4.1Odd positioned groups of 6 from F.1.3.4:
43 911 1301 1797 8711 2977 2161 1187 261 2161 1187 299 9 1833 2161 9 261 547 1 4105 1 181 423 617 561 1187 129 3245 3843 1189 1847 259 669 1939 285 399 2237 1677 1939 285 399 1677
Total: 56910 = 2 x 3 x 5 x 7 x 271.
F.1.3.4.1.1Odd positioned groups of 3 from F.1.3.4.1:
43 911 1301 2161 1187 261 9 1833 2161 1 4105 1 561 1187 129 1847 259 669 2237 1677 1939
Total: 24479 = 7 x 13 x 269.
F.1.3.4.1.1.1Odd positioned groups of 3 from F.1.3.4.1.1:
43 911 1301 9 1833 2161 561 1187 129 2237 1677 1939
Total: 13988 = 22 x 13 x 269. SF: 286 = 2 x 11 x 13. SF: 26 = 2 x 13.
F.1.3.4.1.1.2Even positioned groups of 3 from F.1.3.4.1.1:
2161 1187 261 1 4105 1 1847 259 669
Total: 10491 = 3 x 13 x 269.
F.1.3.4.1.1.3Odd positioned groups of 7 from F.1.3.4.1.1:
43 911 1301 2161 1187 261 9 129 1847 259 669 2237 1677 1939
Total: 14630 = 2 x 5 x 7 x 11 x 19.
F.1.3.4.1.1.3.1First half of F.1.3.4.1.1.3:
43 911 1301 2161 1187 261 9
Total: 5873 = 7 x 839.
F.1.3.4.1.1.3.2Last half of F.1.3.4.1.1.3:
129 1847 259 669 2237 1677 1939
Total: 8757 = 32 x 7 x 139.
F.1.3.4.1.1.3.2.1Odd positioned from F.1.3.4.1.1.3.2:
129 259 2237 1939
Total: 4564 = 22 x 7 x 163.
F.1.3.4.1.1.3.2.1.1Odd positioned from F.1.3.4.1.1.3.2.1:
129 2237
Total: 2366 = 2 x 7 x 132 SF: 35 = 5 x 7.
F.1.3.4.1.1.3.2.1.2Even positioned from F.1.3.4.1.1.3.2.1:
259 1939
Total: 2198 = 2 x 7 x 157.
F.1.3.4.1.1.3.2.1.2.1First half of F.1.3.4.1.1.3.2.1.2:
259
Total: 259 = 7 x 37.
F.1.3.4.1.1.3.2.1.2.2Last half of F.1.3.4.1.1.3.2.1.2:
1939
Total: 1939 = 7 x 277.
F.1.3.4.1.1.3.2.2Even positioned from F.1.3.4.1.1.3.2:
1847 669 1677
Total: 4193 = 7 x 599.
F.1.3.4.1.1.4Even positioned groups of 7 from F.1.3.4.1.1:
1833 2161 1 4105 1 561 1187
Total: 9849 = 3 x 72 x 67. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.
F.1.3.4.1.2Even positioned groups of 3 from F.1.3.4.1:
1797 8711 2977 2161 1187 299 9 261 547 181 423 617 3245 3843 1189 1939 285 399 285 399 1677
Total: 32431 = 7 x 41 x 113. SF: 161 = 7 x 23.
F.1.3.4.2Even positioned groups of 6 from F.1.3.4:
9 1677 1199 1677 911 2737 9 1663 1325 2161 261 547 1833 2161 261 7607 5379 679 3767 4727 2737 2161 1939 1833 2055 3473 265 285 617 651 1677 1841 5309 923 265 1189 1833 265 1665 265 147 6429
Total: 78414 = 2 x 3 x 7 x 1867.
F.1.3.4.2.1Odd positioned groups of 2 from F.1.3.4.2:
9 1677 911 2737 1325 2161 1833 2161 5379 679 2737 2161 2055 3473 617 651 5309 923 1833 265 147 6429
Total: 45472 = 25 x 72 x 29.
F.1.3.4.2.1.1Odd positioned from F.1.3.4.2.1:
9 911 1325 1833 5379 2737 2055 617 5309 1833 147
Total: 22155 = 3 x 5 x 7 x 211.
F.1.3.4.2.1.1.1Odd positioned from F.1.3.4.2.1.1:
9 1325 5379 2055 5309 147
Total: 14224 = 24 x 7 x 127.
F.1.3.4.2.1.1.1.1Odd positioned groups of 2 from F.1.3.4.2.1.1.1:
9 1325 5309 147
Total: 6790 = 2 x 5 x 7 x 97.
F.1.3.4.2.1.1.1.2Even positioned groups of 2 from F.1.3.4.2.1.1.1:
5379 2055
Total: 7434 = 2 x 32 x 7 x 59.
F.1.3.4.2.1.1.1.3First half of F.1.3.4.2.1.1.1:
9 1325 5379
Total: 6713 = 72 x 137.
F.1.3.4.2.1.1.1.4Last half of F.1.3.4.2.1.1.1:
2055 5309 147
Total: 7511 = 7 x 29 x 37.
F.1.3.4.2.1.1.2Even positioned from F.1.3.4.2.1.1:
911 1833 2737 617 1833
Total: 7931 = 7 x 11 x 103.
F.1.3.4.2.1.1.2.1Odd positioned of F.1.3.4.2.1.1.2:
911 2737 1833
Total: 5481 = 33 x 7 x 29.
F.1.3.4.2.1.1.2.1.1Odd positioned from F.1.3.4.2.1.1.2.1:
911 1833
Total: 2744 = 23 x 73
F.1.3.4.2.1.1.2.1.2Even positioned from F.1.3.4.2.1.1.2.1:
2737
Total: 2737 = 7 x 17 x 23.
F.1.3.4.2.1.1.2.2Even positioned of F.1.3.4.2.1.1.2:
1833 617
Total: 2450 = 2 x 52 x 72 SF: 26 = 2 x 13.
F.1.3.4.2.1.2Even positioned from F.1.3.4.2.1:
1677 2737 2161 2161 679 2161 3473 651 923 265 6429
Total: 23317 = 7 x 3331.
F.1.3.4.2.1.3First half of F.1.3.4.2.1:
9 1677 911 2737 1325 2161 1833 2161 5379 679 2737
Total: 21609 = 32 x 74
F.1.3.4.2.1.3.1Odd positioned from F.1.3.4.2.1.3:
9 911 1325 1833 5379 2737
Total: 12194 = 2 x 7 x 13 x 67.
F.1.3.4.2.1.3.1.1Odd positioned from F.1.3.4.2.1.3.1:
9 1325 5379
Total: 6713 = 72 x 137.
F.1.3.4.2.1.3.1.2Even positioned from F.1.3.4.2.1.3.1:
911 1833 2737
Total: 5481 = 33 x 7 x 29.
F.1.3.4.2.1.3.2Even positioned from F.1.3.4.2.1.3:
1677 2737 2161 2161 679
Total: 9415 = 5 x 7 x 269.
F.1.3.4.2.1.4Last half of F.1.3.4.2.1:
2161 2055 3473 617 651 5309 923 1833 265 147 6429
Total: 23863 = 72 x 487.
F.1.3.4.2.1.4.1Odd positioned from F.1.3.4.2.1.4:
2161 3473 651 923 265 6429
Total: 13902 = 2 x 3 x 7 x 331. SF: 343 = 73 SF: 21 = 3 x 7.
F.1.3.4.2.1.4.2Even positioned from F.1.3.4.2.1.4:
2055 617 5309 1833 147
Total: 9961 = 7 x 1423. SF: 1430 = 2 x 5 x 11 x 13.
F.1.3.4.2.1.4.2.1Odd positioned from F.1.3.4.2.1.4.2:
2055 5309 147
Total: 7511 = 7 x 29 x 37.
F.1.3.4.2.1.4.2.2Even positioned from F.1.3.4.2.1.4.2:
617 1833
Total: 2450 = 2 x 52 x 72 SF: 26 = 2 x 13.
F.1.3.4.2.2Even positioned groups of 2 from F.1.3.4.2:
1199 1677 9 1663 261 547 261 7607 3767 4727 1939 1833 265 285 1677 1841 265 1189 1665 265
Total: 32942 = 2 x 7 x 13 x 181. SF: 203 = 7 x 29.
F.1.3.4.2.2.1Odd positioned groups of 2 from F.1.3.4.2.2:
1199 1677 261 547 3767 4727 265 285 265 1189
Total: 14182 = 2 x 7 x 1013. SF: 1022 = 2 x 7 x 73.
F.1.3.4.2.2.1.1Odd positioned groups of 2 from F.1.3.4.2.2.1:
1199 1677 3767 4727 265 1189
Total: 12824 = 23 x 7 x 229.
F.1.3.4.2.2.1.1.1First half of F.1.3.4.2.2.1.1:
1199 1677 3767
Total: 6643 = 7 x 13 x 73.
F.1.3.4.2.2.1.1.2Last half of F.1.3.4.2.2.1.1:
4727 265 1189
Total: 6181 = 7 x 883.
F.1.3.4.2.2.1.2Even positioned groups of 2 from F.1.3.4.2.2.1:
261 547 265 285
Total: 1358 = 2 x 7 x 97.
F.1.3.4.2.2.2Even positioned groups of 2 from F.1.3.4.2.2:
9 1663 261 7607 1939 1833 1677 1841 1665 265
Total: 18760 = 23 x 5 x 7 x 67.
F.1.3.4.2.2.2.1Odd positioned from F.1.3.4.2.2.2:
9 261 1939 1677 1665
Total: 5551 = 7 x 13 x 61.
F.1.3.4.2.2.2.2Even positioned from F.1.3.4.2.2.2:
1663 7607 1833 1841 265
Total: 13209 = 3 x 7 x 17 x 37.
F.1.3.4.2.2.3Odd positioned groups of 5 from F.1.3.4.2.2:
1199 1677 9 1663 261 1939 1833 265 285 1677
Total: 10808 = 23 x 7 x 193.
F.1.3.4.2.2.3.1First half of F.1.3.4.2.2.3:
1199 1677 9 1663 261
Total: 4809 = 3 x 7 x 229.
F.1.3.4.2.2.3.2Last half of F.1.3.4.2.2.3:
1939 1833 265 285 1677
Total: 5999 = 7 x 857.
F.1.3.4.2.2.4Even positioned groups of 5 from F.1.3.4.2.2:
547 261 7607 3767 4727 1841 265 1189 1665 265
Total: 22134 = 2 x 3 x 7 x 17 x 31.
F.1.3.4.3Odd positioned groups of 14 from F.1.3.4:
43 911 1301 1797 8711 2977 9 1677 1199 1677 911 2737 2161 1187 261 547 1833 2161 261 7607 5379 679 1 4105 1 181 423 617 265 285 617 651 1847 259 669 1939 285 399 1677 1841 5309 923
Total: 68320 = 25 x 5 x 7 x 61.
F.1.3.4.3.1Odd positioned groups of 3 from F.1.3.4.3:
43 911 1301 9 1677 1199 2161 1187 261 261 7607 5379 1 181 423 617 651 1847 285 399 1677
Total: 28077 = 3 x 72 x 191. SF: 208 = 24 x 13. SF: 21 = 3 x 7.
F.1.3.4.3.2Even positioned groups of 3 from F.1.3.4.3:
1797 8711 2977 1677 911 2737 547 1833 2161 679 1 4105 617 265 285 259 669 1939 1841 5309 923
Total: 40243 = 7 x 5749.
F.1.3.4.4Even positioned groups of 14 from F.1.3.4:
261 2161 1187 299 9 1663 1325 2161 261 547 9 1833 2161 9 3767 4727 2737 2161 1939 1833 561 1187 129 3245 3843 1189 2055 3473 265 1189 2237 1677 1939 285 399 1677 1833 265 1665 265 147 6429
Total: 67004 = 22 x 7 x 2393.
F.1.3.4.5First half from F.1.3.4:
43 911 1301 1797 8711 2977 9 1677 1199 1677 911 2737 2161 1187 261 2161 1187 299 9 1663 1325 2161 261 547 9 1833 2161 9 261 547 1833 2161 261 7607 5379 679 1 4105 1 181 423 617
Total: 65240 = 23 x 5 x 7 x 233.
F.1.3.4.6Last half from F.1.3.4:
3767 4727 2737 2161 1939 1833 561 1187 129 3245 3843 1189 2055 3473 265 285 617 651 1847 259 669 1939 285 399 1677 1841 5309 923 265 1189 2237 1677 1939 285 399 1677 1833 265 1665 265 147 6429
Total: 70084 = 22 x 7 x 2503.
F.1.3.5Odd positioned groups of 27 from F.1.3:
1939 1833 1665 1939 1677 1797 147 1939 1677 261 2161 261 1833 2161 261 1665 7607 3727 171 1159 1939 43 911 1301 1797 8711 2977 5917 9 1159 1939 45 1159 147 9 1663 2161 261 547 9 1833 2161 9 261 547 1833 2161 261 7607 5379 679 1 4105 1 2161 1939 1833 561 1187 129 3245 3843 1189 2055 3473 265 285 617 651 1847 259 669 43 667 297 9 261 1341 37 1833 1665 1833 265 1665 265 147 6429 9 1159 1939 2417 399 265 1159 1939 265 1189 1159 1939 1665 529 1427 1159 1189 529 1427 1159 1847
Total: 163156 = 22 x 7 x 5827. SF: 5838 = 2 x 3 x 7 x 139.
F.1.3.5.1Odd positioned groups of 9 from F.1.3.5:
1939 1833 1665 1939 1677 1797 147 1939 1677 171 1159 1939 43 911 1301 1797 8711 2977 2161 261 547 9 1833 2161 9 261 547 2161 1939 1833 561 1187 129 3245 3843 1189 43 667 297 9 261 1341 37 1833 1665 2417 399 265 1159 1939 265 1189 1159 1939
Total: 74382 = 2 x 3 x 72 x 11 x 23.
F.1.3.5.2Even positioned groups of 9 from F.1.3.5:
261 2161 261 1833 2161 261 1665 7607 3727 5917 9 1159 1939 45 1159 147 9 1663 1833 2161 261 7607 5379 679 1 4105 1 2055 3473 265 285 617 651 1847 259 669 1833 265 1665 265 147 6429 9 1159 1939 1665 529 1427 1159 1189 529 1427 1159 1847
Total: 88774 = 2 x 7 x 17 x 373. SF: 399 = 3 x 7 x 19.
F.1.3.6Even positioned groups of 27 from F.1.3:
9 1677 1199 1677 911 2737 2161 1187 261 2161 1187 299 9 1663 1325 265 1159 1939 1847 265 1665 1159 5753 147 5383 143 1939 181 423 617 2161 1939 4025 669 1 2161 1939 1 1939 1665 1 1939 1939 1677 1189 4221 63 2977 6277 4365 2613 3767 4727 2737 1427 399 1427 679 1427 265 1159 1833 22677 1159 1665 1159 1939 285 399 1677 1841 5309 923 265 1189 2237 1677 1939 285 399 1677
Total: 153657 = 34 x 7 x 271.
F.1.3.6.1Odd positioned groups of 3 from F.1.3.6:
9 1677 1199 2161 1187 261 9 1663 1325 1847 265 1665 5383 143 1939 2161 1939 4025 1939 1 1939 1939 1677 1189 6277 4365 2613 1427 399 1427 1159 1833 22677 1939 285 399 923 265 1189 285 399 1677
Total: 87080 = 23 x 5 x 7 x 311. SF: 329 = 7 x 47.
F.1.3.6.1.1Odd positioned groups of 3 from F.1.3.6.1:
9 1677 1199 9 1663 1325 5383 143 1939 1939 1 1939 6277 4365 2613 1159 1833 22677 923 265 1189
Total: 58527 = 32 x 7 x 929.
F.1.3.6.1.2Even positioned groups of 3 from F.1.3.6.1:
2161 1187 261 1847 265 1665 2161 1939 4025 1939 1677 1189 1427 399 1427 1939 285 399 285 399 1677
Total: 28553 = 7 x 4079.
F.1.3.6.1.3Odd positioned groups of 6 from F.1.3.6.1:
9 1677 1199 2161 1187 261 5383 143 1939 2161 1939 4025 6277 4365 2613 1427 399 1427 923 265 1189 285 399 1677
Total: 43330 = 2 x 5 x 7 x 619.
F.1.3.6.1.3.1Odd positioned groups of 6 from F.1.3.6.1.3:
9 1677 1199 2161 1187 261 6277 4365 2613 1427 399 1427
Total: 23002 = 2 x 7 x 31 x 53.
F.1.3.6.1.3.2Even positioned groups of 6 from F.1.3.6.1.3:
5383 143 1939 2161 1939 4025 923 265 1189 285 399 1677
Total: 20328 = 23 x 3 x 7 x 112
F.1.3.6.1.3.2.1Odd positioned groups of 2 from F.1.3.6.1.3.2:
5383 143 1939 4025 1189 285
Total: 12964 = 22 x 7 x 463.
F.1.3.6.1.3.2.1.1Odd positioned groups of 2 from F.1.3.6.1.3.2.1:
5383 143 1189 285
Total: 7000 = 23 x 53 x 7. SF: 28 = 22 x 7.
F.1.3.6.1.3.2.1.2Even positioned groups of 2 from F.1.3.6.1.3.2.1:
1939 4025
Total: 5964 = 22 x 3 x 7 x 71.
F.1.3.6.1.3.2.1.2.1First half of F.1.3.6.1.3.2.1.2:
1939
Total: 1939 = 7 x 277.
F.1.3.6.1.3.2.1.2.2Last half of F.1.3.6.1.3.2.1.2:
4025
Total: 4025 = 52 x 7 x 23.
F.1.3.6.1.3.2.2Even positioned groups of 2 from F.1.3.6.1.3.2:
1939 2161 923 265 399 1677
Total: 7364 = 22 x 7 x 263.
F.1.3.6.1.3.2.3Odd positioned groups of 3 from F.1.3.6.1.3.2:
5383 143 1939 923 265 1189
Total: 9842 = 2 x 7 x 19 x 37. SF: 65 = 5 x 13.
F.1.3.6.1.3.2.4Even positioned groups of 3 from F.1.3.6.1.3.2:
2161 1939 4025 285 399 1677
Total: 10486 = 2 x 72 x 107.
F.1.3.6.1.4Even positioned groups of 6 from F.1.3.6.1:
9 1663 1325 1847 265 1665 1939 1 1939 1939 1677 1189 1159 1833 22677 1939 285 399
Total: 43750 = 2 x 55 x 7.
F.1.3.6.2Even positioned groups of 3 from F.1.3.6:
1677 911 2737 2161 1187 299 265 1159 1939 1159 5753 147 181 423 617 669 1 2161 1665 1 1939 4221 63 2977 3767 4727 2737 679 1427 265 1159 1665 1159 1677 1841 5309 2237 1677 1939
Total: 66577 = 7 x 9511.
F.1.4Even positioned groups of 21:
107 5753 147 3243 3767 257 1833 3767 3767 129 5905 129 7485 1 265 2161 5783 2081 7739 1663 1187 1677 1939 135 1085 1677 1939 5999 1677 1939 2417 2417 1677 1939 799 1427 1159 1847 1159 1939 5753 799 2161 1159 1939 1665 2161 1159 1939 1939 1677 4365 1427 547 4365 1427 261 547 1833 2161 261 547 1833 651 6429 2161 5379 3211 8449 2195 1213 1939 1299 679 1677 2443 1939 2977 3211 1677 1833 371 2161 4025 1423 43 49 6069 1189 27 2161 8605 135 1159 371 1845 679 281 1189 147 2161 1 1939 1 1 4109 2161 1939-1413 1 2161 669 4109-1413 2161 633 4109 265 2161 355 4109 147 1939 651 1189 4537 5917 4111 1189 285 399 2061 1467 3843 265 4025 3627 3179 1467 7825 923 265 5913 1189 443 10865 1677 1677 2217 6429 2217 539 1833 1665 3727 2161 1159 1939 1467 9 2195 1159 1939 45 1833 265 1665 271
Total: 351260 = 22 x 5 x 7 x 13 x 193.
F.2There are 409 characters with even values:
100 628 8 2406 104 3342 1126 2202 166 30 24 146 104 30 146 104 424 546 104 2056 2406 3688 7784 660 104 24 118 2594 104 7784 2412 1460 3710 660 1954 104 2672 7784 4740 1460 3710 152 4740 1460 146 546 104 3710 146 546 660 8 104 20 4128 146 660 110 104 1460 2064 130 1416 6544 100 5160 104 8350 1848 5784 104 660 548 2170 11874 104 3710 2734 100 146 546 2836 8618 662 8306 104 8618 660 14774 1666 30 628 398 104 628 104 298 3216 2592 100 298 3216 3898 5142 1644 3232 24 170 3104 3434 24 7484 22 628 3434 24 2096 3708 3434 24 692 24 56 692 24 2406 104 7784 104 56 6552 886 660 24 7064 104 4372 104 7052 30 4366 2406 104 7784 660 24 30 104 7784 660 424 24 692 24 100 424 100 146 146 104 546 546 104 1134 1134 104 5142 1644 5142 1644 104 170 172 660 4220 40 7036 4244 534 628 3182 2924 566 4366 24 104 660 30 424 24 104 660 30 100 5038 3182 2924 660 7284 5038 24 30 104 1168 2406 628 660 20 4128 628 2064 8 104 30 5270 3230 634 8 1834 866 660 264 942 100 264 4706 3954 4712 104 2204 1944 660 1954 264 942 534 5242 272 264 146 546 8350 4906 11636 2056 2058 398 100 660 7284 2330 534 668 808 660 5242 272 424 100 2204 8350 692 4980 904 1644 104 8 298 904 4650 660 5308 4372 24 104 8226 264 2924 2204 100 3992 5142 30 2406 104 7784 104 1644 3688 104 546 3688 660 104 100 3688 30 4366 2406 104 660 20 1460 104 692 30 534 104 660 284 7784 24 3376 24 104 4508 1460 146 30 1034 22 3376 1162 786 24 104 4508 1460 546 30 2406 12144 398 146 104 6200 660 12144 398 546 104 6200 30 118 546 104 3684 30 660 446 190 1460 2406 100 1460 40 2406 104 24 30 1072 2064 2056 398 5038 660 146 2406 104 7784 148 24 660 100 3376 1162 104 7784 660 534 3376 1134 160 4372 1666 7052 30 2330 542 2406 100 660 5764 628 3688 424 298 542 21176 1666 5918 5506 7784 100 660 5764 628 8 7052
Total of the even valued characters: 790104 = 23 x 3 x 7 x 4703. SF: 4719 = 3 x 112 x 13.
F.3The first half of the passage (383 characters):
1939 100 628 8 1833 2406 1665 104 3342 1126 1939 1677 1797 2202 166 30 147 24 1939 1677 146 104 261 30 2161 146 104 261 1833 424 2161 546 104 261 2056 2406 1665 7607 3688 7784 660 3727 104 171 1159 24 1939 107 5753 118 147 3243 2594 104 7784 3767 2412 1460 3710 660 1954 257 104 2672 7784 1833 3767 4740 1460 3710 152 3767 4740 1460 146 546 104 3710 129 146 5905 546 660 8 104 20 4128 129 146 660 110 104 1460 2064 7485 1 130 1416 6544 100 5160 104 8350 1848 265 2161 5784 5783 104 2081 660 548 7739 2170 11874 104 3710 2734 100 1663 146 546 2836 1187 43 911 8618 662 1301 1797 8711 8306 104 8618 660 2977 14774 9 1666 30 628 398 104 1677 628 1199 104 1677 911 2737 298 3216 2161 1187 261 2592 100 298 3216 2161 1187 299 9 1663 1325 3898 5142 1644 1677 3232 24 1939 170 3104 135 1085 1677 3434 24 1939 7484 22 628 5999 1677 3434 24 1939 2417 2096 2417 3708 1677 3434 24 1939 799 692 1427 1159 1847 1159 24 1939 56 5753 799 692 265 1159 24 1939 1847 265 2406 1665 104 7784 1159 104 56 5753 147 6552 5383 886 660 143 24 1939 5917 7064 9 104 1159 1939 4372 45 104 1159 7052 30 4366 2406 104 7784 147 9 660 1663 2161 1159 24 1939 30 1665 104 7784 660 424 2161 1159 24 1939 692 24 1939 1677 4365 1427 100 547 424 4365 1427 100 261 547 146 1833 2161 146 104 261 547 546 1833 2161 546 104 261 547 9 1134 1833 2161 9 1134 104 261 547 5142 1644 1833 2161 5142 1644 104 261 7607 170 172 5379 679 660 1 4105 1 4220 181 40 423 617 651 6429 7036 4244 534 628 3182 2924 2161 5379 3211 8449 566 4366 2195 1213 24 1939 104 1299 660 679 1677 30 424 2443 24 1939 104 2977 660 3211 1677 30 1833 100 371 5038 2161 3182 2924 4025 660 7284 5038 2161 24 1939 4025 30 669 1 104 2161 1939 1168 2406 628 1 1939
F.4The last half of the passage (383 characters):
660 1665 20 4128 628 1 1939 2064 8 104 30 5270 3230 634 8 1939 1677 1189 4221 1834 63 2977 866 6277 660 4365 2613 264 942 1423 43 49 100 6069 264 1189 4706 27 2161 3954 4712 8605 135 104 1159 371 2204 1845 1944 660 1954 679 264 942 534 281 1189 5242 272 264 147 146 546 2161 8350 1 1939 4906 11636 2056 1 2058 1 398 3767 100 4727 2737 660 7284 2330 534 668 2161 1939 1833 561 1187 808 129 3245 660 3843 1189 2055 3473 5242 272 424 100 2204 8350 692 265 4980 904 285 617 651 1644 1847 259 669 4109 104 2161 1939-1413 1 2161 669 4109 8-1413 2161 633 4109 298 265 904 4650 660 5308 4372 2161 355 4109 147 24 1939 104 8226 264 651 2924 1189 4537 43 667 2204 297 9 261 1341 100 3992 37 5142 30 1833 2406 1665 104 7784 1427 399 104 1644 3688 1427 679 104 546 3688 660 1427 265 1159 104 1833 100 3688 30 4366 22677 2406 1159 104 660 20 1460 1665 1159 104 692 30 5917 534 4111 1189 285 399 2061 1467 104 3843 660 284 7784 265 4025 3627 3179 1467 24 7825 923 3376 265 5913 1189 443 10865 1677 24 1939 285 399 104 4508 1460 146 1677 30 1034 1841 22 5309 923 3376 265 1162 1189 2237 786 1677 24 1939 285 399 104 4508 1460 546 1677 30 1833 2406 265 12144 398 146 104 6200 660 1665 265 12144 398 546 104 6200 30 118 147 6429 1677 546 104 3684 30 660 446 190 2217 6429 1460 2406 100 2217 1460 539 40 1833 2406 1665 104 3727 2161 1159 24 1939 30 1467 1072 2064 2056 398 9 2195 5038 1159 1939 660 146 45 1833 265 2406 1665 104 7784 271 9 1159 1939 148 24 660 2417 100 3376 399 1162 104 7784 265 1159 1939 660 534 3376 265 1189 1134 160 1159 1939 4372 1666 7052 30 2330 542 2406 1665 100 529 660 5764 1427 1159 628 3688 424 298 542 21176 1666 5918 5506 1189 7784 100 529 660 5764 1427 1159 628 8 7052 1847
Total of the last half: 732928 = 28 x 7 x 409.
F.5432 paired groups of characters can be found in the entire passage that are together and individually divisble by 13. The group pairs are positioned equidistant from the beginning (Alpha) and end (Omega). The positions of the start and end of each group are given below.
Α Ω Α Ω Α Ω Α Ω Α Ω Α Ω Α Ω Α Ω 1 35 22 154 50 203 82 155 117 182 147 276 185 261 251 351 1 208 22 172 51 166 82 274 117 382 148 210 189 264 253 323 2 15 22 263 51 244 83 237 118 213 148 212 190 197 254 342 3 114 22 373 51 383 83 336 118 277 148 335 190 326 255 319 3 131 23 144 53 188 84 171 118 354 149 285 191 203 256 375 3 291 23 343 53 264 84 174 120 196 149 317 192 266 257 271 4 241 24 36 54 163 84 178 121 147 150 331 193 242 257 328 5 98 24 199 56 159 84 353 121 210 151 281 194 233 258 310 5 121 24 215 56 226 85 88 121 212 152 253 194 309 259 265 5 289 25 46 57 227 86 111 121 335 152 342 194 374 260 262 5 297 25 258 57 321 87 142 122 289 154 350 195 256 264 373 5 338 25 265 58 260 90 153 122 297 154 361 195 271 269 282 7 106 27 295 59 81 90 350 122 338 155 172 195 328 270 301 8 28 28 34 59 155 90 361 123 205 155 263 198 326 270 381 8 118 28 368 59 274 91 284 124 218 155 373 199 273 271 279 9 91 28 380 60 84 92 113 124 270 156 274 200 215 271 292 9 113 29 118 60 88 94 116 124 279 157 192 201 223 271 348 10 21 30 249 61 365 94 182 124 292 157 242 201 224 272 328 10 154 30 329 62 127 94 382 124 348 158 304 202 225 278 354 10 172 30 378 63 76 95 346 125 254 158 360 207 347 280 292 10 263 32 377 63 190 96 344 125 319 159 341 210 283 280 348 10 373 33 57 63 203 97 100 126 238 160 226 210 307 284 307 11 108 33 260 64 76 97 349 126 255 161 176 211 212 286 317 11 126 34 73 64 190 98 352 126 375 161 240 211 335 290 297 11 138 34 95 64 203 99 121 127 138 162 299 212 308 290 338 11 293 34 344 66 257 99 289 127 293 163 170 213 335 291 316 11 334 35 368 66 310 99 297 127 334 163 184 214 277 291 322 12 17 35 380 67 109 99 338 129 193 163 261 214 354 293 348 12 48 36 208 68 268 100 186 129 233 165 359 215 298 294 334 12 102 37 199 68 282 101 349 129 309 167 244 217 248 295 332 12 122 37 215 69 143 102 290 129 374 167 383 218 248 297 369 12 205 40 94 69 162 102 316 130 183 168 370 219 270 298 338 13 379 40 346 69 170 102 322 130 287 169 267 219 279 302 381 14 68 41 132 69 184 103 122 131 207 170 221 219 292 303 313 14 143 41 133 69 261 103 205 132 291 171 184 219 348 303 330 14 162 43 104 70 243 104 158 136 156 171 261 221 300 303 363 14 170 44 124 71 272 104 341 136 192 172 174 223 337 305 360 14 184 44 254 72 169 106 364 136 242 172 178 228 321 310 374 14 261 44 319 72 221 108 139 138 222 172 353 230 251 312 372 15 141 45 67 73 99 108 232 138 337 173 263 233 236 313 358 15 245 45 268 73 186 108 236 139 293 173 373 233 288 314 330 17 202 45 282 74 95 108 288 139 334 174 220 234 309 314 363 18 48 46 165 74 344 109 126 140 232 174 300 234 374 315 357 18 102 47 258 75 82 109 138 140 236 175 178 237 288 315 362 18 122 47 265 75 237 109 293 140 288 175 353 238 336 317 322 18 205 48 61 75 336 109 334 141 229 176 200 239 255 319 333 19 149 48 127 77 190 111 302 141 251 176 223 239 375 319 355 19 331 49 102 77 203 111 313 142 245 176 224 240 276 325 367 20 130 49 122 78 206 111 330 144 162 177 240 245 383 330 378 20 207 49 205 78 347 111 363 144 170 179 353 247 269 331 363 21 101 50 62 79 177 113 119 144 184 180 278 247 301 334 355 21 290 50 63 80 235 113 196 144 261 182 376 247 381 351 361 21 316 50 76 81 97 115 131 145 343 183 382 250 329 358 362 21 322 50 190 81 352 115 291 147 239 184 287 250 378 369 380
The first group consists of all characters from the beginning, 1, all the way to the 35th character. The group paired with this consists of all characters from the last character to the 35th last character.
The sum of the Alpha positions: 54825 (nf).
The sum of the Omega positions: 107477 (nf).
The sum of Alpha and Omega together: 162302 = 2 x 7 x 11593.
G.Beginning with the first character, and taking every Nth character after, the following values of N produce sequence totals divisible by seven:
20 27 29 35 36 51 57 68 70 72 76 81 86 87 89 104 111 114 136 137 138 142 149 150 166 168 180 196 199 200 216 219 222 236 237 238 244 245 250 256 263 271 277 283 291 322 325 327 329 331 355 359 361 367 375 379
The sum of N: 10752 = 29 x 3 x 7. SF: 28 = 22 x 7. (The first value of N that worked was 20. The last value was 379. First and last: 399 = 3 x 7 x 19.)
The values of N are not character values, and are a step removed from the passage itself. Nevertheless, they too exhibit coincidences like the characters themselves.
G.1.Odd positioned groups of 4 from G:
20 27 29 35 70 72 76 81 111 114 136 137 166 168 180 196 222 236 237 238 263 271 277 283 329 331 355 359
Total: 5019 = 3 x 7 x 239.
G.1.1Odd positioned from G.1:
20 29 70 76 111 136 166 180 222 237 263 277 329 355
Total: 2471 = 7 x 353.
G.1.2Even positioned from G.1:
27 35 72 81 114 137 168 196 236 238 271 283 331 359
Total: 2548 = 22 x 72 x 13.
G.1.2.1Odd positioned groups of 2 from G.1.2:
27 35 114 137 236 238 331 359
Total: 1477 = 7 x 211.
G.1.2.2Even positioned groups of 2 from G.1.2:
72 81 168 196 271 283
Total: 1071 = 32 x 7 x 17.
G.1.2.2.1Odd positioned from G.1.2.2:
72 168 271
Total: 511 = 7 x 73.
G.1.2.2.1.1Odd positioned from G.1.2.2.1:
72 271
Total: 343 = 73 SF: 21 = 3 x 7.
G.1.2.2.1.2Even positioned from G.1.2.2.1:
168
Total: 168 = 23 x 3 x 7.
G.1.2.2.2Even positioned from G.1.2.2:
81 196 283
Total: 560 = 24 x 5 x 7.
G.1.2.2.2.1Odd positioned from G.1.2.2.2:
81 283
Total: 364 = 22 x 7 x 13.
G.1.2.2.2.2Even positioned from G.1.2.2.2:
196
Total: 196 = 22 x 72
G.1.2.2.3Odd positioned groups of 2 from G.1.2.2:
72 81 271 283
Total: 707 = 7 x 101.
G.1.2.2.3.1Odd positioned from G.1.2.2.3:
72 271
Total: 343 = 73 SF: 21 = 3 x 7.
G.1.2.2.3.2Even positioned from G.1.2.2.3:
81 283
Total: 364 = 22 x 7 x 13.
G.1.2.2.4Even positioned groups of 2 from G.1.2.2:
168 196
Total: 364 = 22 x 7 x 13.
G.1.2.2.4.1Odd positioned from G.1.2.2.4:
168
Total: 168 = 23 x 3 x 7.
G.1.2.2.4.1Even positioned from G.1.2.2.4:
196
Total: 196 = 22 x 72
G.2Even positioned groups of 4 from G:
36 51 57 68 86 87 89 104 138 142 149 150 199 200 216 219 244 245 250 256 291 322 325 327 361 367 375 379
Total: 5733 = 32 x 72 x 13.
G.2.1Odd positioned groups of 2 from G.2:
36 51 86 87 138 142 199 200 244 245 291 322 361 367
Total: 2769 = 3 x 13 x 71.
G.2.2Even positioned groups of 2 from G.2:
57 68 89 104 149 150 216 219 250 256 325 327 375 379
Total: 2964 = 22 x 3 x 13 x 19. SF: 39 = 3 x 13.
G.3Odd positioned groups of 7 from G:
20 27 29 35 36 51 57 89 104 111 114 136 137 138 199 200 216 219 222 236 237 277 283 291 322 325 327 329
Total: 4767 = 3 x 7 x 227.
G.3.1Odd positioned from G.3:
20 29 36 57 104 114 137 199 216 222 237 283 322 327
Total: 2303 = 72 x 47.
G.3.1.1First half of G.3.1:
20 29 36 57 104 114 137
Total: 497 = 7 x 71. SF: 78 = 2 x 3 x 13.
G.3.1.2Last half of G.3.1:
199 216 222 237 283 322 327
Total: 1806 = 2 x 3 x 7 x 43.
G.3.2Even positioned from G.3:
27 35 51 89 111 136 138 200 219 236 277 291 325 329
Total: 2464 = 25 x 7 x 11. SF: 28 = 22 x 7.
G.3.2.1Odd positioned from G.3.2:
27 51 111 138 219 277 325
Total: 1148 = 22 x 7 x 41. SF: 52 = 22 x 13.
G.3.2.2Even positioned from G.3.2:
35 89 136 200 236 291 329
Total: 1316 = 22 x 7 x 47.
G.3.3Odd positioned groups of 4 from G.3:
20 27 29 35 104 111 114 136 216 219 222 236 322 325 327 329
Total: 2772 = 22 x 32 x 7 x 11. SF: 28 = 22 x 7.
G.3.3.1Odd positioned groups of 2 from G.3.3:
20 27 104 111 216 219 322 325
Total: 1344 = 26 x 3 x 7.
G.3.3.2Even positioned groups of 2 from G.3.3:
29 35 114 136 222 236 327 329
Total: 1428 = 22 x 3 x 7 x 17.
G.3.4Even positioned groups of 4 from G.3:
36 51 57 89 137 138 199 200 237 277 283 291
Total: 1995 = 3 x 5 x 7 x 19.
G.4Even positioned groups of 7 from G:
68 70 72 76 81 86 87 142 149 150 166 168 180 196 238 244 245 250 256 263 271 331 355 359 361 367 375 379
Total: 5985 = 32 x 5 x 7 x 19.
H.Beginning with the first character, and taking every Nth character after, the following values of N produce sequence totals divisible by thirteen:
13 14 18 67 76 80 91 92 93 122 134 156 157 193 202 204 205 216 246 253 269 276 298 317 340 355 367 370 379
The sum of N: 5603 = 13 x 431. SF: 444 = 22 x 3 x 37. SF: 44. (The first value of N that worked was 13. The last value was again 379. First and last: 392 = 23 x 72.)
H.1As seen previously, one could begin with the first character, and take every Nth character after. But what if one did not begin with the first character? An obvious starting point would be the seventh character.
Every seventh character:
7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 1665 2202 146 261 2056 3727 5753 3767 104 3710 104 8 110 1416 265 112 119 126 133 140 147 154 161 168 175 182 189 196 203 210 548 100 911 104 30 104 1187 1187 1644 135 22 2417 1939 24 1159 217 224 231 238 245 252 259 266 273 280 287 294 301 308 315 104 6552 5917 45 104 1159 660 24 424 1833 1833 1134 547 104 660 322 329 336 343 350 357 364 371 378 385 392 399 406 413 420 423 628 566 1299 24 30 2924 1939 1939 1665 8 1939 866 1423 4706 427 434 441 448 455 462 469 476 483 490 497 504 511 518 104 1954 5242 8350 2058 660 1833 3843 100 285 4109 669 298 2161 525 532 539 546 553 560 567 574 581 588 595 602 609 616 8226 667 3992 104 1427 265 4366 1460 534 104 3627 265 1939 1677 623 630 637 644 651 658 665 672 679 686 693 700 707 714 721 3376 24 546 398 12144 147 660 100 1665 30 2195 1833 9 100 1159 728 735 742 749 756 763 1134 30 660 298 7784 628
Total of every seventh character: 173523 = 3 x 7 x 8263.
H.2Rather than constantly changing the Nth character, how about keeping the Nth character after as a constant 7, and only change the starting point? From starting points one to seven, the only other that works is six:
2406 1797 1677 104 261 660 107 7784 257 1460 546 660 660 130 1848 660 2734 43 8306 1666 1199 2161 2161 5142 3104 7484 1939 24 1159 265 1665 147 1939 4372 2406 2161 7784 692 547 146 546 9 261 1644 679 40 534 8449 104 2443 1677 3182 24 2161 660 2064 8 2977 942 1189 135 660 1189 2161 1 2737 1939 660 424 904 669 2161 4109 4372 104 43 100 1665 3688 1427 30 20 5917 1467 4025 3376 24 146 923 1677 1460 12144 265 118 30 2406 2406 1939 9 45 271 2417 265 1189 7052 529 424 1189 1159
Total: 191926 = 2 x 7 x 13709. (Why are the only successful starting points 6 and 7? Because 6 + 7 = 13.)
But this exercise ended too early. There are 760 other possible start positions. The skeptic would insist on checking further. And when we do, it would appear the skeptic was correct that it was all a matter of chance.
In total, there are 113 start positions in the passage where taking every 7th character afterwards produces a sequence total divisible by 7. If these starting positions were added up, there is no coincidence. But when the search is made for something more specific, the results do not seem to be coincidence.
H.3Suppose a search were made for starting positions that produced totals divisible by 13. There are 75 of them. The very first that succeeds is the starting position of 11. The last to succeed is 752. 11 + 752 = 763 (7 x 109).
Number found divisible by 13: 75 Start 11: 1939 24 2161 546 3688 24 2594 660 3767 1460 5905 129 7485 104 104 104 2836 1797 14774 1677 298 298 1325 1939 24 3434 1677 1159 799 265 56 143 1159 30 660 1665 24 1427 261 261 261 1134 2161 172 4220 7036 5379 24 30 660 5038 5038 1 1 1 3230 1834 2613 6069 4712 1845 534 146 11636 100 668 129 5242 265 1847 -1413 2161 660 24 1189 261 1833 104 3688 100 104 692 399 7784 7825 10865 4508 22 2237 104 2406 660 6200 104 6429 40 1159 2056 660 104 24 104 3376 4372 1665 628 5918 5764 Total: 225524 = 2 x 2 x 13 x 4337. SF: 4354 = 2 x 7 x 311. Start 25: 2161 546 3688 24 2594 660 3767 1460 5905 129 7485 104 104 104 2836 1797 14774 1677 298 298 1325 1939 24 3434 1677 1159 799 265 56 143 1159 30 660 1665 24 1427 261 261 261 1134 2161 172 4220 7036 5379 24 30 660 5038 5038 1 1 1 3230 1834 2613 6069 4712 1845 534 146 11636 100 668 129 5242 265 1847 -1413 2161 660 24 1189 261 1833 104 3688 100 104 692 399 7784 7825 10865 4508 22 2237 104 2406 660 6200 104 6429 40 1159 2056 660 104 24 104 3376 4372 1665 628 5918 5764 Total: 223561 = 13 x 29 x 593. Start 30: 424 1665 171 147 1460 7784 3767 129 20 1460 100 5784 2170 146 662 660 398 911 2592 9 3232 1677 5999 2417 692 56 1939 1159 886 9 1159 147 1939 2161 1677 1427 146 546 2161 1644 7607 4105 651 2924 2195 679 104 100 660 30 2406 4128 30 1189 660 49 2161 371 264 264 1939 398 2330 1187 2055 8350 651 2161 8 904 4109 651 297 5142 1427 104 104 2406 1159 1189 660 1467 1189 399 1034 1162 285 30 104 546 1677 190 1460 3727 1072 1159 2406 1939 399 660 1159 542 1427 21176 529 7052 Total: 182130 = 2 x 3 x 5 x 13 x 467. SF: 490 = 2 x 5 x 7 x 7. SF: 21 = 3 x 7. Start 42: 3727 5753 3767 104 3710 104 8 110 1416 265 548 100 911 104 30 104 1187 1187 1644 135 22 2417 1939 24 1159 104 6552 5917 45 104 1159 660 24 424 1833 1833 1134 547 104 660 423 628 566 1299 24 30 2924 1939 1939 1665 8 1939 866 1423 4706 104 1954 5242 8350 2058 660 1833 3843 100 285 4109 669 298 2161 8226 667 3992 104 1427 265 4366 1460 534 104 3627 265 1939 1677 3376 24 546 398 12144 147 660 100 1665 30 2195 1833 9 100 1159 1134 30 660 298 7784 628 Total: 167193 = 3 x 3 x 13 x 1429. Start 52: 3243 3710 1833 4740 146 4128 2064 5160 5783 11874 546 1301 2977 104 2737 100 1663 24 3434 1677 3708 1427 5753 1847 104 660 104 7052 9 30 1159 4365 100 104 104 9 1833 170 1 6429 2161 1213 1677 2977 371 7284 669 628 628 5270 4221 4365 100 3954 2204 942 147 4906 3767 534 808 3473 692 1644 1939 -1413 4650 147 2924 9 30 399 546 1833 1159 104 285 284 24 443 104 1841 1189 399 1833 6200 104 546 2217 539 2161 2064 1939 1665 148 1162 534 1939 2406 1159 1666 660 1847 Total: 194532 = 2 x 2 x 3 x 13 x 29 x 43. Start 63: 104 3710 104 8 110 1416 265 548 100 911 104 30 104 1187 1187 1644 135 22 2417 1939 24 1159 104 6552 5917 45 104 1159 660 24 424 1833 1833 1134 547 104 660 423 628 566 1299 24 30 2924 1939 1939 1665 8 1939 866 1423 4706 104 1954 5242 8350 2058 660 1833 3843 100 285 4109 669 298 2161 8226 667 3992 104 1427 265 4366 1460 534 104 3627 265 1939 1677 3376 24 546 398 12144 147 660 100 1665 30 2195 1833 9 100 1159 1134 30 660 298 7784 628 Total: 153946 = 2 x 13 x 31 x 191. Start 68: 4740 146 546 146 1 8350 2081 3710 1187 8711 9 628 3216 3216 3898 170 1939 24 3434 1847 692 2406 5753 24 1939 4366 1663 104 1939 100 547 547 547 104 5142 5379 181 4244 3211 1939 424 3211 2161 2161 104 1939 1939 634 63 264 264 8605 1944 281 546 2056 4727 2161 3245 272 4980 259 1 633 5308 1939 4537 1341 2406 1644 660 3688 660 30 2061 265 923 1677 1460 5309 786 4508 265 1665 30 3684 1460 1833 24 398 146 7784 660 7784 265 1666 100 3688 5506 1427 Total: 209287 = 13 x 17 x 947. Start 70: 3710 104 8 110 1416 265 548 100 911 104 30 104 1187 1187 1644 135 22 2417 1939 24 1159 104 6552 5917 45 104 1159 660 24 424 1833 1833 1134 547 104 660 423 628 566 1299 24 30 2924 1939 1939 1665 8 1939 866 1423 4706 104 1954 5242 8350 2058 660 1833 3843 100 285 4109 669 298 2161 8226 667 3992 104 1427 265 4366 1460 534 104 3627 265 1939 1677 3376 24 546 398 12144 147 660 100 1665 30 2195 1833 9 100 1159 1134 30 660 298 7784 628 Total: 153842 = 2 x 13 x 61 x 97. Start 79: 129 20 1460 100 5784 2170 146 662 660 398 911 2592 9 3232 1677 5999 2417 692 56 1939 1159 886 9 1159 147 1939 2161 1677 1427 146 546 2161 1644 7607 4105 651 2924 2195 679 104 100 660 30 2406 4128 30 1189 660 49 2161 371 264 264 1939 398 2330 1187 2055 8350 651 2161 8 904 4109 651 297 5142 1427 104 104 2406 1159 1189 660 1467 1189 399 1034 1162 285 30 104 546 1677 190 1460 3727 1072 1159 2406 1939 399 660 1159 542 1427 21176 529 7052 Total: 166712 = 2 x 2 x 2 x 7 x 13 x 229. Start 91: 110 1416 265 548 100 911 104 30 104 1187 1187 1644 135 22 2417 1939 24 1159 104 6552 5917 45 104 1159 660 24 424 1833 1833 1134 547 104 660 423 628 566 1299 24 30 2924 1939 1939 1665 8 1939 866 1423 4706 104 1954 5242 8350 2058 660 1833 3843 100 285 4109 669 298 2161 8226 667 3992 104 1427 265 4366 1460 534 104 3627 265 1939 1677 3376 24 546 398 12144 147 660 100 1665 30 2195 1833 9 100 1159 1134 30 660 298 7784 628 Total: 150020 = 2 x 2 x 5 x 13 x 577. Start 101: 5160 5783 11874 546 1301 2977 104 2737 100 1663 24 3434 1677 3708 1427 5753 1847 104 660 104 7052 9 30 1159 4365 100 104 104 9 1833 170 1 6429 2161 1213 1677 2977 371 7284 669 628 628 5270 4221 4365 100 3954 2204 942 147 4906 3767 534 808 3473 692 1644 1939 -1413 4650 147 2924 9 30 399 546 1833 1159 104 285 284 24 443 104 1841 1189 399 1833 6200 104 546 2217 539 2161 2064 1939 1665 148 1162 534 1939 2406 1159 1666 660 1847 Total: 174668 = 2 x 2 x 13 x 3359. Start 145: 628 3216 3216 3898 170 1939 24 3434 1847 692 2406 5753 24 1939 4366 1663 104 1939 100 547 547 547 104 5142 5379 181 4244 3211 1939 424 3211 2161 2161 104 1939 1939 634 63 264 264 8605 1944 281 546 2056 4727 2161 3245 272 4980 259 1 633 5308 1939 4537 1341 2406 1644 660 3688 660 30 2061 265 923 1677 1460 5309 786 4508 265 1665 30 3684 1460 1833 24 398 146 7784 660 7784 265 1666 100 3688 5506 1427 Total: 179660 = 2 x 2 x 5 x 13 x 691. Start 147: 104 1187 1187 1644 135 22 2417 1939 24 1159 104 6552 5917 45 104 1159 660 24 424 1833 1833 1134 547 104 660 423 628 566 1299 24 30 2924 1939 1939 1665 8 1939 866 1423 4706 104 1954 5242 8350 2058 660 1833 3843 100 285 4109 669 298 2161 8226 667 3992 104 1427 265 4366 1460 534 104 3627 265 1939 1677 3376 24 546 398 12144 147 660 100 1665 30 2195 1833 9 100 1159 1134 30 660 298 7784 628 Total: 146536 = 2 x 2 x 2 x 13 x 1409. SF: 1428 = 2 x 2 x 3 x 7 x 17. Start 154: 1187 1187 1644 135 22 2417 1939 24 1159 104 6552 5917 45 104 1159 660 24 424 1833 1833 1134 547 104 660 423 628 566 1299 24 30 2924 1939 1939 1665 8 1939 866 1423 4706 104 1954 5242 8350 2058 660 1833 3843 100 285 4109 669 298 2161 8226 667 3992 104 1427 265 4366 1460 534 104 3627 265 1939 1677 3376 24 546 398 12144 147 660 100 1665 30 2195 1833 9 100 1159 1134 30 660 298 7784 628 Total: 146432 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 11 x 13. Start 170: 3232 1677 5999 2417 692 56 1939 1159 886 9 1159 147 1939 2161 1677 1427 146 546 2161 1644 7607 4105 651 2924 2195 679 104 100 660 30 2406 4128 30 1189 660 49 2161 371 264 264 1939 398 2330 1187 2055 8350 651 2161 8 904 4109 651 297 5142 1427 104 104 2406 1159 1189 660 1467 1189 399 1034 1162 285 30 104 546 1677 190 1460 3727 1072 1159 2406 1939 399 660 1159 542 1427 21176 529 7052 Total: 151671 = 3 x 13 x 3889. Start 180: 1939 24 3434 1847 692 2406 5753 24 1939 4366 1663 104 1939 100 547 547 547 104 5142 5379 181 4244 3211 1939 424 3211 2161 2161 104 1939 1939 634 63 264 264 8605 1944 281 546 2056 4727 2161 3245 272 4980 259 1 633 5308 1939 4537 1341 2406 1644 660 3688 660 30 2061 265 923 1677 1460 5309 786 4508 265 1665 30 3684 1460 1833 24 398 146 7784 660 7784 265 1666 100 3688 5506 1427 Total: 168532 = 2 x 2 x 7 x 13 x 463. Start 194: 3434 1847 692 2406 5753 24 1939 4366 1663 104 1939 100 547 547 547 104 5142 5379 181 4244 3211 1939 424 3211 2161 2161 104 1939 1939 634 63 264 264 8605 1944 281 546 2056 4727 2161 3245 272 4980 259 1 633 5308 1939 4537 1341 2406 1644 660 3688 660 30 2061 265 923 1677 1460 5309 786 4508 265 1665 30 3684 1460 1833 24 398 146 7784 660 7784 265 1666 100 3688 5506 1427 Total: 166569 = 3 x 13 x 4271. Start 198: 692 56 1939 1159 886 9 1159 147 1939 2161 1677 1427 146 546 2161 1644 7607 4105 651 2924 2195 679 104 100 660 30 2406 4128 30 1189 660 49 2161 371 264 264 1939 398 2330 1187 2055 8350 651 2161 8 904 4109 651 297 5142 1427 104 104 2406 1159 1189 660 1467 1189 399 1034 1162 285 30 104 546 1677 190 1460 3727 1072 1159 2406 1939 399 660 1159 542 1427 21176 529 7052 Total: 138346 = 2 x 13 x 17 x 313. Start 207: 799 265 56 143 1159 30 660 1665 24 1427 261 261 261 1134 2161 172 4220 7036 5379 24 30 660 5038 5038 1 1 1 3230 1834 2613 6069 4712 1845 534 146 11636 100 668 129 5242 265 1847 -1413 2161 660 24 1189 261 1833 104 3688 100 104 692 399 7784 7825 10865 4508 22 2237 104 2406 660 6200 104 6429 40 1159 2056 660 104 24 104 3376 4372 1665 628 5918 5764 Total: 163592 = 2 x 2 x 2 x 11 x 11 x 13 x 13. Start 220: 104 660 104 7052 9 30 1159 4365 100 104 104 9 1833 170 1 6429 2161 1213 1677 2977 371 7284 669 628 628 5270 4221 4365 100 3954 2204 942 147 4906 3767 534 808 3473 692 1644 1939 -1413 4650 147 2924 9 30 399 546 1833 1159 104 285 284 24 443 104 1841 1189 399 1833 6200 104 546 2217 539 2161 2064 1939 1665 148 1162 534 1939 2406 1159 1666 660 1847 Total: 124553 = 11 x 13 x 13 x 67. SF: 104 = 2 x 2 x 2 x 13. Start 225: 5383 7064 104 7784 24 424 1939 4365 2161 2161 1833 5142 261 1 617 3182 4366 660 1939 1833 4025 4025 1168 20 104 1677 6277 43 27 1159 679 272 1 1 7284 561 1189 2204 617 104 4109 265 355 264 2204 37 7784 679 1159 22677 1665 4111 3843 3179 5913 285 30 265 1939 1677 146 398 6429 446 2217 104 1467 5038 265 1159 3376 1939 160 2330 5764 542 100 8 Total: 177008 = 2 x 2 x 2 x 2 x 13 x 23 x 37. Start 227: 660 104 7052 9 30 1159 4365 100 104 104 9 1833 170 1 6429 2161 1213 1677 2977 371 7284 669 628 628 5270 4221 4365 100 3954 2204 942 147 4906 3767 534 808 3473 692 1644 1939 -1413 4650 147 2924 9 30 399 546 1833 1159 104 285 284 24 443 104 1841 1189 399 1833 6200 104 546 2217 539 2161 2064 1939 1665 148 1162 534 1939 2406 1159 1666 660 1847 Total: 124449 = 3 x 13 x 3191. Start 233: 9 1159 147 1939 2161 1677 1427 146 546 2161 1644 7607 4105 651 2924 2195 679 104 100 660 30 2406 4128 30 1189 660 49 2161 371 264 264 1939 398 2330 1187 2055 8350 651 2161 8 904 4109 651 297 5142 1427 104 104 2406 1159 1189 660 1467 1189 399 1034 1162 285 30 104 546 1677 190 1460 3727 1072 1159 2406 1939 399 660 1159 542 1427 21176 529 7052 Total: 133614 = 2 x 3 x 3 x 13 x 571. Start 251: 2161 7784 692 547 146 546 9 261 1644 679 40 534 8449 104 2443 1677 3182 24 2161 660 2064 8 2977 942 1189 135 660 1189 2161 1 2737 1939 660 424 904 669 2161 4109 4372 104 43 100 1665 3688 1427 30 20 5917 1467 4025 3376 24 146 923 1677 1460 12144 265 118 30 2406 2406 1939 9 45 271 2417 265 1189 7052 529 424 1189 1159 Total: 122993 = 13 x 9461. Start 259: 660 24 424 1833 1833 1134 547 104 660 423 628 566 1299 24 30 2924 1939 1939 1665 8 1939 866 1423 4706 104 1954 5242 8350 2058 660 1833 3843 100 285 4109 669 298 2161 8226 667 3992 104 1427 265 4366 1460 534 104 3627 265 1939 1677 3376 24 546 398 12144 147 660 100 1665 30 2195 1833 9 100 1159 1134 30 660 298 7784 628 Total: 122837 = 11 x 13 x 859. Start 265: 692 547 146 546 9 261 1644 679 40 534 8449 104 2443 1677 3182 24 2161 660 2064 8 2977 942 1189 135 660 1189 2161 1 2737 1939 660 424 904 669 2161 4109 4372 104 43 100 1665 3688 1427 30 20 5917 1467 4025 3376 24 146 923 1677 1460 12144 265 118 30 2406 2406 1939 9 45 271 2417 265 1189 7052 529 424 1189 1159 Total: 113048 = 2 x 2 x 2 x 13 x 1087. SF: 1106 = 2 x 7 x 79. Start 271: 100 547 547 547 104 5142 5379 181 4244 3211 1939 424 3211 2161 2161 104 1939 1939 634 63 264 264 8605 1944 281 546 2056 4727 2161 3245 272 4980 259 1 633 5308 1939 4537 1341 2406 1644 660 3688 660 30 2061 265 923 1677 1460 5309 786 4508 265 1665 30 3684 1460 1833 24 398 146 7784 660 7784 265 1666 100 3688 5506 1427 Total: 142402 = 2 x 13 x 5477. Start 319: 4220 7036 5379 24 30 660 5038 5038 1 1 1 3230 1834 2613 6069 4712 1845 534 146 11636 100 668 129 5242 265 1847 -1413 2161 660 24 1189 261 1833 104 3688 100 104 692 399 7784 7825 10865 4508 22 2237 104 2406 660 6200 104 6429 40 1159 2056 660 104 24 104 3376 4372 1665 628 5918 5764 Total: 153114 = 2 x 3 x 13 x 13 x 151. SF: 182 = 2 x 7 x 13. Start 321: 40 534 8449 104 2443 1677 3182 24 2161 660 2064 8 2977 942 1189 135 660 1189 2161 1 2737 1939 660 424 904 669 2161 4109 4372 104 43 100 1665 3688 1427 30 20 5917 1467 4025 3376 24 146 923 1677 1460 12144 265 118 30 2406 2406 1939 9 45 271 2417 265 1189 7052 529 424 1189 1159 Total: 108524 = 2 x 2 x 13 x 2087. Start 337: 4366 660 1939 1833 4025 4025 1168 20 104 1677 6277 43 27 1159 679 272 1 1 7284 561 1189 2204 617 104 4109 265 355 264 2204 37 7784 679 1159 22677 1665 4111 3843 3179 5913 285 30 265 1939 1677 146 398 6429 446 2217 104 1467 5038 265 1159 3376 1939 160 2330 5764 542 100 8 Total: 134563 = 11 x 13 x 941. Start 345: 679 104 100 660 30 2406 4128 30 1189 660 49 2161 371 264 264 1939 398 2330 1187 2055 8350 651 2161 8 904 4109 651 297 5142 1427 104 104 2406 1159 1189 660 1467 1189 399 1034 1162 285 30 104 546 1677 190 1460 3727 1072 1159 2406 1939 399 660 1159 542 1427 21176 529 7052 Total: 103116 = 2 x 2 x 3 x 13 x 661. Start 356: 1677 3182 24 2161 660 2064 8 2977 942 1189 135 660 1189 2161 1 2737 1939 660 424 904 669 2161 4109 4372 104 43 100 1665 3688 1427 30 20 5917 1467 4025 3376 24 146 923 1677 1460 12144 265 118 30 2406 2406 1939 9 45 271 2417 265 1189 7052 529 424 1189 1159 Total: 96954 = 2 x 3 x 11 x 13 x 113. Start 363: 3182 24 2161 660 2064 8 2977 942 1189 135 660 1189 2161 1 2737 1939 660 424 904 669 2161 4109 4372 104 43 100 1665 3688 1427 30 20 5917 1467 4025 3376 24 146 923 1677 1460 12144 265 118 30 2406 2406 1939 9 45 271 2417 265 1189 7052 529 424 1189 1159 Total: 95277 = 3 x 7 x 13 x 349. Start 379: 1168 20 104 1677 6277 43 27 1159 679 272 1 1 7284 561 1189 2204 617 104 4109 265 355 264 2204 37 7784 679 1159 22677 1665 4111 3843 3179 5913 285 30 265 1939 1677 146 398 6429 446 2217 104 1467 5038 265 1159 3376 1939 160 2330 5764 542 100 8 Total: 117715 = 5 x 13 x 1811. Start 380: 2406 4128 30 1189 660 49 2161 371 264 264 1939 398 2330 1187 2055 8350 651 2161 8 904 4109 651 297 5142 1427 104 104 2406 1159 1189 660 1467 1189 399 1034 1162 285 30 104 546 1677 190 1460 3727 1072 1159 2406 1939 399 660 1159 542 1427 21176 529 7052 Total: 101543 = 13 x 73 x 107. Start 385: 1665 8 1939 866 1423 4706 104 1954 5242 8350 2058 660 1833 3843 100 285 4109 669 298 2161 8226 667 3992 104 1427 265 4366 1460 534 104 3627 265 1939 1677 3376 24 546 398 12144 147 660 100 1665 30 2195 1833 9 100 1159 1134 30 660 298 7784 628 Total: 105846 = 2 x 3 x 13 x 23 x 59. Start 390: 1939 634 63 264 264 8605 1944 281 546 2056 4727 2161 3245 272 4980 259 1 633 5308 1939 4537 1341 2406 1644 660 3688 660 30 2061 265 923 1677 1460 5309 786 4508 265 1665 30 3684 1460 1833 24 398 146 7784 660 7784 265 1666 100 3688 5506 1427 Total: 110461 = 13 x 29 x 293. Start 405: 2977 942 1189 135 660 1189 2161 1 2737 1939 660 424 904 669 2161 4109 4372 104 43 100 1665 3688 1427 30 20 5917 1467 4025 3376 24 146 923 1677 1460 12144 265 118 30 2406 2406 1939 9 45 271 2417 265 1189 7052 529 424 1189 1159 Total: 87178 = 2 x 7 x 13 x 479. Start 412: 942 1189 135 660 1189 2161 1 2737 1939 660 424 904 669 2161 4109 4372 104 43 100 1665 3688 1427 30 20 5917 1467 4025 3376 24 146 923 1677 1460 12144 265 118 30 2406 2406 1939 9 45 271 2417 265 1189 7052 529 424 1189 1159 Total: 84201 = 3 x 13 x 17 x 127. Start 442: 272 1 1 7284 561 1189 2204 617 104 4109 265 355 264 2204 37 7784 679 1159 22677 1665 4111 3843 3179 5913 285 30 265 1939 1677 146 398 6429 446 2217 104 1467 5038 265 1159 3376 1939 160 2330 5764 542 100 8 Total: 106561 = 7 x 13 x 1171. Start 443: 264 1939 398 2330 1187 2055 8350 651 2161 8 904 4109 651 297 5142 1427 104 104 2406 1159 1189 660 1467 1189 399 1034 1162 285 30 104 546 1677 190 1460 3727 1072 1159 2406 1939 399 660 1159 542 1427 21176 529 7052 Total: 90285 = 3 x 5 x 13 x 463. Start 456: 1 7284 561 1189 2204 617 104 4109 265 355 264 2204 37 7784 679 1159 22677 1665 4111 3843 3179 5913 285 30 265 1939 1677 146 398 6429 446 2217 104 1467 5038 265 1159 3376 1939 160 2330 5764 542 100 8 Total: 106288 = 2 x 2 x 2 x 2 x 7 x 13 x 73. Start 459: 100 668 129 5242 265 1847 -1413 2161 660 24 1189 261 1833 104 3688 100 104 692 399 7784 7825 10865 4508 22 2237 104 2406 660 6200 104 6429 40 1159 2056 660 104 24 104 3376 4372 1665 628 5918 5764 Total: 93067 = 13 x 7159. Start 480: 5242 265 1847 -1413 2161 660 24 1189 261 1833 104 3688 100 104 692 399 7784 7825 10865 4508 22 2237 104 2406 660 6200 104 6429 40 1159 2056 660 104 24 104 3376 4372 1665 628 5918 5764 Total: 92170 = 2 x 5 x 13 x 709. Start 484: 2204 617 104 4109 265 355 264 2204 37 7784 679 1159 22677 1665 4111 3843 3179 5913 285 30 265 1939 1677 146 398 6429 446 2217 104 1467 5038 265 1159 3376 1939 160 2330 5764 542 100 8 Total: 97253 = 13 x 7481. Start 488: 4980 259 1 633 5308 1939 4537 1341 2406 1644 660 3688 660 30 2061 265 923 1677 1460 5309 786 4508 265 1665 30 3684 1460 1833 24 398 146 7784 660 7784 265 1666 100 3688 5506 1427 Total: 83460 = 2 x 2 x 3 x 5 x 13 x 107. Start 492: 651 2161 8 904 4109 651 297 5142 1427 104 104 2406 1159 1189 660 1467 1189 399 1034 1162 285 30 104 546 1677 190 1460 3727 1072 1159 2406 1939 399 660 1159 542 1427 21176 529 7052 Total: 73762 = 2 x 13 x 2837. Start 498: 104 4109 265 355 264 2204 37 7784 679 1159 22677 1665 4111 3843 3179 5913 285 30 265 1939 1677 146 398 6429 446 2217 104 1467 5038 265 1159 3376 1939 160 2330 5764 542 100 8 Total: 94432 = 2 x 2 x 2 x 2 x 2 x 13 x 227. Start 502: 1 633 5308 1939 4537 1341 2406 1644 660 3688 660 30 2061 265 923 1677 1460 5309 786 4508 265 1665 30 3684 1460 1833 24 398 146 7784 660 7784 265 1666 100 3688 5506 1427 Total: 78221 = 11 x 13 x 547. Start 505: 4109 265 355 264 2204 37 7784 679 1159 22677 1665 4111 3843 3179 5913 285 30 265 1939 1677 146 398 6429 446 2217 104 1467 5038 265 1159 3376 1939 160 2330 5764 542 100 8 Total: 94328 = 2 x 2 x 2 x 13 x 907. Start 508: 2161 660 24 1189 261 1833 104 3688 100 104 692 399 7784 7825 10865 4508 22 2237 104 2406 660 6200 104 6429 40 1159 2056 660 104 24 104 3376 4372 1665 628 5918 5764 Total: 86229 = 3 x 3 x 11 x 13 x 67. Start 522: 24 1189 261 1833 104 3688 100 104 692 399 7784 7825 10865 4508 22 2237 104 2406 660 6200 104 6429 40 1159 2056 660 104 24 104 3376 4372 1665 628 5918 5764 Total: 83408 = 2 x 2 x 2 x 2 x 13 x 401. Start 542: 30 399 546 1833 1159 104 285 284 24 443 104 1841 1189 399 1833 6200 104 546 2217 539 2161 2064 1939 1665 148 1162 534 1939 2406 1159 1666 660 1847 Total: 39429 = 3 x 3 x 13 x 337. Start 548: 1427 104 104 2406 1159 1189 660 1467 1189 399 1034 1162 285 30 104 546 1677 190 1460 3727 1072 1159 2406 1939 399 660 1159 542 1427 21176 529 7052 Total: 59839 = 13 x 4603. Start 556: 546 1833 1159 104 285 284 24 443 104 1841 1189 399 1833 6200 104 546 2217 539 2161 2064 1939 1665 148 1162 534 1939 2406 1159 1666 660 1847 Total: 39000 = 2 x 2 x 2 x 3 x 5 x 5 x 5 x 13. Start 563: 1833 1159 104 285 284 24 443 104 1841 1189 399 1833 6200 104 546 2217 539 2161 2064 1939 1665 148 1162 534 1939 2406 1159 1666 660 1847 Total: 38454 = 2 x 3 x 13 x 17 x 29. Start 570: 1159 104 285 284 24 443 104 1841 1189 399 1833 6200 104 546 2217 539 2161 2064 1939 1665 148 1162 534 1939 2406 1159 1666 660 1847 Total: 36621 = 3 x 3 x 13 x 313. Start 575: 1665 4111 3843 3179 5913 285 30 265 1939 1677 146 398 6429 446 2217 104 1467 5038 265 1159 3376 1939 160 2330 5764 542 100 8 Total: 54795 = 3 x 5 x 13 x 281. Start 583: 1189 660 1467 1189 399 1034 1162 285 30 104 546 1677 190 1460 3727 1072 1159 2406 1939 399 660 1159 542 1427 21176 529 7052 Total: 54639 = 3 x 3 x 13 x 467. Start 585: 399 7784 7825 10865 4508 22 2237 104 2406 660 6200 104 6429 40 1159 2056 660 104 24 104 3376 4372 1665 628 5918 5764 Total: 75413 = 13 x 5801. Start 593: 265 923 1677 1460 5309 786 4508 265 1665 30 3684 1460 1833 24 398 146 7784 660 7784 265 1666 100 3688 5506 1427 Total: 53313 = 3 x 13 x 1367. Start 651: 12144 147 660 100 1665 30 2195 1833 9 100 1159 1134 30 660 298 7784 628 Total: 30576 = 2 x 2 x 2 x 2 x 3 x 7 x 7 x 13. Start 674: 1460 3727 1072 1159 2406 1939 399 660 1159 542 1427 21176 529 7052 Total: 44707 = 13 x 19 x 181. Start 676: 40 1159 2056 660 104 24 104 3376 4372 1665 628 5918 5764 Total: 25870 = 2 x 5 x 13 x 199. Start 686: 30 2195 1833 9 100 1159 1134 30 660 298 7784 628 Total: 15860 = 2 x 2 x 5 x 13 x 61. Start 688: 1072 1159 2406 1939 399 660 1159 542 1427 21176 529 7052 Total: 39520 = 2 x 2 x 2 x 2 x 2 x 5 x 13 x 19. Start 706: 271 2417 265 1189 7052 529 424 1189 1159 Total: 14495 = 5 x 13 x 223. Start 718: 104 3376 4372 1665 628 5918 5764 Total: 21827 = 13 x 23 x 73. Start 719: 7784 265 1666 100 3688 5506 1427 Total: 20436 = 2 x 2 x 3 x 13 x 131. Start 725: 3376 4372 1665 628 5918 5764 Total: 21723 = 3 x 13 x 557. Start 739: 1665 628 5918 5764 Total: 13975 = 5 x 5 x 13 x 43. Start 747: 3688 5506 1427 Total: 10621 = 13 x 19 x 43. Start 749: 298 7784 628 Total: 8710 = 2 x 5 x 13 x 67. Start 750: 542 100 8 Total: 650 = 2 x 5 x 5 x 13. Start 752: 1666 660 1847 Total: 4173 = 3 x 13 x 107.
Start positions for those divisible by 13:
11 25 30 42 52 63 68 70 79 91 101 145 147 154 170 180 194 198 207 220 225 227 233 251 259 265 271 319 321 337 345 356 363 379 380 385 390 405 412 442 443 456 459 480 484 488 492 498 502 505 508 522 542 548 556 563 570 575 583 585 593 651 674 676 686 688 706 718 719 725 739 747 749 750 752
Total of start positions: 29744 = 24 x 11 x 132
If this list had no other coincidences, it might be written off as coincidence. But there is something more. Take every other position in the list.
H.3.1Odd positioned start numbers.
11 30 52 68 79 101 147 170 194 207 225 233 259 271 321 345 363 380 390 412 443 459 484 492 502 508 542 556 570 583 593 674 686 706 719 739 749 752
Total: 15015 = 3 x 5 x 7 x 11 x 13. SF: 39 = 3 x 13.
H.3.1.1Odd positioned from H.3.1:
11 52 79 147 194 225 259 321 363 390 443 484 502 542 570 593 686 719 749
Total: 7329 = 3 x 7 x 349.
H.3.1.2Even positioned from H.3.1:
30 68 101 170 207 233 271 345 380 412 459 492 508 556 583 674 706 739 752
Total: 7686 = 2 x 32 x 7 x 61.
H.3.1.2.1Odd positioned from H.3.1.2:
30 101 207 271 380 459 508 583 706 752
Total: 3997 = 7 x 571.
H.3.1.2.2Even positioned from H.3.1.2:
68 170 233 345 412 492 556 674 739
Total: 3689 = 7 x 17 x 31.
H.3.2Even positioned start numbers:
25 42 63 70 91 145 154 180 198 220 227 251 265 319 337 356 379 385 405 442 456 480 488 498 505 522 548 563 575 585 651 676 688 718 725 747 750
Total: 14729 = 11 x 13 x 103.
H.3.3Eight of start positions are divisible by 7. Their positions in the list are given below.
4) 42 = 2 x 3 x 7 6) 63 = 32 x 7 8) 70 = 2 x 5 x 7 13) 147 = 3 x 72 14) 154 = 2 x 7 x 11 36) 385 = 5 x 7 x 11 62) 651 = 3 x 7 x 31 65) 686 = 2 x 73
The sum of these positions: 208 = 24 x 13. SF: 21 = 3 x 7.
One God
The Number One
ISince the passage is about the one God, there should be significance in the number one, or the digit one. There are 385 (5 x 7 x 11. SF: 23) characters with values having the digit 1. The total of these values: 617729 = 7 x 17 x 29 x 179. (The number 385 has already appeared before as the sum of the factors for the number of words.)
I.1There are exactly 88 (23 x 11) character values that have two or more digits of 1. The factor of 11 points back to the digit 1, and 88 is a number Chinese people find auspicious. There is only one character value with three digits of one. This is the 301st (7 x 43) character value in the list of 385. (In the passage it is the 582nd character: 就.)
Uniqueness
I.2The Chinese idea of 上帝 being one also includes the concept of uniqueness. There are 244 unique characters in the passage (244 = 22 x 61). Once again 244 is not divisible by seven or thirteen. The coincidence hides in the sum of the factors (65 = 5 x 13) because some of the 244 characters occur more than once in the passage. They are not alone. To be truly unique is to stand alone as one.
I.3Exactly 133 characters appear only once in the passage (133 = 7 x 19. SF: 26 = 2 x 13). This means their first appearance is also their last appearance. This joins first
and last
and Alpha
and Omega.
The positions of these 133 characters in the passage are given below.
專 9 咸 104 造 166 植 327 間 420 且 495 蒙 603 言 10 禍 107 唯 170 護 335 凡 421 次 509 光 605 省 14 福 108 起 174 守 336 陰 423 進 514 帡 606 文 15 柄 110 育 176 受 339 陽 424 較 516 沉 618 曰 44 圭 112 臨 181 命 343 變 425 失 519 厚 619 云 48 璧 113 赫 184 倚 349 咨 431 懸 525 載 621 國 52 牲 114 殃 190 使 379 度 432 視 530 美 627 家 53 牷 115 祥 192 試 395 出 439 臣 532 利 628 重 57 殊 118 論 224 問 396 搏 451 去 534 產 663 世 62 特 123 達 225 此 397 捖 452 尚 537 先 666 悖 64 耳 128 孝 226 智 402 施 455 啻 539 王 667 尤 71 固 129 及 228 勇 403 順 460 千 540 后 675 與 81 靈 131 謂 232 才 404 自 466 旣 568 矣 688 五 91 覺 132 月 312 均 406 如 470 就 582 代 706 舉 95 歆 137 寒 317 敵 407 君 472 昭 586 太 710 切 97 制 146 暑 319 差 410 域 474 加 591 心 729 怪 98 宰 156 水 320 或 413 政 478 焉 595 禴 751 誕 99 古 162 交 322 小 415 教 479 高 596 蒸 753 經 101 始 165 蕃 326 齊 417 歲 488 覆 599 嘗 754
I.3.1Sum of their passage positions: 46984 = 23 x 7 x 839. (The sum of the factors is 852, which in turn factors into 22 x 3 x 71. The coincidence skips this level, but returns in the sum of 852's factors: 78 = 2 x 3 x 13.)
I.3.2The total numeric value of these 133 characters: 453257 = 7 x 73 x 887.
I.3.3Odd positioned columns from above:
9 10 14 15 44 48 52 53 57 62 64 71 81 91 95 97 98 99 101 166 170 174 176 181 184 190 192 224 225 226 228 232 312 317 319 320 322 326 420 421 423 424 425 431 432 439 451 452 455 460 466 470 472 474 478 479 488 603 605 606 618 619 621 627 628 663 666 667 675 688 706 710 729 751 753 754
Total: 26894 = 2 x 7 x 17 x 113.
I.3.4Even positioned columns from above:
104 107 108 110 112 113 114 115 118 123 128 129 131 132 137 146 156 162 165 327 335 336 339 343 349 379 395 396 397 402 403 404 406 407 410 413 415 417 495 509 514 516 519 525 530 532 534 537 539 540 568 582 586 591 595 596 599
Total: 20090 = 2 x 5 x 72 x 41.
I.3.4.1Odd positioned groups of 19 from I.3.4:
104 107 108 110 112 113 114 115 118 123 128 129 131 132 137 146 156 162 165 495 509 514 516 519 525 530 532 534 537 539 540 568 582 586 591 595 596 599
Total: 12817 = 7 x 1831.
I.3.4.2Even positioned groups of 19 from I.3.4:
327 335 336 339 343 349 379 395 396 397 402 403 404 406 407 410 413 415 417
Total: 7273 = 7 x 1039.
I.3.5Beginning with the Nth character in the list of 133, and taking every Nth after, the following values of N produce sequences divisible by 13:
10 25 29 30 48 54
The sum of N: 196 = 22 x 72.
I.3.6The values of the letters of God’s name in Hebrew can count six times through the list of 133 character values.
10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 10 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 62 95 107 114 156 174 224 312 343 397 410 421 460 478 516 534 599 5 6 5 10 5 6 5 119 125 130 140 12 18 23 119 125 130 7 12 18 23 619 667 729 52 71 99 110
Total: 7749 = 33 x 7 x 41.
I.3.7It can also count 7 times through the passage.
10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 10 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 62 95 107 114 156 174 224 312 343 397 410 421 460 478 516 534 599 5 6 5 10 5 6 5 10 5 6 5 119 125 130 140 12 18 23 33 38 44 49 119 125 130 7 12 18 23 33 38 44 49 619 667 729 52 71 99 110 132 165 184 226
Total: 8456 = 23 x 7 x 151.
I.3.8Sixteen of the 133 characters are in passage positions that are divisible by seven:
a) Position in the list of 133. b) Position in the passage. a) 3 14 17 24 47 56 60 62 71 74 77 87 101 103 106 112 b) 14 91 98 112 224 322 336 343 406 413 420 455 525 532 539 595
Total of line a: 1014 = 2 x 3 x 132
Total of line b: 5425 = 52 x 7 x 31.
I.3.9Of the 133 unique characters, 63 (32 x 7) are odd valued, and 70 (2 x 5 x 7) are even valued.
I.3.10The first character that appears only once is 專, and it appears as the 9th character of the passage. The last character that appears only once is 嘗, and it is the 754th character of the passage. First and last: 9 + 754 = 763 (7 x 109).
I.3.11The values of these two characters, 專 and 嘗: 3342 + 5506 = 8848 (2 x 23 x 7 x 79. SF: 94 = 2 x 47. SF: 49 = 72 SF: 14 = 2 x 7.)
I.3.12Unique and not unique are two complementary opposites like Alpha and Omega. Since the entire passage's total 1458177 was also divisible by seven, this means all the characters that appear more than once would together also be divisible by seven: 1458177 − 453257 = 1004920 (2 x 22 x 5 x 7 x 37 x 97).
I.3.13Note that 244 unique characters subtracting the 133 that appear only once leaves 111 characters that appear more than once. 111 is a visual numeric representation of the one God who is, was and is to come.
I.3.1421 of the 133 characters are in passage positions that are prime numbers (21 = 3 x 7). 112 are not (112 = 24 x 7).
A B C A B C A B C 8) 家 2594 34) 歆 14774 82) 咨 1845 12) 尤 152 43) 臨 7484 84) 出 281 16) 切 130 53) 寒 4105 94) 教 3473 19) 經 5160 63) 倚 2443 97) 次 633 21) 禍 5784 64) 使 1168 114) 覆 7825 25) 璧 7739 67) 此 634 119) 厚 1841 32) 靈 8711 78) 凡 27 131) 禴 21176 A) Position in the list of 133 characters. (Not the position in the passage.) B) Character. C) Numeric value of character.
Numeric total of these characters: 97979 = 7 x 13997.
This means the total for the 112 characters that are in passage positions that are not prime numbers is also divisible by 7: 453257 − 97979 = 355278 = 2 x 3 x 7 x 11 x 769.
I.3.14.1Odd positioned groups of 3 from the list of 21 from I.3.14:
2594 152 130 8711 14774 7484 634 27 1845 7825 1841 21176
Total: 67193 = 7 x 29 x 331.
I.3.14.1.1First half of I.3.14.1:
2594 152 130 8711 14774 7484
Total: 33845 = 5 x 7 x 967.
I.3.14.1.1.1Odd positioned groups of 2 from I.3.14.1.1:
2594 152 14774 7484
Total: 25004 = 22 x 7 x 19 x 47. SF: 77 = 7 x 11.
I.3.14.1.1.2Even positioned groups of 2 from I.3.14.1.1:
130 8711
Total: 8841 = 3 x 7 x 421.
I.3.14.1.2Last half of I.3.14.1:
634 27 1845 7825 1841 21176
Total: 33348 = 22 x 3 x 7 x 397.
I.3.14.1.2.1First half of I.3.14.1.2:
634 27 1845
Total: 2506 = 2 x 7 x 179.
I.3.14.1.2.2Last half I.3.14.1.2:
7825 1841 21176
Total: 30842 = 2 x 7 x 2203. SF: 2212 = 22 x 7 x 79.
I.3.14.1.2.2.1Odd positioned of I.3.14.1.2.2:
7825 21176
Total: 29001 = 3 x 7 x 1381. SF: 1391 = 13 x 107.
I.3.14.1.2.2.2Even positioned of I.3.14.1.2.2:
1841
Total: 1841 = 7 x 263.
I.3.14.2Even positioned groups of 3 from I.3.14:
5160 5784 7739 4105 2443 1168 281 3473 633
Total: 30786 = 2 x 3 x 7 x 733.
I.3.15To find something even more unique, consider the radicals of these 133 characters. 98 (2 x 72) of these characters would have radicals that appear more than once in the list of 133. Only 35 (5 x 7) have radicals that appear only once.
A B C A B C A B C A B C A B C 交 6 亠 專 11 寸 旣 11 无 美 9 羊 起 10 走 凡 3 几 差 10 工 曰 4 曰 耳 6 耳 重 9 里 出 5 凵 帡 9 巾 月 4 月 育 8 肉 間 12 門 千 3 十 度 9 广 產 11 生 自 6 自 靈 24 雨 厚 9 厂 或 8 戈 省 9 目 覆 18 襾 順 12 頁 去 5 厶 文 4 文 矣 7 矢 覺 20 見 高 10 高 孝 7 子 施 9 方 經 13 糸 赫 14 赤 齊 14 齊 A) Characters from the list of 133 with a unique radical. B) Number of strokes in the character. C) Radical character is classified under.
The total number of strokes for these 35 characters: 329 = 7 x 47.
The total numeric value of these radicals: 103219 (233 x 443). The coincidence appears in the sum of the factors: 676 = 22 x 132.
I.3.15.1From the list of 35 select only those with a unique number of strokes (i.e. no other character in the list has the same number of strokes). There are only four characters:
經 覆 覺 靈 5160 7825 8306 8711
Numeric total of these four: 30002 = 2 x 7 x 2143.
I.3.16Returning to the full text with 766 characters, we take only those characters whose radical appeared only once, making the character unique. There are 21 (3 x 7) of them.
A B C D E F A B C D E F A B C D E F 凡 3 几 16 2 421 旣 11 无 71 4 568 起 10 走 156 7 174 出 5 凵 17 2 439 曰 4 曰 73 4 44 重 9 里 166 7 57 千 3 十 24 2 540 美 9 羊 123 6 627 間 12 門 169 8 420 厚 9 厂 27 2 619 耳 6 耳 128 6 128 靈 24 雨 173 8 131 去 5 厶 28 2 534 自 6 自 132 6 466 順 12 頁 181 9 460 差 10 工 48 3 410 覆 18 襾 146 6 599 高 10 高 189 10 596 文 4 文 67 4 15 赫 14 赤 155 7 184 齊 14 齊 210 14 417 A) Unique character. B) Number of strokes in the character. C) Radical. D) Radical number from dictionary. E) Number of strokes in the radical. F) Position in full passage.
Total number of strokes in these radicals: 119 = 7 x 17.
Total of the radical numbers: 2299 = 112 x 19.
Total numeric values of these radicals: 81224 = 23 x 11 x 13 x 71.
I.3.17Only two characters in the passage have a unique number of strokes: 靈 (24 strokes) and 覆 (18 strokes). No other characters have this stroke count.
Character: 靈 覆 Strokes in character: 24 18 Radical: 雨 襾 Radical number: 173 146 Strokes in radical: 8 6
The sum of their strokes: 24 + 18 = 42 (2 x 3 x 7).
The sum of the strokes in their radicals: 14 (2 x 7).
The sum of their radical numbers: 319 = 11 x 29.
Their numeric values together: 16536 = 23 x 3 x 13 x 53.
The Character One
I.4The character 一 is the Chinese version of the word or number for one.
It appears ten times in the passage in these positions:
96 316 318 375 382 389 449 454 456 502
The sum of these positions: 3737 (37 x 101). This is not divisible by seven or thirteen, but the factor 101 is a perfect representation of the one God who is Alpha and Omega. The zero in the middle is of our creation, which in the time span of eternity before and after, is actually nothing.
I.4.1The character 一, first appears as the 96th character, and last appears in position 502. Thus the first and last positions of the number one is 598 (2 x 13 x 23).
I.4.2The 96th character is also the 671st character from the end. And the 502nd character is also the 265th character from the end. Thus counting from the end, the character 一 also has these positions: 265 + 671 = 936 (23 x 32 x 13).
I.4.3Since Revelation 1:8 mentions "is, was and is to come" the first, last and middle positions can be put together: 96 + 382 + 389 + 502 = 1369 (37 x 37). This is a perfect square, and of course, 37 was seen earlier in the factors for all ten positions of the character one.
I.4.4Beginning with the first position for the character 一, take every other from its list of positions.
96 318 382 449 456
Total: 1701 = 35 x 7. (This does not work for the even positioned numbers because the total for all ten positions was not divisible by seven.)
I.4.5All ten positions for the character 一 can also be counted from the end.
265 311 313 318 378 385 392 449 451 671
Once again taking the first and every other position after: 265 313 378 392 451 = 1799 = 7 x 257.
I.4.6As mentioned previously, there were 385 characters with values having the digit 1. Does the character 一 still exhibit some of the same coincidences in this smaller list?
Positions of 一 in the list of characters having a digit of 1. 56 180 182 206 211 215 241 244 245 264
The sum of these positions: 2044 = 22 x 7 x 73. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7. It is almost as if by concentrating more on one the results have even improved. There are three levels of factors. But this is as far as the smaller list goes.
I.4.7The 95 characters before the first appearance of the character 一 have this total: 164850 = 2 x 3 x 52 x 7 x 157.
I.4.8The 264 characters after the last appearance of the character 一 have this total: 5 x 11 x 9323. This is not divisible by 7 or 13, but note what happens when the factors are added: 5 + 11 + 9323 = 9339 (3 x 11 x 283). The result is again divisible by 11, showing the same one God beginning and end. The next level of factors is tried again: 3 + 11 + 283 = 297 (3 x 32 x 11). Once again 11 appears.
I.4.9The 405 characters between the first and last appearances of the character 一 have this total: 780560 = 24 x 5 x 11 x 887. And again 11 appears.
Is it simply coincidence that the number one has such a role in the passage? Or is it divine providence?
上帝 Shang-Te
I.5With other numeric studies, the values for the Hebrew letters יהוה (Yhwh) are used to count through the text to see which letters or words are selected. In this case it is the values for the characters 上帝 (24 and 1939). The total is 1963.
I.5.11963 counts through the 766 characters seven times.
上帝 value: 1963 1963 1963 1963 1963 1963 1963 Count: 1963 3929 5889 7852 9815 11778 13741 Adjusted to 766 characters: 431 96 527 192 623 288 719 Character found: 1845 1 651 3708 3376 2161 7784
Total of characters found: 19526 = 2 x 13 x 751. (Curiously, the sum of the factors is equal to the number of characters: 766.)
I.5.2The first character of 上帝 is the 18th character of the passage. This is the first occurrence of the title 上帝. Its last occurrence is in the 684th position of the passage. 18 + 684 = 702 = 2 x 33 x 13.
I.5.3The characters for God, 上帝, appear together 19 times, dividing the text into 20 sections. Nineteen of these sections will have 上帝 at the end. The positions of these two characters in each section are given below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 上 18 27 124 7 7 7 7 7 17 23 9 2 73 9 19 151 85 21 53 帝 19 28 125 8 8 8 8 8 18 24 10 3 74 10 20 152 86 22 54
Position total: 1351 = 7 x 193.
I.5.3.1Six times 上帝 appears with one of the characters in a position divisible by seven. These are the 2nd, 4th, 5th, 6th, 7th and 18th appearances of 上帝: 2 + 4 + 5 + 6+ 7 + 18 = 42 (2 x 3 x 7).
I.5.4The positions where the first and last times these characters appear total 144. This is not divisible by 7 or 13, but the sum of the factors of is 14 (2 x 7).
I.5.5Use the 19 times as line breaks in the passage. This separates the passage into 20 lines. No line will have the characters 上帝.
帝不有二則郊社之專言帝者非省文也夫 者天之主也為天之主則亦為地之主故郊社雖異禮而統之曰事 云爾今夫國家之禮莫重於祭而後世之悖禮則莫亂於祭尤莫亂於天地之祭分天與地而二之又復分天而五之於是舉一切怪誕不經之屬咸以為禍福之柄而圭璧牲牷之祭殊不知天地特兩大形體耳固非靈覺之體而能歆人祀也有生之者有制之者形氣可區為兩主宰不可區為兩古人知始造萬物者唯 日起化育者惟 臨下有赫者惟 降殃降祥者惟 吾何所事哉事 已爾吾何以事 哉以郊社之禮事之已爾夫論達孝而及 蓋謂人之事帝猶子之事親也然郊之禮夫人而知為事 也社之禮而亦為事 何 者無所不在亦無所不主在天則為天之主在地則為地之主在人身則為人身之主在萬物則為萬物之主雖日月運行而一寒一暑水土交成百穀蕃植各有鬼神為運動護守然皆受 之命而行者也亦倚 之能而動者也則不必當為鬼神報而應當為 報也至一之為帝使郊有一帝而社又復有一帝是二之也試問此二帝者其智勇才能均敵而無差乎抑或大小不齊乎其間凡為陰陽變化之事必相咨度而後行乎抑各出其號令乎夫天地為屬一帝搏捖故一施一生莫不順氣而應若各自為帝則如兩君分域而處其政教號令亦不相屬何以歲序功成百物哉且至尊之為帝卽一為至尊二卽為次尊可以序進而較猶為失尊夫 之懸乎百神其視大臣相去人主尚不啻千萬也則郊社之禮所用之物異所行之地異而所以事之則不異也然旣郊事之而又於社事之何也蓋各就其功用昭明之處而加禮以報焉高明上覆我得以蒙其光帡者 功用之著於天者也沉厚下載我得以享其美利者 功用之著於地者也則郊以荅生天之德而社以荅生地之德也今夫穀者地之產也而先王祈穀於郊不祈於后土則郊社之統為事 也明矣是故生人皆當事帝而天子則以郊社之禮代人事帝太上而降不得用享之禮以事帝而各得以其身心事帝猶祀親也若因郊社不同而疑所事有異亦可因禴祀蒸嘗其禮不同而疑所事有二親哉
Convert each line to numbers.
1) 1939 100 628 8 1833 2406 1665 104 3342 1126 1939 1677 1797 2202 166 30 147 = 21109 = 11 x 19 x 101. 2) 1677 146 104 261 30 2161 146 104 261 1833 424 2161 546 104 261 2056 2406 1665 7607 3688 7784 660 3727 104 171 1159 = 41246 = 2 x 41 x 503. 3) 107 5753 118 147 3243 2594 104 7784 3767 2412 1460 3710 660 1954 257 104 2672 7784 1833 3767 4740 1460 3710 152 3767 4740 1460 146 546 104 3710 129 146 5905 546 660 8 104 20 4128 129 146 660 110 104 1460 2064 7485 1 130 1416 6544 100 5160 104 8350 1848 265 2161 5784 5783 104 2081 660 548 7739 2170 11874 104 3710 2734 100 1663 146 546 2836 1187 43 911 8618 662 1301 1797 8711 8306 104 8618 660 2977 14774 9 1666 30 628 398 104 1677 628 1199 104 1677 911 2737 298 3216 2161 1187 261 2592 100 298 3216 2161 1187 299 9 1663 1325 3898 5142 1644 1677 3232 = 279233 = 103 x 2711. 4) 170 3104 135 1085 1677 3434 = 9605 = 5 x 17 x 113. 5) 7484 22 628 5999 1677 3434 = 19244 = 22 x 17 x 283. 6) 2417 2096 2417 3708 1677 3434 = 15749 prime. 7) 799 692 1427 1159 1847 1159 = 7083 = 32 x 787. 8) 56 5753 799 692 265 1159 = 8724 = 22 x 3 x 727. 9) 1847 265 2406 1665 104 7784 1159 104 56 5753 147 6552 5383 886 660 143 = 34914 = 2 x 3 x 11 x 232 10) 5917 7064 9 104 1159 1939 4372 45 104 1159 7052 30 4366 2406 104 7784 147 9 660 1663 2161 1159 = 49413 = 3 x 7 x 13 x 181. 11) 30 1665 104 7784 660 424 2161 1159 = 13987 = 71 x 197. 12) 692 = 692 = 22 x 173. 13) 1677 4365 1427 100 547 424 4365 1427 100 261 547 146 1833 2161 146 104 261 547 546 1833 2161 546 104 261 547 9 1134 1833 2161 9 1134 104 261 547 5142 1644 1833 2161 5142 1644 104 261 7607 170 172 5379 679 660 1 4105 1 4220 181 40 423 617 651 6429 7036 4244 534 628 3182 2924 2161 5379 3211 8449 566 4366 2195 1213 = 128982 = 2 x 3 x 7 x 37 x 83. 14) 104 1299 660 679 1677 30 424 2443 = 7316 = 22 x 31 x 59. 15) 104 2977 660 3211 1677 30 1833 100 371 5038 2161 3182 2924 4025 660 7284 5038 2161 = 43436 = 22 x 10859. 16) 4025 30 669 1 104 2161 1939 1168 2406 628 1 1939 660 1665 20 4128 628 1 1939 2064 8 104 30 5270 3230 634 8 1939 1677 1189 4221 1834 63 2977 866 6277 660 4365 2613 264 942 1423 43 49 100 6069 264 1189 4706 27 2161 3954 4712 8605 135 104 1159 371 2204 1845 1944 660 1954 679 264 942 534 281 1189 5242 272 264 147 146 546 2161 8350 1 1939 4906 11636 2056 1 2058 1 398 3767 100 4727 2737 660 7284 2330 534 668 2161 1939 1833 561 1187 808 129 3245 660 3843 1189 2055 3473 5242 272 424 100 2204 8350 692 265 4980 904 285 617 651 1644 1847 259 669 4109 104 2161 1939 -1413 1 2161 669 4109 8 -1413 2161 633 4109 298 265 904 4650 660 5308 4372 2161 355 4109 147 = 270900 = 22 x 32 x 52 x 7 x 43. 17) 104 8226 264 651 2924 1189 4537 43 667 2204 297 9 261 1341 100 3992 37 5142 30 1833 2406 1665 104 7784 1427 399 104 1644 3688 1427 679 104 546 3688 660 1427 265 1159 104 1833 100 3688 30 4366 22677 2406 1159 104 660 20 1460 1665 1159 104 692 30 5917 534 4111 1189 285 399 2061 1467 104 3843 660 284 7784 265 4025 3627 3179 1467 24 7825 923 3376 265 5913 1189 443 10865 1677 = 178985 = 178985 = 5 x 35797 18) 285 399 104 4508 1460 146 1677 30 1034 1841 22 5309 923 3376 265 1162 1189 2237 786 1677 = 28430 = 2 x 5 x 2843. 19) 285 399 104 4508 1460 546 1677 30 1833 2406 265 12144 398 146 104 6200 660 1665 265 12144 398 546 104 6200 30 118 147 6429 1677 546 104 3684 30 660 446 190 2217 6429 1460 2406 100 2217 1460 539 40 1833 2406 1665 104 3727 2161 1159 = 98471 = 59 x 1669. 20) 30 1467 1072 2064 2056 398 9 2195 5038 1159 1939 660 146 45 1833 265 2406 1665 104 7784 271 9 1159 1939 148 24 660 2417 100 3376 399 1162 104 7784 265 1159 1939 660 534 3376 265 1189 1134 160 1159 1939 4372 1666 7052 30 2330 542 2406 1665 100 529 660 5764 1427 1159 628 3688 424 298 542 21176 1666 5918 5506 1189 7784 100 529 660 5764 1427 1159 628 8 7052 1847 = 163361 = 11 x 14851.
I.5.5.1Of these 20 lines, only the 10th, 13th and 16th lines are divisible by 7. 10 + 13 + 16 = 39 (3 x 13).
I.5.5.2Now take the first character of each line: 帝者云日臨降吾已哉蓋也何者之之報之功功也. The total of these characters: 29749 = 71 x 419. This is not divisible by 7 or 13. The coincidence is hidden in the next level, in the factors. The sum of the factors: 490 = 2 x 5 x 72 SF: 21 = 3 x 7.
I.5.5.3Take the last character of each line: 夫事唯惟惟惟事事及事事何受倚為夫者者事哉. Total: 32635 = 5 x 61 x 107. There is no coincidence here either. Nor is there anything when the factors are added. But if the first and last characters of each line were put together, there is something. Total: 32635 + 29749 = 62384 = 24 x 7 x 557. SF: 572 = 22 x 11 x 13. SF: 28 = 22 x 7.
Hear O Israel (Deuteronomy 6:4)
I.6Moses gave this statement in Deuteronomy 6:4: Hear, O Israel: The LORD our God is one LORD.
(RSV) A look at the actual Hebrew in the table below shows it is very brief and cryptic, just like the four character phrase at the beginning of the Chinese text. As mentioned at the beginning, Moses probably meant this short phrase to cover several different ideas: that there is only one God, that He is God alone, and that God is not two or more.
13 | 26 | 102 | 26 | 541 | 410 |
אחד | יהוה | אלהינו | יהוה | ישראל | שמע |
4-8-1 | 5-6-5-10 | 6-50-10-5-30-1 | 5-6-5-10 | 30-1-200-300-10 | 70-40-300 |
one | Yhwh | our God | Yhwh | Israel | Hear |
Hebrew is read from right to left. | |||||
Total of the Hebrew: 1118 = 2 x 13 x 43. |
I.6.1The values of the Hebrew letters point to various characters in the Chinese passage.
a) 300 40 70 10 300 200 1 30 10 5 6 b) 261 7784 3710 1126 261 1159 1939 424 1126 1833 2406 a) 5 1 30 5 10 50 6 10 5 6 5 b) 1833 1939 424 1833 1126 118 2406 1126 1833 2406 1833 a) 1 8 4 (Hebrew letter value as a position in the text. b) 1939 104 8 Chinese character found.)
Total of the characters found: 40957 = 7 x 5851. SF: 5858 = 2 x 29 x 101. (The sum of the factors is not divisible by 7 or 13, but the 101 once again shows the one God who is beginning and end.)
I.6.2The total of the Hebrew phrase is 1118, which is also divisible by 13. The Chinese passage only has 766 characters. Applying 1118 to the Chinese text would require continuing round to the beginning: 1118 − 766 = 352. Coincidentally, the 352nd character of the passage, 之, has a value of 104 (23 x 13).
I.6.3之 is a possessive particle. Possessing, or having what? Since the Chinese and Hebrew texts both are of God, and the idea of one, this must point to the oneness of God.
I.6.4Deuteronomy 6:4 can also be found in the New Testament, in Mark 12:29. Note how it is cryptic just like the Hebrew. Since it is a translation of the original Hebrew into Greek, it is not divisible by seven or thirteen. Nevertheless, there is a coincidence between it and 朱宗元's description of God in Chinese.
1 | 2 | 3 | 4 | 5 | 6 |
276 | 207 | 449 | 60 | 163 | 677 |
Ἁκουε | Ισραηλ | κυριος | ο | θεος | ημων |
1-10-60-200-5 | 9-90-80-1-7-20 | 10-200-80-9-60-90 | 60 | 8-5-60-90 | 7-30-600-40 |
Hear | Israel | Lord | the | God | our |
7 | 8 | 9 | The Septuagint version of Deuteronomy 6:4 differs from the New Testament by a single letter. The very last word is εστι. NT Total: 2629 (nf). Septuagint Total: 2589 (nf). | ||
449 | 104 | 244 | |||
κυριος | εις | εστιν | |||
10-200-80-9-60-90 | 5-9-90 | 5-90-100-9-40 | |||
Lord | one | is |
I.6.5The word totals in the Greek are applied as character positions in the Chinese text.
Greek word total: 276 207 449 60 163 677 449 104 244 Character found: 100 799 1 660 9 1833 1 1848 2406
Total of characters found: 7657 = 13 x 19 x 31. SF: 63 = 32 x 7. SF: 13.
I.6.5In this case, both the total for the Greek, and the letter values produce nothing. But since Greek is not the original language of the Old Testament, perhaps it should not be expected that it match Deuteronomy 6:4.
Other Coincidences
J.1The 766 characters are just short one character from fitting a 13 x 59 rectangle. If this slight imperfection was ignored, placing the characters in such an arrangement would leave the 59th line with only 12 characters while the rest had 13. (The lack of a character in the last place could be considered as zero.) The line totals are given below:
18564 9033 23116 24936 35262 30135 12691 34766 42983 22544 46985 18648 22619 24269 29474 18285 18777 34581 30667 18282 16478 12444 11836 26688 23386 44875 12455 24268 28121 17122 22208 20642 33456 18010 34211 27306 24497 22963 13363 29985 22919 17217 23577 38551 17565 28790 35123 20695 16316 27793 32127 18194 19651 18149 19656 19970 23950 48856 28147
Odd positioned rows: 740180 = 22 x 5 x 7 x 17 x 311.
Even positioned rows: 717997 = 72 x 14653.
J.2The previous section looked at the lines (or rows) of the 13 x 59 rectangle. What about the columns?
The 13 column totals: 128297 83563 121914 109444 98009 113860 109661 102983 123966 158889 117726 100936 88929
Total of the odd positioned columns: 788502 = 2 x 3 x 11 x 13 x 919. (Since the entire passage is divisible by 7, there is no corresponding coincidence with the even positioned columns.
J.3The perimeter, or outside, of this rectangle: 259012 = 22 x 13 x 17 x 293. (Since the passage total is divisible by 7, the inside does not match, and is not divisible by 13. However, the total minus the outside shows something else: 1458177 − 259012 = 1199165 (5 x 11 x 21803 ). There is the factor 11, and this at least encourages one to check the next level, the sum of these factors: 21819 (3 x 7 x 1039).
J.3.1The first and last rows: 46711 = 7 x 6673.
J.3.2The first row by itself: 18564 = 22 x 3 x 7 x 13 x 17.
J.3.3The last row by itself: 28147 = 7 x 4021.
J.3.4The first column: 128297 = 13 x 71 x 139. (There are no coincidences with the last column, or with the first and last columns.)
J.3.5Construct a 7 x 53 perimeter rectangle in the centre: 242268 = 22 x 3 x 13 x 1553. SF: 1573 = 112 x 13. SF: 35 = 5 x 7.
Add a 47 unit line to the middle of the 7 x 53 perimeter: 333284 = 22 x 7 x 11903.
K.Since this is a Chinese passage, the characters 中國 (China: 101 and 3243) can also be used to count through the passage 13 times:
中國 values a): 101 3243 101 3243 101 3243 101 3243 101 Count b): 101 3344 381 3624 661 3904 175 3418 455 Adjusted c): 101 280 381 560 661 74 175 354 455 Found d): 5160 1833 628 265 546 1460 135 660 2058 a) 3243 101 3243 101 3243 101 3243 101 3243 101 3243 b) 3698 735 3978 249 3492 529 3772 809 3286 323 3566 c) 634 735 148 249 428 529 708 43 222 323 502 d) 104 30 1677 660 1159 1189 1159 104 5753 617 1 a) 101 3243 101 3243 101 3243 b) 603 3846 117 3360 397 3640 c) 603 16 117 296 397 576 d) 5913 30 3710 2161 634 1159
Total: 38805 = 3 x 5 x 13 x 199. (The sum of the factors: 220 = 22 x 5 x 11. The 11 represents the one God beginning and end.)
Exactly 13 of these character values are odd valued, and exactly 13 of them are even valued.
K.2Rather than 中國 (China), perhaps it would be more accurate to use 中文 (Chinese language). The values for these two characters are 101 and 166. These two numbers point to the 101st and 166th characters in the passage. Coincidentally, the the 101st character is 經 (5160). The 166th character is 造 (3898). Thus the characters found in the text total 9058 (2 x 7 x 647. SF: 656 = 24 x 41. SF: 49 = 72).
K.3Apply 101 and 166 three times to count through the passage, just overshooting the passage's length:
Values from 中文: 101 166 101 166 101 166 Count: 101 267 368 534 635 801 Adjusted to 766: 101 267 368 534 635 35 Character found: 5160 1939 5038 297 4508 2056
Total: 18998 = 2 x 7 x 23 x 59. SF: 91 = 7 x 13.
It would have been better if coincidences K and K.3 followed the exact same steps. 中國 does not point out characters in the passage like 中文. 中國 can be used 13 times to count through the passage, but 中文 just counts 3 times. A skeptic would say one is changing the rules just to find something. Perhaps the skeptic is correct, but there is a crucial difference between 中國 and 中文. The numeric total of 中國 is greater than the number of characters in the text, while the numeric total of 中文 is less than the number of characters. With 中國, there is no choice but to overshoot the length of the passage. With 中文 one has the choice of staying as close to the passage's length as is possible. And since Revelation 1:8 is of complementary opposites, it would seem appropriate that one method exceeds the length of the passage while the other does not.
L.1Thirty-five characters (5 x 7) have the digits 77 in their values.
1677 1677 7784 7784 7784 7739 2977 14774 1677 1677 1677 1677 1677 1677 7784 7784 7784 1677 1677 2977 1677 1677 2977 6277 7784 22677 7784 1677 1677 1677 1677 1677 7784 7784 7784
Total of these 35 characters: 174531 = 3 x 7 x 8311.
L.2Number of characters with values divisible by 13: 105 = 3 x 5 x 7.
L.3The middle N characters are divisible by 7 when N is one of the following numbers:
718 716 696 662 658 598 576 572 550 546 540 538 526 518 516 482 462 456 446 414 402 394 390 380 374 366 356 342 328 318 312 306 302 288 252 244 194 162 150 146 142 120 116 114 80 68 60 28 26 12
Total of N: 17962 = 2 x 7 x 1283.
L.4.1靈 is the most complex character with 24 strokes in its composition. 一 is the simplest character with one stroke. The total of their numeric values: 8711 + 1 = 8712 = 23 x 32 x 112 (the 11s show the one God). 一靈 would be "one spirit" and since the passage is about Shang-Te, this means Shang-Te is one spirit only.
L.4.2齊 is the character whose radical has the most strokes. 一 is again the character with the simplest radical. 一齊 would be one together
or all together. This re-emphasizes that Shang-Te is all together
only one spirit.
L.4.3Since 靈 appeared only once in the passage, the first time it appeared is also the last time it appeared. Thus its first and last positions could be said to be the same, 131 and 131. The same applies for 齊, which also appeared only once in the passage: 417 417. 一 appeared ten times in the passage, but it's first and last appearances are in positions 96 and 502. The first and last positions of these characters are put together: 131 131 417 417 96 502 = 1694 = 2 x 7 x 112.
L.4.4The numeric values of these three characters added together: 14781 = 3 x 13 x 379.
L.4.5齊 is especially unique and marks an important part of the message. 齊 is the only character with its numeric value divisible by seven (6069 = 3 x 7 x 172), its number of strokes divisible by seven (14 = 2 x 7), and its radical number divisible by seven (210 = 2 x 3 x 5 x 7). Since the character is a radical in itself, this means the strokes of its radical are also divisible by seven. It appears only once in the passage and is the 417th character.
L.4.6This means there are 416 (25 x 13) characters before it. The value of the characters before it: 777140 = 22 x 5 x 72 x 13 x 61. Since 齊 is already divisible by seven, this means including it with these characters would also be divisible by seven: 777140 + 6069 = 783209 = 7 x 127 x 881. SF: 1015 = 5 x 7 x 29.
L.4.7And there are 349 characters after it. The numeric value of the characters after it: 674968 = 23 x 7 x 17 x 709. Including 齊 with this last section would make this last section 350 (2 x 52 x 7) and still be divisible by seven: 674968 + 6069 = 681037 = 7 x 17 x 59 x 97.
L.4.8Since the entire passage is divisible by seven, and 齊 is also divisible by seven, this means the everything before it, added to everything after it would automatically be divisible by seven. But there was nothing to guarantee that everything before and after would individually also be divisible by seven.
L.4.9Even the meaning of 齊 seems appropriate: neat; even; level with; identical; simultaneous; all together; to even something out.
L.5卽 is the only character with a negative value (-1413) and occurs in just two positions: 501, and 507. The sum of the positions: 1008 = 24 x 32 x 7. SF: 21 = 3 x 7.
L.5.1卽's two appearances mark out seven positions (501, 502, 503, 504, 505, 506, and 507). Since these are 7 consecutive numbers, their total would naturally be divisible by seven. But there is no guarantee they would be divisible by seven twice, or that the sum of the factors would amount to anything. The seven number total: 3528 = 23 x 32 x 72 SF: 26 = 2 x 13.
L.5.2The two appearances of 卽 also mark out 109 sets of seven characters. Thus by dropping the first 3 characters from the list of 766, the remaining 763 characters can be placed in a 7 x 109 rectangle. (卽 would appear on the 72nd row of this rectangle.) Coincidentally, the numeric total of this rectangle: 1455510 = 2 x 3 x 5 x 7 x 29 x 239.
L.5.2.1Ten rows in this rectangle would be divisible by seven.
Row Row # Total 51) 7882 = 2 x 7 x 563 61) 17290 = 2 x 5 x 7 x 13 x 19 62) 8288 = 25 x 7 x 37 71) 11088 = 24 x 32 x 7 x 11 73) 13020 = 22 x 3 x 5 x 7 x 31 76) 8946 = 2 x 32 x 7 x 71 81) 34426 = 2 x 7 x 2459 88) 10696 = 23 x 7 x 191 108) 21686 = 2 x 7 x 1549 109) 17885 = 5 x 72 x 73
Total of the row numbers: 780 = 22 x 3 x 5 x 13.
L.6旣 is the character with the highest value. It occurs in position 568: 23 x 71. This is not divisible by seven, but the sum of the factors is: 77 = 7 x 11.
L.6.1There are 567 characters before 旣 (34 x 7). There are 198 characters after 旣 (2 x 32 x 11). Although before and after do not match with 7 and 11, the sum of their factors both come to 19.
L.6.2The positions of the lowest and highest valued characters together would be 1008 + 568 = 1576 (23 x 197). Again this is not divisible by seven or thirteen. However, the sum of the factors is divisible by seven: 23 x 197 = 203 (7 x 29).
L.6.3The numeric values of these three characters (卽, 卽, and 旣) together total: 19851 = 3 x 13 x 509. SF: 525 = 3 x 52 x 7.
M.The West had it's Four Element Theory (earth, fire, air, and water). China still has its Five Element Theory (木 wood, 金 metal, 水 water, 土 earth, and 火 fire). These five elements are also radicals. Precisely 44 (22 x 11) characters in the passage are classified under these radicals in Chinese dictionaries. (N.B. No character in the passage falls under the element/radical for metal.)
A B C D E A B C D E A B C D E A B C D E 然 12 火 86 4 為 9 火 86 4 在 6 土 32 3 域 11 土 32 3 為 9 火 86 4 然 12 火 86 4 在 6 土 32 3 地 6 土 32 3 為 9 火 86 4 焉 11 火 86 4 地 6 土 32 3 報 12 土 32 3 為 9 火 86 4 為 9 火 86 4 地 6 土 32 3 地 6 土 32 3 無 12 火 86 4 蒸 14 火 86 4 在 6 土 32 3 地 6 土 32 3 為 9 火 86 4 地 6 土 32 3 在 6 土 32 3 地 6 土 32 3 為 9 火 86 4 地 6 土 32 3 土 3 土 32 3 土 3 土 32 3 為 9 火 86 4 地 6 土 32 3 報 12 土 32 3 水 4 水 85 4 為 9 火 86 4 圭 6 土 32 3 報 12 土 32 3 沉 7 水 85 4 為 9 火 86 4 地 6 土 32 3 均 7 土 32 3 柄 9 木 75 4 為 9 火 86 4 在 6 土 32 3 地 6 土 32 3 植 12 木 75 4 A) Character from passage. B) Number of strokes in character. C) Radical. D) Radical number in dictionary. E) Strokes in radical.
The total of the radical numbers: 2464 = 25 x 7 x 11. SF: 28 = 22 x 7. SF: 11. (Notice how 11 keeps appearing.)
The numeric value of these characters: 79508 = 22 x 11 x 13 x 139.
The numeric values of the radicals together: 4580 = 22 x 5 x 229. This is not divisible by seven, but the sum of the factors is: 238 = 2 x 7 x 17. And the sum of these factors: 26 = 2 x 13.
Changjie
I did not speak in secret, in a land of darkness; I did not say to the offspring of Jacob, `Seek me in chaos.' I the LORD speak the truth, I declare what is right. (Isaiah 45:19 RSV)
God is of order, not chaos. Thus what was created, and what exists can be classified. One method of classification for Chinese characters is Changjie.
Changjie is one of several input methods for typing Chinese characters and was for Western keyboards. Only 25 of the 26 alphabet keys are used. Each key has a basic symbol representing a part of a character. By following set rules to press anywhere from 1 to 5 keys, a rough sketch of a character is produced and brings up a list of characters associated with that approximation. (Some lists are very long, and some short.)
Conveniently the symbols in Changjie are also Chinese characters. Thus numeric values can be derived from Changjie.
Character | Changjie Symbol | Total Numeric Value | Value Of Changjie Symbol | Symbol Numerics | |
---|---|---|---|---|---|
Alpha | Omega | ||||
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
有 | 大月 | 215 | 43 | 172 | 43-172 |
二 | 一一 | 2 | 1 | 1 | 1-1 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
郊 | 卜大弓中 | 225 | 19 | 101 | 19-43-62-101 |
社 | 戈火土 | 383 | 161 | 40 | 161-182-40 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
專 | 十戈木戈 | 513 | 18 | 161 | 18-161-173-161 |
言 | 卜一一口 | 60 | 19 | 39 | 19-1-1-39 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
非 | 中一卜卜 | 140 | 101 | 19 | 101-1-19-19 |
省 | 火竹月山 | 1058 | 182 | 52 | 182-652-172-52 |
文 | 卜大 | 62 | 19 | 43 | 19-43 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
夫 | 手人 | 172 | 163 | 9 | 163-9 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
天 | 一大 | 44 | 1 | 43 | 1-43 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
主 | 卜土 | 59 | 19 | 40 | 19-40 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
天 | 一大 | 44 | 1 | 43 | 1-43 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
主 | 卜土 | 59 | 19 | 40 | 19-40 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
亦 | 卜中弓金 | 1902 | 19 | 1720 | 19-101-62-1720 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
地 | 土心木 | 373 | 40 | 173 | 40-160-173 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
主 | 卜土 | 59 | 19 | 40 | 19-40 |
故 | 十口人大 | 109 | 18 | 43 | 18-39-9-43 |
郊 | 卜大弓中 | 225 | 19 | 101 | 19-43-62-101 |
社 | 戈火土 | 383 | 161 | 40 | 161-182-40 |
雖 | 口戈人土 | 249 | 39 | 40 | 39-161-9-40 |
異 | 田廿金 | 2278 | 401 | 1720 | 401-157-1720 |
禮 | 戈火廿田廿 | 1058 | 161 | 157 | 161-182-157-401-157 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
統 | 女火卜戈山 | 458 | 44 | 52 | 44-182-19-161-52 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
曰 | 日 | 170 | 170 | 170 | 170 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
云 | 一一戈 | 163 | 1 | 161 | 1-1-161 |
爾 | 一火月大 | 398 | 1 | 43 | 1-182-172-43 |
今 | 人戈弓 | 232 | 9 | 62 | 9-161-62 |
夫 | 手人 | 172 | 163 | 9 | 163-9 |
國 | 田戈口一 | 602 | 401 | 1 | 401-161-39-1 |
家 | 十一尸人 | 79 | 18 | 9 | 18-1-51-9 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
禮 | 戈火廿田廿 | 1058 | 161 | 157 | 161-182-157-401-157 |
莫 | 廿日大 | 370 | 157 | 43 | 157-170-43 |
重 | 竹十田土 | 1111 | 652 | 40 | 652-18-401-40 |
於 | 卜尸人卜 | 98 | 19 | 19 | 19-51-9-19 |
祭 | 月人一一火 | 365 | 172 | 182 | 172-9-1-1-182 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
後 | 竹人女戈水 | 1047 | 652 | 181 | 652-9-44-161-181 |
世 | 心廿 | 317 | 160 | 157 | 160-157 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
悖 | 心十月木 | 523 | 160 | 173 | 160-18-172-173 |
禮 | 戈火廿田廿 | 1058 | 161 | 157 | 161-182-157-401-157 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
莫 | 廿日大 | 370 | 157 | 43 | 157-170-43 |
亂 | 月月山 | 396 | 172 | 52 | 172-172-52 |
於 | 卜尸人卜 | 98 | 19 | 19 | 19-51-9-19 |
祭 | 月人一一火 | 365 | 172 | 182 | 172-9-1-1-182 |
尤 | 戈大山 | 256 | 161 | 52 | 161-43-52 |
莫 | 廿日大 | 370 | 157 | 43 | 157-170-43 |
亂 | 月月山 | 396 | 172 | 52 | 172-172-52 |
於 | 卜尸人卜 | 98 | 19 | 19 | 19-51-9-19 |
天 | 一大 | 44 | 1 | 43 | 1-43 |
地 | 土心木 | 373 | 40 | 173 | 40-160-173 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
祭 | 月人一一火 | 365 | 172 | 182 | 172-9-1-1-182 |
分 | 金尸竹 | 2423 | 1720 | 652 | 1720-51-652 |
天 | 一大 | 44 | 1 | 43 | 1-43 |
與 | 竹難卜金 | 10512 | 652 | 1720 | 652-8121-19-1720 |
地 | 土心木 | 373 | 40 | 173 | 40-160-173 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
二 | 一一 | 2 | 1 | 1 | 1-1 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
又 | 弓大 | 105 | 62 | 43 | 62-43 |
復 | 竹人人日水 | 1021 | 652 | 181 | 652-9-9-170-181 |
分 | 金尸竹 | 2423 | 1720 | 652 | 1720-51-652 |
天 | 一大 | 44 | 1 | 43 | 1-43 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
五 | 一木一 | 175 | 1 | 1 | 1-173-1 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
於 | 卜尸人卜 | 98 | 19 | 19 | 19-51-9-19 |
是 | 日一卜人 | 199 | 170 | 9 | 170-1-19-9 |
舉 | 竹金手 | 2535 | 652 | 163 | 652-1720-163 |
一 | 一 | 1 | 1 | 1 | 1 |
切 | 心尸竹 | 863 | 160 | 652 | 160-51-652 |
怪 | 心水土 | 381 | 160 | 40 | 160-181-40 |
誕 | 卜口弓大一 | 164 | 19 | 1 | 19-39-62-43-1 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
經 | 女火一女一 | 272 | 44 | 1 | 44-182-1-44-1 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
屬 | 尸卜卜戈 | 250 | 51 | 161 | 51-19-19-161 |
咸 | 戈竹一口 | 853 | 161 | 39 | 161-652-1-39 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
禍 | 戈火月月口 | 726 | 161 | 39 | 161-182-172-172-39 |
福 | 戈火一口田 | 784 | 161 | 401 | 161-182-1-39-401 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
柄 | 木一人月 | 355 | 173 | 172 | 173-1-9-172 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
圭 | 土土 | 80 | 40 | 40 | 40-40 |
璧 | 尸十一土戈 | 271 | 51 | 161 | 51-18-1-40-161 |
牲 | 竹手竹手一 | 1631 | 652 | 1 | 652-163-652-163-1 |
牷 | 竹手人一土 | 865 | 652 | 40 | 652-163-9-1-40 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
祭 | 月人一一火 | 365 | 172 | 182 | 172-9-1-1-182 |
殊 | 一弓竹十木 | 906 | 1 | 173 | 1-62-652-18-173 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
知 | 人大口 | 91 | 9 | 39 | 9-43-39 |
天 | 一大 | 44 | 1 | 43 | 1-43 |
地 | 土心木 | 373 | 40 | 173 | 40-160-173 |
特 | 竹手土木戈 | 1189 | 652 | 161 | 652-163-40-173-161 |
兩 | 一中月人 | 283 | 1 | 9 | 1-101-172-9 |
大 | 大 | 43 | 43 | 43 | 43 |
形 | 一廿竹竹竹 | 2114 | 1 | 652 | 1-157-652-652-652 |
體 | 月月廿田廿 | 1059 | 172 | 157 | 172-172-157-401-157 |
耳 | 尸十 | 69 | 51 | 18 | 51-18 |
固 | 田十口 | 458 | 401 | 39 | 401-18-39 |
非 | 中一卜卜 | 140 | 101 | 19 | 101-1-19-19 |
靈 | 一月口口一 | 252 | 1 | 1 | 1-172-39-39-1 |
覺 | 竹月月山山 | 1100 | 652 | 52 | 652-172-172-52-52 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
體 | 月月廿田廿 | 1059 | 172 | 157 | 172-172-157-401-157 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
能 | 戈月心心 | 653 | 161 | 160 | 161-172-160-160 |
歆 | 卜日弓人 | 260 | 19 | 9 | 19-170-62-9 |
人 | 人 | 9 | 9 | 9 | 9 |
祀 | 戈火口山 | 434 | 161 | 52 | 161-182-39-52 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
有 | 大月 | 215 | 43 | 172 | 43-172 |
生 | 竹手一 | 816 | 652 | 1 | 652-163-1 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
有 | 大月 | 215 | 43 | 172 | 43-172 |
制 | 竹月中弓 | 987 | 652 | 62 | 652-172-101-62 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
形 | 一廿竹竹竹 | 2114 | 1 | 652 | 1-157-652-652-652 |
氣 | 人弓火木 | 426 | 9 | 173 | 9-62-182-173 |
可 | 一弓口 | 102 | 1 | 39 | 1-62-39 |
區 | 尸口口口 | 168 | 51 | 39 | 51-39-39-39 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
兩 | 一中月人 | 283 | 1 | 9 | 1-101-172-9 |
主 | 卜土 | 59 | 19 | 40 | 19-40 |
宰 | 十卜廿十 | 212 | 18 | 18 | 18-19-157-18 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
可 | 一弓口 | 102 | 1 | 39 | 1-62-39 |
區 | 尸口口口 | 168 | 51 | 39 | 51-39-39-39 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
兩 | 一中月人 | 283 | 1 | 9 | 1-101-172-9 |
古 | 十口 | 57 | 18 | 39 | 18-39 |
人 | 人 | 9 | 9 | 9 | 9 |
知 | 人大口 | 91 | 9 | 39 | 9-43-39 |
始 | 女戈口 | 244 | 44 | 39 | 44-161-39 |
造 | 卜竹土口 | 750 | 19 | 39 | 19-652-40-39 |
萬 | 廿田中月 | 831 | 157 | 172 | 157-401-101-172 |
物 | 竹手心竹竹 | 2279 | 652 | 652 | 652-163-160-652-652 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
唯 | 口人土 | 88 | 39 | 40 | 39-9-40 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
日 | 日 | 170 | 170 | 170 | 170 |
起 | 土人口山 | 140 | 40 | 52 | 40-9-39-52 |
化 | 人心 | 169 | 9 | 160 | 9-160 |
育 | 卜戈月 | 352 | 19 | 172 | 19-161-172 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
惟 | 心人土 | 209 | 160 | 40 | 160-9-40 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
臨 | 尸中人口口 | 239 | 51 | 39 | 51-101-9-39-39 |
下 | 一卜 | 20 | 1 | 19 | 1-19 |
有 | 大月 | 215 | 43 | 172 | 43-172 |
赫 | 土金土中金 | 3621 | 40 | 1720 | 40-1720-40-101-1720 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
惟 | 心人土 | 209 | 160 | 40 | 160-9-40 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
降 | 弓中竹水手 | 1159 | 62 | 163 | 62-101-652-181-163 |
殃 | 一弓中月大 | 379 | 1 | 43 | 1-62-101-172-43 |
降 | 弓中竹水手 | 1159 | 62 | 163 | 62-101-652-181-163 |
祥 | 戈火廿手 | 663 | 161 | 163 | 161-182-157-163 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
惟 | 心人土 | 209 | 160 | 40 | 160-9-40 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
吾 | 一一口 | 41 | 1 | 39 | 1-1-39 |
何 | 人一弓口 | 111 | 9 | 39 | 9-1-62-39 |
所 | 竹尸竹一中 | 1457 | 652 | 101 | 652-51-652-1-101 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
哉 | 十戈口 | 218 | 18 | 39 | 18-161-39 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
已 | 尸山 | 103 | 51 | 52 | 51-52 |
爾 | 一火月大 | 398 | 1 | 43 | 1-182-172-43 |
吾 | 一一口 | 41 | 1 | 39 | 1-1-39 |
何 | 人一弓口 | 111 | 9 | 39 | 9-1-62-39 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
哉 | 十戈口 | 218 | 18 | 39 | 18-161-39 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
郊 | 卜大弓中 | 225 | 19 | 101 | 19-43-62-101 |
社 | 戈火土 | 383 | 161 | 40 | 161-182-40 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
禮 | 戈火廿田廿 | 1058 | 161 | 157 | 161-182-157-401-157 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
已 | 尸山 | 103 | 51 | 52 | 51-52 |
爾 | 一火月大 | 398 | 1 | 43 | 1-182-172-43 |
夫 | 手人 | 172 | 163 | 9 | 163-9 |
論 | 卜口人一月 | 240 | 19 | 172 | 19-39-9-1-172 |
達 | 卜土廿人 | 225 | 19 | 9 | 19-40-157-9 |
孝 | 十大弓木 | 296 | 18 | 173 | 18-43-62-173 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
及 | 弓竹水 | 895 | 62 | 181 | 62-652-181 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
蓋 | 廿土戈火 | 540 | 157 | 182 | 157-40-161-182 |
謂 | 卜口田月 | 631 | 19 | 172 | 19-39-401-172 |
人 | 人 | 9 | 9 | 9 | 9 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
猶 | 大竹廿金田 | 2973 | 43 | 401 | 43-652-157-1720-401 |
子 | 弓木 | 235 | 62 | 173 | 62-173 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
親 | 卜木月山山 | 468 | 19 | 52 | 19-173-172-52-52 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
然 | 月大火 | 397 | 172 | 182 | 172-43-182 |
郊 | 卜大弓中 | 225 | 19 | 101 | 19-43-62-101 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
禮 | 戈火廿田廿 | 1058 | 161 | 157 | 161-182-157-401-157 |
夫 | 手人 | 172 | 163 | 9 | 163-9 |
人 | 人 | 9 | 9 | 9 | 9 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
知 | 人大口 | 91 | 9 | 39 | 9-43-39 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
社 | 戈火土 | 383 | 161 | 40 | 161-182-40 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
禮 | 戈火廿田廿 | 1058 | 161 | 157 | 161-182-157-401-157 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
亦 | 卜中弓金 | 1902 | 19 | 1720 | 19-101-62-1720 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
何 | 人一弓口 | 111 | 9 | 39 | 9-1-62-39 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
無 | 人廿火 | 348 | 9 | 182 | 9-157-182 |
所 | 竹尸竹一中 | 1457 | 652 | 101 | 652-51-652-1-101 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
在 | 大中土 | 184 | 43 | 40 | 43-101-40 |
亦 | 卜中弓金 | 1902 | 19 | 1720 | 19-101-62-1720 |
無 | 人廿火 | 348 | 9 | 182 | 9-157-182 |
所 | 竹尸竹一中 | 1457 | 652 | 101 | 652-51-652-1-101 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
主 | 卜土 | 59 | 19 | 40 | 19-40 |
在 | 大中土 | 184 | 43 | 40 | 43-101-40 |
天 | 一大 | 44 | 1 | 43 | 1-43 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
天 | 一大 | 44 | 1 | 43 | 1-43 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
主 | 卜土 | 59 | 19 | 40 | 19-40 |
在 | 大中土 | 184 | 43 | 40 | 43-101-40 |
地 | 土心木 | 373 | 40 | 173 | 40-160-173 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
地 | 土心木 | 373 | 40 | 173 | 40-160-173 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
主 | 卜土 | 59 | 19 | 40 | 19-40 |
在 | 大中土 | 184 | 43 | 40 | 43-101-40 |
人 | 人 | 9 | 9 | 9 | 9 |
身 | 竹難竹 | 9425 | 652 | 652 | 652-8121-652 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
人 | 人 | 9 | 9 | 9 | 9 |
身 | 竹難竹 | 9425 | 652 | 652 | 652-8121-652 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
主 | 卜土 | 59 | 19 | 40 | 19-40 |
在 | 大中土 | 184 | 43 | 40 | 43-101-40 |
萬 | 廿田中月 | 831 | 157 | 172 | 157-401-101-172 |
物 | 竹手心竹竹 | 2279 | 652 | 652 | 652-163-160-652-652 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
萬 | 廿田中月 | 831 | 157 | 172 | 157-401-101-172 |
物 | 竹手心竹竹 | 2279 | 652 | 652 | 652-163-160-652-652 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
主 | 卜土 | 59 | 19 | 40 | 19-40 |
雖 | 口戈人土 | 249 | 39 | 40 | 39-161-9-40 |
日 | 日 | 170 | 170 | 170 | 170 |
月 | 月 | 172 | 172 | 172 | 172 |
運 | 卜月十十 | 227 | 19 | 18 | 19-172-18-18 |
行 | 竹人一一弓 | 725 | 652 | 62 | 652-9-1-1-62 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
一 | 一 | 1 | 1 | 1 | 1 |
寒 | 十廿金卜 | 1914 | 18 | 19 | 18-157-1720-19 |
一 | 一 | 1 | 1 | 1 | 1 |
暑 | 日十大日 | 401 | 170 | 170 | 170-18-43-170 |
水 | 水 | 181 | 181 | 181 | 181 |
土 | 土 | 40 | 40 | 40 | 40 |
交 | 卜金大 | 1782 | 19 | 43 | 19-1720-43 |
成 | 戈竹尸 | 864 | 161 | 51 | 161-652-51 |
百 | 一日 | 171 | 1 | 170 | 1-170 |
穀 | 土木竹弓水 | 1108 | 40 | 181 | 40-173-652-62-181 |
蕃 | 廿竹木田 | 1383 | 157 | 401 | 157-652-173-401 |
植 | 木十月一 | 364 | 173 | 1 | 173-18-172-1 |
各 | 竹水口 | 872 | 652 | 39 | 652-181-39 |
有 | 大月 | 215 | 43 | 172 | 43-172 |
鬼 | 竹戈 | 813 | 652 | 161 | 652-161 |
神 | 戈火中田中 | 946 | 161 | 101 | 161-182-101-401-101 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
運 | 卜月十十 | 227 | 19 | 18 | 19-172-18-18 |
動 | 竹土大尸 | 786 | 652 | 51 | 652-40-43-51 |
護 | 卜口廿人水 | 405 | 19 | 181 | 19-39-157-9-181 |
守 | 十木戈 | 352 | 18 | 161 | 18-173-161 |
然 | 月大火 | 397 | 172 | 182 | 172-43-182 |
皆 | 心心弓竹 | 1034 | 160 | 652 | 160-160-62-652 |
受 | 月月水 | 525 | 172 | 181 | 172-172-181 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
命 | 人一口中 | 150 | 9 | 101 | 9-1-39-101 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
行 | 竹人一一弓 | 725 | 652 | 62 | 652-9-1-1-62 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
亦 | 卜中弓金 | 1902 | 19 | 1720 | 19-101-62-1720 |
倚 | 人大一口 | 92 | 9 | 39 | 9-43-1-39 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
能 | 戈月心心 | 653 | 161 | 160 | 161-172-160-160 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
動 | 竹土大尸 | 786 | 652 | 51 | 652-40-43-51 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
必 | 心竹 | 812 | 160 | 652 | 160-652 |
當 | 火月口田 | 794 | 182 | 401 | 182-172-39-401 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
鬼 | 竹戈 | 813 | 652 | 161 | 652-161 |
神 | 戈火中田中 | 946 | 161 | 101 | 161-182-101-401-101 |
報 | 土十尸中水 | 391 | 40 | 181 | 40-18-51-101-181 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
應 | 戈土心 | 361 | 161 | 160 | 161-40-160 |
當 | 火月口田 | 794 | 182 | 401 | 182-172-39-401 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
報 | 土十尸中水 | 391 | 40 | 181 | 40-18-51-101-181 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
至 | 一戈土 | 202 | 1 | 40 | 1-161-40 |
一 | 一 | 1 | 1 | 1 | 1 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
使 | 人十中大 | 171 | 9 | 43 | 9-18-101-43 |
郊 | 卜大弓中 | 225 | 19 | 101 | 19-43-62-101 |
有 | 大月 | 215 | 43 | 172 | 43-172 |
一 | 一 | 1 | 1 | 1 | 1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
社 | 戈火土 | 383 | 161 | 40 | 161-182-40 |
又 | 弓大 | 105 | 62 | 43 | 62-43 |
復 | 竹人人日水 | 1021 | 652 | 181 | 652-9-9-170-181 |
有 | 大月 | 215 | 43 | 172 | 43-172 |
一 | 一 | 1 | 1 | 1 | 1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
是 | 日一卜人 | 199 | 170 | 9 | 170-1-19-9 |
二 | 一一 | 2 | 1 | 1 | 1-1 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
試 | 卜口戈心一 | 380 | 19 | 1 | 19-39-161-160-1 |
問 | 日弓口 | 271 | 170 | 39 | 170-62-39 |
此 | 卜一心 | 180 | 19 | 160 | 19-1-160 |
二 | 一一 | 2 | 1 | 1 | 1-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
其 | 廿一一金 | 1879 | 157 | 1720 | 157-1-1-1720 |
智 | 人口日 | 218 | 9 | 170 | 9-39-170 |
勇 | 弓月大尸 | 328 | 62 | 51 | 62-172-43-51 |
才 | 木竹 | 825 | 173 | 652 | 173-652 |
能 | 戈月心心 | 653 | 161 | 160 | 161-172-160-160 |
均 | 土心戈弓 | 423 | 40 | 62 | 40-160-161-62 |
敵 | 卜月人大 | 243 | 19 | 43 | 19-172-9-43 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
無 | 人廿火 | 348 | 9 | 182 | 9-157-182 |
差 | 廿手一 | 321 | 157 | 1 | 157-163-1 |
乎 | 竹火木 | 1007 | 652 | 173 | 652-182-173 |
抑 | 手竹女中 | 960 | 163 | 101 | 163-652-44-101 |
或 | 戈口一 | 201 | 161 | 1 | 161-39-1 |
大 | 大 | 43 | 43 | 43 | 43 |
小 | 弓金 | 1782 | 62 | 1720 | 62-1720 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
齊 | 卜難 | 8140 | 19 | 8121 | 19-8121 |
乎 | 竹火木 | 1007 | 652 | 173 | 652-182-173 |
其 | 廿一一金 | 1879 | 157 | 1720 | 157-1-1-1720 |
間 | 日弓日 | 402 | 170 | 170 | 170-62-170 |
凡 | 竹弓戈 | 875 | 652 | 161 | 652-62-161 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
陰 | 弓中人戈戈 | 494 | 62 | 161 | 62-101-9-161-161 |
陽 | 弓中日一竹 | 986 | 62 | 652 | 62-101-170-1-652 |
變 | 女火人大 | 278 | 44 | 43 | 44-182-9-43 |
化 | 人心 | 169 | 9 | 160 | 9-160 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
必 | 心竹 | 812 | 160 | 652 | 160-652 |
相 | 木月山 | 397 | 173 | 52 | 173-172-52 |
咨 | 戈人口 | 209 | 161 | 39 | 161-9-39 |
度 | 戈廿水 | 499 | 161 | 181 | 161-157-181 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
後 | 竹人女戈水 | 1047 | 652 | 181 | 652-9-44-161-181 |
行 | 竹人一一弓 | 725 | 652 | 62 | 652-9-1-1-62 |
乎 | 竹火木 | 1007 | 652 | 173 | 652-182-173 |
抑 | 手竹女中 | 960 | 163 | 101 | 163-652-44-101 |
各 | 竹水口 | 872 | 652 | 39 | 652-181-39 |
出 | 山山 | 104 | 52 | 52 | 52-52 |
其 | 廿一一金 | 1879 | 157 | 1720 | 157-1-1-1720 |
號 | 口尸卜心山 | 321 | 39 | 52 | 39-51-19-160-52 |
令 | 人戈弓戈 | 393 | 9 | 161 | 9-161-62-161 |
乎 | 竹火木 | 1007 | 652 | 173 | 652-182-173 |
夫 | 手人 | 172 | 163 | 9 | 163-9 |
天 | 一大 | 44 | 1 | 43 | 1-43 |
地 | 土心木 | 373 | 40 | 173 | 40-160-173 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
屬 | 尸卜卜戈 | 250 | 51 | 161 | 51-19-19-161 |
一 | 一 | 1 | 1 | 1 | 1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
搏 | 手戈月戈 | 657 | 163 | 161 | 163-161-172-161 |
捖 | 手十一山 | 234 | 163 | 52 | 163-18-1-52 |
故 | 十口人大 | 109 | 18 | 43 | 18-39-9-43 |
一 | 一 | 1 | 1 | 1 | 1 |
施 | 卜尸人心木 | 412 | 19 | 173 | 19-51-9-160-173 |
一 | 一 | 1 | 1 | 1 | 1 |
生 | 竹手一 | 816 | 652 | 1 | 652-163-1 |
莫 | 廿日大 | 370 | 157 | 43 | 157-170-43 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
順 | 中中中金 | 2023 | 101 | 1720 | 101-101-101-1720 |
氣 | 人弓火木 | 426 | 9 | 173 | 9-62-182-173 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
應 | 戈土心 | 361 | 161 | 160 | 161-40-160 |
若 | 廿大口 | 239 | 157 | 39 | 157-43-39 |
各 | 竹水口 | 872 | 652 | 39 | 652-181-39 |
自 | 竹月山 | 876 | 652 | 52 | 652-172-52 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
如 | 女口 | 83 | 44 | 39 | 44-39 |
兩 | 一中月人 | 283 | 1 | 9 | 1-101-172-9 |
君 | 尸大口 | 133 | 51 | 39 | 51-43-39 |
分 | 金尸竹 | 2423 | 1720 | 652 | 1720-51-652 |
域 | 土戈口一 | 241 | 40 | 1 | 40-161-39-1 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
處 | 卜心竹水弓 | 1074 | 19 | 62 | 19-160-652-181-62 |
其 | 廿一一金 | 1879 | 157 | 1720 | 157-1-1-1720 |
政 | 一一人大 | 54 | 1 | 43 | 1-1-9-43 |
教 | 十木人大 | 243 | 18 | 43 | 18-173-9-43 |
號 | 口尸卜心山 | 321 | 39 | 52 | 39-51-19-160-52 |
令 | 人戈弓戈 | 393 | 9 | 161 | 9-161-62-161 |
亦 | 卜中弓金 | 1902 | 19 | 1720 | 19-101-62-1720 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
相 | 木月山 | 397 | 173 | 52 | 173-172-52 |
屬 | 尸卜卜戈 | 250 | 51 | 161 | 51-19-19-161 |
何 | 人一弓口 | 111 | 9 | 39 | 9-1-62-39 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
歲 | 卜一戈竹竹 | 1485 | 19 | 652 | 19-1-161-652-652 |
序 | 戈弓戈弓 | 446 | 161 | 62 | 161-62-161-62 |
功 | 一大尸 | 95 | 1 | 51 | 1-43-51 |
成 | 戈竹尸 | 864 | 161 | 51 | 161-652-51 |
百 | 一日 | 171 | 1 | 170 | 1-170 |
物 | 竹手心竹竹 | 2279 | 652 | 652 | 652-163-160-652-652 |
哉 | 十戈口 | 218 | 18 | 39 | 18-161-39 |
且 | 月一 | 173 | 172 | 1 | 172-1 |
至 | 一戈土 | 202 | 1 | 40 | 1-161-40 |
尊 | 廿田木戈 | 892 | 157 | 161 | 157-401-173-161 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
卽 | 竹心尸中 | 964 | 652 | 101 | 652-160-51-101 |
一 | 一 | 1 | 1 | 1 | 1 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
至 | 一戈土 | 202 | 1 | 40 | 1-161-40 |
尊 | 廿田木戈 | 892 | 157 | 161 | 157-401-173-161 |
二 | 一一 | 2 | 1 | 1 | 1-1 |
卽 | 竹心尸中 | 964 | 652 | 101 | 652-160-51-101 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
次 | 戈一弓人 | 233 | 161 | 9 | 161-1-62-9 |
尊 | 廿田木戈 | 892 | 157 | 161 | 157-401-173-161 |
可 | 一弓口 | 102 | 1 | 39 | 1-62-39 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
序 | 戈弓戈弓 | 446 | 161 | 62 | 161-62-161-62 |
進 | 卜人土 | 68 | 19 | 40 | 19-9-40 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
較 | 十十卜金大 | 1818 | 18 | 43 | 18-18-19-1720-43 |
猶 | 大竹廿金田 | 2973 | 43 | 401 | 43-652-157-1720-401 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
失 | 竹手人 | 824 | 652 | 9 | 652-163-9 |
尊 | 廿田木戈 | 892 | 157 | 161 | 157-401-173-161 |
夫 | 手人 | 172 | 163 | 9 | 163-9 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
懸 | 月火心 | 514 | 172 | 160 | 172-182-160 |
乎 | 竹火木 | 1007 | 652 | 173 | 652-182-173 |
百 | 一日 | 171 | 1 | 170 | 1-170 |
神 | 戈火中田中 | 946 | 161 | 101 | 161-182-101-401-101 |
其 | 廿一一金 | 1879 | 157 | 1720 | 157-1-1-1720 |
視 | 戈火月山山 | 619 | 161 | 52 | 161-182-172-52-52 |
大 | 大 | 43 | 43 | 43 | 43 |
臣 | 尸中尸中 | 304 | 51 | 101 | 51-101-51-101 |
相 | 木月山 | 397 | 173 | 52 | 173-172-52 |
去 | 土戈 | 201 | 40 | 161 | 40-161 |
人 | 人 | 9 | 9 | 9 | 9 |
主 | 卜土 | 59 | 19 | 40 | 19-40 |
尚 | 火月口 | 393 | 182 | 39 | 182-172-39 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
啻 | 卜月中月口 | 503 | 19 | 39 | 19-172-101-172-39 |
千 | 竹十 | 670 | 652 | 18 | 652-18 |
萬 | 廿田中月 | 831 | 157 | 172 | 157-401-101-172 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
郊 | 卜大弓中 | 225 | 19 | 101 | 19-43-62-101 |
社 | 戈火土 | 383 | 161 | 40 | 161-182-40 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
禮 | 戈火廿田廿 | 1058 | 161 | 157 | 161-182-157-401-157 |
所 | 竹尸竹一中 | 1457 | 652 | 101 | 652-51-652-1-101 |
用 | 月手 | 335 | 172 | 163 | 172-163 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
物 | 竹手心竹竹 | 2279 | 652 | 652 | 652-163-160-652-652 |
異 | 田廿金 | 2278 | 401 | 1720 | 401-157-1720 |
所 | 竹尸竹一中 | 1457 | 652 | 101 | 652-51-652-1-101 |
行 | 竹人一一弓 | 725 | 652 | 62 | 652-9-1-1-62 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
地 | 土心木 | 373 | 40 | 173 | 40-160-173 |
異 | 田廿金 | 2278 | 401 | 1720 | 401-157-1720 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
所 | 竹尸竹一中 | 1457 | 652 | 101 | 652-51-652-1-101 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
異 | 田廿金 | 2278 | 401 | 1720 | 401-157-1720 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
然 | 月大火 | 397 | 172 | 182 | 172-43-182 |
旣 | 竹心一女山 | 909 | 652 | 52 | 652-160-1-44-52 |
郊 | 卜大弓中 | 225 | 19 | 101 | 19-43-62-101 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
又 | 弓大 | 105 | 62 | 43 | 62-43 |
於 | 卜尸人卜 | 98 | 19 | 19 | 19-51-9-19 |
社 | 戈火土 | 383 | 161 | 40 | 161-182-40 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
何 | 人一弓口 | 111 | 9 | 39 | 9-1-62-39 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
蓋 | 廿土戈火 | 540 | 157 | 182 | 157-40-161-182 |
各 | 竹水口 | 872 | 652 | 39 | 652-181-39 |
就 | 卜火戈大山 | 457 | 19 | 52 | 19-182-161-43-52 |
其 | 廿一一金 | 1879 | 157 | 1720 | 157-1-1-1720 |
功 | 一大尸 | 95 | 1 | 51 | 1-43-51 |
用 | 月手 | 335 | 172 | 163 | 172-163 |
昭 | 日尸竹口 | 912 | 170 | 39 | 170-51-652-39 |
明 | 日月 | 342 | 170 | 172 | 170-172 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
處 | 卜心竹水弓 | 1074 | 19 | 62 | 19-160-652-181-62 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
加 | 大尸口 | 133 | 43 | 39 | 43-51-39 |
禮 | 戈火廿田廿 | 1058 | 161 | 157 | 161-182-157-401-157 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
報 | 土十尸中水 | 391 | 40 | 181 | 40-18-51-101-181 |
焉 | 一卜中火 | 303 | 1 | 182 | 1-19-101-182 |
高 | 卜口月口 | 269 | 19 | 39 | 19-39-172-39 |
明 | 日月 | 342 | 170 | 172 | 170-172 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
覆 | 一田竹人水 | 1244 | 1 | 181 | 1-401-652-9-181 |
我 | 竹手戈 | 976 | 652 | 161 | 652-163-161 |
得 | 竹人日一戈 | 993 | 652 | 161 | 652-9-170-1-161 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
蒙 | 廿月一人 | 339 | 157 | 9 | 157-172-1-9 |
其 | 廿一一金 | 1879 | 157 | 1720 | 157-1-1-1720 |
光 | 火一山 | 235 | 182 | 52 | 182-1-52 |
帡 | 中月廿廿 | 587 | 101 | 157 | 101-172-157-157 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
功 | 一大尸 | 95 | 1 | 51 | 1-43-51 |
用 | 月手 | 335 | 172 | 163 | 172-163 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
著 | 月尸月木 | 568 | 172 | 173 | 172-51-172-173 |
於 | 卜尸人卜 | 98 | 19 | 19 | 19-51-9-19 |
天 | 一大 | 44 | 1 | 43 | 1-43 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
沉 | 水月竹山 | 1057 | 181 | 52 | 181-172-652-52 |
厚 | 一日弓木 | 406 | 1 | 173 | 1-170-62-173 |
下 | 一卜 | 20 | 1 | 19 | 1-19 |
載 | 十戈十田十 | 616 | 18 | 18 | 18-161-18-401-18 |
我 | 竹手戈 | 976 | 652 | 161 | 652-163-161 |
得 | 竹人日一戈 | 993 | 652 | 161 | 652-9-170-1-161 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
享 | 卜口弓木 | 293 | 19 | 173 | 19-39-62-173 |
其 | 廿一一金 | 1879 | 157 | 1720 | 157-1-1-1720 |
美 | 廿金大 | 1920 | 157 | 43 | 157-1720-43 |
利 | 竹木中弓 | 988 | 652 | 62 | 652-173-101-62 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
功 | 一大尸 | 95 | 1 | 51 | 1-43-51 |
用 | 月手 | 335 | 172 | 163 | 172-163 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
著 | 月尸月木 | 568 | 172 | 173 | 172-51-172-173 |
於 | 卜尸人卜 | 98 | 19 | 19 | 19-51-9-19 |
地 | 土心木 | 373 | 40 | 173 | 40-160-173 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
郊 | 卜大弓中 | 225 | 19 | 101 | 19-43-62-101 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
荅 | 廿人一口 | 206 | 157 | 39 | 157-9-1-39 |
生 | 竹手一 | 816 | 652 | 1 | 652-163-1 |
天 | 一大 | 44 | 1 | 43 | 1-43 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
德 | 竹人十田心 | 1240 | 652 | 160 | 652-9-18-401-160 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
社 | 戈火土 | 383 | 161 | 40 | 161-182-40 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
荅 | 廿人一口 | 206 | 157 | 39 | 157-9-1-39 |
生 | 竹手一 | 816 | 652 | 1 | 652-163-1 |
地 | 土心木 | 373 | 40 | 173 | 40-160-173 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
德 | 竹人十田心 | 1240 | 652 | 160 | 652-9-18-401-160 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
今 | 人戈弓 | 232 | 9 | 62 | 9-161-62 |
夫 | 手人 | 172 | 163 | 9 | 163-9 |
穀 | 土木竹弓水 | 1108 | 40 | 181 | 40-173-652-62-181 |
者 | 十大日 | 231 | 18 | 170 | 18-43-170 |
地 | 土心木 | 373 | 40 | 173 | 40-160-173 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
產 | 卜竹竹手一 | 1487 | 19 | 1 | 19-652-652-163-1 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
先 | 竹土竹山 | 1396 | 652 | 52 | 652-40-652-52 |
王 | 一土 | 41 | 1 | 40 | 1-40 |
祈 | 戈火竹一中 | 1097 | 161 | 101 | 161-182-652-1-101 |
穀 | 土木竹弓水 | 1108 | 40 | 181 | 40-173-652-62-181 |
於 | 卜尸人卜 | 98 | 19 | 19 | 19-51-9-19 |
郊 | 卜大弓中 | 225 | 19 | 101 | 19-43-62-101 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
祈 | 戈火竹一中 | 1097 | 161 | 101 | 161-182-652-1-101 |
於 | 卜尸人卜 | 98 | 19 | 19 | 19-51-9-19 |
后 | 竹一口 | 692 | 652 | 39 | 652-1-39 |
土 | 土 | 40 | 40 | 40 | 40 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
郊 | 卜大弓中 | 225 | 19 | 101 | 19-43-62-101 |
社 | 戈火土 | 383 | 161 | 40 | 161-182-40 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
統 | 女火卜戈山 | 458 | 44 | 52 | 44-182-19-161-52 |
為 | 戈大弓火 | 448 | 161 | 182 | 161-43-62-182 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
明 | 日月 | 342 | 170 | 172 | 170-172 |
矣 | 戈人大 | 213 | 161 | 43 | 161-9-43 |
是 | 日一卜人 | 199 | 170 | 9 | 170-1-19-9 |
故 | 十口人大 | 109 | 18 | 43 | 18-39-9-43 |
生 | 竹手一 | 816 | 652 | 1 | 652-163-1 |
人 | 人 | 9 | 9 | 9 | 9 |
皆 | 心心弓竹 | 1034 | 160 | 652 | 160-160-62-652 |
當 | 火月口田 | 794 | 182 | 401 | 182-172-39-401 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
天 | 一大 | 44 | 1 | 43 | 1-43 |
子 | 弓木 | 235 | 62 | 173 | 62-173 |
則 | 月金中弓 | 2055 | 172 | 62 | 172-1720-101-62 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
郊 | 卜大弓中 | 225 | 19 | 101 | 19-43-62-101 |
社 | 戈火土 | 383 | 161 | 40 | 161-182-40 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
禮 | 戈火廿田廿 | 1058 | 161 | 157 | 161-182-157-401-157 |
代 | 人戈心 | 330 | 9 | 160 | 9-161-160 |
人 | 人 | 9 | 9 | 9 | 9 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
太 | 大戈 | 204 | 43 | 161 | 43-161 |
上 | 卜一 | 20 | 19 | 1 | 19-1 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
降 | 弓中竹水手 | 1159 | 62 | 163 | 62-101-652-181-163 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
得 | 竹人日一戈 | 993 | 652 | 161 | 652-9-170-1-161 |
用 | 月手 | 335 | 172 | 163 | 172-163 |
享 | 卜口弓木 | 293 | 19 | 173 | 19-39-62-173 |
之 | 戈弓人 | 232 | 161 | 9 | 161-62-9 |
禮 | 戈火廿田廿 | 1058 | 161 | 157 | 161-182-157-401-157 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
各 | 竹水口 | 872 | 652 | 39 | 652-181-39 |
得 | 竹人日一戈 | 993 | 652 | 161 | 652-9-170-1-161 |
以 | 女戈人 | 214 | 44 | 9 | 44-161-9 |
其 | 廿一一金 | 1879 | 157 | 1720 | 157-1-1-1720 |
身 | 竹難竹 | 9425 | 652 | 652 | 652-8121-652 |
心 | 心 | 160 | 160 | 160 | 160 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
帝 | 卜月中月 | 464 | 19 | 172 | 19-172-101-172 |
猶 | 大竹廿金田 | 2973 | 43 | 401 | 43-652-157-1720-401 |
祀 | 戈火口山 | 434 | 161 | 52 | 161-182-39-52 |
親 | 卜木月山山 | 468 | 19 | 52 | 19-173-172-52-52 |
也 | 心木 | 333 | 160 | 173 | 160-173 |
若 | 廿大口 | 239 | 157 | 39 | 157-43-39 |
因 | 田大 | 444 | 401 | 43 | 401-43 |
郊 | 卜大弓中 | 225 | 19 | 101 | 19-43-62-101 |
社 | 戈火土 | 383 | 161 | 40 | 161-182-40 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
同 | 月一口 | 212 | 172 | 39 | 172-1-39 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
疑 | 心大弓戈人 | 435 | 160 | 9 | 160-43-62-161-9 |
所 | 竹尸竹一中 | 1457 | 652 | 101 | 652-51-652-1-101 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
有 | 大月 | 215 | 43 | 172 | 43-172 |
異 | 田廿金 | 2278 | 401 | 1720 | 401-157-1720 |
亦 | 卜中弓金 | 1902 | 19 | 1720 | 19-101-62-1720 |
可 | 一弓口 | 102 | 1 | 39 | 1-62-39 |
因 | 田大 | 444 | 401 | 43 | 401-43 |
禴 | 戈火人一月 | 525 | 161 | 172 | 161-182-9-1-172 |
祀 | 戈火口山 | 434 | 161 | 52 | 161-182-39-52 |
蒸 | 廿弓水火 | 582 | 157 | 182 | 157-62-181-182 |
嘗 | 火月口心日 | 723 | 182 | 170 | 182-172-39-160-170 |
其 | 廿一一金 | 1879 | 157 | 1720 | 157-1-1-1720 |
禮 | 戈火廿田廿 | 1058 | 161 | 157 | 161-182-157-401-157 |
不 | 一火 | 183 | 1 | 182 | 1-182 |
同 | 月一口 | 212 | 172 | 39 | 172-1-39 |
而 | 一月中中 | 375 | 1 | 101 | 1-172-101-101 |
疑 | 心大弓戈人 | 435 | 160 | 9 | 160-43-62-161-9 |
所 | 竹尸竹一中 | 1457 | 652 | 101 | 652-51-652-1-101 |
事 | 十中中弓 | 282 | 18 | 62 | 18-101-101-62 |
有 | 大月 | 215 | 43 | 172 | 43-172 |
二 | 一一 | 2 | 1 | 1 | 1-1 |
親 | 卜木月山山 | 468 | 19 | 52 | 19-173-172-52-52 |
哉 | 十戈口 | 218 | 18 | 39 | 18-161-39 |
Numeric total of the Changjie symbols: 440027 = 7 x 62861. SF: 62868 = 22 x 3 x 132 x 31. (Note: In total there are 2578 symbols.)
Alpha: 105505 (nf).
Omega: 130848 (nf).
The first and last symbols of each character do not yield any results. This is because the symbols are not letters. Letters actually form words and give the pronunciation of that word. These symbols only are approximations of the actual character and have nothing to do with the character's pronunciation. And perhaps more importantly, the text was written by a man, not by an angel, and not by God. Thus it should not be expected that Alpha and Omega stand alone. However, they do stand together.
N.Alpha + Omega: 236353 = 13 x 18181. SF: 18194 = 2 x 11 x 827. SF: 840 = 23 x 3 x 5 x 7. SF: 21 = 3 x 7. SF: 10 = 2 x 5. SF:7.
a) Total of the odd positioned symbols: 226869 = 3 x 47 x 1609.
b) Total of the even positioned symbols: 213158 = 2 x 11 x 9689.
N.1At first this appears disappointing, because neither are divisible by 7 or 13. But if the factors are considered, things change.
Add the factors from line a): 3 + 47 + 1609 = 1659 (3 x 7 x 79).
Add the factors from line b): 2 + 11 + 9689 = 9702 (2 x 32 x 72 x 11).
The odd valued symbols total 167261. This is a prime number and has no other features. The even valued symbols total 272766 (2 x 3 x 132 x 269).
N.2Exactly thirteen pairs of symbols can be found (Nth and Nth last), that are individually and together divisible by 13.
a) 47 114 173 225 407 586 647 784 916 1021 1113 1122 1201 b) 52 39 182 52 39 39 182 39 182 182 39 182 39 c) 2532 2465 2406 2354 2172 1993 1932 1795 1663 1558 1466 1457 1378 d) 39 52 182 182 182 182 39 39 182 39 52 52 182 e) 91 91 364 234 221 221 221 78 364 221 91 234 221 a) Position of first symbol. b) Value of the first symbol. c) Position of the last symbol (e.g. 2532 is 47th from the end). d) Value of the last symbol. e) Sum of the first and last (b + d).
Total of the start and end positions (a + c): 33527 = 13 x 2579.
N.3779 of the symbols have values that are prime numbers. The sum of their positions is 1016418 (2 x 3 x 13 x 83 x 157). The total of these prime numbers: 86557 = 101 x 857. (This is not divisible by 7 or 13, but the 101 still shows this is related to God.)
N.4This means 1799 (7 x 257) symbols are not prime numbers. There is no coincidence with the positions of these symbols, but their total together is 353470 = 2 x 5 x 13 x 2719.
N.5310 symbols have values that are multiples of 7. The positions of these 310: 404075 = 52 x 7 x 2309.
N.6234 symbols (2 x 32 x 13. SF: 21 = 3 x 7.) are multiples of 13. (No other coincidence.)
N.7Demonstrating complementary opposites, the symbol that appeared the most (245 times; 5 x 72) was also the symbol with the lowest value (1). The symbol that appeared the least (5 times) was also the symbol with the highest value (8121).
N.8The simplest Changjie symbol is 一. Only 18 characters have this symbol as the first and last keystroke.
二 二 五 一 靈 一 一 一 一 一 二 二 一 一 一 一 二 二
Total: 8879 = 13 x 683. (The most complex Changjie is 難. But no character has this symbol as the first and last keystroke. Thus simplest plus complex still produce a total divisible by 13.
a) Symbol | b) Number Of Appearances | c) Numeric Value | Total Value (b x c) |
---|---|---|---|
木 | 70 | 173 | 12110 |
金 | 51 | 1720 | 87720 |
水 | 29 | 181 | 5249 |
土 | 78 | 40 | 3120 |
火 | 111 | 182 | 20202 |
N.9All the symbols in the passage that fall under the Five Element Theory together have a value of 128401 (7 x 13 x 17 x 83). There is seven, and there is thirteen!
N.10The positions of these element symbols in the passage produce no coincidence. But when the principle of first and last is applied, there is a result.
Element symbol: | 木 | 金 | 水 | 土 | 火 |
---|---|---|---|---|---|
Position of first appearance: | 27 | 12 | 201 | 21 | 6 |
Position of last appearance: | 2572 | 2538 | 2528 | 2479 | 2545 |
N.11The sum of the first symbol appearances is 267 (nf). The sum of the last symbol appearances is 12662 (2 x 13 x 487). When the first and last appearances of these symbols are put together there is another result: 12929 = 7 x 1847.
N.12Sixty-one characters begin and end with the same Changjie symbol.
二曰於於於二五於一圭大靈人宰人物日人人人身人身物物日月一一暑水 土一一一二二大間出一一一物一二大人物於於載於於於土人人身心二
Total value of these characters: 52611 = 3 x 13 x 19 x 71. Interestingly, the list begins and ends with the same character.
N.13Thirty characters are also Changjie symbols.
曰一大人人日人人人人日月一一水土一一一大一一一一大人土人人心
Numeric value of these symbols: 1323 = 33 x 72.
OIn Beijing stands The Temple Of Heaven. Within this building, there are no images or idols. A tablet with four Chinese characters tell who the building is dedicated to: 皇天上帝 (The King/Emperor of Heaven, The High Emperor). These four characters have the values 2196, 146, 24, and 1939. Their total is 4305. (3 x 5 x 7 x 41. SF: 56 = 23 x 7. SF: 13.) The factors go three levels.
The values of these four characters can count through 朱宗元's essay. Since two of these four numbers exceed the number of characters in the essay, the count has to wrap around to the beginning. If this is done, then the four characters can be applied once or multiple times. The question then becomes how many times to apply these four characters. If the total of the four characters was less than the number in the essay, a simple way of determining how many times to apply them would be by dividing the number in the essay by the total of the four characters. In this case the reverse is done, since the four character total is greater than the number in the essay.
4305 ÷ 766 = 5.62
The four characters can be applied five times, or six times.
Applied 5 times to count: Value from 皇天上帝 a) 2196 146 24 1939 2196 146 24 1939 Count from a) b) 2196 810 68 2007 2671 519 543 2482 Adjusted count c) 664 44 68 475 373 519 543 184 Character found d) 30 171 4740 660 30 355 1833 5999 a) 2196 146 24 1939 2196 146 24 1939 2196 146 24 1939 b) 2380 228 252 2191 2855 703 727 2666 2564 412 436 2375 c) 82 228 252 659 557 703 727 368 266 412 436 77 d) 546 143 1159 6429 3688 1665 1189 5038 24 942 264 104
Total of characters found (line d): 35009 = 13 x 2693.
O.135009 can be written in Chinese as 三萬五千零零九 (3 ten thousands, 5 thousand, zero, zero, nine). The values of these characters: 21, 5142, 110, 37, 5428, 5428, and 6. The total: 16172 = 2 x 2 x 13 x 311.
(The sum of 35009's factors is 2706, which in turn factors into 2 x 3 x 11 x 41. The sum of these factors is 57, and this factors into 3 x 19. These factors add up to 22, which factors into 2 x 11, the sum of which leads back to 13.)
O.2Applying the four numbers 6 times:
a) 2196 146 24 1939 2196 146 24 1939 2196 146 24 1939 2196 146 b) 2196 810 68 2007 2671 519 543 2482 2380 228 252 2191 2855 703 c) 664 44 68 475 373 519 543 184 82 228 252 659 557 703 d) 30 171 4740 660 30 355 1833 5999 546 143 1159 6429 3688 1665 a) 24 1939 2196 146 24 1939 2196 146 24 1939 b) 727 2666 2564 412 436 2375 2273 887 145 2084 c) 727 368 266 412 436 77 741 121 145 552 d) 1189 5038 24 942 264 104 529 146 628 3688
Total: 40000 = 26 x 54. (This is a very round number. This is not divisible by 7 or 13, but the sum of the factors eventually leads back to seven: 32 = 25. SF: 10 = 2 x 5. SF: 7. Depending on how the factors are grouped, 40000 could also be a 64 x 625, a square multiplied by a square.)
O.3Why a total of 40000? In Chinese, this can be written as 四萬 (this is 4 and ten thousand). The numeric values of these two characters are 317, and 5142. The sum is 5459, and this is not divisible by 7 or 13. However, 5459 factors into 53 x 103, and the sum of these factors is 156 (2 x 2 x 3 x 13).
O.4The radicals of these two characters are 囗艸. Their numeric values are 9482 and 9739. The total is 19221, which once again is not divisible by 7 or 13. But then 19221's factors are 3 x 43 x 149. Their total is 195. (3 x 5 x 13. SF: 21 = 3 x 7.)
Both times 13 is hidden from immediate view.
O.540000 can also be written as 四零零零零 (this is 4, followed by 0, 0, 0 and 0). The numeric value of these characters: 317, 5428, 5428, 5428, and 5428. The total is 22029 (3 x 7 x 1049).
O.6Forty thousand could also be written as 四〇〇〇〇 (4 followed by zeroes). But this format yields nothing. Perhaps this is because 〇 is a foreign import.
Conclusion
朱宗元's essay is clearly about the single unique nature and being of God. The text has numeric coincidences that follow Revelation 1:8 similar to The Proclamation (Exodus 34:6-7), and many other Bible passages. If this is one massive series of coincidences, then the very idea of science would be impossible. Since the meaning aligns with much of the Bible, this cannot be coincidence. God has plainly and simply told us He is one being and one spirit. There is no Trinity.
Today, we can see that 朱宗元's essay goes even further. We understand why China is the world's oldest continuous civilization. The ancestral sacrifices and filial piety at the individual family level were meant to be reflections of the imperial sacrifices on the national level to God. Even though this was forgotten by the main population, the ideas remained in the literature and the scholar class. This binds the ancestral sacrifices and filial piety to worshipping God. But this is not just a matter of worshipping God. With ancestral sacrifices and filial piety, China fulfilled the fifth commandment.
Honour thy father and thy mother: that thy days may be long upon the land which the LORD thy God giveth thee. (Exodus 20:12 KJV)
As the Apostle Paul pointed out, this was the first commandment with a promise (Ephesians 6:2)8. History has proven God’s promise to be true. China has survived great natural disasters, foreign invasions, and civil war and political fracture (sometimes lasting centuries). As long as China maintains the fifth commandment, China is guaranteed to exist in her land. Nothing can break God’s promise, not even economic, or biological warfare, or nuclear weapons.
Notes
- The font used in Legge's book has an older variant of the character 為. This older variant, is listed in 電腦用漢字粵語拼音表 (Computer Usage Of Chinese Characters Cantonese Pronunciation List) published in Hong Kong, and is listed under Unicode EBBC. But regions outside Hong Kong list U+EBBC as an entirely different character, or not as a character at all. Because of this, Legge's text has been amended using 為 in place of the older variant.
- Example is from Modern Mandarin Chinese Grammar by Claudia Ross and Jing-Heng Sheng Ma, Routledge, New York, NY, 10016, 2006, page 17, Section 4.2.
- ibid, page 67, Section 11.6.4.
-
朱宗元's name also has several interesting coincidences with the text that he wrote. The numeric values of his name are 631 (朱), 1335 (宗), and 121 (元). It just so happens that the 631st character of the passage is 帝 (the character for God or sovereign). 朱 is the author's surname. The surname points to the inspiration behind the text, 帝 (God). There is no 1335th character, but if the count continues around to the beginning, this would be the 569th character, which is 郊 (outskirts/beyond). The two characters together: 郊宗 (remote ancestor). The last character of the author's name, 121 (元: first; original; primary; fundamental), would point to the 121st character of the passage, 天 (heaven). It seems appropriate that the origin (元) be associated with 天 (heaven). Taking the three characters that were found, one might say the author's name points to the
God beyond heaven.
The author's name, and these three characters together have a numeric total of 6578 (2 x 11 x 13 x 23. SF: 49 = 7 x 7. SF: 14 = 2 x 7).
The numeric values of the author's name can also count through the passage.朱宗元 Count: 631 1966 555 Adjusted to 766: 631 434 555 Character found: 1939 1954 104
Total of characters found: 3997 = 7 x 571. - What about the very first (帝) and last (哉) characters of the passage? The meaning of 哉: exclamatory or interrogative particle. Thus the two characters in English would appear to mean
God!
This seems very appropriate for the entire passage. The numeric total of these two characters is 3786 and has no features. Nor is there much more to note other than the fact that both characters consist of 9 strokes, and their radicals 巾, and 口 both have 3 strokes. One might construe this as a weak similarity to the same thing at the beginning and end. The only coincidence is their Big5 numbers: 43986 + 43894 = 87880 = 23 x 5 x 133. - There is a curious coincidence concerning the number of characters in each section.
161 61 151 121 48 114 110
These numbers can be run together into one large number: 1616115112148114110. And this number factors into 2 x 5 x 13 x 69739 x 178259721373. The factor 13 links this to God’s name in Hebrew.
N.B. Nothing in Revelation 1:8 hints at merging individual numbers into one large number. Thus this coincidence is relegated to the notes. - There are 214 radicals in Chinese dictionaries. The number and order have been handed down through the centuries. Every character is classified under one radical, and within each section the characters are arranged by the number of strokes.
- Ephesians 6:2-3 GNT
τιμα τον πατερα σου και την μητερα ητις εστιν εντολη πρωτη εν επαγγελια ινα ευ σοι γενηται και εση μακροχρονιος επι της γης
1 2 3 4 5 6 7 8 9 140 200 257 350 20 147 223 206 244 τιμα τον πατερα σου και την μητερα ητις εστιν 100-9-30-1 100-60-40 70-1-100-5-80-1 90-60-200 10-1-9 100-7-40 30-7-100-5-80-1 7-100-9-90 5-90-100-9-40 Honor the father of you and the mother which is 10 11 12 13 14 15 16 17 232 857 45 117 50 205 159 165 εντολη πρωτη εν επαγγελια ινα ευ σοι γενηται 5-40-100-60-20-7 70-80-600-100-7 5-40 5-70-1-3-3-5-20-9-1 9-40-1 5-200 90-60-9 3-5-40-7-100-1-9 commandment first with promise so that well with you it may become 18 19 20 21 22 23 20 102 920 84 197 100 και εση μακροχρονιος επι της γης 10-1-9 5-90-7 30-1-10-80-60-400-80-60-40-9-60-90 5-70-9 100-7-90 3-7-90 and will be long lasting on the earth.
Numeric total: 5040 = 24 x 32 x 5 x 7. SF: 26 = 2 x 13.
There are 23 words (the number of man). There are 101 letters (one God beginning and end).
Is it coincidence that Paul's statement is also divisible by seven and that its factors lead to 13? The interesting part is that neither the Hebrew in Exodus 20:12, and Deuteronomy 5:16, nor the Greek in the Septuagint for these two verses are divisible by seven or thirteen. Only Paul's statement with the promise is divisible by seven.
How does Ephesians 6:2-3 relate to 朱宗元's essay? The total numeric value of Ephesians is 5040. The 5040th character in the Chinese passage is actually the 444th character (5040 − 6 x 766 = 444). The 444th character is 夫, with a value of 147 (3 x 72). And of course, 444 = 2 x 2 x 3 x 37. SF: 44 = 2 x 2 x 11. The factors of 444 could also have been written as 4 x 111. 111 and 11 point to the same one God.
The values for the 101 letters from Ephesians could be treated as positions in 朱宗元's essay. These are the characters that would be selected:不 專 亦 帝 不 而 禮 祭 帝 不 則 天 帝 而 而 事 言 帝 專 不 社 禮 亦 社 不 則 天 帝 社 不 專 而 則 而 不 專 禮 則 禮 不 而 者 社 祭 天 我 不 社 則 禮 則 祭 帝 有 有 則 者 專 帝 專 禮 帝 則 事 而 而 專 有 則 禮 社 不 帝 專 言 帝 專 則 而 社 亦 帝 言 天 而 者 天 而 禮 專 而 而 則 祭 專 不 社 而 有 社 而
The total of these characters: 197515 = 5 x 39503. This is not divisible by 7 or 13, but the sum of the factors is: 39508 = 22 x 7 x 17 x 83. SF: 111 = 3 x 37.