An Experiment Updating Isaiah 18
Isaiah 18 is one prophecy about nations in the future, and because this is about the future, the nations are not named. Readers understand the purpose of a prophecy when nations like Assyria, Babylon, and Egypt, or cities like Jerusalem, Damascus and Tyre are named. What is the point of a prophecy concerning unknown nations? It would make better sense if the nation that was going to be cut down early, and the nation that was going to bring gifts to God were actually named and known. This sets the stage for an experiment on identifying the nations of the prophecy.
Christians ask themselves, What would Jesus do?
1 The same could be said for prophecy. What would Isaiah say concerning his prophecy in chapter 18 if he were alive today? The fact is, Isaiah is still alive, and he is watching how nations today fulfill what God told him over a thousand years ago. (Matthew 22:32)
Isaiah would most likely look around in the world and actually identify the nations involved in the prophecy. He would see and know which nations were the ones he saw and described in his vision centuries ago. He would now know their names, and he might want to update his prophecy with this knowledge.
This experiment follows the pattern set by the number studies proving Jesus is the Messiah. Prophecy in the Old Testament (Hebrew) is paired with its completion in the New Testament (Greek). The numeric data from both are put together revealing God’s signature of complementary opposites. For Isaiah chapter 18, there is no New Testament passage in Greek.2 Isaiah would write his additional knowledge using the international language of our day, English.
Not really knowing how Isaiah might write a new statement concerning Isaiah 18, (if he chose to do so,) everything is kept brief in naming the nations and stating their end fates.
As seen in the initial study on Isaiah 18, the two modern nations that best fit his description are America and China. The conclusion of that study was: America is the nation that will be cut down, and China is the nation bringing gifts.
Different ways of phrasing the individual parts of the italicized statement form the basis of this experiment.
a) There are several ways of referring to America:
- America.
- the-United-States
- the-United-States-of-America.
- the-US.
- the-USA.
None of these options are by any means an exhaustive list.
b) There are several ways of indicating the future tense of the verb:
- is-to-be
- will-be
c) America's fate is to be–
- cut-down
- cut-off
- cut-short
- destroyed
d) Isaiah tells us whatever happens, happens early before the harvest.
- early
- before-its-time
e) Various conjunctions, or no conjunction joins America to the next part of prophecy.
- but
- and
- while
- [none]
f) Since Isaiah 18 mentions people bringing gifts to God, China can be referred to in two ways. This necessitates changes to the verb.
- China-is-to
- China-will
- the-Chinese-are-to
- the-Chinese-will
g) Here are only a few phrases of bringing
gifts to God:
- bring-gifts-to
- bear-gifts-to
- give-gifts-to
- do-homage-to
- honour
h) Isaiah said gifts would be brought to the Lord of Hosts, and this is the single closing option.
- the-LORD-of-Hosts
With 5 options in a), 2 options in b), 4 options in c), 2 options in d), 4 options in e), 4 options in f), 5 options in g), and 1 option in h), there are total of 6400 unique possibilities. (5 x 2 x 4 x 2 x 4 x 4 x 5 x 1 = 6400.)
Since Isaiah 18 in Hebrew is divisible by 7, any phrase in English would also have to be a multiple of 7. Out of 6400 phrases, the odds would predict a seventh of these, or 914 of them being divisible by 7. And out of these 914, only 130 (another seventh) would have the totals of their first and last letters of each word adding up to a multiple of 7. Out of the 130, only 18 would have the first letter of each word providing a total divisible by 7. Only 2 or three would have every other word adding up to a total divisible by 7. And only 0.38 would have every other letter being a multiple of 7. To achieve two more numeric features (positions of the odd/even valued words, & letters with an odd/even valued first digit) divisible by seven would reduce the number to 0.0078.
In other words, with only 6400 possible English phrases to mix with Isaiah 18, it is highly unlikely any passage having the specific 7 numeric features listed above can be constructed.
Although the mathematical odds would only expect failure, there was one success.
The USA will be destroyed before its time while China will honour the LORD of Hosts.
1 2 3 4 5 6 7 8 87 71 120 2 518 67 150 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 19 20 21 80-7 70-1 100-10-10 2 4- 70-80-60-300-4 2- 5-60 80-70 80-20 The USA will be destroyed before its time 9 10 11 12 13 14 15 16 117 41 120 97 87 74 5 227 22 3 24 25 6 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 100-7-10 3- 7-30-1 100-10-10 7- 30-60 80-7 10-60-4 5 7- 70-80-70 while China will honour the LORD of Hosts.
This phrase has a total of 1883 (7 x 269), but there are no numeric features in the first and or last letters of each word. There are no numeric features in every other letter. However, there is something in every other word. There is much more when it is attached to the end of Isaiah 18 like an explanatory note.
(For the conversion of Isaiah 18 to numbers, see this.)
The combined data of Isaiah 18 and the phrase above is presented below.
List of words:
21 291 240 200 501 312 295 326 343 52 350 68 44 100 140 90 56 141 180 31 19 400 261 31 110 257 90 12 47 19 106 106 119 501 16 305 297 50 322 432 386 291 371 110 255 607 596 586 816 30 25 241 26 41 415 33 128 68 98 110 207 92 39 50 400 30 170 400 460 288 268 73 30 145 626 129 695 407 780 275 412 95 28 119 255 483 296 196 116 94 56 447 296 116 688 472 21 48 310 56 499 110 400 261 156 257 90 12 47 19 106 106 119 501 16 305 297 31 186 340 26 499 205 156 87 71 120 2 518 67 150 100 117 41 120 97 87 74 5 227
List of letters:
5 6 10 1 200 90 90 30 90 30 20 50 80 10 40 1 300 200 40 70 2 200 30 50 5 200 10 20 6 300 5 300 30 8 2 10 40 90 10 200 10 40 6 2 20 30 10 3 40 1 70 30 80 50 10 40 10 40 30 20 6 40 30 1 20 10 40 100 30 10 40 1 30 3 6 10 40 40 300 20 6 40 6 200 9 1 30 70 40 50 6 200 1 40 50 5 6 1 6 5 30 1 5 3 6 10 100 6 100 6 6 40 2 6 60 5 1 300 200 2 7 1 6 50 5 200 10 40 1 200 90 6 20 30 10 300 2 10 400 2 30 6 300 20 50 10 1 200 90 20 50 300 1 50 60 5 200 10 40 400 200 1 6 6 20 400 100 70 300 6 80 200 400 300 40 70 6 20 10 20 5 1 40 200 10 5 6 5 1 30 10 1 300 100 9 5 6 1 2 10 9 5 2 40 20 6 50 10 20 8 40 90 8 70 30 10 1 6 200 20 70 2 9 30 2 8 40 100 90 10 200 20 10 30 80 50 10 100 90 10 200 20 400 40 80 200 8 6 2 60 200 3 40 30 10 5 10 5 50 90 5 6 20 200 400 5 7 30 7 30 10 40 2 40 7 40 200 6 400 6 1 400 5 50 9 10 300 6 400 5 60 10 200 5 400 7 10 70 7 2 6 10 8 4 6 30 70 10 9 5 200 10 40 6 30 2 5 40 400 5 1 200 90 6 100 90 70 30 10 6 5 70 10 9 6 20 30 2 5 40 400 5 1 200 90 70 30 10 6 400 8 200 80 2 70 400 5 5 10 1 10 6 2 30 300 10 30 10 5 6 5 90 2 1 6 400 70 40 40 40 300 20 6 40 6 200 9 6 40 70 40 50 6 200 1 40 50 5 6 1 6 5 30 1 5 3 6 10 100 6 100 6 6 40 2 6 60 5 1 300 200 2 7 1 6 50 5 200 10 40 1 200 90 6 1 30 40 100 6 40 300 40 10 5 6 5 90 2 1 6 400 5 200 90 10 6 50 80 7 70 1 100 10 10 2 4 70 80 60 300 4 2 5 60 80 70 80 20 100 7 10 3 7 30 1 100 10 10 7 30 60 80 7 10 60 4 5 7 70 80 70
The Primary Features
(Derived from Revelation 1:8 and grouped for easy reference.)
I Am (Present tense - living through it) Add up everything.
A.1Numeric total: 29309 = 7 x 53 x 79. (See feature 1.)
A.4Number of words: 140 = 22 x 5 x 7. (See feature 1.1.)
Is, Was, Is To Come (Second present tense - skipping sequentially through it.) Add up every other occurrance.
B.3Every other word (odd): 16177 = 7 x 2311. (See feature 1.2.1.)
B.3.2Every other word (even): 13132 = 22 x 72 x 67. (See feature 1.2.2.)
B.4Every other letter (odd): 15078 = 2 x 3 x 7 x 359. (See feature 3.1.)
B.4.2Every other letter (even): 14231 = 7 x 19 x 107. (See feature 3.2.)
Alpha & Omega (The first and last) Add up the first item with the last item.
C.2First and last verses: 4069 = 13 x 313. (See feature 0.)
C.3.2First and last letter of each word: 15288 = 23 x 3 x 72 x 13.
(See feature 2.1.)
Alpha (The first) Add up the first item.
D.1First chapter: 27426 = 2 x 3 x 7 x 653. (See feature 0.1.)
Omega (The last) Add up the last item.
E.1Last chapter: 1883 = 7 x 269. (See feature 0.2.)
Hebrew & English
0Isaiah 18:1 with a value of 2186, and the English phrase with a value of 1883, would be the first and last verses of the combined section. The total of these two: 4069 = 13 x 313.
0.1The whole of Isaiah 18 is one chapter. This is the first chapter: 27426 = 2 x 3 x 7 x 653.
0.2The English phrase is considered a separate chapter. This is the last chapter: 1883 = 7 x 269.
The Words
1The numeric total: 29309 = 7 x 53 x 79.
1.1There are 140 words (22 x 5 x 7), and 501 letters (nf).
1.2.1Odd positioned words: 16177 = 7 x 2311.
1.2.2Even positioned words: 13132 = 22 x 72 x 67.
Words loaded into coordinates for four dimensions. Word D1 D2 D3 D4 Word D1 D2 D3 D4 21 1 1 1 1 268 1 2 3 4 291 2 1 1 1 73 2 2 3 4 240 1 2 1 1 30 1 1 4 4 200 2 2 1 1 145 2 1 4 4 501 1 1 2 1 626 1 2 4 4 312 2 1 2 1 129 2 2 4 4 295 1 2 2 1 695 1 1 5 4 326 2 2 2 1 407 2 1 5 4 343 1 1 3 1 780 1 2 5 4 52 2 1 3 1 275 2 2 5 4 350 1 2 3 1 412 1 1 1 5 68 2 2 3 1 95 2 1 1 5 44 1 1 4 1 28 1 2 1 5 100 2 1 4 1 119 2 2 1 5 140 1 2 4 1 255 1 1 2 5 90 2 2 4 1 483 2 1 2 5 56 1 1 5 1 296 1 2 2 5 141 2 1 5 1 196 2 2 2 5 180 1 2 5 1 116 1 1 3 5 31 2 2 5 1 94 2 1 3 5 19 1 1 1 2 56 1 2 3 5 400 2 1 1 2 447 2 2 3 5 261 1 2 1 2 296 1 1 4 5 31 2 2 1 2 116 2 1 4 5 110 1 1 2 2 688 1 2 4 5 257 2 1 2 2 472 2 2 4 5 90 1 2 2 2 21 1 1 5 5 12 2 2 2 2 48 2 1 5 5 47 1 1 3 2 310 1 2 5 5 19 2 1 3 2 56 2 2 5 5 106 1 2 3 2 499 1 1 1 6 106 2 2 3 2 110 2 1 1 6 119 1 1 4 2 400 1 2 1 6 501 2 1 4 2 261 2 2 1 6 16 1 2 4 2 156 1 1 2 6 305 2 2 4 2 257 2 1 2 6 297 1 1 5 2 90 1 2 2 6 50 2 1 5 2 12 2 2 2 6 322 1 2 5 2 47 1 1 3 6 432 2 2 5 2 19 2 1 3 6 386 1 1 1 3 106 1 2 3 6 291 2 1 1 3 106 2 2 3 6 371 1 2 1 3 119 1 1 4 6 110 2 2 1 3 501 2 1 4 6 255 1 1 2 3 16 1 2 4 6 607 2 1 2 3 305 2 2 4 6 596 1 2 2 3 297 1 1 5 6 586 2 2 2 3 31 2 1 5 6 816 1 1 3 3 186 1 2 5 6 30 2 1 3 3 340 2 2 5 6 25 1 2 3 3 26 1 1 1 7 241 2 2 3 3 499 2 1 1 7 26 1 1 4 3 205 1 2 1 7 41 2 1 4 3 156 2 2 1 7 415 1 2 4 3 87 1 1 2 7 33 2 2 4 3 71 2 1 2 7 128 1 1 5 3 120 1 2 2 7 68 2 1 5 3 2 2 2 2 7 98 1 2 5 3 518 1 1 3 7 110 2 2 5 3 67 2 1 3 7 207 1 1 1 4 150 1 2 3 7 92 2 1 1 4 100 2 2 3 7 39 1 2 1 4 117 1 1 4 7 50 2 2 1 4 41 2 1 4 7 400 1 1 2 4 120 1 2 4 7 30 2 1 2 4 97 2 2 4 7 170 1 2 2 4 87 1 1 5 7 400 2 2 2 4 74 2 1 5 7 460 1 1 3 4 5 1 2 5 7 288 2 1 3 4 227 2 2 5 7 Click to hide.
1.2.3.1When the 140 words are loaded into four dimensions (2 x 2 x 5 x 7), taking every other word is selecting the words with an odd or even value in the first dimension. Curiously, when all words with an odd value in the first dimension are put together, the total for the second, third and fourth dimensions are all multiples of 7. The same is true for all words with an even value in the first dimension. The totals for their second, third, and fourth dimensions are exactly the same as for the previous group.
Odd values the first dimension (D1) Even values in the first dimension (D1). Word D1 D2 D3 D4 Word D1 D2 D3 D4 21 1 1 1 1 291 2 1 1 1 240 1 2 1 1 200 2 2 1 1 501 1 1 2 1 312 2 1 2 1 295 1 2 2 1 326 2 2 2 1 343 1 1 3 1 52 2 1 3 1 350 1 2 3 1 68 2 2 3 1 44 1 1 4 1 100 2 1 4 1 140 1 2 4 1 90 2 2 4 1 56 1 1 5 1 141 2 1 5 1 180 1 2 5 1 31 2 2 5 1 19 1 1 1 2 400 2 1 1 2 261 1 2 1 2 31 2 2 1 2 110 1 1 2 2 257 2 1 2 2 90 1 2 2 2 12 2 2 2 2 47 1 1 3 2 19 2 1 3 2 106 1 2 3 2 106 2 2 3 2 119 1 1 4 2 501 2 1 4 2 16 1 2 4 2 305 2 2 4 2 297 1 1 5 2 50 2 1 5 2 322 1 2 5 2 432 2 2 5 2 386 1 1 1 3 291 2 1 1 3 371 1 2 1 3 110 2 2 1 3 255 1 1 2 3 607 2 1 2 3 596 1 2 2 3 586 2 2 2 3 816 1 1 3 3 30 2 1 3 3 25 1 2 3 3 241 2 2 3 3 26 1 1 4 3 41 2 1 4 3 415 1 2 4 3 33 2 2 4 3 128 1 1 5 3 68 2 1 5 3 98 1 2 5 3 110 2 2 5 3 207 1 1 1 4 92 2 1 1 4 39 1 2 1 4 50 2 2 1 4 400 1 1 2 4 30 2 1 2 4 170 1 2 2 4 400 2 2 2 4 460 1 1 3 4 288 2 1 3 4 268 1 2 3 4 73 2 2 3 4 30 1 1 4 4 145 2 1 4 4 626 1 2 4 4 129 2 2 4 4 695 1 1 5 4 407 2 1 5 4 780 1 2 5 4 275 2 2 5 4 412 1 1 1 5 95 2 1 1 5 28 1 2 1 5 119 2 2 1 5 255 1 1 2 5 483 2 1 2 5 296 1 2 2 5 196 2 2 2 5 116 1 1 3 5 94 2 1 3 5 56 1 2 3 5 447 2 2 3 5 296 1 1 4 5 116 2 1 4 5 688 1 2 4 5 472 2 2 4 5 21 1 1 5 5 48 2 1 5 5 310 1 2 5 5 56 2 2 5 5 499 1 1 1 6 110 2 1 1 6 400 1 2 1 6 261 2 2 1 6 156 1 1 2 6 257 2 1 2 6 90 1 2 2 6 12 2 2 2 6 47 1 1 3 6 19 2 1 3 6 106 1 2 3 6 106 2 2 3 6 119 1 1 4 6 501 2 1 4 6 16 1 2 4 6 305 2 2 4 6 297 1 1 5 6 31 2 1 5 6 186 1 2 5 6 340 2 2 5 6 26 1 1 1 7 499 2 1 1 7 205 1 2 1 7 156 2 2 1 7 87 1 1 2 7 71 2 1 2 7 120 1 2 2 7 2 2 2 2 7 518 1 1 3 7 67 2 1 3 7 150 1 2 3 7 100 2 2 3 7 117 1 1 4 7 41 2 1 4 7 120 1 2 4 7 97 2 2 4 7 87 1 1 5 7 74 2 1 5 7 5 1 2 5 7 227 2 2 5 7 16177 70 105 210 280 13132 140 105 210 280
The totals for the second, third and fourth dimensions of both groups are 105, 210, and 280 respectively.
1.2.3.2Sort the words according to the odd/even value of the fourth dimension.
1.2.3.2.1Total of the words where the fourth dimension is odd valued: 16387 = 7 x 2341.
1.2.3.2.2Total of the words where the fourth dimension is even valued: 12922 = 2 x 7 x 13 x 71.
Is it coincidence that only the first and fourth dimensions successfully divide the words into groups that are divisible by 7? The first and fourth dimensions are the first and last dimensions. This would appear to follow Revelation 1:8's Alpha and Omega.
1.2.3.3Only the last 20 words have a fourth dimension coordinate of 7. Providentially, the very first of these 20 words has the value of 26. The twenty words are listed below:
26 499 205 156 87 71 120 2 518 67 150 100 117 41 120 97 87 74 5 227
Their total: 2769 = 3 x 13 x 71.
1.3Odd valued words: 12987 = 33 x 13 x 37. There is no equivalent feature with the even valued words, but the positions of these two groups are perfectly balanced.
1.3.1Total of the positions of the odd valued words: 4459 = 73 x 13.
1.3.2Total of the positions of the even valued words: 5411 = 7 x 773. SF: 780 = 22 x 3 x 5 x 13.
1.4It might be coincidence that the middle N words add up to a multiple of 7 when N is one of the following values:
130 124 114 98 86 58 46 44 28 24 18 8 6
But there are exactly 13 of them, and their total is: 784 = 24 x 72.
1.5The 140 words can be gathered into groups of 28 each. Three of the groups would have totals that are odd valued. Two of the groups would have totals that even valued.
1.5.1Odd valued groups of 28:
21 291 240 200 501 312 295 326 343 52 350 68 44 100 140 90 56 141 180 31 19 400 261 31 110 257 90 12 47 19 106 106 119 501 16 305 297 50 322 432 386 291 371 110 255 607 596 586 816 30 25 241 26 41 415 33 255 483 296 196 116 94 56 447 296 116 688 472 21 48 310 56 499 110 400 261 156 257 90 12 47 19 106 106
Total: 18123 = 3 x 7 x 863.
1.5.2Even valued groups of 28:
128 68 98 110 207 92 39 50 400 30 170 400 460 288 268 73 30 145 626 129 695 407 780 275 412 95 28 119 119 501 16 305 297 31 186 340 26 499 205 156 87 71 120 2 518 67 150 100 117 41 120 97 87 74 5 227
Total: 11186 = 2 x 7 x 17 x 47.
1.5.2.1The first group of 28 that is even valued: 6622 = 2 x 7 x 11 x 43. SF: 63 = 32 x 7. SF: 13.
1.5.2.2The last group of 28 that is even valued: 4564 = 22 x 7 x 163.
1.5.2.3The difference between 1.5.2.1 and 1.5.2.2: 2058 = 2 x 3 x 73. SF: 26 = 2 x 13.
1.6The 140 words can be gathered into alternating groups of different sizes.
1.6.1Alternating groups of 21 and 7 words.
1.6.1.1Groups of 21 words:
21 291 240 200 501 312 295 326 343 52 350 68 44 100 140 90 56 141 180 31 19 47 19 106 106 119 501 16 305 297 50 322 432 386 291 371 110 255 607 596 586 816 128 68 98 110 207 92 39 50 400 30 170 400 460 288 268 73 30 145 626 129 695 255 483 296 196 116 94 56 447 296 116 688 472 21 48 310 56 499 110 400 261 156 119 501 16 305 297 31 186 340 26 499 205 156 87 71 120 2 518 67 150 100 117
Total: 23933 = 7 x 13 x 263.
1.6.1.2Groups of 7 words:
400 261 31 110 257 90 12 30 25 241 26 41 415 33 407 780 275 412 95 28 119 257 90 12 47 19 106 106 41 120 97 87 74 5 227
Total: 5376 = 28 x 3 x 7. SF: 26 = 2 x 13.
1.6.2Alternating groups of 21 and 14 words.
1.6.2.1Groups of 21 words:
21 291 240 200 501 312 295 326 343 52 350 68 44 100 140 90 56 141 180 31 19 305 297 50 322 432 386 291 371 110 255 607 596 586 816 30 25 241 26 41 415 33 268 73 30 145 626 129 695 407 780 275 412 95 28 119 255 483 296 196 116 94 56 257 90 12 47 19 106 106 119 501 16 305 297 31 186 340 26 499 205 156 87 71
Total: 19089 = 33 x 7 x 101. SF: 117 = 32 x 13.
1.6.2.2Groups of 14 words:
400 261 31 110 257 90 12 47 19 106 106 119 501 16 128 68 98 110 207 92 39 50 400 30 170 400 460 288 447 296 116 688 472 21 48 310 56 499 110 400 261 156 120 2 518 67 150 100 117 41 120 97 87 74 5 227
Total: 10220 = 22 x 5 x 7 x 73.
1.6.3Alternating groups of 42 and 28 words.
1.6.3.1Groups of 42 words:
21 291 240 200 501 312 295 326 343 52 350 68 44 100 140 90 56 141 180 31 19 400 261 31 110 257 90 12 47 19 106 106 119 501 16 305 297 50 322 432 386 291 268 73 30 145 626 129 695 407 780 275 412 95 28 119 255 483 296 196 116 94 56 447 296 116 688 472 21 48 310 56 499 110 400 261 156 257 90 12 47 19 106 106
Total: 18053 = 7 x 2579.
1.6.3.2Groups of 28 words:
371 110 255 607 596 586 816 30 25 241 26 41 415 33 128 68 98 110 207 92 39 50 400 30 170 400 460 288 119 501 16 305 297 31 186 340 26 499 205 156 87 71 120 2 518 67 150 100 117 41 120 97 87 74 5 227
Total: 11256 = 23 x 3 x 7 x 67.
1.6.4Alternating groups of 56 and 28 words.
1.6.4.1Groups of 56 words:
21 291 240 200 501 312 295 326 343 52 350 68 44 100 140 90 56 141 180 31 19 400 261 31 110 257 90 12 47 19 106 106 119 501 16 305 297 50 322 432 386 291 371 110 255 607 596 586 816 30 25 241 26 41 415 33 255 483 296 196 116 94 56 447 296 116 688 472 21 48 310 56 499 110 400 261 156 257 90 12 47 19 106 106 119 501 16 305 297 31 186 340 26 499 205 156 87 71 120 2 518 67 150 100 117 41 120 97 87 74 5 227
Total: 22687 = 72 x 463.
1.6.4.2Groups of 28 words:
128 68 98 110 207 92 39 50 400 30 170 400 460 288 268 73 30 145 626 129 695 407 780 275 412 95 28 119
Total: 6622 = 2 x 7 x 11 x 43. SF: 63 = 32 x 7. SF: 13.
The First & Last Letters Of Each Word
2.1Total of the first and last letters of each word: 15288 = 23 x 3 x 72 x 13. The total is divisible by 7 twice. And it is also a multiple of 13.
2.2The difference between the first and last letters of each word: 2646 = 2 x 33 x 72.
2.3The first letter of each word:
5 1 90 20 1 40 30 20 5 2 90 6 3 70 80 40 30 40 100 1 3 40 6 1 70 50 40 5 6 3 100 100 6 1 2 50 1 20 10 400 6 1 20 50 5 400 6 300 400 20 20 1 10 1 1 6 2 20 90 70 1 20 9 2 100 20 30 100 20 80 6 3 10 50 6 5 2 6 5 5 5 10 10 30 5 6 5 6 70 5 6 2 5 70 400 2 5 10 300 30 90 70 40 6 6 50 40 5 6 3 100 100 6 1 2 50 1 1 40 300 10 90 5 90 80 70 100 2 4 2 80 80 100 3 100 7 80 10 5 7
Total of the first letter of each word: 6321 = 3 x 72 x 43.
2.4The last letter of each word:
10 90 30 40 200 200 10 300 8 40 40 10 1 30 10 40 6 40 40 30 10 20 9 30 40 1 50 1 5 10 6 6 5 200 6 40 6 30 10 30 10 90 1 60 40 6 70 200 6 10 5 200 5 10 5 5 10 40 8 10 200 2 30 40 200 10 10 200 40 8 200 30 5 5 400 40 400 400 400 200 7 6 6 9 40 400 90 90 6 9 30 400 90 6 80 400 1 30 10 5 400 40 20 9 40 1 50 1 5 10 6 6 5 200 6 40 6 30 40 40 5 400 200 50 7 1 10 2 4 60 70 20 10 1 10 60 7 4 5 70
Total of the last letter of each word: 8967 = 3 x 72 x 61. SF: 78 = 2 x 3 x 13.
There is exactness in the first and last letters of each word separately being divisible by 7 twice.
2.5Separately, the positions of the first and last letters of each word yield no feature. The difference in the total of the positions of the first and last letters of each word brings them together: −35590 + 35951 = 361 (192). This is not a multiple of 7 or 13, but the there is the square of 19. This number is related to China. In Chinese, the nation China is written with two characters: 中國. The numeric value of these two characters are 101 and 3243. The total: 3344 (24 x 11 x 19). That this number appeared in the difference of the positions from the first and last letters of each word is significant. In terms of history, China first existed long before the United States. If the interpretation of Isaiah's prophecy is correct, China will out last the United States and exist after it is gone. China's long history is due to filial piety fulfilling the fifth commandment for honouring one's parents (Exodus 20:12).
2.6Since feature 2.5 put the positions together, the first and last letters of each word are also considered together. This is no longer a matter of their positions in the passage or in their positions in their separate lists, or in how the two lists are merged together, because there are a myriad number of ways of putting them together. It is just easier to consider their values, whether they are odd or even.
Whether a number is odd/even depends on the last digit. Since we are looking for complementary opposites, one can also look at the first digit.
2.6.1.1Odd valued first and last letters of each word:
5 1 1 5 3 1 1 3 9 1 1 5 1 5 3 5 1 1 1 1 5 5 1 5 1 1 5 5 1 9 3 5 5 5 5 5 5 7 9 5 5 5 9 5 5 1 5 9 1 5 1 5 3 5 1 1 1 5 5 7 1 3 1 7 7 5 5 7
Total: 266 = 2 x 7 x 19. SF: 28 = 22 x 7.
2.6.1.2Even valued first and last letters of each word:
10 90 90 30 20 40 200 40 200 30 10 20 300 8 2 40 90 40 6 10 70 30 80 10 40 40 30 6 40 40 100 40 30 10 40 20 6 30 70 40 50 40 50 6 10 100 6 100 6 6 200 2 6 50 40 6 20 30 10 10 400 30 6 10 90 20 50 60 40 400 6 6 70 300 200 400 6 20 10 20 200 10 10 6 2 10 20 40 90 8 70 10 200 20 2 30 2 40 100 200 20 10 30 10 100 200 20 40 80 8 6 200 30 10 50 6 400 40 2 400 6 400 400 200 10 6 10 6 30 40 6 400 90 6 90 70 6 6 30 2 400 90 70 6 400 80 2 400 10 30 300 10 30 90 400 70 40 40 20 6 6 40 50 40 50 6 10 100 6 100 6 6 200 2 6 50 40 6 30 40 40 300 40 10 90 400 200 90 50 80 70 100 10 2 2 4 4 2 60 80 70 80 20 100 10 100 10 60 80 10 4 70
Total: 15022 = 2 x 7 x 29 x 37.
2.6.2Now consider the first digit of the first and last letters of each word.
2.6.2.1First and last letters of each word with an odd valued first digit:
5 10 1 90 90 30 1 30 10 300 5 90 10 3 1 70 30 10 30 100 1 30 3 10 9 1 30 70 50 1 50 5 1 5 3 10 100 100 5 1 50 1 30 10 10 30 10 1 90 1 50 5 70 300 10 5 1 10 5 1 10 1 5 5 10 90 70 10 1 9 30 100 10 30 10 100 3 30 10 5 50 5 5 5 5 5 7 10 10 30 9 5 5 90 90 70 5 9 30 5 90 70 5 1 10 30 300 10 30 5 90 70 9 50 1 50 5 1 5 3 10 100 100 5 1 50 1 1 30 300 10 5 90 5 90 50 7 70 1 100 10 70 100 10 3 1 100 10 7 7 10 5 5 7 70
Total: 5356 = 22 x 13 x 103.
2.6.2.2First and last letters of each word with an even valued first digit:
20 40 200 40 200 20 8 2 40 40 6 80 40 40 6 40 40 40 40 20 6 40 40 6 6 6 6 200 2 6 40 6 20 400 6 20 60 40 400 6 6 200 400 6 20 20 200 6 2 20 40 8 200 20 2 2 40 200 20 200 20 40 80 8 6 200 6 400 40 2 400 6 400 400 200 6 6 40 6 400 6 6 6 2 400 6 400 80 2 400 400 40 40 20 6 6 40 40 6 6 6 6 200 2 6 40 6 40 40 40 400 200 80 2 2 4 4 2 60 80 80 20 60 80 4
Total: 9932 = 22 x 13 x 191. SF: 208 = 24 x 13. SF: 21 = 3 x 7.
With the regular method of odd and even valued numbers the results are two totals that are multiples of 7. With the second method of odd/even from the first digit of a number, the results are two totals that are multiples of 13.
2.6.3There is a simple way of putting the first and last letters of each word together. This would be adding each pair.
15 91 120 60 201 240 40 320 13 42 130 16 4 100 90 80 36 80 140 31 13 60 15 31 110 51 90 6 11 13 106 106 11 201 8 90 7 50 20 430 16 91 21 110 45 406 76 500 406 30 25 201 15 11 6 11 12 60 98 80 201 22 39 42 300 30 40 300 60 88 206 33 15 55 406 45 402 406 405 205 12 16 16 39 45 406 95 96 76 14 36 402 95 76 480 402 6 40 310 35 490 110 60 15 46 51 90 6 11 13 106 106 11 201 8 90 7 31 80 340 15 490 205 140 87 71 110 4 8 62 150 100 110 4 110 67 87 14 10 77
2.6.3.1Odd valued totals:
15 91 201 13 31 13 15 31 51 11 13 11 201 7 91 21 45 25 201 15 11 11 201 39 33 15 55 45 405 205 39 45 95 95 35 15 51 11 13 11 201 7 31 15 205 87 71 67 87 77
Total: 3380 = 22 x 5 x 132. SF: 35 = 5 x 7.
2.6.3.2Even valued totals:
120 60 240 40 320 42 130 16 4 100 90 80 36 80 140 60 110 90 6 106 106 8 90 50 20 430 16 110 406 76 500 406 30 6 12 60 98 80 22 42 300 30 40 300 60 88 206 406 402 406 12 16 16 406 96 76 14 36 402 76 480 402 6 40 310 490 110 60 46 90 6 106 106 8 90 80 340 490 140 110 4 8 62 150 100 110 4 110 14 10
Total: 11908 = 22 x 13 x 229.
2.6.3.3Precisely 21 (3 x 7) of these pairs have totals that are divisible by 7.
a) 2 10 19 37 42 43 46 49 59 64 75 78 86 90 100 101 117 122 124 138 140 b) 1 2 100 1 1 20 400 400 90 2 6 6 6 5 30 90 1 90 90 10 7 c) 90 40 40 6 90 1 6 6 8 40 400 400 400 9 5 400 6 400 50 4 70 d) 91 42 140 7 91 21 406 406 98 42 406 406 406 14 35 490 7 490 140 14 77 a) Word position. b) First letter of word. c) Last letter of word. d) Total of the first and last letters of each word.
Total of the first letters (a): 1358 = 2 x 7 x 97. Total of the last letters (b): 2471 = 7 x 353.
2.6.3.4These are the same first and last letters of each word in the previous feature 2.6.3.3 where their values form a total divisible by 7, but with the additional information of their actual positions in the combined passage.
a) 4 35 68 129 147 150 160 173 212 225 262 280 314 331 367 372 431 447 454 494 498 b) 1 2 100 1 1 20 400 400 90 2 6 6 6 5 30 90 1 90 90 10 7 c) 6 37 71 132 149 153 163 177 213 227 265 282 319 334 371 376 434 451 457 496 501 d) 90 40 40 6 90 1 6 6 8 40 400 400 400 9 5 400 6 400 50 4 70 e) 10 72 139 261 296 303 323 350 425 452 527 562 633 665 738 748 865 898 911 990 999 f) 91 42 140 7 91 21 406 406 98 42 406 406 406 14 35 490 7 490 140 14 77 a) Position of the first letter of the word. b) Value of the first letter of the word. c) Position of the last letter of the word. d) Value of the last letter of the word. e) Total of the positions (a + c). f) Total of the letters (b + d).
The total of their positions in the passage (line e): 11167 = 13 x 859.
The computer scanned 6400 English phrases, and tried each of them with the Hebrew of Isaiah 18. It checked for 7 specific numeric features. Aside from checking the first and last letters of each word, it did not check for many of these features derived from those numbers. How is it possible that an English phrase matching 7 numeric features would end up with all these extra features? Like the section on Jesus, where the New Testament confirms Old Testament prophecy, it would seem this English phrase is supposed to go with Isaiah 18. It would seem America is the nation that is going to fall soon, and it would seem China is the nation that will honour God in the near future.
2.7Another feature the computer was not programmed to look at was the letters that were not first or last in a word. There are 223 of them.
a) 2 5 8 9 12 13 14 17 20 21 24 25 26 29 32 33 36 39 40 41 44 b) 6 200 30 90 50 80 10 300 70 2 50 5 200 6 300 30 10 10 200 10 2 a) 45 46 49 54 57 60 63 64 65 66 69 70 75 78 79 82 83 84 91 92 97 b) 20 30 40 50 10 20 30 1 20 10 30 10 6 40 300 40 6 200 6 200 6 a) 100 101 102 105 112 113 114 115 118 121 122 125 126 127 130 131 136 137 140 143 144 b) 5 30 1 6 40 2 6 60 300 7 1 5 200 10 200 90 300 2 2 300 20 a) 145 148 151 152 157 158 161 162 165 166 167 170 171 174 175 176 183 186 187 190 193 b) 50 200 50 300 200 10 200 1 20 400 100 6 80 300 40 70 40 5 6 30 300 a) 194 195 198 199 200 201 204 205 206 207 210 215 218 221 226 229 230 235 236 239 240 b) 100 9 1 2 10 9 40 20 6 50 8 30 6 70 8 90 10 80 50 90 10 a) 243 246 249 250 253 256 257 260 263 264 267 268 269 270 271 274 275 276 277 278 281 b) 400 200 2 60 40 5 10 90 20 200 7 30 7 30 10 40 7 40 200 6 1 a) 284 285 286 287 288 291 292 295 298 299 300 303 304 307 308 311 312 315 316 317 318 b) 50 9 10 300 6 60 10 400 70 7 2 8 4 70 10 200 10 30 2 5 40 a) 321 322 325 328 329 332 333 336 339 340 343 344 347 348 351 352 355 358 359 362 363 b) 1 200 100 30 10 70 10 20 5 40 1 200 30 10 8 200 70 5 10 6 2 a) 368 369 370 373 374 375 380 381 384 385 386 389 390 393 394 399 402 403 404 407 414 b) 10 5 6 2 1 6 40 300 40 6 200 40 70 6 200 6 5 30 1 6 40 a) 415 416 417 420 423 424 427 428 429 432 433 438 439 444 445 448 449 450 455 456 463 b) 2 6 60 300 7 1 5 200 10 200 90 100 6 5 6 2 1 6 10 6 10 a) 467 468 469 470 473 480 483 484 487 490 495 499 500 (Position of letter.) b) 70 80 60 300 5 7 7 30 10 30 60 70 80 (Letter value.)
Total of the positions that are not first or last in a word: 55172 = 22 x 13 x 1061. SF: 1078 = 2 x 72 x 11.
Total of the letters that are not first or last in a word: 14028 = 22 x 3 x 7 x 167.
2.7.1From the list of letter values (line b) in 2.7, the odd positioned:
6 30 50 10 70 50 200 300 10 200 2 30 50 20 1 10 10 40 40 200 200 5 1 40 6 300 1 200 200 300 2 20 200 300 10 1 400 6 300 70 5 30 100 1 10 40 6 8 6 8 10 50 10 200 60 5 90 200 30 30 40 40 6 50 10 6 10 70 2 4 10 10 2 40 200 30 70 20 40 200 10 200 5 6 10 6 1 40 40 200 70 200 5 1 40 6 300 1 200 200 100 5 2 6 6 70 60 5 7 10 60 80
Total: 7602 = 2 x 3 x 7 x 181. (This list is highly organized, with over 30 sub features.)
2.7.1.1 Odd positioned groups of 2 from 2.7.1: 6 30 70 50 10 200 50 20 10 40 200 5 6 300 200 300 200 300 400 6 5 30 10 40 6 8 10 200 90 200 40 40 10 6 2 4 2 40 70 20 10 200 10 6 40 200 5 1 300 1 100 5 6 70 7 10 Total: 4207 = 7 x 601. 2.7.1.2 Even positioned groups of 2 from 2.7.1: 50 10 200 300 2 30 1 10 40 200 1 40 1 200 2 20 10 1 300 70 100 1 6 8 10 50 60 5 30 30 6 50 10 70 10 10 200 30 40 200 5 6 1 40 70 200 40 6 200 200 2 6 60 5 60 80 Total: 3395 = 5 x 7 x 97. 2.7.1.2.1 Odd positioned groups of 8 from 2.7.1.2: 50 10 200 300 2 30 1 10 10 1 300 70 100 1 6 8 10 70 10 10 200 30 40 200 200 200 2 6 60 5 60 80 Total: 2282 = 2 x 7 x 163. 2.7.1.2.1.1 Odd positioned groups of 4 from 2.7.1.2.1: 50 10 200 300 10 1 300 70 10 70 10 10 200 200 2 6 Total: 1449 = 3 x 3 x 7 x 23. 2.7.1.2.1.2 Even positioned groups of 4 from 2.7.1.2.1: 2 30 1 10 100 1 6 8 200 30 40 200 60 5 60 80 Total: 833 = 7 x 7 x 17. 2.7.1.2.1.2.1 Odd positioned groups of 1 from 2.7.1.2.1.2: 2 1 100 6 200 40 60 60 Total: 469 = 7 x 67. 2.7.1.2.1.2.2 Even positioned groups of 1 from 2.7.1.2.1.2: 30 10 1 8 30 200 5 80 Total: 364 = 2 x 2 x 7 x 13. 2.7.1.2.1.2.2.1 First half of 4 from 2.7.1.2.1.2.2: 30 10 1 8 Total: 49 = 7 x 7. SF: 14 = 2 x 7. 2.7.1.2.1.2.2.2 Last half of 4 from 2.7.1.2.1.2.2: 30 200 5 80 Total: 315 = 3 x 3 x 5 x 7. 2.7.1.2.1.2.2.2.1 Odd positioned groups of 1 from 2.7.1.2.1.2.2.2: 30 5 Total: 35 = 5 x 7. 2.7.1.2.1.2.2.2.2 Even positioned groups of 1 from 2.7.1.2.1.2.2.2: 200 80 Total: 280 = 2 x 2 x 2 x 5 x 7. 2.7.1.2.1.3 First half of 16 from 2.7.1.2.1: 50 10 200 300 2 30 1 10 10 1 300 70 100 1 6 8 Total: 1099 = 7 x 157. 2.7.1.2.1.4 Last half of 16 from 2.7.1.2.1: 10 70 10 10 200 30 40 200 200 200 2 6 60 5 60 80 Total: 1183 = 7 x 13 x 13. 2.7.1.2.2 Even positioned groups of 8 from 2.7.1.2: 40 200 1 40 1 200 2 20 10 50 60 5 30 30 6 50 5 6 1 40 70 200 40 6 Total: 1113 = 3 x 7 x 53. SF: 63 = 3 x 3 x 7. SF: 13. 2.7.1.2.2.1 Odd positioned groups of 1 from 2.7.1.2.2: 40 1 1 2 10 60 30 6 5 1 70 40 Total: 266 = 2 x 7 x 19. SF: 28 = 2 x 2 x 7. 2.7.1.2.2.2 Even positioned groups of 1 from 2.7.1.2.2: 200 40 200 20 50 5 30 50 6 40 200 6 Total: 847 = 7 x 11 x 11. 2.7.1.2.2.2.1 Odd positioned groups of 1 from 2.7.1.2.2.2: 200 200 50 30 6 200 Total: 686 = 2 x 7 x 7 x 7. 2.7.1.2.2.2.2 Even positioned groups of 1 from 2.7.1.2.2.2: 40 20 5 50 40 6 Total: 161 = 7 x 23. 2.7.1.2.2.3 Odd positioned groups of 6 from 2.7.1.2.2: 40 200 1 40 1 200 30 30 6 50 5 6 Total: 609 = 3 x 7 x 29. SF: 39 = 3 x 13. 2.7.1.2.2.3.1 Odd positioned groups of 2 from 2.7.1.2.2.3: 40 200 1 200 6 50 Total: 497 = 7 x 71. SF: 78 = 2 x 3 x 13. 2.7.1.2.2.3.2 Even positioned groups of 2 from 2.7.1.2.2.3: 1 40 30 30 5 6 Total: 112 = 2 x 2 x 2 x 2 x 7. 2.7.1.2.2.4 Even positioned groups of 6 from 2.7.1.2.2: 2 20 10 50 60 5 1 40 70 200 40 6 Total: 504 = 2 x 2 x 2 x 3 x 3 x 7. 2.7.1.2.2.4.1 Odd positioned groups of 2 from 2.7.1.2.2.4: 2 20 60 5 70 200 Total: 357 = 3 x 7 x 17. 2.7.1.2.2.4.2 Even positioned groups of 2 from 2.7.1.2.2.4: 10 50 1 40 40 6 Total: 147 = 3 x 7 x 7. 2.7.1.2.2.4.3 First half of 6 from 2.7.1.2.2.4: 1 40 70 200 40 6 Total: 357 = 3 x 7 x 17. 2.7.1.2.2.4.4 Last half of 6 from 2.7.1.2.2.4: 2 20 10 50 60 5 Total: 147 = 3 x 7 x 7. 2.7.1.3 Odd positioned groups of 8 from 2.7.1: 6 30 50 10 70 50 200 300 10 40 40 200 200 5 1 40 200 300 10 1 400 6 300 70 6 8 10 50 10 200 60 5 10 6 10 70 2 4 10 10 10 200 5 6 10 6 1 40 300 1 200 200 100 5 2 6 Total: 4102 = 2 x 7 x 293. 2.7.1.3.1 Odd positioned groups of 1 from 2.7.1.3: 6 50 70 200 10 40 200 1 200 10 400 300 6 10 10 60 10 10 2 10 10 5 10 1 300 200 100 2 Total: 2233 = 7 x 11 x 29. 2.7.1.3.2 Even positioned groups of 1 from 2.7.1.3: 30 10 50 300 40 200 5 40 300 1 6 70 8 50 200 5 6 70 4 10 200 6 6 40 1 200 5 6 Total: 1869 = 3 x 7 x 89. 2.7.1.3.2.1 Odd positioned groups of 1 from 2.7.1.3.2: 30 50 40 5 300 6 8 200 6 4 200 6 1 5 Total: 861 = 3 x 7 x 41. 2.7.1.3.2.2 Even positioned groups of 1 from 2.7.1.3.2: 10 300 200 40 1 70 50 5 70 10 6 40 200 6 Total: 1008 = 2 x 2 x 2 x 2 x 3 x 3 x 7. SF: 21 = 3 x 7. 2.7.1.3.3 Odd positioned groups of 7 from 2.7.1.3: 6 30 50 10 70 50 200 1 40 200 300 10 1 400 10 200 60 5 10 6 10 5 6 10 6 1 40 300 Total: 2037 = 3 x 7 x 97. 2.7.1.3.4 Even positioned groups of 7 from 2.7.1.3: 300 10 40 40 200 200 5 6 300 70 6 8 10 50 70 2 4 10 10 10 200 1 200 200 100 5 2 6 Total: 2065 = 5 x 7 x 59. 2.7.1.4 Even positioned groups of 8 from 2.7.1: 10 200 2 30 50 20 1 10 6 300 1 200 200 300 2 20 5 30 100 1 10 40 6 8 90 200 30 30 40 40 6 50 2 40 200 30 70 20 40 200 40 200 70 200 5 1 40 6 6 70 60 5 7 10 60 80 Total: 3500 = 2 x 2 x 5 x 5 x 5 x 7. SF: 26 = 2 x 13.
2.7.2From the list of letter values (line b) in 2.7, the even positioned:
200 90 80 300 2 5 6 30 10 10 20 40 10 30 20 30 6 300 6 6 6 30 6 2 60 7 5 10 90 2 300 50 50 200 200 20 100 80 40 40 6 300 9 2 9 20 50 30 70 90 80 90 400 2 40 10 20 7 7 10 7 200 1 9 300 60 400 7 8 70 200 30 5 1 100 10 10 5 1 30 8 70 10 2 5 2 6 300 6 40 6 6 30 6 2 60 7 5 10 90 6 6 1 10 10 80 300 7 30 30 70
Total: 6426 = 2 x 33 x 7 x 17. SF: 35 = 5 x 7. (This list has no additional features like 2.7.1, demonstrating its opposite nature to 2.7.1.)
2.7.3The difference between 2.7.1 and 2.7.2 has an extra factor of 7: 1176 = 23 x 3 x 72.
The 501 Letters
3Having examined the letters that were first or last in a word, and then looked at letters that were not first or last, now attention turns to all the letters.
3.1Odd positioned letters: 15078 = 2 x 3 x 7 x 359. SF: 371 = 7 x 53.
3.2Even positioned letters: 14231 = 7 x 19 x 107. SF: 133 = 7 x 19. SF: 26 = 2 x 13.
3.3Difference between the odd and even positioned letters: 847 = 7 x 112.
3.4Dividing the letters by their odd or even values into two groups produces nothing. However, the positions of the odd valued letters does have a feature. The total of their positions: 28002 = 2 x 3 x 13 x 359. SF: 377 = 13 x 29. SF: 42 = 2 x 3 x 7.
3.5Since odd or even valued letters are based on the last digit and turned up only half a feature, we turn to the first digit of each letter value.
3.5.1Letters with a first digit that is odd: 12201 = 3 x 72 x 83.
3.5.2Letters with a first digit that is even: 17108 = 22 x 7 x 13 x 47.
3.6Every Nth letter added together yields a total divisible by 13 when N is one of the following values:
8 23 31 36 38 40 45 48 50 73 92 98 99 103 114 134 151 205 212 226 227 236
Total of N: 2289 = 3 x 7 x 109. SF: 119 = 7 x 17.
Curiously, the first half of the list of N values totals 484 (22 x 112).
The last half of the list totals 1805 (5 x 192).
Eleven and nineteen are both factors of China (中國), and they both occur twice.
3.7Over a hundred and thirty sub-features can be extracted from the 501 letters.
3.7.1 Odd positioned groups of 1 from 3.7: 5 10 200 90 90 20 80 40 300 40 2 30 5 10 6 5 30 2 40 10 10 6 20 10 40 70 80 10 10 30 6 30 20 40 30 40 30 6 40 300 6 6 9 30 40 6 1 50 6 6 30 5 6 100 100 6 2 60 1 200 7 6 5 10 1 90 20 10 2 400 30 300 50 1 90 50 1 60 200 40 200 6 20 100 300 80 400 40 6 10 5 40 10 6 1 10 300 9 6 2 9 2 20 50 20 40 8 30 1 200 70 9 2 40 90 200 10 80 10 90 200 400 80 8 2 200 40 10 10 50 5 20 400 7 7 10 2 7 200 400 1 5 9 300 400 60 200 400 10 7 6 8 6 70 9 200 40 30 5 400 1 90 100 70 10 5 10 6 30 5 400 1 90 30 6 8 80 70 5 10 10 2 300 30 5 5 2 6 70 40 300 6 6 9 40 40 6 1 50 6 6 30 5 6 100 100 6 2 60 1 200 7 6 5 10 1 90 1 40 6 300 10 6 90 1 400 200 10 50 7 1 10 2 70 60 4 5 80 80 100 10 7 1 10 7 60 7 60 5 70 70 Total: 15078 = 2 x 3 x 7 x 359. SF: 371 = 7 x 53. 3.7.2 Even positioned groups of 1 from 3.7: 6 1 90 30 30 50 10 1 200 70 200 50 200 20 300 300 8 10 90 200 40 2 30 3 1 30 50 40 40 20 40 1 10 100 10 1 3 10 40 20 40 200 1 70 50 200 40 5 1 5 1 3 10 6 6 40 6 5 300 2 1 50 200 40 200 6 30 300 10 2 6 20 10 200 20 300 50 5 10 400 1 6 400 70 6 200 300 70 20 20 1 200 5 5 30 1 100 5 1 10 5 40 6 10 8 90 70 10 6 20 2 30 8 100 10 20 30 50 100 10 20 40 200 6 60 3 30 5 5 90 6 200 5 30 30 40 40 40 6 6 400 50 10 6 5 10 5 7 70 2 10 4 30 10 5 10 6 2 40 5 200 6 90 30 6 70 9 20 2 40 5 200 70 10 400 200 2 400 5 1 6 30 10 10 6 90 1 400 40 40 20 40 200 6 70 50 200 40 5 1 5 1 3 10 6 6 40 6 5 300 2 1 50 200 40 200 6 30 100 40 40 5 5 2 6 5 90 6 80 70 100 10 4 80 300 2 60 70 20 7 3 30 100 10 30 80 10 4 7 80 Total: 14231 = 7 x 19 x 107. SF: 133 = 7 x 19. SF: 26 = 2 x 13. 3.7.3 Odd positioned groups of 3 from 3.7: 1 200 90 30 20 50 1 300 200 200 30 50 20 6 300 8 2 10 200 10 40 30 10 3 30 80 50 40 30 20 1 20 10 10 40 1 10 40 40 40 6 200 70 40 50 40 50 5 5 30 1 10 100 6 40 2 6 300 200 2 50 5 200 200 90 6 300 2 10 6 300 20 200 90 20 50 60 5 400 200 1 400 100 70 200 400 300 20 10 20 200 10 5 30 10 1 5 6 1 5 2 40 10 20 8 70 30 10 20 70 2 8 40 100 20 10 30 100 90 10 40 80 200 60 200 3 5 10 5 6 20 200 30 7 30 40 7 40 6 1 400 10 300 6 10 200 5 70 7 2 4 6 30 5 200 10 2 5 40 200 90 6 30 10 6 9 6 20 40 400 5 70 30 10 200 80 2 5 10 1 30 300 10 6 5 90 400 70 40 20 6 40 6 40 70 200 1 40 1 6 5 3 6 10 6 6 40 5 1 300 1 6 50 40 1 200 30 40 100 40 10 5 2 1 6 90 10 6 70 1 100 4 70 80 2 5 60 20 100 7 30 1 100 30 60 80 4 5 7 Total: 14903 = 7 x 2129. 3.7.4 Even positioned groups of 3 from 3.7: 5 6 10 90 30 90 80 10 40 40 70 2 5 200 10 5 300 30 40 90 10 6 2 20 40 1 70 10 40 10 6 40 30 40 100 30 30 3 6 300 20 6 9 1 30 6 200 1 6 1 6 5 3 6 100 6 6 60 5 1 7 1 6 10 40 1 20 30 10 400 2 30 50 10 1 50 300 1 200 10 40 6 6 20 300 6 80 40 70 6 5 1 40 6 5 1 300 100 9 2 10 9 20 6 50 40 90 8 1 6 200 9 30 2 90 10 200 80 50 10 200 20 400 8 6 2 40 30 10 50 90 5 400 5 7 10 40 2 200 6 400 5 50 9 400 5 60 400 7 10 6 10 8 70 10 9 40 6 30 400 5 1 100 90 70 5 70 10 30 2 5 1 200 90 6 400 8 70 400 5 10 6 2 30 10 5 2 1 6 40 40 300 6 200 9 40 50 6 50 5 6 30 1 5 100 6 100 2 6 60 200 2 7 5 200 10 90 6 1 6 40 300 6 5 90 400 5 200 50 80 7 10 10 2 60 300 4 80 70 80 10 3 7 10 10 7 7 10 60 70 80 70 Total: 14406 = 2 x 3 x 7 x 7 x 7 x 7. 3.7.4.1 Odd positioned groups of 21 from 3.7.4: 5 6 10 90 30 90 80 10 40 40 70 2 5 200 10 5 300 30 40 90 10 9 1 30 6 200 1 6 1 6 5 3 6 100 6 6 60 5 1 7 1 6 300 6 80 40 70 6 5 1 40 6 5 1 300 100 9 2 10 9 20 6 50 40 30 10 50 90 5 400 5 7 10 40 2 200 6 400 5 50 9 400 5 60 30 2 5 1 200 90 6 400 8 70 400 5 10 6 2 30 10 5 2 1 6 200 2 7 5 200 10 90 6 1 6 40 300 6 5 90 400 5 200 50 80 7 Total: 7518 = 2 x 3 x 7 x 179. 3.7.4.1.1 First half of 63 from 3.7.4.1: 40 30 10 50 90 5 400 5 7 10 40 2 200 6 400 5 50 9 400 5 60 30 2 5 1 200 90 6 400 8 70 400 5 10 6 2 30 10 5 2 1 6 200 2 7 5 200 10 90 6 1 6 40 300 6 5 90 400 5 200 50 80 7 Total: 4823 = 7 x 13 x 53. 3.7.4.1.1.1 Odd positioned groups of 1 from 3.7.4.1.1: 40 10 90 400 7 40 200 400 50 400 60 2 1 90 400 70 5 6 30 5 1 200 7 200 90 1 40 6 90 5 50 7 Total: 3003 = 3 x 7 x 11 x 13. 3.7.4.1.1.1.1 Odd positioned groups of 2 from 3.7.4.1.1.1: 40 10 7 40 50 400 1 90 5 6 1 200 90 1 90 5 Total: 1036 = 2 x 2 x 7 x 37. 3.7.4.1.1.1.1.1 Odd positioned groups of 2 from 3.7.4.1.1.1.1: 40 10 50 400 5 6 90 1 Total: 602 = 2 x 7 x 43. SF: 52 = 2 x 2 x 13. 3.7.4.1.1.1.1.2 Even positioned groups of 2 from 3.7.4.1.1.1.1: 7 40 1 90 1 200 90 5 Total: 434 = 2 x 7 x 31. 3.7.4.1.1.1.2 Even positioned groups of 2 from 3.7.4.1.1.1: 90 400 200 400 60 2 400 70 30 5 7 200 40 6 50 7 Total: 1967 = 7 x 281. 3.7.4.1.1.1.3 Odd positioned groups of 4 from 3.7.4.1.1.1: 40 10 90 400 50 400 60 2 5 6 30 5 90 1 40 6 Total: 1235 = 5 x 13 x 19. 3.7.4.1.1.1.4 Even positioned groups of 4 from 3.7.4.1.1.1: 7 40 200 400 1 90 400 70 1 200 7 200 90 5 50 7 Total: 1768 = 2 x 2 x 2 x 13 x 17. 3.7.4.1.1.2 Even positioned groups of 1 from 3.7.4.1.1: 30 50 5 5 10 2 6 5 9 5 30 5 200 6 8 400 10 2 10 2 6 2 5 10 6 6 300 5 400 200 80 Total: 1820 = 2 x 2 x 5 x 7 x 13. 3.7.4.1.2 Last half of 63 from 3.7.4.1: 5 6 10 90 30 90 80 10 40 40 70 2 5 200 10 5 300 30 40 90 10 9 1 30 6 200 1 6 1 6 5 3 6 100 6 6 60 5 1 7 1 6 300 6 80 40 70 6 5 1 40 6 5 1 300 100 9 2 10 9 20 6 50 Total: 2695 = 5 x 7 x 7 x 11. 3.7.4.2 Even positioned groups of 21 from 3.7.4: 6 2 20 40 1 70 10 40 10 6 40 30 40 100 30 30 3 6 300 20 6 10 40 1 20 30 10 400 2 30 50 10 1 50 300 1 200 10 40 6 6 20 40 90 8 1 6 200 9 30 2 90 10 200 80 50 10 200 20 400 8 6 2 400 7 10 6 10 8 70 10 9 40 6 30 400 5 1 100 90 70 5 70 10 40 40 300 6 200 9 40 50 6 50 5 6 30 1 5 100 6 100 2 6 60 10 10 2 60 300 4 80 70 80 10 3 7 10 10 7 7 10 60 70 80 70 Total: 6888 = 2 x 2 x 2 x 3 x 7 x 41. 3.7.4.2.1 Odd positioned groups of 1 from 3.7.4.2: 6 20 1 10 10 40 40 30 3 300 6 40 20 10 2 50 1 300 200 40 6 40 8 6 9 2 10 80 10 20 8 2 7 6 8 10 40 30 5 100 70 70 40 300 200 40 6 5 30 5 6 2 60 10 60 4 70 10 7 10 7 60 80 Total: 2688 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 3 x 7. 3.7.4.2.1.1 Odd positioned groups of 1 from 3.7.4.2.1: 6 1 10 40 3 6 20 2 1 200 6 8 9 10 10 8 7 8 40 5 70 40 200 6 30 6 60 60 70 7 7 80 Total: 1036 = 2 x 2 x 7 x 37. 3.7.4.2.1.2 Even positioned groups of 1 from 3.7.4.2.1: 20 10 40 30 300 40 10 50 300 40 40 6 2 80 20 2 6 10 30 100 70 300 40 5 5 2 10 4 10 10 60 Total: 1652 = 2 x 2 x 7 x 59. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7. 3.7.4.2.1.3 Odd positioned groups of 7 from 3.7.4.2.1: 6 20 1 10 10 40 40 2 50 1 300 200 40 6 10 20 8 2 7 6 8 40 300 200 40 6 5 30 70 10 7 10 7 60 80 Total: 1652 = 2 x 2 x 7 x 59. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7. 3.7.4.2.1.4 Even positioned groups of 7 from 3.7.4.2.1: 30 3 300 6 40 20 10 40 8 6 9 2 10 80 10 40 30 5 100 70 70 5 6 2 60 10 60 4 Total: 1036 = 2 x 2 x 7 x 37. 3.7.4.2.2 Even positioned groups of 1 from 3.7.4.2: 2 40 70 40 6 30 100 30 6 20 10 1 30 400 30 10 50 1 10 6 20 90 1 200 30 90 200 50 200 400 6 400 10 10 70 9 6 400 1 90 5 10 40 6 9 50 50 6 1 100 100 6 10 2 300 80 80 3 10 7 10 70 70 Total: 4200 = 2 x 2 x 2 x 3 x 5 x 5 x 7. SF: 26 = 2 x 13. 3.7.4.2.3 Odd positioned groups of 7 from 3.7.4.2: 6 2 20 40 1 70 10 30 30 3 6 300 20 6 2 30 50 10 1 50 300 40 90 8 1 6 200 9 10 200 20 400 8 6 2 10 9 40 6 30 400 5 40 40 300 6 200 9 40 5 100 6 100 2 6 60 70 80 10 3 7 10 10 Total: 3591 = 3 x 3 x 3 x 7 x 19. SF: 35 = 5 x 7. 3.7.4.2.3.1 Odd positioned groups of 3 from 3.7.4.2.3: 40 1 70 3 6 300 30 50 10 40 90 8 9 10 200 6 2 10 30 400 5 6 200 9 6 100 2 80 10 3 Total: 1736 = 2 x 2 x 2 x 7 x 31. 3.7.4.2.3.2 Even positioned groups of 3 from 3.7.4.2.3: 6 2 20 10 30 30 20 6 2 1 50 300 1 6 200 20 400 8 9 40 6 40 40 300 40 5 100 6 60 70 7 10 10 Total: 1855 = 5 x 7 x 53. SF: 65 = 5 x 13. 3.7.4.2.3.2.1 Odd positioned groups of 1 from 3.7.4.2.3.2: 6 20 30 20 2 50 1 200 400 9 6 40 40 100 60 7 10 Total: 1001 = 7 x 11 x 13. 3.7.4.2.3.2.2 Even positioned groups of 1 from 3.7.4.2.3.2: 2 10 30 6 1 300 6 20 8 40 40 300 5 6 70 10 Total: 854 = 2 x 7 x 61. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7. 3.7.4.2.3.2.3 Odd positioned groups of 3 from 3.7.4.2.3.2: 10 30 30 1 50 300 20 400 8 40 40 300 6 60 70 Total: 1365 = 3 x 5 x 7 x 13. SF: 28 = 2 x 2 x 7. 3.7.4.2.3.2.3.1 Odd positioned groups of 1 from 3.7.4.2.3.2.3: 10 30 50 20 8 40 6 70 Total: 234 = 2 x 3 x 3 x 13. SF: 21 = 3 x 7. 3.7.4.2.3.2.3.2 Even positioned groups of 1 from 3.7.4.2.3.2.3: 30 1 300 400 40 300 60 Total: 1131 = 3 x 13 x 29. 3.7.4.2.3.2.4 Even positioned groups of 3 from 3.7.4.2.3.2: 6 2 20 20 6 2 1 6 200 9 40 6 40 5 100 7 10 10 Total: 490 = 2 x 5 x 7 x 7. SF: 21 = 3 x 7. 3.7.4.2.4 Even positioned groups of 7 from 3.7.4.2: 40 10 6 40 30 40 100 10 40 1 20 30 10 400 1 200 10 40 6 6 20 30 2 90 10 200 80 50 400 7 10 6 10 8 70 1 100 90 70 5 70 10 50 6 50 5 6 30 1 10 10 2 60 300 4 80 7 7 10 60 70 80 70 Total: 3297 = 3 x 7 x 157. 3.7.4.2.4.1 Odd positioned groups of 7 from 3.7.4.2.4: 40 10 6 40 30 40 100 1 200 10 40 6 6 20 400 7 10 6 10 8 70 50 6 50 5 6 30 1 7 7 10 60 70 80 70 Total: 1512 = 2 x 2 x 2 x 3 x 3 x 3 x 7. 3.7.4.2.4.2 Even positioned groups of 7 from 3.7.4.2.4: 10 40 1 20 30 10 400 30 2 90 10 200 80 50 1 100 90 70 5 70 10 10 10 2 60 300 4 80 Total: 1785 = 3 x 5 x 7 x 17. 3.7.4.2.4.2.1 First half of 14 from 3.7.4.2.4.2: 1 100 90 70 5 70 10 10 10 2 60 300 4 80 Total: 812 = 2 x 2 x 7 x 29. 3.7.4.2.4.2.2 Last half of 14 from 3.7.4.2.4.2: 10 40 1 20 30 10 400 30 2 90 10 200 80 50 Total: 973 = 7 x 139. 3.7.4.2.4.2.2.1 First half of 7 from 3.7.4.2.4.2.2: 30 2 90 10 200 80 50 Total: 462 = 2 x 3 x 7 x 11. 3.7.4.2.4.2.2.2 Last half of 7 from 3.7.4.2.4.2.2: 10 40 1 20 30 10 400 Total: 511 = 7 x 73. 3.7.4.2.4.2.2.2.1 Odd positioned groups of 1 from 3.7.4.2.4.2.2.2: 10 1 30 400 Total: 441 = 3 x 3 x 7 x 7. 3.7.4.2.4.2.2.2.2 Even positioned groups of 1 from 3.7.4.2.4.2.2.2: 40 20 10 Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7. 3.7.4.2.5 Odd positioned groups of 9 from 3.7.4.2: 6 2 20 40 1 70 10 40 10 300 20 6 10 40 1 20 30 10 200 10 40 6 6 20 40 90 8 80 50 10 200 20 400 8 6 2 40 6 30 400 5 1 100 90 70 40 50 6 50 5 6 30 1 5 60 300 4 80 70 80 10 3 7 Total: 3381 = 3 x 7 x 7 x 23. 3.7.4.2.5.1 Odd positioned groups of 1 from 3.7.4.2.5: 6 20 1 10 10 20 10 1 30 200 40 6 40 8 50 200 400 6 40 30 5 100 70 50 50 6 1 60 4 70 10 7 Total: 1561 = 7 x 223. 3.7.4.2.5.2 Even positioned groups of 1 from 3.7.4.2.5: 2 40 70 40 300 6 40 20 10 10 6 20 90 80 10 20 8 2 6 400 1 90 40 6 5 30 5 300 80 80 3 Total: 1820 = 2 x 2 x 5 x 7 x 13. 3.7.4.2.5.2.1 Odd positioned groups of 1 from 3.7.4.2.5.2: 2 70 300 40 10 6 90 10 8 6 1 40 5 5 80 3 Total: 676 = 2 x 2 x 13 x 13. 3.7.4.2.5.2.2 Even positioned groups of 1 from 3.7.4.2.5.2: 40 40 6 20 10 20 80 20 2 400 90 6 30 300 80 Total: 1144 = 2 x 2 x 2 x 11 x 13. 3.7.4.2.5.2.2.1 Odd positioned groups of 1 from 3.7.4.2.5.2.2: 40 6 10 80 2 90 30 80 Total: 338 = 2 x 13 x 13. SF: 28 = 2 x 2 x 7. 3.7.4.2.5.2.2.2 Even positioned groups of 1 from 3.7.4.2.5.2.2: 40 20 20 20 400 6 300 Total: 806 = 2 x 13 x 31. 3.7.4.2.5.2.2.3 Odd positioned groups of 3 from 3.7.4.2.5.2.2: 20 10 20 400 90 6 Total: 546 = 2 x 3 x 7 x 13. 3.7.4.2.5.2.2.3.1 Odd positioned groups of 1 from 3.7.4.2.5.2.2.3: 20 20 90 Total: 130 = 2 x 5 x 13. 3.7.4.2.5.2.2.3.2 Even positioned groups of 1 from 3.7.4.2.5.2.2.3: 10 400 6 Total: 416 = 2 x 2 x 2 x 2 x 2 x 13. 3.7.4.2.5.2.2.3.3 Odd positioned groups of 2 from 3.7.4.2.5.2.2.3: 20 10 90 6 Total: 126 = 2 x 3 x 3 x 7. 3.7.4.2.5.2.2.3.4 Even positioned groups of 2 from 3.7.4.2.5.2.2.3: 20 400 Total: 420 = 2 x 2 x 3 x 5 x 7. 3.7.4.2.5.2.2.4 Even positioned groups of 3 from 3.7.4.2.5.2.2: 40 40 6 80 20 2 30 300 80 Total: 598 = 2 x 13 x 23. 3.7.4.2.5.3 Odd positioned groups of 21 from 3.7.4.2.5: 6 2 20 40 1 70 10 40 10 300 20 6 10 40 1 20 30 10 200 10 40 100 90 70 40 50 6 50 5 6 30 1 5 60 300 4 80 70 80 10 3 7 Total: 1953 = 3 x 3 x 7 x 31. 3.7.4.2.5.3.1 Odd positioned groups of 1 from 3.7.4.2.5.3: 6 20 1 10 10 20 10 1 30 200 40 90 40 6 5 30 5 300 80 80 3 Total: 987 = 3 x 7 x 47. 3.7.4.2.5.3.2 Even positioned groups of 1 from 3.7.4.2.5.3: 2 40 70 40 300 6 40 20 10 10 100 70 50 50 6 1 60 4 70 10 7 Total: 966 = 2 x 3 x 7 x 23. SF: 35 = 5 x 7. 3.7.4.2.5.3.3 Odd positioned groups of 2 from 3.7.4.2.5.3: 6 2 1 70 10 300 10 40 30 10 40 100 40 50 5 6 5 60 80 70 3 7 Total: 945 = 3 x 3 x 3 x 5 x 7. SF: 21 = 3 x 7. 3.7.4.2.5.3.4 Even positioned groups of 2 from 3.7.4.2.5.3: 20 40 10 40 20 6 1 20 200 10 90 70 6 50 30 1 300 4 80 10 Total: 1008 = 2 x 2 x 2 x 2 x 3 x 3 x 7. SF: 21 = 3 x 7. 3.7.4.2.5.4 Even positioned groups of 21 from 3.7.4.2.5: 6 6 20 40 90 8 80 50 10 200 20 400 8 6 2 40 6 30 400 5 1 Total: 1428 = 2 x 2 x 3 x 7 x 17. 3.7.4.2.6 Even positioned groups of 9 from 3.7.4.2: 6 40 30 40 100 30 30 3 6 400 2 30 50 10 1 50 300 1 1 6 200 9 30 2 90 10 200 400 7 10 6 10 8 70 10 9 5 70 10 40 40 300 6 200 9 100 6 100 2 6 60 10 10 2 10 10 7 7 10 60 70 80 70 Total: 3507 = 3 x 7 x 167. 3.7.4.3 Odd positioned groups of 63 from 3.7.4: 5 6 10 90 30 90 80 10 40 40 70 2 5 200 10 5 300 30 40 90 10 6 2 20 40 1 70 10 40 10 6 40 30 40 100 30 30 3 6 300 20 6 9 1 30 6 200 1 6 1 6 5 3 6 100 6 6 60 5 1 7 1 6 40 30 10 50 90 5 400 5 7 10 40 2 200 6 400 5 50 9 400 5 60 400 7 10 6 10 8 70 10 9 40 6 30 400 5 1 100 90 70 5 70 10 30 2 5 1 200 90 6 400 8 70 400 5 10 6 2 30 10 5 2 1 6 Total: 6909 = 3 x 7 x 7 x 47. 3.7.4.3.1 Odd positioned groups of 6 from 3.7.4.3: 80 10 40 40 70 2 40 90 10 6 2 20 6 40 30 40 100 30 9 1 30 6 200 1 100 6 6 60 5 1 50 90 5 400 5 7 5 50 9 400 5 60 70 10 9 40 6 30 5 70 10 30 2 5 70 400 5 10 6 2 Total: 2947 = 7 x 421. 3.7.4.3.2 Even positioned groups of 6 from 3.7.4.3: 5 6 10 90 30 90 5 200 10 5 300 30 40 1 70 10 40 10 30 3 6 300 20 6 6 1 6 5 3 6 7 1 6 40 30 10 10 40 2 200 6 400 400 7 10 6 10 8 400 5 1 100 90 70 1 200 90 6 400 8 30 10 5 2 1 6 Total: 3962 = 2 x 7 x 283. 3.7.4.3.2.1 Odd positioned groups of 2 from 3.7.4.3.2: 5 6 30 90 10 5 40 1 40 10 6 300 6 1 3 6 6 40 10 40 6 400 10 6 400 5 90 70 90 6 30 10 1 6 Total: 1785 = 3 x 5 x 7 x 17. 3.7.4.3.2.1.1 Odd positioned groups of 2 from 3.7.4.3.2.1: 5 6 10 5 40 10 6 1 6 40 6 400 400 5 90 6 1 6 Total: 1043 = 7 x 149. SF: 156 = 2 x 2 x 3 x 13. 3.7.4.3.2.1.2 Even positioned groups of 2 from 3.7.4.3.2.1: 30 90 40 1 6 300 3 6 10 40 10 6 90 70 30 10 Total: 742 = 2 x 7 x 53. 3.7.4.3.2.1.2.1 First half of 8 from 3.7.4.3.2.1.2: 30 90 40 1 6 300 3 6 Total: 476 = 2 x 2 x 7 x 17. SF: 28 = 2 x 2 x 7. 3.7.4.3.2.1.2.1.1 First half of 4 from 3.7.4.3.2.1.2.1: 30 90 40 1 Total: 161 = 7 x 23. 3.7.4.3.2.1.2.1.1.1 Odd positioned groups of 1 from 3.7.4.3.2.1.2.1.1: 30 40 Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7. 3.7.4.3.2.1.2.1.1.2 Even positioned groups of 1 from 3.7.4.3.2.1.2.1.1: 90 1 Total: 91 = 7 x 13. 3.7.4.3.2.1.2.1.2 Last half of 4 from 3.7.4.3.2.1.2.1: 6 300 3 6 Total: 315 = 3 x 3 x 5 x 7. 3.7.4.3.2.1.2.2 Last half of 8 from 3.7.4.3.2.1.2: 10 40 10 6 90 70 30 10 Total: 266 = 2 x 7 x 19. SF: 28 = 2 x 2 x 7. 3.7.4.3.2.1.2.2.1 Odd positioned groups of 1 from 3.7.4.3.2.1.2.2: 10 10 90 30 Total: 140 = 2 x 2 x 5 x 7. 3.7.4.3.2.1.2.2.2 Even positioned groups of 1 from 3.7.4.3.2.1.2.2: 40 6 70 10 Total: 126 = 2 x 3 x 3 x 7. 3.7.4.3.2.1.2.2.3 Odd positioned groups of 2 from 3.7.4.3.2.1.2.2: 10 40 90 70 Total: 210 = 2 x 3 x 5 x 7. 3.7.4.3.2.1.2.2.4 Even positioned groups of 2 from 3.7.4.3.2.1.2.2: 10 6 30 10 Total: 56 = 2 x 2 x 2 x 7. SF: 13. 3.7.4.3.2.2 Even positioned groups of 2 from 3.7.4.3.2: 10 90 5 200 300 30 70 10 30 3 20 6 6 5 7 1 30 10 2 200 400 7 10 8 1 100 1 200 400 8 5 2 Total: 2177 = 7 x 311. 3.7.4.3.2.3 Odd positioned groups of 3 from 3.7.4.3.2: 90 30 90 5 300 30 10 40 10 300 20 6 5 3 6 40 30 10 200 6 400 6 10 8 100 90 70 6 400 8 2 1 6 Total: 2338 = 2 x 7 x 167. 3.7.4.3.2.4 Even positioned groups of 3 from 3.7.4.3.2: 5 6 10 5 200 10 40 1 70 30 3 6 6 1 6 7 1 6 10 40 2 400 7 10 400 5 1 1 200 90 30 10 5 Total: 1624 = 2 x 2 x 2 x 7 x 29. SF: 42 = 2 x 3 x 7. 3.7.4.3.2.5 Odd positioned groups of 11 from 3.7.4.3.2: 5 6 10 90 30 90 5 200 10 5 300 20 6 6 1 6 5 3 6 7 1 6 10 6 10 8 400 5 1 100 90 70 1 Total: 1519 = 7 x 7 x 31. 3.7.4.3.2.6 Even positioned groups of 11 from 3.7.4.3.2: 30 40 1 70 10 40 10 30 3 6 300 40 30 10 10 40 2 200 6 400 400 7 200 90 6 400 8 30 10 5 2 1 6 Total: 2443 = 7 x 349. 3.7.4.3.2.6.1 Odd positioned groups of 3 from 3.7.4.3.2.6: 70 10 40 6 300 40 40 2 200 7 200 90 30 10 5 Total: 1050 = 2 x 3 x 5 x 5 x 7. 3.7.4.3.2.6.2 Even positioned groups of 3 from 3.7.4.3.2.6: 30 40 1 10 30 3 30 10 10 6 400 400 6 400 8 2 1 6 Total: 1393 = 7 x 199. 3.7.4.3.2.6.2.1 Odd positioned groups of 2 from 3.7.4.3.2.6.2: 30 40 30 3 10 6 6 400 1 6 Total: 532 = 2 x 2 x 7 x 19. 3.7.4.3.2.6.2.1.1 Odd positioned groups of 1 from 3.7.4.3.2.6.2.1: 30 30 10 6 1 Total: 77 = 7 x 11. 3.7.4.3.2.6.2.1.2 Even positioned groups of 1 from 3.7.4.3.2.6.2.1: 40 3 6 400 6 Total: 455 = 5 x 7 x 13. 3.7.4.3.2.6.2.1.2.1 Odd positioned groups of 1 from 3.7.4.3.2.6.2.1.2: 40 6 6 Total: 52 = 2 x 2 x 13. 3.7.4.3.2.6.2.1.2.2 Even positioned groups of 1 from 3.7.4.3.2.6.2.1.2: 3 400 Total: 403 = 13 x 31. 3.7.4.3.2.6.2.2 Even positioned groups of 2 from 3.7.4.3.2.6.2: 1 10 30 10 400 400 8 2 Total: 861 = 3 x 7 x 41. 3.7.4.3.2.7 First half of 33 from 3.7.4.3.2: 40 30 10 10 40 2 200 6 400 400 7 10 6 10 8 400 5 1 100 90 70 1 200 90 6 400 8 30 10 5 2 1 6 Total: 2604 = 2 x 2 x 3 x 7 x 31. 3.7.4.3.2.7.1 Odd positioned groups of 3 from 3.7.4.3.2.7: 10 40 2 400 7 10 400 5 1 1 200 90 30 10 5 Total: 1211 = 7 x 173. 3.7.4.3.2.7.2 Even positioned groups of 3 from 3.7.4.3.2.7: 40 30 10 200 6 400 6 10 8 100 90 70 6 400 8 2 1 6 Total: 1393 = 7 x 199. 3.7.4.3.2.7.2.1 Odd positioned groups of 1 from 3.7.4.3.2.7.2: 40 10 6 6 8 90 6 8 1 Total: 175 = 5 x 5 x 7. 3.7.4.3.2.7.2.2 Even positioned groups of 1 from 3.7.4.3.2.7.2: 30 200 400 10 100 70 400 2 6 Total: 1218 = 2 x 3 x 7 x 29. 3.7.4.3.2.7.2.3 Odd positioned groups of 3 from 3.7.4.3.2.7.2: 200 6 400 100 90 70 2 1 6 Total: 875 = 5 x 5 x 5 x 7. 3.7.4.3.2.7.2.4 Even positioned groups of 3 from 3.7.4.3.2.7.2: 40 30 10 6 10 8 6 400 8 Total: 518 = 2 x 7 x 37. 3.7.4.3.2.8 Last half of 33 from 3.7.4.3.2: 5 6 10 90 30 90 5 200 10 5 300 30 40 1 70 10 40 10 30 3 6 300 20 6 6 1 6 5 3 6 7 1 6 Total: 1358 = 2 x 7 x 97. 3.7.4.3.2.8.1 Odd positioned groups of 3 from 3.7.4.3.2.8: 90 30 90 5 300 30 10 40 10 300 20 6 5 3 6 Total: 945 = 3 x 3 x 3 x 5 x 7. SF: 21 = 3 x 7. 3.7.4.3.2.8.2 Even positioned groups of 3 from 3.7.4.3.2.8: 5 6 10 5 200 10 40 1 70 30 3 6 6 1 6 7 1 6 Total: 413 = 7 x 59. 3.7.4.3.3 Odd positioned groups of 9 from 3.7.4.3: 5 6 10 90 30 90 80 10 40 40 90 10 6 2 20 40 1 70 30 3 6 300 20 6 9 1 30 100 6 6 60 5 1 7 1 6 10 40 2 200 6 400 5 50 9 70 10 9 40 6 30 400 5 1 1 200 90 6 400 8 70 400 5 Total: 3710 = 2 x 5 x 7 x 53. 3.7.4.3.4 Even positioned groups of 9 from 3.7.4.3: 40 70 2 5 200 10 5 300 30 10 40 10 6 40 30 40 100 30 6 200 1 6 1 6 5 3 6 40 30 10 50 90 5 400 5 7 400 5 60 400 7 10 6 10 8 100 90 70 5 70 10 30 2 5 10 6 2 30 10 5 2 1 6 Total: 3199 = 7 x 457. 3.7.4.4 Even positioned groups of 63 from 3.7.4: 10 40 1 20 30 10 400 2 30 50 10 1 50 300 1 200 10 40 6 6 20 300 6 80 40 70 6 5 1 40 6 5 1 300 100 9 2 10 9 20 6 50 40 90 8 1 6 200 9 30 2 90 10 200 80 50 10 200 20 400 8 6 2 40 40 300 6 200 9 40 50 6 50 5 6 30 1 5 100 6 100 2 6 60 200 2 7 5 200 10 90 6 1 6 40 300 6 5 90 400 5 200 50 80 7 10 10 2 60 300 4 80 70 80 10 3 7 10 10 7 7 10 60 70 80 70 Total: 7497 = 3 x 3 x 7 x 7 x 17. 3.7.4.4.1 Odd positioned groups of 9 from 3.7.4.4: 10 40 1 20 30 10 400 2 30 6 6 20 300 6 80 40 70 6 2 10 9 20 6 50 40 90 8 80 50 10 200 20 400 8 6 2 50 5 6 30 1 5 100 6 100 90 6 1 6 40 300 6 5 90 60 300 4 80 70 80 10 3 7 Total: 3549 = 3 x 7 x 13 x 13. 3.7.4.4.1.1 Odd positioned groups of 1 from 3.7.4.4.1: 10 1 30 400 30 6 300 80 70 2 9 6 40 8 50 200 400 6 50 6 1 100 100 6 6 300 5 60 4 70 10 7 Total: 2373 = 3 x 7 x 113. 3.7.4.4.1.1.1 Odd positioned groups of 8 from 3.7.4.4.1.1: 10 1 30 400 30 6 300 80 400 6 50 6 1 100 100 6 Total: 1526 = 2 x 7 x 109. 3.7.4.4.1.1.1.1 Odd positioned groups of 4 from 3.7.4.4.1.1.1: 10 1 30 400 400 6 50 6 Total: 903 = 3 x 7 x 43. 3.7.4.4.1.1.1.1.1 Odd positioned groups of 1 from 3.7.4.4.1.1.1.1: 10 30 400 50 Total: 490 = 2 x 5 x 7 x 7. SF: 21 = 3 x 7. 3.7.4.4.1.1.1.1.2 Even positioned groups of 1 from 3.7.4.4.1.1.1.1: 1 400 6 6 Total: 413 = 7 x 59. 3.7.4.4.1.1.1.1.2.1 Odd positioned groups of 1 from 3.7.4.4.1.1.1.1.2: 1 6 Total: 7 = 7. SF: 7. 3.7.4.4.1.1.1.1.2.2 Even positioned groups of 1 from 3.7.4.4.1.1.1.1.2: 400 6 Total: 406 = 2 x 7 x 29. 3.7.4.4.1.1.1.1.3 First half of 4 from 3.7.4.4.1.1.1.1: 10 1 30 400 Total: 441 = 3 x 3 x 7 x 7. 3.7.4.4.1.1.1.1.4 Last half of 4 from 3.7.4.4.1.1.1.1: 400 6 50 6 Total: 462 = 2 x 3 x 7 x 11. 3.7.4.4.1.1.1.1.4.1 First half of 2 from 3.7.4.4.1.1.1.1.4: 400 6 Total: 406 = 2 x 7 x 29. 3.7.4.4.1.1.1.1.4.2 Last half of 2 from 3.7.4.4.1.1.1.1.4: 50 6 Total: 56 = 2 x 2 x 2 x 7. SF: 13. 3.7.4.4.1.1.1.2 Even positioned groups of 4 from 3.7.4.4.1.1.1: 30 6 300 80 1 100 100 6 Total: 623 = 7 x 89. 3.7.4.4.1.1.2 Even positioned groups of 8 from 3.7.4.4.1.1: 70 2 9 6 40 8 50 200 6 300 5 60 4 70 10 7 Total: 847 = 7 x 11 x 11. 3.7.4.4.1.1.2.1 First half of 8 from 3.7.4.4.1.1.2: 70 2 9 6 40 8 50 200 Total: 385 = 5 x 7 x 11. 3.7.4.4.1.1.2.2 Last half of 8 from 3.7.4.4.1.1.2: 6 300 5 60 4 70 10 7 Total: 462 = 2 x 3 x 7 x 11. 3.7.4.4.1.1.2.2.1 First half of 4 from 3.7.4.4.1.1.2.2: 6 300 5 60 Total: 371 = 7 x 53. 3.7.4.4.1.1.2.2.2 Last half of 4 from 3.7.4.4.1.1.2.2: 4 70 10 7 Total: 91 = 7 x 13. 3.7.4.4.1.1.2.2.2.1 Odd positioned groups of 1 from 3.7.4.4.1.1.2.2.2: 4 10 Total: 14 = 2 x 7. 3.7.4.4.1.1.2.2.2.2 Even positioned groups of 1 from 3.7.4.4.1.1.2.2.2: 70 7 Total: 77 = 7 x 11. 3.7.4.4.1.1.2.2.2.2.1 First half of 1 from 3.7.4.4.1.1.2.2.2.2: 70 Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7. 3.7.4.4.1.1.2.2.2.2.2 Last half of 1 from 3.7.4.4.1.1.2.2.2.2: 7 Total: 7 = 7. SF: 7. 3.7.4.4.1.2 Even positioned groups of 1 from 3.7.4.4.1: 40 20 10 2 6 20 6 40 6 10 20 50 90 80 10 20 8 2 5 30 5 6 90 1 40 6 90 300 80 80 3 Total: 1176 = 2 x 2 x 2 x 3 x 7 x 7. 3.7.4.4.2 Even positioned groups of 9 from 3.7.4.4: 50 10 1 50 300 1 200 10 40 5 1 40 6 5 1 300 100 9 1 6 200 9 30 2 90 10 200 40 40 300 6 200 9 40 50 6 2 6 60 200 2 7 5 200 10 400 5 200 50 80 7 10 10 2 10 10 7 7 10 60 70 80 70 Total: 3948 = 2 x 2 x 3 x 7 x 47. 3.7.4.4.2.1 Odd positioned groups of 21 from 3.7.4.4.2: 50 10 1 50 300 1 200 10 40 5 1 40 6 5 1 300 100 9 1 6 200 5 200 10 400 5 200 50 80 7 10 10 2 10 10 7 7 10 60 70 80 70 Total: 2639 = 7 x 13 x 29. SF: 49 = 7 x 7. SF: 14 = 2 x 7. 3.7.4.4.2.1.1 Odd positioned groups of 6 from 3.7.4.4.2.1: 200 10 40 5 1 40 1 6 200 5 200 10 10 10 2 10 10 7 Total: 767 = 13 x 59. 3.7.4.4.2.1.2 Even positioned groups of 6 from 3.7.4.4.2.1: 50 10 1 50 300 1 6 5 1 300 100 9 400 5 200 50 80 7 7 10 60 70 80 70 Total: 1872 = 2 x 2 x 2 x 2 x 3 x 3 x 13. 3.7.4.4.2.1.3 Odd positioned groups of 7 from 3.7.4.4.2.1: 50 10 1 50 300 1 200 1 300 100 9 1 6 200 80 7 10 10 2 10 10 Total: 1358 = 2 x 7 x 97. 3.7.4.4.2.1.4 Even positioned groups of 7 from 3.7.4.4.2.1: 10 40 5 1 40 6 5 5 200 10 400 5 200 50 7 7 10 60 70 80 70 Total: 1281 = 3 x 7 x 61. 3.7.4.4.2.1.4.1 Odd positioned groups of 3 from 3.7.4.4.2.1.4: 1 40 6 10 400 5 7 10 60 Total: 539 = 7 x 7 x 11. 3.7.4.4.2.1.4.2 Even positioned groups of 3 from 3.7.4.4.2.1.4: 10 40 5 5 5 200 200 50 7 70 80 70 Total: 742 = 2 x 7 x 53. 3.7.4.4.2.1.4.2.1 Odd positioned groups of 4 from 3.7.4.4.2.1.4.2: 10 40 5 5 7 70 80 70 Total: 287 = 7 x 41. 3.7.4.4.2.1.4.2.2 Even positioned groups of 4 from 3.7.4.4.2.1.4.2: 5 200 200 50 Total: 455 = 5 x 7 x 13. 3.7.4.4.2.2 Even positioned groups of 21 from 3.7.4.4.2: 9 30 2 90 10 200 40 40 300 6 200 9 40 50 6 2 6 60 200 2 7 Total: 1309 = 7 x 11 x 17. SF: 35 = 5 x 7.
3.8Precisely 84 letters (22 x 3 x 7. SF: 14 = 2 x 7.) are prime numbers.
a) 1 21 25 31 35 44 48 74 96 100 103 104 113 116 120 121 125 137 140 156 b) 5 2 5 5 2 2 3 3 5 5 5 3 2 5 2 7 5 2 2 5 a) 181 186 188 196 199 202 203 222 225 249 252 256 258 261 266 267 269 273 275 283 b) 5 5 5 5 2 5 2 2 2 2 3 5 5 5 5 7 7 2 7 5 a) 290 294 296 299 300 310 316 317 320 331 338 339 342 354 357 358 363 369 371 373 b) 5 5 7 7 2 5 2 5 5 5 2 5 5 2 5 5 2 5 5 2 a) 398 402 405 406 415 418 422 423 427 444 446 448 452 459 465 472 473 480 482 483 b) 5 5 5 3 2 5 2 7 5 5 5 2 5 7 2 2 5 7 3 7 a) 489 493 497 498 (Letter position.) b) 7 7 5 7 (Letter with prime number value.)
Total of their positions (a): 23855 = 5 x 13 x 367. SF: 385 = 5 x 7 x 11.
3.8.1Divide the 84 positions from 3.8 into groups of six, and add each group. Gather all groups with odd valued totals together.
Odd valued groups of 6:
1 21 25 31 35 44 48 74 96 100 103 104 140 156 181 186 188 196 357 358 363 369 371 373 452 459 465 472 473 480
Total: 6721 = 11 x 13 x 47.
3.8.2Even valued groups of 6:
113 116 120 121 125 137 199 202 203 222 225 249 252 256 258 261 266 267 269 273 275 283 290 294 296 299 300 310 316 317 320 331 338 339 342 354 398 402 405 406 415 418 422 423 427 444 446 448 482 483 489 493 497 498
Total: 17134 = 2 x 13 x 659.
3.9.1Adding the middle N letters produces a multiple of 7 when N is one of the following numbers:
497 481 457 431 429 427 421 409 385 379 373 349 317 279 255 227 219 217 201 171 169 141 131 129 113 107 101 79 49 41 39 27
Total of N: 8050 = 2 x 52 x 7 x 23. SF: 42 = 2 x 3 x 7.
3.9.2Adding the middle N letters yields a multiple of 13 when N is one of the following:
495 445 391 325 319 271 261 251 183 161 115 99 91 89 67
Total of N: 3563 = 7 x 509.
3.10.1One is the lowest valued letter, and it appeared 35 times for a total of 35. The highest valued letter is 400, and it appeared 16 times for a total of 6400. Thus the highest and lowest together add up to 6435 (32 x 5 x 11 x 13; SF: 35 = 5 x 7).
3.10.2Total of all the positions of the letter 1: 8375. Total of all the positions of the letter 400: 4484. Thus the total of the positions for the lowest and highest valued letters is 12859 (7 x 11 x 167).
3.10.3Multiplying a letter's value with the number of its occurrences gives the total of that letter in the entire passage. Only three letters have their total as an odd number.
Letter value: 1 5 7 Number of occurrences: 35 41 13
Total of these letters: 13.
3.10.4This leaves 19 letters whose totals in the passage are even numbers.
a) 2 3 4 6 8 9 10 20 30 40 50 60 70 80 90 100 200 300 400 b) 24 6 4 58 7 8 54 21 32 43 17 9 20 12 17 14 33 17 16 c) 48 18 16 348 56 72 540 420 960 1720 850 540 1400 960 1530 1400 6600 5100 6400 a) Letter value. b) Number of Occurrences. c) Total in passage.
Total of these letters (a): 1482 = 2 x 3 x 13 x 19.
3.11Divide the 501 letters into groups of three and add up each group. Gather all groups with odd valued totals, and gather all groups with even valued totals.
3.11.1Odd valued groups of 3:
5 6 10 30 10 1 30 2 5 50 80 7 1 200 90 300 100 9 40 400 5 70 1 100 1 300 200 2 10 9 1 200 90 2 5 60 5 200 10 5 2 40 70 400 5 20 100 7 5 300 30 1 6 200 30 10 5 30 1 100 30 10 3 9 30 2 6 5 90 10 10 7 40 1 70 60 200 3 2 1 6 7 10 60 1 20 10 50 90 5 6 200 9 10 40 1 30 7 30 200 1 40 30 3 6 40 7 40 50 5 6 6 200 1 6 1 400 3 6 10 40 50 5 400 5 60 200 2 7 6 1 6 10 200 5 1 6 50 50 5 200 400 7 10 5 200 10 10 40 1 70 7 2 40 1 200 50 10 1 70 10 9 90 6 1 50 300 1 5 200 10 40 10 5 50 60 5 2 5 40 6 5 90 400 200 1 5 70 10 2 1 6 200 10 5 9 6 20 400 5 200
Total of the odd valued groups: 11249 = 7 x 1607.
3.11.2Even valued groups of 3:
90 30 90 5 30 1 20 10 20 400 5 7 20 6 40 30 20 50 5 3 6 5 1 40 10 40 2 6 40 70 80 10 40 10 100 6 6 5 1 200 6 400 40 50 6 40 70 2 100 6 6 5 6 1 5 50 9 1 6 5 200 30 50 40 2 6 20 6 50 10 300 6 30 1 5 20 6 300 60 5 1 10 20 8 6 10 8 100 6 100 8 2 10 300 200 2 40 90 8 4 6 30 6 6 40 40 90 10 7 1 6 70 30 10 40 6 30 2 6 60 200 10 40 200 90 6 20 70 2 400 5 1 5 1 300 6 2 20 20 30 10 8 40 100 200 90 6 30 40 100 30 80 50 300 2 10 90 10 200 100 90 70 6 40 300 10 40 10 400 2 30 20 10 30 30 10 6 90 10 6 40 30 20 6 300 20 80 50 10 70 30 10 10 10 2 6 40 30 200 90 20 100 90 10 6 400 8 4 70 80 40 100 30 200 10 40 200 20 400 200 80 2 60 300 4 10 40 40 6 6 20 40 80 200 5 10 1 80 70 80 300 20 6 400 100 70 8 6 2 10 6 2 10 3 7 40 6 200 300 6 80 40 30 10 30 300 10 30 60 80 9 1 30 200 400 300 5 10 5 400 70 40 4 5 7 70 40 50 40 70 6 6 20 200 40 40 300 70 80 70
Total of the even valued groups: 18060 = 22 x 3 x 5 x 7 x 43.
3.11.3The difference between 3.11.1 and 3.11.2: 6811 = 72 x 139.
3.12The 501 letters can be divided into three sections. The first section comprises 231 letters (3 x 7 x 11). The middle section is 39 letters (3 x 13). And the final section is again 231 letters.
3.12.1Total of the two groups of 231 letters: 26740 = 22 x 5 x 7 x 191.
3.12.2Total of the single group of 39 letters: 2569 = 7 x 367.
3.13Only three letter values have the unique ability of dividing the passage into two areas: a) what is between their first and last occurrences, and b) what is not between them.
5 | 6 | 10 | 1 | 200 | 90 | 90 | 30 | 90 | 30 | 20 | 50 | 80 | 10 | 40 | 1 | 300 | 200 | 40 | 70 | 2 | 200 | 30 |
50 | 5 | 200 | 10 | 20 | 6 | 300 | 5 | 300 | 30 | 8 | 2 | 10 | 40 | 90 | 10 | 200 | 10 | 40 | 6 | 2 | 20 | 30 |
10 | 3 | 40 | 1 | 70 | 30 | 80 | 50 | 10 | 40 | 10 | 40 | 30 | 20 | 6 | 40 | 30 | 1 | 20 | 10 | 40 | 100 | 30 |
10 | 40 | 1 | 30 | 3 | 6 | 10 | 40 | 40 | 300 | 20 | 6 | 40 | 6 | 200 | 9 | 1 | 30 | 70 | 40 | 50 | 6 | 200 |
1 | 40 | 50 | 5 | 6 | 1 | 6 | 5 | 30 | 1 | 5 | 3 | 6 | 10 | 100 | 6 | 100 | 6 | 6 | 40 | 2 | 6 | 60 |
5 | 1 | 300 | 200 | 2 | 7 | 1 | 6 | 50 | 5 | 200 | 10 | 40 | 1 | 200 | 90 | 6 | 20 | 30 | 10 | 300 | 2 | 10 |
400 | 2 | 30 | 6 | 300 | 20 | 50 | 10 | 1 | 200 | 90 | 20 | 50 | 300 | 1 | 50 | 60 | 5 | 200 | 10 | 40 | 400 | 200 |
1 | 6 | 6 | 20 | 400 | 100 | 70 | 300 | 6 | 80 | 200 | 400 | 300 | 40 | 70 | 6 | 20 | 10 | 20 | 5 | 1 | 40 | 200 |
10 | 5 | 6 | 5 | 1 | 30 | 10 | 1 | 300 | 100 | 9 | 5 | 6 | 1 | 2 | 10 | 9 | 5 | 2 | 40 | 20 | 6 | 50 |
10 | 20 | 8 | 40 | 90 | 8 | 70 | 30 | 10 | 1 | 6 | 200 | 20 | 70 | 2 | 9 | 30 | 2 | 8 | 40 | 100 | 90 | 10 |
200 | 20 | 10 | 30 | 80 | 50 | 10 | 100 | 90 | 10 | 200 | 20 | 400 | 40 | 80 | 200 | 8 | 6 | 2 | 60 | 200 | 3 | 40 |
30 | 10 | 5 | 10 | 5 | 50 | 90 | 5 | 6 | 20 | 200 | 400 | 5 | 7 | 30 | 7 | 30 | 10 | 40 | 2 | 40 | 7 | 40 |
200 | 6 | 400 | 6 | 1 | 400 | 5 | 50 | 9 | 10 | 300 | 6 | 400 | 5 | 60 | 10 | 200 | 5 | 400 | 7 | 10 | 70 | 7 |
2 | 6 | 10 | 8 | 4 | 6 | 30 | 70 | 10 | 9 | 5 | 200 | 10 | 40 | 6 | 30 | 2 | 5 | 40 | 400 | 5 | 1 | 200 |
90 | 6 | 100 | 90 | 70 | 30 | 10 | 6 | 5 | 70 | 10 | 9 | 6 | 20 | 30 | 2 | 5 | 40 | 400 | 5 | 1 | 200 | 90 |
70 | 30 | 10 | 6 | 400 | 8 | 200 | 80 | 2 | 70 | 400 | 5 | 5 | 10 | 1 | 10 | 6 | 2 | 30 | 300 | 10 | 30 | 10 |
5 | 6 | 5 | 90 | 2 | 1 | 6 | 400 | 70 | 40 | 40 | 40 | 300 | 20 | 6 | 40 | 6 | 200 | 9 | 6 | 40 | 70 | 40 |
50 | 6 | 200 | 1 | 40 | 50 | 5 | 6 | 1 | 6 | 5 | 30 | 1 | 5 | 3 | 6 | 10 | 100 | 6 | 100 | 6 | 6 | 40 |
2 | 6 | 60 | 5 | 1 | 300 | 200 | 2 | 7 | 1 | 6 | 50 | 5 | 200 | 10 | 40 | 1 | 200 | 90 | 6 | 1 | 30 | 40 |
100 | 6 | 40 | 300 | 40 | 10 | 5 | 6 | 5 | 90 | 2 | 1 | 6 | 400 | 5 | 200 | 90 | 10 | 6 | 50 | 80 | 7 | 70 |
1 | 100 | 10 | 10 | 2 | 4 | 70 | 80 | 60 | 300 | 4 | 2 | 5 | 60 | 80 | 70 | 80 | 20 | 100 | 7 | 10 | 3 | 7 |
30 | 1 | 100 | 10 | 10 | 7 | 30 | 60 | 80 | 7 | 10 | 60 | 4 | 5 | 7 | 70 | 80 | 70 |
3.13.1.1What is between the first and last occurrences of the letter 50: 26754 = 2 x 3 x 73 x 13. SF: 39 = 3 x 13.
3.13.1.2What is not between the first and last occurrences of the letter 50: 2555 = 5 x 7 x 73.
3.13.2.1What is between the first and last occurrences of the letter 2: 26859 = 3 x 7 x 1279.
3.13.2.2What is not between the letter 2: 2450 = 2 x 52 x 72 SF: 26 = 2 x 13.
3.13.3.1What is between the first and last occurrences of the letter 60: 23660 = 22 x 5 x 7 x 132. SF: 42 = 2 x 3 x 7.
3.13.3.2What is not between the letter 60: 5649 = 3 x 7 x 269.
3.13.4One might think it was just coincidence that only the letters 50, 2 and 60 have this capability with their first and last occurrences, but it isn't when one notes that their sum together is 112 (24 x 7).
3.13.4.1The first and last occurrences of these three letters overlap each other in the passage.
a) 12 ... 457 b) 50 ... 50 a) 21 ... 472 (Position.) b) 2 ... 2 (Letter value.) a) 115 ... 495 b) 60 ... 60
Their positions range from 12 to 495. 12 + 495 = 507 (3 x 132).
3.13.5Since John 1:1 mentions God and the Word (two beings), there is also something with the second and second last occurrences of two letters.
3.13.5.1.1Everything between the second and second last appearances of the letter 6: 24773 = 7 x 3539.
3.13.5.1.2Everything not between the second and second last appearances of the letter 6: 4536 = 23 x 34 x 7.
3.13.5.2.11Everything between the second and second last appearances of the letter 20: 21791 = 7 x 11 x 283. SF: 301 = 7 x 43.
3.13.5.2.2Everything not between the second and second last appearances of the letter 20: 7518 = 2 x 3 x 7 x 179.
3.13.5.3The second and second last appearances of the letters 6 and 20 link this to God’s name in Hebrew, which has a value of 26 (2 x 13).
3.13.6Providentially, for the letter 7, it is the third and third last, fourth and fourth last appearances that successfully divide the passage. (3 + 4 = 7.)
3.13.6.1.1Letters between the third and third last appearances of the letter 7: 12978 = 2 x 32 x 7 x 103.
3.13.6.1.2Letters not between the third and third last appearances of the letter 7: 16331 = 7 x 2333. SF: 2340 = 22 x 32 x 5 x 13. SF: 28 = 22 x 7.
3.13.6.2.1Letters between the fourth and fourth last appearances of the letter 7: 12691 = 73 x 37.
3.13.6.2.2Letters not between the fourth and fourth last appearances of the letter 7: 16618 = 2 x 7 x 1187. SF: 1196 = 22 x 13 x 23.
3.14The 501 letters can be loaded into a 3 x 167 rectangle.
5 | 6 | 10 |
1 | 200 | 90 |
90 | 30 | 90 |
30 | 20 | 50 |
80 | 10 | 40 |
1 | 300 | 200 |
40 | 70 | 2 |
200 | 30 | 50 |
5 | 200 | 10 |
20 | 6 | 300 |
5 | 300 | 30 |
8 | 2 | 10 |
40 | 90 | 10 |
200 | 10 | 40 |
6 | 2 | 20 |
30 | 10 | 3 |
40 | 1 | 70 |
30 | 80 | 50 |
10 | 40 | 10 |
40 | 30 | 20 |
6 | 40 | 30 |
1 | 20 | 10 |
40 | 100 | 30 |
10 | 40 | 1 |
30 | 3 | 6 |
10 | 40 | 40 |
300 | 20 | 6 |
40 | 6 | 200 |
9 | 1 | 30 |
70 | 40 | 50 |
6 | 200 | 1 |
40 | 50 | 5 |
6 | 1 | 6 |
5 | 30 | 1 |
5 | 3 | 6 |
10 | 100 | 6 |
100 | 6 | 6 |
40 | 2 | 6 |
60 | 5 | 1 |
300 | 200 | 2 |
7 | 1 | 6 |
50 | 5 | 200 |
10 | 40 | 1 |
200 | 90 | 6 |
20 | 30 | 10 |
300 | 2 | 10 |
400 | 2 | 30 |
6 | 300 | 20 |
50 | 10 | 1 |
200 | 90 | 20 |
50 | 300 | 1 |
50 | 60 | 5 |
200 | 10 | 40 |
400 | 200 | 1 |
6 | 6 | 20 |
400 | 100 | 70 |
300 | 6 | 80 |
200 | 400 | 300 |
40 | 70 | 6 |
20 | 10 | 20 |
5 | 1 | 40 |
200 | 10 | 5 |
6 | 5 | 1 |
30 | 10 | 1 |
300 | 100 | 9 |
5 | 6 | 1 |
2 | 10 | 9 |
5 | 2 | 40 |
20 | 6 | 50 |
10 | 20 | 8 |
40 | 90 | 8 |
70 | 30 | 10 |
1 | 6 | 200 |
20 | 70 | 2 |
9 | 30 | 2 |
8 | 40 | 100 |
90 | 10 | 200 |
20 | 10 | 30 |
80 | 50 | 10 |
100 | 90 | 10 |
200 | 20 | 400 |
40 | 80 | 200 |
8 | 6 | 2 |
60 | 200 | 3 |
40 | 30 | 10 |
5 | 10 | 5 |
50 | 90 | 5 |
6 | 20 | 200 |
400 | 5 | 7 |
30 | 7 | 30 |
10 | 40 | 2 |
40 | 7 | 40 |
200 | 6 | 400 |
6 | 1 | 400 |
5 | 50 | 9 |
10 | 300 | 6 |
400 | 5 | 60 |
10 | 200 | 5 |
400 | 7 | 10 |
70 | 7 | 2 |
6 | 10 | 8 |
4 | 6 | 30 |
70 | 10 | 9 |
5 | 200 | 10 |
40 | 6 | 30 |
2 | 5 | 40 |
400 | 5 | 1 |
200 | 90 | 6 |
100 | 90 | 70 |
30 | 10 | 6 |
5 | 70 | 10 |
9 | 6 | 20 |
30 | 2 | 5 |
40 | 400 | 5 |
1 | 200 | 90 |
70 | 30 | 10 |
6 | 400 | 8 |
200 | 80 | 2 |
70 | 400 | 5 |
5 | 10 | 1 |
10 | 6 | 2 |
30 | 300 | 10 |
30 | 10 | 5 |
6 | 5 | 90 |
2 | 1 | 6 |
400 | 70 | 40 |
40 | 40 | 300 |
20 | 6 | 40 |
6 | 200 | 9 |
6 | 40 | 70 |
40 | 50 | 6 |
200 | 1 | 40 |
50 | 5 | 6 |
1 | 6 | 5 |
30 | 1 | 5 |
3 | 6 | 10 |
100 | 6 | 100 |
6 | 6 | 40 |
2 | 6 | 60 |
5 | 1 | 300 |
200 | 2 | 7 |
1 | 6 | 50 |
5 | 200 | 10 |
40 | 1 | 200 |
90 | 6 | 1 |
30 | 40 | 100 |
6 | 40 | 300 |
40 | 10 | 5 |
6 | 5 | 90 |
2 | 1 | 6 |
400 | 5 | 200 |
90 | 10 | 6 |
50 | 80 | 7 |
70 | 1 | 100 |
10 | 10 | 2 |
4 | 70 | 80 |
60 | 300 | 4 |
2 | 5 | 60 |
80 | 70 | 80 |
20 | 100 | 7 |
10 | 3 | 7 |
30 | 1 | 100 |
10 | 10 | 7 |
30 | 60 | 80 |
7 | 10 | 60 |
4 | 5 | 7 |
70 | 80 | 70 |
3.14.1The perimeter, or outside of the block:
19705 = 5 x 7 x 563.
3.14.2The inside of the block: 9604 = 22 x 74.
Since there are 501 letters, and 501 factors as 3 x 167, there could only be two possible ways of arranging the block. It was a 1 in 3.5 chance (or two in seven) that one of the arrangements would have the outside and inside be a multiple of 7. These are not difficult odds. But what the odds cannot explain is why the inside would have four factors of seven.
3.14.3Odd positioned rows: 14406 = 2 x 3 x 74. (This is a visual representation of feature 3.7.4.)
3.14.4Even positioned rows: 14903 = 7 x 2129. (This is a visual representation of feature 3.7.3.)
3.14.5Divide the rectangle into three parts, 77 rows in the first part, 13 rows in the middle, and 77 rows in the last part.
3.14.5.1The first and last parts: 26740 = 22 x 5 x 7 x 191.
3.14.5.2The middle 13: 2569 = 7 x 367.
3.14.6.1Odd valued rows: 11249 = 7 x 1607.
3.14.6.2Even valued rows: 18060 = 22 x 3 x 5 x 7 x 43.
3.14.6.3The difference between the odd valued rows and the even valued rows: 6811 = 72 x 139.
Conclusion
All seven of the numeric features stipulated at the beginning have been found. Many other complementary opposites following Revelation 1:8 were also discovered. This is way beyond what the odds would have considered probable. But it was probable. If Isaiah was inspired by the Holy Spirit to identify the nations of his original prophecy, he would be able to do it.
This experiment does not prove America and China are the nations mentioned in Isaiah 18, but it certainly increases the probability. Besides, no other nations fit the description in Isaiah 18.