Bible Numbers 2.0

The Post-Flood World Before Abraham

After The Flood in 2568 B.C.1, but before Abraham (2216 B.C.), there was a period of history where humanity expanded to re-fill the world. Two major events marked this 352 year era: Nimrod used his fame to organize humanity under one kingdom (Genesis 10:9-12), and then humanity was dispersed at the tower of Babel (Genesis 11:8-9).

Why did God do this? What was wrong with this first kingdom? What was wrong with the tower of Babel? The common understanding is that God had told Noah and his descendants to re-fill the earth (Genesis 9:1), but out of pride, man chose to gather in one place to build a tower, to make a name for themselves, and that they did not want to be scattered (Genesis 11:4). This explanation leaves out what God said, Behold, they are one people, and they have all one language; and this is only the beginning of what they will do; and nothing that they propose to do will now be impossible for them (Genesis 11:6).2

If it was a matter of growing pride, or disobedience in staying in one place, God would have said so. (Note how there is nothing here about worshipping false gods.) God did not take issue with the tower, or with pride. He did not say people were challenging Him. Furthermore, there were no prophetic warnings.

This lack of information almost makes the reader think God was being unfair, or that God was a capricious stickler for minute details. When this incident is seen in context with the rest of the Bible's record it becomes clear what is happening.

—this is only the beginning— Only the beginning of what? The only other detail the Bible gives us is Nimrod's kingdom. The ancient writer gives us no choice but to link Nimrod's kingdom with the only other event, the tower of Babel. It was not only a matter of disobeying God and staying one place, and it was not only a matter of pride. Nimrod's kingdom played a very large role.

The Bible says nothing about kingdoms or any form of human government before The Flood. It is completely silent. Revelation 17:8, and 11 speak of a beast that was, is not, and is to come. This cannot be a human, since all people die and can never return (Hebrew 9:27). The beast is demonic (spirit), an idea, or an organization. These are a few of the things that can return after being removed from the face of the earth. That the Bible says nothing of the pre-Flood world might be because God did not want people to relearn its faults of extreme evil and constant violence (Genesis 6:5). Revelation 17:8 indicates people will go back to that period. Obviously God didn't want the human race repeating that too soon.3

The beast's return also means our age is in a much better position to understand the pre-Flood world than the Apostle John or the writer of Genesis, because our age is a repeat of what went before. In our age, most governments are supposedly representative democracies. Even authoritarian nations such as Russia and Japan have elections, legislatures and presidents or prime ministers who supposedly act with the consent of the legislature or are bounded by various laws. These types of organizations would have been completely alien to those who were only familiar with kings and lords. This is why the Bible gives very little description of human organizations before The Flood.

Genesis 6:4 gives a hint of human organization. People coalesced around famous people just like they do today. There was no confusion of the languages back then, so all people could understand each other (more on this below). This meant mass movements would have grown more easily. Nimrod was only continuing the pre-Flood tradition, and Genesis 10:8-12 describes the swift growth of his kingdom. Following the crowd was just herd instinct.

Unfortunately for the pre-Flood world, it was following the crowd into evil (Exodus 23:2). The beast is full of blasphemous names (Revelation 17:3). The Greek word translated as blasphemous could also mean lies and slander. Corruption in a democracy just means it is that much more widespread. Slander and lies turned human thinking to evil and violence. This is why Noah stood out from among his generation (2 Peter 2:5).

God is not against human governments and organizations, but it really should be up to His timing (Deuteronomy 17:15). He did not tell Moses to stop when his father-in-law counselled him in setting up a government (Exodus 18:17-26). Note the type of organization Moses set up. The largest organizational unit was a thousand people. It was small. It was local, and the people decided all small matters by themselves. Small and local organizations were more adaptable. Mistakes did not affect large numbers of people and were easily corrected. Large matters were decided by Moses as God’s representative.

Nimrod's kingdom was not small or local. It was a kingdom where one man, who had no relationship with God and whose only claim to fame was that of a great hunter, could have ultimate authority over hundreds of thousands. One mistake would have untold consequences, as seen in the spectacular failures of the one-size-fits-all five year plans communist governments once imposed, and the recent vaccine mandates in 2021 that took no account of the vast biological differences of individuals. (More people got sick and died of Covid-19 than in 2020 when there were no vaccines. Africa did not vaccinate much and had no problems, proving there was no pandemic.)

When ancient Israel asked for a king, God said they had rejected Him as king (1 Samuel 8:7). When Korah claimed all the congregation was holy in a push for democracy and regime change, God called it rebellion (Numbers 16:1-3, 11).

Joshua appointed no successor after himself even though all Canaan had not been conquered (Joshua 13:1). Jesus did not organize his disciples with one person as the head. Remember, Jesus said, If any one would be first, he must be last of all and servant of all. (Mark 9:35)

What God wanted to prevent was one person claiming authority over tens of thousands of people. He knew a large organization would gather more authority to itself to the point of imposing itself on the population. One mistake would affect hundreds of thousands of people. It wasn't just the pride of a tower, but the pride of an individual who would think he was above everyone else. The larger the group he presided over, the greater the pride and the more monolithic seeming his authority. This can be seen every day when upper levels of government act against the wishes of the people.

Nimrod's kingdom was only the beginning. God knew in time it would grow even larger and become extremely oppressive. Nimrod's kingdom had already filled a major part of the ancient world. Rather than raise an opposing force and thereby introduce the first world war, God chose to fracture Nimrod's kingdom by confusing the languages. This would ensure humanity's dispersal to the ends of the earth. It was a lesson every man, woman and child was supposed to remember. Unfortunately like The Flood, people did not understand, and what they failed to understand, they very quickly forgot. There isn't any mention of massed repentence even if it was too late (Numbers 14:40).

Genesis 10:5 states that people spread out over the face of the earth after their own families and languages. The word here for language is לִלְשֹׁנ֑וֹ. In Genesis 11:1, we are told everyone spoke the same language. The word here is שָׂפָ֣ה. The two words are actually not the same. This difference is often explained as the writer in chapter 10 looking forwards to what would happen in chapter 11. But this is an interpretation. What if the writer was not looking forwards, but describing the exact order of events?

H3956 לִלְשֹׁנ֑וֹ
law-shone', law-shone', lesh-o-naw'
From H3960; the tongue (of man or animals), used literally
(as the instrument of licking, eating, or speech), and
figuratively (speech, an ingot, a fork of flame, a cove of
water): -    + babbler, bay, + evil speaker, language,
talker, tongue, wedge.

H8193 שָׂפָ֣ה
saw-faw', sef-eth'
(The second form is in dual and plural); Probably from
H5595 or H8192 through the idea of termination (compare
H5490); the lip (as a natural boundary); by implication
language; by analogy a margin (of a vessel, water, cloth,
etc.): - band, bank, binding, border, brim, brink, edge,
language, lip, prating, ([sea-]) shore, side, speech, talk,
[vain] words.4

The exact Hebrew of Genesis 11:1 is as follows:

Genesis 11:15
אחדיםודבריםאחתשפההארץכלויהי
common-onesand-wordsonelanguagethe-earthall-ofnow-he-had
Hebrew is read from right to left.

The meaning of the very first word is actually,

H1961  וַֽיְהִ֥י 
haw-yaw'
A primitive root (compare H1933); to exist, that is, be or become,
come to pass (always emphatic, and not a mere copula or auxiliary):
- beacon, X altogether, be (-come, accomplished, committed, like),
break, cause, come (to pass), continue, do, faint, fall, + follow,
happen, X have, last, pertain, quit (one-) self, require, X use.

— and it is the imperfect tense, meaning became, or was existing. Thus Genesis 11:1 could be understood as, All the earth became/was one language, and words common ones. Exactly how this came about is not said.

The only other clue might be back in Genesis 6:3, where God said His spirit would not remain in man. (Note: This is not the Holy Spirit.) The effect of God’s spirit leaving would be an upper limit of about 120 years to the human life span. It is clear from the genealogies after The Flood many of Noah's descendants continued to live long lives. God’s spirit did not leave until after The Flood.

It is the spirit that knows the mind of a man (1 Corinthians 2:11), and it is God’s spirit that knows the heart (Romans 8:27). If various languages developed in Genesis 10:5, a universal language followed because of God’s spirit. Like a baby picking up all sorts of hidden cues from the parents, so with God’s spirit, strangers could understand a common word even if the speaker attached a completely different meaning to that word and meant something else. Removal of God’s spirit meant people would gradually lose this ability and drift further apart. The universal language would fall apart.

The tragedy was that this ability to communicate and understand people was misused and abused for unifying pre-Flood humanity in evil. To prevent this from happening so soon after The Flood, God confused the languages.

(The evidence that there used to be a language with only a few words can still be seen in the Chinese language. Hundreds of different words have the exact same pronunciation. This does not mean Chinese was the original universal language. This was the effect of the confusion of languages.6)

The post-flood kingdom of Nimrod could be termed a human covenant. The first few verses of chapter 11 have the phrases let us do this and that. It is people agreeing to work together and organize. It is a human covenant to have a kingdom without God. This time period ended with the coming of Abraham, where for the first time God began His covenant. Abraham is first introduced in Genesis 11:26. Thus the post-flood kingdom is from Genesis 10:1 to 11:25. The text begins with the genealogy of Noah, and ends with the genealogy of Shem to Terah. The numbers in this section of text mark it as an important lesson concerning human history.

ואלה תולדת בני נח שם חם ויפת ויולדו להם בנים אחר המבול 2 בני יפת גמר ומגוג ומדי ויון ותבל ומשך ותירס 3 ובני גמר אשכנז וריפת ותגרמה 4 ובני יון אלישה ותרשיש כתים ודדנים 5 מאלה נפרדו איי הגוים בארצתם איש ללשנו למשפחתם בגויהם 6 ובני חם כוש ומצרים ופוט וכנען 7 ובני כוש סבא וחוילה וסבתה ורעמה וסבתכא ובני רעמה שבא ודדן 8 וכוש ילד את נמרד הוא החל להיות גבר בארץ 9 הוא היה גבר ציד לפני יהוה על כן יאמר כנמרד גבור ציד לפני יהוה 10 ותהי ראשית ממלכתו בבל וארך ואכד וכלנה בארץ שנער 11 מן הארץ ההוא יצא אשור ויבן את נינוה ואת רחבת עיר ואת כלח 12 ואת רסן בין נינוה ובין כלח הוא העיר הגדלה 13 ומצרים ילד את לודים ואת ענמים ואת להבים ואת נפתחים 14 ואת פתרסים ואת כסלחים אשר יצאו משם פלשתים ואת כפתרים 15 וכנען ילד את צידן בכרו ואת חת 16 ואת היבוסי ואת האמרי ואת הגרגשי 17 ואת החוי ואת הערקי ואת הסיני 18 ואת הארודי ואת הצמרי ואת החמתי ואחר נפצו משפחות הכנעני 19 ויהי גבול הכנעני מצידן באכה גררה עד עזה באכה סדמה ועמרה ואדמה וצבים עד לשע 20 אלה בני חם למשפחתם ללשנתם בארצתם בגויהם 21 ולשם ילד גם הוא אבי כל בני עבר אחי יפת הגדול 22 בני שם עילם ואשור וארפכשד ולוד וארם 23 ובני ארם עוץ וחול וגתר ומש 24 וארפכשד ילד את שלח ושלח ילד את עבר 25 ולעבר ילד שני בנים שם האחד פלג כי בימיו נפלגה הארץ ושם אחיו יקטן 26 ויקטן ילד את אלמודד ואת שלף ואת חצרמות ואת ירח 27 ואת הדורם ואת אוזל ואת דקלה 28 ואת עובל ואת אבימאל ואת שבא 29 ואת אופר ואת חוילה ואת יובב כל אלה בני יקטן 30 ויהי מושבם ממשא באכה ספרה הר הקדם 31 אלה בני שם למשפחתם ללשנתם בארצתם לגויהם 32 אלה משפחת בני נח לתולדתם בגויהם ומאלה נפרדו הגוים בארץ אחר המבול 11:1 ויהי כל הארץ שפה אחת ודברים אחדים 2 ויהי בנסעם מקדם וימצאו בקעה בארץ שנער וישבו שם 3 ויאמרו איש אל רעהו הבה נלבנה לבנים ונשרפה לשרפה ותהי להם הלבנה לאבן והחמר היה להם לחמר 4 ויאמרו הבה נבנה לנו עיר ומגדל וראשו בשמים ונעשה לנו שם פן נפוץ על פני כל הארץ 5 וירד יהוה לראת את העיר ואת המגדל אשר בנו בני האדם 6 ויאמר יהוה הן עם אחד ושפה אחת לכלם וזה החלם לעשות ועתה לא יבצר מהם כל אשר יזמו לעשות 7 הבה נרדה ונבלה שם שפתם אשר לא ישמעו איש שפת רעהו 8 ויפץ יהוה אתם משם על פני כל הארץ ויחדלו לבנת העיר 9 על כן קרא שמה בבל כי שם בלל יהוה שפת כל הארץ ומשם הפיצם יהוה על פני כל הארץ 10 אלה תולדת שם שם בן מאת שנה ויולד את ארפכשד שנתים אחר המבול 11 ויחי שם אחרי הולידו את ארפכשד חמש מאות שנה ויולד בנים ובנות 12 וארפכשד חי חמש ושלשים שנה ויולד את שלח 13 ויחי ארפכשד אחרי הולידו את שלח שלש שנים וארבע מאות שנה ויולד בנים ובנות 14 ושלח חי שלשים שנה ויולד את עבר 15 ויחי שלח אחרי הולידו את עבר שלש שנים וארבע מאות שנה ויולד בנים ובנות 16 ויחי עבר ארבע ושלשים שנה ויולד את פלג 17 ויחי עבר אחרי הולידו את פלג שלשים שנה וארבע מאות שנה ויולד בנים ובנות 18 ויחי פלג שלשים שנה ויולד את רעו 19 ויחי פלג אחרי הולידו את רעו תשע שנים ומאתים שנה ויולד בנים ובנות 20 ויחי רעו שתים ושלשים שנה ויולד את שרוג 21 ויחי רעו אחרי הולידו את שרוג שבע שנים ומאתים שנה ויולד בנים ובנות 22 ויחי שרוג שלשים שנה ויולד את נחור 23 ויחי שרוג אחרי הולידו את נחור מאתים שנה ויולד בנים ובנות 24 ויחי נחור תשע ועשרים שנה ויולד את תרח 25 ויחי נחור אחרי הולידו את תרח תשע עשרה שנה ומאת שנה ויולד בנים ובנות
7(Genesis 10:1-11:25; Hebrew is read from right to left.)

The basic numbers for this passage are as follows:

Passage total: 156933 = 32 x 7 x 47 x 53.

Number of chapters: 2 (nf).

Number of verses in passage: 57 (nf).

Number of words in passage: 579 (nf).

Number of letters in passage: 2224 (nf).

Unlike The Proclamation, not one of the numbers for the chapters, verses, words and letters are divisible by seven. This is because the passage is about people, and an important lesson. It is not about God. However, there are many other numeric features.

Despite this, God’s hand is hidden in the initial numbers, 57, 579 and 2224. The largest factor of 57 is 19. The largest factor of 579 is 193. And the largest factor of 2224 is 139. The sum of the large factors: 351 = 33 x 13.

The smallest factor of 57 is 3. The smallest factor of 579 is also 3. And the smallest factor of 2224 is 2, and it occurs four times. Thus the smallest factors together (3 + 3 + 2 + 2 + 2 + 2) is 14 (2 x 7).

(Conveniently, there are no factors in between the smallest and the largest.)

The largest and smallest factors are complementary opposites as described in Revelation 1:8. Thirteen is associated with God’s name in Hebrew, and seven is associated with God’s perfection.

Since Revelation 1:8 states that Alpha and Omega go together, let's put the factors together:

3 + 19 + 3 + 193 + 2 + 2 + 2 + 2 + 139 = 365 (5 x 73).
This is not divisible by seven or thirteen, but the sum of the factors is 78 (2 x 3 x 13), and the total just so happens to equal the solar year. The total is also exactly 13 more years than the 352 era from The Flood to Abraham. It is terribly coincidental that the number of verses, words and letters seem to tie in with the number associated with God’s name and the actual chronology.

Coincidentally, these three numbers (57, 579, 2224) together total 2860 (22 x 5 x 11 x 13). They can also be joined together as 575792224 (25 x 7 x 37 x 69473).8

Skeptics would ask why the number of chapters isn't included. This is because chapter eleven is incomplete. It is also because the chapter divisions are the most arbitrary unit of text.

These preliminary features can all be termed coincidental since the methods by which they were found are all over the map. What follows below is not.

Numeric Features

Primary Features

ATotal of the passage: 156933 = 32 x 7 x 47 x 53. (See above.)

BOdd positioned verses: 82124 = 22 x 72 x 419. (See feature 2.1.

B.1Even positioned verses: 74809 = 7 x 10687. (See feature 2.2.)

B.2The odd valued words: 50092 = 22 x 7 x 1789. (See feature 3.1.)

B.3The even valued words: 58450 = 2 x 52 x 7 x 167. (See feature 3.2.)

C.1First chapter: 75579 = 3 x 7 x 59 x 61. (See feature 1.1.)

C.2Last chapter: 81354 = 2 x 3 x 7 x 13 x 149 (See feature 1.1.1.)

C.3Total of the first and last verses of each chapter: 11655 = 32 x 5 x 7 x 37. (See feature 1.2.)

C.4Total of the first verse of each chapter: 3913 = 7 x 13 x 43. SF: 63 = 32 x 7. SF: 13. (See feature 1.2.1.)

C.5The first and last letters of each word: 88501 (7 x 47 x 269). (See feature 3.7.)

C.6The first letter of each word: 30772 = 22 x 72 x 157. (See feature 3.7.2.1.)

C.7The last letter of each word: 57729 = 3 x 7 x 2749. (See feature 3.7.3.)

The Chapters

1Following Revelation 1:8, the two chapters are classified as first and last.

75579 81354

1.1Total of the first chapter: 75579 = 3 x 7 x 59 x 61. SF: 130 = 2 x 5 x 13.

1.1.1Total of the last chapter: 81354 = 2 x 3 x 7 x 13 x 149.

1.2Total of the first and last verses of each chapter: 11655 = 32 x 5 x 7 x 37.

1.2.1Total of the first verse of each chapter: 3913 = 7 x 13 x 43. SF: 63 = 32 x 7. SF: 13.

1.2.2Total of the last verse of each chapter: 7742 = 2 x 72 x 79.

1.3One chapter is odd valued. The other is even valued. This pairing is another type of Alpha and Omega. One could also say one chapter is in an odd position, and one chapter is in an even position.

1.3.1The difference between these two chapters is 5775, a symmetrical number. This symmetry is a visual representation of the same one God who is at the beginning and at the end. 57 is not the same as 75 just as Alpha is not the same as Omega, but they are the same as mirrored images. (5775 is divisible by 7 since the two chapters are individually divisible by seven.)

1.3.2The first and last digits of the two numbers total 28 (2 x 2 x 7).

1.3.3The digits have a unique balance.

7 5 5 7 9 8 1 3 5 4

The odd positioned digits total 27, and the even positioned digits total 27.

1.4.1Total of the first letter of each word in the first chapter: 8242 = 2 x 13 x 317.

1.4.1.1Total of the first letter of each word in the last chapter: 22530 (nf).

1.4.2Total of the last letter of each word in the first chapter: 30681 = 32 x 7 x 487.

1.4.2.1Total of the last letter of each word in the last chapter: 27048 = 23 x 3 x 72 x 23. SF: 46 = 2 x 23.

The first and last letters of each word for both chapters is almost perfect. Only the second part of 1.4.1 failed. The factors of 23 in 1.4.2 show the passage is about the human race.

1.4.3The total of the positions of the first letter of each word for the first chapter: 5026 = 2 x 7 x 359.

1.4.4The total of the positions of the first letter of each word for the last chapter: 6706 = 2 x 7 x 479.

This does not work for the total of the positions of the last letter of each word for either chapter.

1.4.5The number of words in the first chapter: 287 = 7 x 41.

1.4.5.1The number of words in the last chapter: 292 = 22 x 73. SF: 77 = 7 x 11.

(The number of letters for each chapter have no feature.)

There aren't many more numeric features with the chapters because there are only two of them. This changes with the verses.

The Verses

2417 2465 2039 2280 2925 1125 2555 2075 1783 3184 3363 1370 3027
4777 1838 2091 1770 3735 2199 2693 1429 1969 1480 2455 2387 3298
1659 1716 1904 1527 3013 3031 1496 2344 3726 3535 2723 4607 3854
2450 3657 4558 3432 2813 4391 2126 4058 2190 3838 1915 3748 3067
3746 2299 2956 3114 4711

2As every other letter in The Proclamation had a numeric feature so do the verses here.

2.1Odd positioned verses:

2417 2039 2925 2555 1783 3363 3027 1838 1770 2199 1429 1480 2387
1659 1904 3013 1496 3726 2723 3854 3657 3432 4391 4058 3838 3748
3746 2956 4711 

Total: 82124 = 22 x 72 x 419.

2.1.1The odd valued verses in 2.1:

2417 2039 2925 2555 1783 3363 3027 2199 1429 2387 1659 3013 2723
3657 4391 4711 

Total: 44278 = 2 x 132 x 131. (There is no corresponding feature with the even valued verses in 2.1 since this passage is about people and not God.)

2.2Even positioned verses:

2465 2280 1125 2075 3184 1370 4777 2091 3735 2693 1969 2455 3298
1716 1527 3031 2344 3535 4607 2450 4558 2813 2126 2190 1915 3067
2299 3114

Total: 74809 = 7 x 10687. (The first and last in this list: 5579 = 7 x 797.)

2.2.1Odd valued verses from 2.2:

2465 1125 2075 4777 2091 3735 2693 1969 2455 1527 3031 3535 4607
2813 1915 3067 2299 

Total: 46179 = 32 x 7 x 733.

2.2.2Even valued verses from 2.2:

2280 3184 1370 3298 1716 2344 2450 4558 2126 2190 3114

Total: 28630 = 2 x 5 x 7 x 409.

2.2.1.1Even positioned verses from 2.2.2:

3184 3298 2344 4558 2190

Total: 15574 = 2 x 13 x 599.

2.3Since there are 57 (3 x 19) verses, rather than taking every other verse, one could extract every third verse:

2039 1125 1783 1370 1838 3735 1429 2455 1659 1527 1496 3535 3854 4558 4391
2190 3748 2299 4711

Total: 49742 = 2 x 7 x 11 x 17 x 19. SF: 56 = 23 x 7. SF: 13.

2.3.1Odd valued of every third verse:

2039 1125 1783 3735 1429 2455 1659 1527 3535 4391 2299 4711

Total: 30688 = 25 x 7 x 137. SF: 154 = 2 x 7 x 11.

2.3.2Even valued of every third verse:

1370 1838 1496 3854 4558 2190 3748

Total: 19054 = 2 x 7 x 1361.

2.3.2.1Odd positioned of even valued of every third verse (2.3.2):

1370 1496 4558 3748

Total: 11172 = 22 x 3 x 72 x 19.

2.3.2.2Even positioned of even valued of every third verse (2.3.2):

1838 3854 2190

Total: 7882 = 2 x 7 x 563. SF: 572 = 22 x 11 x 13. SF: 28 = 22 x 7.

2.4Verses 6 and 14 are the lowest and highest verses: 4777 + 1125 = 5902 (2 x 13 x 227).

2.4.1Sort the verse totals from least to greatest. Divide the list into three sections of 19 totals each.

2.4.1.1The lowest third:

1125 1370 1429 1480 1496 1527 1659 1716 1770 1783 1838 1904 1915 1969 2039
2075 2091 2126 2190

Total: 33502 = 2 x 7 x 2393.

2.4.1.1.1Odd valued of the lowest third:

1125 1429 1527 1659 1783 1915 1969 2039 2075 2091

Total: 17612 = 22 x 7 x 17 x 37. SF: 65 = 5 x 13.

2.4.1.1.2Even valued of the lowest third:

1370 1480 1496 1716 1770 1838 1904 2126 2190

Total: 15890 = 2 x 5 x 7 x 227.

2.4.1.1.3First and last of the lowest third: 1125 + 2190 = 3315 (3 x 5 x 13 x 17).

2.4.2The middle third:

2199 2280 2299 2344 2387 2417 2450 2455 2465 2555 2693 2723 2813 2925 2956
3013 3027 3031 3067

Total: 50099 = 7 x 17 x 421.

2.4.2.1Odd valued of 2.4.2:

2199 2299 2387 2417 2455 2465 2555 2693 2723 2813 2925 3013 3027 3031 3067

Total: 40069 = 17 x 2357. (This is not divisible by seven or thirteen, but it is balanced with the even valued.

2.4.2.2Even valued of 2.4.2:

2280 2344 2450 2956

Total: 10030 = 2 x 5 x 17 x 59.

2.4.3The highest third:

3114 3184 3298 3363 3432 3535 3657 3726 3735 3746 3748 3838 3854 4058 4391
4558 4607 4711 4777

Total: 73332 = 22 x 33 x 7 x 97. SF: 117 = 32 x 13.

2.4.3.1First and last of the highest third: 3114 + 4777 = 7891 = 13 x 607.

2.4.4First and last thirds: 33502 + 73332 = 106834 = 2 x 7 x 13 x 587. SF: 609 = 3 x 7 x 29. SF: 39 = 3 x 13.

2.5Since there are 57 verse totals, they cannot be divided into two equal groups. Groups would have to be equal a different way. Verse totals range from 1125 to 4777. Thus the totals could be grouped as those in the thousands and two thousands, and those in the three thousands and four thousands.

2.5.1The first group of verses from 1000s to 2000s:

1125 1370 1429 1480 1496 1527 1659 1716 1770 1783 1838 1904 1915
1969 2039 2075 2091 2126 2190 2199 2280 2299 2344 2387 2417 2450
2455 2465 2555 2693 2723 2813 2925 2956 

Total: 71463 = 3 x 7 x 41 x 83.

2.5.1.1First and last of this group (1125 + 2956): 4081 = 7 x 11 x 53.

2.5.2The second group of verses from 3000s to 4000s:

3013 3027 3031 3067 3114 3184 3298 3363 3432 3535 3657 3726 3735
3746 3748 3838 3854 4058 4391 4558 4607 4711 4777 

Total: 85470 = 2 x 3 x 5 x 7 x 11 x 37. SF: 65 = 5 x 13.

2.5.1.2Seeing how grouping the verse totals worked so well, break it down further. Extract all those in the 1000s:

1125 1783 1370 1838 1770 1429 1969 1480 1659 1716 1904 1527 1496 1915

Total: 22981 = 73 x 67. (Three factors of seven!)

2.5.1.3This leaves all those in the 2000s:

2417 2465 2039 2280 2925 2555 2075 2091 2199 2693 2455 2387 2344
2723 2450 2813 2126 2190 2299 2956 

Total: 48482 = 2 x 7 x 3463. SF: 3472 = 24 x 7 x 31.

2.5.2.1The verses in the 3000s and 4000s have a slightly different result. The verses in the 3000s:

3184 3363 3027 3735 3298 3013 3031 3726 3535 3854 3657 3432 3838
3748 3067 3746 3114 

Total: 58368 = 210 x 3 x 19. SF: 42 = 2 x 3 x 7. The total was not divisible by seven, but the sum of the factors is.

2.5.2.2Now we try the verses in the 4000s:

4777 4607 4558 4391 4058 4711

Total: 27102 = 2 x 3 x 4517. Once again the total is not divisible by seven, but once again the sum of the factors works: 4522 = 2 x 7 x 17 x 19.

2.5.3The first and last verse from each of the four groups (2.5.1.2, 2.5.1.3, 2.5.2.1, and 2.5.2.2) all together total 24199 (7 x 3457. SF: 3464 = 23 x 433).

2.6.1Returning to the original list of 57 verses, the 29th verse is the verse in the middle. Its total is 1904 = 24 x 7 x 17.

2.6.2Sort the 57 verses from least to greatest. The verse in the middle has a total of 2555 = 5 x 7 x 73. Incredibly, this was originally the seventh verse of the passage.

2.6.3Both middle verses together: 1904 + 2555 = 4459 (73 x 13). There are two extra factors of seven, and a factor of thirteen.

2.7The 57 verse totals can be three groups of 19.

2.7.1Odd valued groups of 19:

3854 2450 3657 4558 3432 2813 4391 2126 4058 2190 3838 1915 3748 3067 3746
2299 2956 3114 4711

Total: 62923 = 7 x 89 x 101.

2.7.2Even valued groups of 19:

2417 2465 2039 2280 2925 1125 2555 2075 1783 3184 3363 1370 3027 4777 1838
2091 1770 3735 2199
2693 1429 1969 1480 2455 2387 3298 1659 1716 1904 1527 3013 3031 1496 2344
3726 3535 2723 4607

Total: 94010 = 2 x 5 x 7 x 17 x 79.

2.8Similar to The Proclamation, the first letter of each word has its own numeric feature (see below). Since there are 57 verses, this is examined in relation to the verses. The totals of the first letter of each word for each verse are listed below.

816 51 22 49 161 52 622 112 396 568 420 299 215 269 123 33 33 134
379 75 133 396 95 404 797 354 28 389 70 158 395 194 339 664 471 816
73 317 1203 273 1345 1657 676 635 1274 691 1343 470 1123 893 1313
1119 1433 963 717 1169 1553

2.8.1The highest and lowest from the list in 2.8:

22 1657

Total: 1679 = 23 x 73. (The factor for man appears again.)

2.8.1.1Since there are 57 verses, one could take every 19th from the list in 2.8:

379 317 1553

Total: 2249 = 13 x 173. (The first and last in this small list: 1932 = 22 x 3 x 7 x 23.)

2.8.2The odd valued totals from the list in 2.8:

51 49 161 299 215 269 123 33 33 379 75 133 95 797 389 395 339 471 73
317 1203 273 1345 1657 635 691 1343 1123 893 1313 1119 1433 963 717
1169 1553

Total: 22126 = 2 x 13 x 23 x 37. SF: 75 = 3 x 52 SF: 13. (The factors go three levels. The factor 23 shows this is about humanity because the average person has 23 pairs of chromosomes.)

2.8.2.1The highest and the lowest from the list in 2.8.2:

33 1657

Total: 1690 = 2 x 5 x 132.

2.8.2The even valued totals from the list in 2.8:

816 22 52 622 112 396 568 420 134 396 404 354 28 70 158 194 664 816 676
1274 470

Total: 8646 = 2 x 3 x 11 x 131. SF: 147 = 3 x 72 This is not divisible by 7 or 13. To make up for it, the sum of the factors is divisible by 7 twice, and there are 21 even valued totals. The numeric features for this list go further.

2.8.2.1The odd positioned from the list in 2.8.2:

816 52 112 568 134 404 28 158 664 676 470

Total: 4082 = 2 x 13 x 157.

2.8.2.2The even positioned from the list in 2.8.2:

22 622 396 420 396 354 70 194 816 1274

Total: 4564 = 22 x 7 x 163.

2.8.2.3Since there are 21 totals in 2.8.2, take every third number:

52 396 134 354 158 816 470

Total: 2380 = 22 x 5 x 7 x 17.

2.9Now the totals of the last letter of each word for each verse are examined.

1219 783 622 445 487 449 393 1429 728 765 2205 769 1804 1606 1310
1230 1230 1846 253 215 775 338 670 1028 508 2146 1275 1261 1502 301
215 874 615 437 952 649 1695 2071 1008 941 966 1618 1619 771 1697
667 1893 732 1593 468 1034 508 1034 662 1118 737 1563 

2.9.1Following the same methods in 2.8, select the odd positioned totals from 2.9:

1219 622 487 393 728 2205 1804 1310 1230 253 775 670 508 1275 1502
215 615 952 1695 1008 966 1619 1697 1893 1593 1034 1034 1118 1563 

Total: 31983 = 3 x 7 x 1523. SF: 1533 = 3 x 7 x 73.

2.9.1.1The first and last from the list in 2.9.1: 1219 + 1563 = 2782 (2 x 13 x 107).

2.9.1.2From 2.9.1, take the odd positioned again:

1219 487 728 1804 1230 775 508 1502 615 1695 966 1697 1593 1034 1563

Total: 17416 = 23 x 7 x 311.

2.9.1.2.1The first and last from 2.9.1.2: 2782 = 2 x 13 x 107.

2.9.1.3Take the even positioned from 2.9.1:

622 393 2205 1310 253 670 1275 215 952 1008 1619 1893 1034 1118

Total: 14567 = 7 x 2081.

2.9.2Extract the even positioned totals from 2.9:

783 445 449 1429 765 769 1606 1230 1846 215 338 1028 2146 1261 301
874 437 649 2071 941 1618 771 667 732 468 508 662 737 

Total: 25746 = 2 x 3 x 7 x 613.

2.9.2.1The odd positioned from 2.9.2:

783 449 765 1606 1846 338 2146 301 437 2071 1618 667 468 662

Total: 14157 = 32 x 112 x 13. (There is no corresponding feature with the even positioned from 2.9.2.)

2.9.2.1.1The odd valued from 2.9.2.1:

783 449 765 301 437 2071 667

Total: 5473 = 13 x 421. SF: 434 = 2 x 7 x 31.

2.9.2.1.1.1The odd positioned from 2.9.2.1.1:

783 765 437 667

Total: 2652 = 22 x 3 x 13 x 17.

2.9.2.1.1.2Even positioned from 2.9.2.1.1:

449 301 2071

Total: 2821 = 7 x 13 x 31. (This tiny list goes one final step. The odd positioned total 2520 [23 x 32 x 5 x 7]. The even positioned: 301 [7 x 43].)

2.9.2.1.2The even valued from 2.9.2.1:

1606 1846 338 2146 1618 468 662

Total: 8684 = 22 x 13 x 167.

As Alpha and Omega are not the same, so are the totals for the first letter of each word for each verse (2.8) not exactly the same as the totals of the last letter of each word for each verse (2.9). Nevertheless, both first and last manifest many similar numeric features at the verse level.

2.10The 57 verse totals for the first letters of each word, and the 57 verse totals for the last letters of each word can be added together since Alpha and Omega go together. This produces a new list of 57 sums.

2035 834 644 494 648 501 1015 1541 1124 1333 2625 1068 2019 1875
1433 1263 1263 1980 632 290 908 734 765 1432 1305 2500 1303 1650
1572 459 610 1068 954 1101 1423 1465 1768 2388 2211 1214 2311 3275
2295 1406 2971 1358 3236 1202 2716 1361 2347 1627 2467 1625 1835
1906 3116 

2.10.1The odd values of the list in 2.10:

2035 501 1015 1541 1333 2625 2019 1875 1433 1263 1263 765 1305 1303
459 1101 1423 1465 2211 2311 3275 2295 2971 1361 2347 1627 2467 1625
1835 

Total: 49049 = 73 x 11 x 13.

2.10.1.1Pick the odd positioned from the list in 2.10.1

2035 1015 1333 2019 1433 1263 1305 459 1423 2211 3275 2971 2347
2467 1835

Total: 27391 = 72 x 13 x 43. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

2.10.1.2Take the even positioned from the list in 2.10.1:

501 1541 2625 1875 1263 765 1303 1101 1465 2311 2295 1361 1627 1625

Total: 21658 = 2 x 72 x 13 x 17. (There are 14 numbers taken.)

2.10.2The even values of the list in 2.10:

834 644 494 648 1124 1068 1980 632 290 908 734 1432 2500 1650 1572
610 1068 954 1768 2388 1214 1406 1358 3236 1202 2716 1906 3116

Total: 39452 = 22 x 7 x 1409. (There are 28 even values.)

2.10.2.1Select the odd positioned from 2.10.2:

834 494 1124 1980 290 734 2500 1572 1068 1768 1214 1358 1202 1906

Total: 18044 = 22 x 13 x 347. SF: 364 = 22 x 7 x 13. There are 14 values selected. (There is no matching numeric feature for the even positioned from 2.10.2.)

2.11Not only do the totals of the first letters of each word for each verse have numeric features, but so do the positions of these letters. Below are the totals of the positions of the first letter of each word for each verse.

239 137 45 69 169 59 246 128 308 169 278 132 189 197 83 67 59 197
454 87 173 84 59 117 338 180 61 61 166 94 87 294 78 171 584 552 210
607 202 195 497 261 264 129 393 82 357 119 365 87 310 119 317 92 236
120 359 

2.11.1Take every other from the list in 2.11 (the odd positioned):

239 45 169 246 308 278 189 83 59 454 173 59 338 61 166 87 78 584
210 202 497 264 393 357 365 310 317 236 359

Total: 7126 = 2 x 7 x 509. SF: 518 = 2 x 7 x 37.

2.11.2Take every other from the list in 2.11 (the even positioned):

137 69 59 128 169 132 197 67 197 87 84 117 180 61 94 294 171 552
607 195 261 129 82 119 87 119 92 120

Total: 4606 = 2 x 72 x 47. SF: 63 = 32 x 7. SF: 13.

2.11.3Select all the odd values from the list in 2.11:

239 137 45 69 169 59 169 189 197 83 67 59 197 87 173 59 117 61 61
87 171 607 195 497 261 129 393 357 119 365 87 119 317 359

Total: 6300 = 22 x 32 x 52 x 7.

2.11.3.1From the list in 2.11.3, take the odd positioned numbers:

239 45 169 169 197 67 197 173 117 61 171 195 261 393 119 87 317

Total: 2977 = 13 x 229. (There is no matching feature for the even positioned numbers.)

2.11.4Select all the even values from the list in 2.11:

246 128 308 278 132 454 84 338 180 166 94 294 78 584 552 210 202
264 82 310 92 236 120

Total: 5432 = 23 x 7 x 97.

2.11.4.1From the list in 2.11.4, take the odd positioned numbers:

246 308 132 84 180 94 78 552 202 82 92 120

Total: 2170 = 2 x 5 x 7 x 31.

2.11.4.2From the list in 2.11.4, take the even positioned numbers:

128 278 454 338 166 294 584 210 264 310 236

Total: 3262 = 2 x 7 x 233.

2.12Unlike the verse totals of positions for the first letters of each word, the positions for the last letters have no feature on their own. However, when first and last are put together, their positions do have numeric features.

List of position totals for the first and last letter of each word
by verse.
509 300 108 160 373 136 528 278 650 368 587 288 409 427 182 154 135
429 953 200 369 190 133 253 713 387 138 138 356 208 200 629 176 371
1221 1148 448 1261 431 418 1032 555 564 281 830 181 755 260 772 192
659 261 674 204 507 262 758 

2.12.1The first and last of the list: 509 + 758 = 1267 (7 x 181).

2.12.2Odd valued positions from 2.12:

509 373 587 409 427 135 429 953 369 133 253 713 387 629 371 1221
1261 431 555 281 181 755 659 261 507

Total: 12789 = 32 x 72 x 29. SF: 49 = 72. SF: 14 = 2 x 7.

2.12.3Even valued positioned from 2.12:

300 108 160 136 528 278 650 368 288 182 154 200 190 138 138 356 208
200 176 1148 448 418 1032 564 830 260 772 192 674 204 262 758

Total: 12320 = 25 x 5 x 7 x 11.

2.13Below is a list of the number of words in each verse.

12 9 5 6 9 6 11 9 14 9 13 9 10 10 7 6 6 10 15 7 11 7 6 8 14 10 6 6
10 7 7 12 7 9 17 17 11 19 11 11 19 13 12 8 14 7 14 8 14 7 13 8 13 7
11 8 14 

The total number of words: 579 = 3 x 193. This is not divisible by seven, but the factors add up to 196 (22 x 72). The sum of the factors makes up for the first level not having a numeric feature.

2.13.1Note that the first and last verse together have 26 (2 x 13) words.

2.13.1.1Nine verses have seven words. These are the 15th, 20th, 22nd, 30th, 31st, 33rd, 46th, 50th, and 54th verses. The sum of these numbers: 301 = 7 x 43.

2.13.1.2Five verses have eight words: 48, 44, 52, 24, and 56. The total of these verse positions: 224 = 25 x 7.

2.13.1.3These are the only two number of words per verses (9 and 5) that yield totals divisible by seven. Interestingly, 9 + 5 = 14 (2 x 7).

2.13.2Thirty-one verses have an odd number of words.

9 5 9 11 9 9 13 9 7 15 7 11 7 7 7 7 9 17 17 11 19 11 11 19 13 7 7 13
13 7 11

Total number of words: 327 = 3 x 109. Once again this is not divisible by seven, and once again the feature is in the next level of factors: 112 = 24 x 7.

2.13.3Twenty-six (2 x 13) verses have an even number of words.

12 6 6 14 10 10 6 6 10 6 8 14 10 6 6 10 12 12 8 14 14 8 14 8 8 14

Total: 252 = 22 x 32 x 7. This time the numeric feature appears immediately.

2.14Below is a list of the number of letters per verse.

43 35 23 28 44 24 47 31 48 39 44 33 41 43 23 26 23 45 60 33 34 29 21
27 51 37 22 22 34 27 33 53 27 38 70 61 39 66 38 39 57 46 48 31 58 24
55 30 56 25 52 31 53 27 46 30 54 

2.14.1Take every other number from the list in 2.14 (odd positioned):

43 23 44 47 48 44 41 23 23 60 34 21 51 22 34 33 27 70 39 38 57 48 58
55 56 52 53 46 54

Total: 1244 = 22 x 311. This is not divisible by seven, but the sum of the factors is divisible by seven: 315 = 32 x 5 x 7.

2.14.2Take the even positioned numbers from 2.14 (28 of them):

35 28 24 31 39 33 43 26 45 33 29 27 37 22 27 53 38 61 66 39 46 31 24
30 25 31 27 30

Total: 980 = 22 x 5 x 72. It is as if the two factors of seven are to make up for the previous category not turning out on the first try.

2.14.3The verse with the fewest number of letters has 21 letters (3 x 7). The verse with the most letters has 70 letters (2 x 5 x 7). Together, these two verses have 91 (7 x 13) letters. An extra factor of 13 appears.

2.14.4Five verses have a multiple of 13 as the number of letters.

Verse position:    16 10 40 37 51 
Number of letters: 26 39 39 39 52 

The sum of the verse positions: 154 = 2 x 7 x 11.
The sum of the number of letters: 195 = 3 x 5 x 13. SF: 21 = 3 x 7. These were chosen to have the number of letters divisible by 13. The unexpected result is that the sum of the factors is also divisible by 7.

An amazing number of numeric features have been derived from the verses, from the first letters of each word, from the last letters of each word, from the positions of these letters, from the number of words in each verse, and from the number of letters in each verse. These features were based on Revelation 1:8's principle of complementary opposites.

The Words

3There are 579 words.

42 840 62 58 340 48 496 62 75 102 209 83 62 490 243 58 60 72 438 366
676 68 243 378 696 654 68 66 346 1216 470 114 76 340 21 64 733 311
416 898 66 68 48 326 386 101 196 68 326 63 65 473 321 489 68 315 303
64 332 44 401 294 12 43 451 205 293 12 20 205 104 170 26 100 70 251
314 211 104 170 26 421 911 536 34 227 31 111 293 620 90 296 17 101
507 68 401 121 407 610 280 407 58 407 310 62 121 68 58 12 285 47 386
44 401 90 407 210 407 87 407 588 407 790 407 168 501 107 380 860 407
750 196 44 401 154 228 407 408 407 93 407 256 407 521 407 29 407 385
407 135 407 226 407 345 407 463 215 226 834 205 31 41 205 194 28 408
74 82 28 109 321 56 148 74 400 36 62 48 898 850 733 66 376 44 43 12
13 50 62 272 19 490 64 482 285 100 70 301 345 34 30 340 62 26 780 50
296 386 225 26 100 140 50 296 36 840 340 340 52 441 355 56 401 605
800 209 83 34 340 219 61 401 605 348 447 355 56 102 464 611 18 348
686 355 56 401 338 34 605 219 61 401 338 630 400 279 447 355 56 102
464 344 18 680 355 56 401 272 34 338 219 61 401 272 630 400 279 447
355 56 102 464 34 272 273 686 355 56 401 113 34 272 219 61 401 113
680 355 279 447 355 56 102 464 34 113 680 355 56 401 276 34 113 219
61 401 276 770 400 497 355 56 102 464 34 276 750 686 355 56 401 509
34 276 219 61 401 509 372 400 497 355 56 102 464 34 509 680 355 56
401 264 34 509 219 61 401 264 491 355 56 102 464 34 264 770 626 355
56 401 608 34 264 219 61 401 608 770 575 355 447 355 56 102 464

3.1The odd valued words:

75 209 83 243 243 21 733 311 101 63 65 473 321 489 315 303 401 43
451 205 293 205 251 211 421 911 227 31 111 293 17 101 507 401 121
407 407 407 121 285 47 401 407 407 87 407 407 407 501 107 407 401
407 407 93 407 407 521 407 29 407 385 407 135 407 407 345 407 463
215 205 31 41 205 109 321 733 43 13 19 285 301 345 225 441 355 401
605 209 83 219 61 401 605 447 355 611 355 401 605 219 61 401 279 447
355 355 401 219 61 401 279 447 355 273 355 401 113 219 61 401 113
355 279 447 355 113 355 401 113 219 61 401 497 355 355 401 509 219
61 401 509 497 355 509 355 401 509 219 61 401 491 355 355 401 219 61
401 575 355 447 355 

Total: 50092 = 22 x 7 x 1789.

3.1.1From the list in 3.1, take the odd positioned words:

75 83 243 733 101 65 321 315 401 451 293 251 421 227 111 17 507 121
407 121 47 407 87 407 501 407 407 93 407 407 407 407 407 345 463 205
41 109 733 13 285 345 441 401 209 219 401 447 611 401 219 401 447
355 219 401 447 273 401 219 401 355 447 113 401 219 401 355 401 219
401 497 509 401 219 401 355 401 61 575 447 

Total: 26285 = 5 x 7 x 751. SF: 763 = 7 x 109.

3.1.2From the list in 3.1, take the even positioned words:

209 243 21 311 63 473 489 303 43 205 205 211 911 31 293 101 401 407
407 285 401 407 407 407 107 401 407 407 521 29 385 135 407 407 215
31 205 321 43 19 301 225 355 605 83 61 605 355 355 605 61 279 355
401 61 279 355 355 113 61 113 279 355 355 113 61 497 355 509 61 509
355 355 509 61 491 355 219 401 355 355 

Total: 23807 = 7 x 19 x 179.

3.2The even valued words:

42 840 62 58 340 48 496 62 102 62 490 58 60 72 438 366 676 68 378
696 654 68 66 346 1216 470 114 76 340 64 416 898 66 68 48 326 386
196 68 326 68 64 332 44 294 12 12 20 104 170 26 100 70 314 104 170
26 536 34 620 90 296 68 610 280 58 310 62 68 58 12 386 44 90 210 588
790 168 380 860 750 196 44 154 228 408 256 226 226 834 194 28 408 74
82 28 56 148 74 400 36 62 48 898 850 66 376 44 12 50 62 272 490 64
482 100 70 34 30 340 62 26 780 50 296 386 26 100 140 50 296 36 840
340 340 52 56 800 34 340 348 56 102 464 18 348 686 56 338 34 338 630
400 56 102 464 344 18 680 56 272 34 338 272 630 400 56 102 464 34
272 686 56 34 272 680 56 102 464 34 680 56 276 34 276 770 400 56 102
464 34 276 750 686 56 34 276 372 400 56 102 464 34 680 56 264 34 264
56 102 464 34 264 770 626 56 608 34 264 608 770 56 102 464 

Total: 58450 = 2 x 52 x 7 x 167. (There are 224 even valued words.)

3.2.1From the list in 3.2 take the odd positioned words:

42 62 340 496 102 490 60 438 676 378 654 66 1216 114 340 416 66 48
386 68 68 332 294 12 104 26 70 104 26 34 90 68 280 310 68 12 44 210
790 380 750 44 228 256 226 194 408 82 56 74 36 48 850 376 12 62 490
482 70 30 62 780 296 26 140 296 840 340 56 34 348 102 18 686 338 338
400 102 344 680 272 338 630 56 464 272 56 272 56 464 680 276 276 400
102 34 750 56 276 400 102 34 56 34 56 464 264 626 608 264 770 102 

Total: 30290 = 2 x 5 x 13 x 233.

3.2.1.1From the list in 3.2.1, take the even positioned words:

62 496 490 438 378 66 114 416 48 68 332 12 26 104 34 68 310 12 210
380 44 256 194 82 74 48 376 62 482 30 780 26 296 340 34 102 686 338
102 680 338 56 272 272 464 276 400 34 56 400 34 34 464 626 264 102 

Total: 13188 = 22 x 3 x 7 x 157.

3.2.1.2From the list in 3.2.1.1, take the odd positioned again:

62 490 378 114 48 332 26 34 310 210 44 194 74 376 482 780 296 34
686 102 338 272 464 400 56 34 464 264

Total: 7364 = 22 x 7 x 263.

3.2.1.3From the list in 3.2.1.1 take the even positioned again:

496 438 66 416 68 12 104 68 12 380 256 82 48 62 30 26 340 102 338
680 56 272 276 34 400 34 626 102

Total: 5824 = 26 x 7 x 13.

3.3Like the verses, the words can be divided into three groups of 193 words each.

3.3.1First and last groups of 193 words (or the even valued groups): 51092 + 57450 = 108542 = 2 x 7 x 7753.

3.3.2Middle group of 193 words (or the odd valued group): 48391 = 7 x 31 x 223.

3.4As the complete lesson in the passage appears hidden from a cursory glance, so is there a numeric feature hidden until one searches further. From the list of all 579 words, extract the odd positioned words.

42 62 340 496 75 209 62 243 60 438 676 243 696 68 346 470 76 21 733
416 66 48 386 196 326 65 321 68 303 332 401 12 451 293 20 104 26 70
314 104 26 911 34 31 293 90 17 507 401 407 280 58 310 121 58 285 386
401 407 407 407 407 407 501 380 407 196 401 228 408 93 256 521 29
385 135 226 345 463 226 205 41 194 408 82 109 56 74 36 48 850 66 44
12 50 272 490 62 150 611 247 241 50 346 44 338 44 272 44 102 18 30
168 346 169 44 85 410 744 218 255 44 139 108 84 303 287 59 20 36 169
388 28 205 36 340 850 94 828 58 66 340 293 83 50 385 262 31 184 177
620 340 311 281 137 641 421 92 259 75 263 107 280 513 431 340 226
140 296 26 401 407 501 62 257 55 13 409 18 806 31 85 501 806 259 340
501 426 780 186 441 100 50 64 285 70 345 30 62 780 296 225 100 50 36
340 52 355 401 800 83 340 61 605 447 56 464 18 686 56 338 605 61 338
400 447 56 464 18 355 401 34 219 401 630 279 355 102 34 273 355 401
34 219 401 680 279 355 102 34 680 56 276 113 61 276 400 355 102 34
750 355 401 34 219 401 372 497 56 464 509 355 401 34 219 401 491 56
464 264 626 56 608 264 61 608 575 447 56 464 

The total is not divisible by 7 or 13: 77423 = 139 x 557.

3.4.1Repeat by extracting the odd positioned again.

42 340 75 62 60 676 696 346 76 733 66 386 326 321 303 401 451 20 26
314 26 34 293 17 401 280 310 58 386 407 407 407 380 196 228 93 521
385 226 463 205 194 82 56 36 850 44 50 490 150 247 50 44 44 44 18
168 169 85 744 255 139 84 287 20 169 28 36 850 828 66 293 50 262 184
620 311 137 421 259 263 280 431 226 296 401 501 257 13 18 31 501 259
501 780 441 50 285 345 62 296 100 36 52 401 83 61 447 464 686 338 61
400 56 18 401 219 630 355 34 355 34 401 279 102 680 276 61 400 102
750 401 219 372 56 509 401 219 491 464 626 608 61 575 56 

Total: 39884 = 22 x 132 x 59. There are two factors of 13.

3.4.1.1From the result in 3.4.1, pick the even valued numbers:

42 340 62 60 676 696 346 76 66 386 326 20 26 314 26 34 280 310 58
386 380 196 228 226 194 82 56 36 850 44 50 490 150 50 44 44 44 18
168 744 84 20 28 36 850 828 66 50 262 184 620 280 226 296 18 780 50
62 296 100 36 52 464 686 338 400 56 18 630 34 34 102 680 276 400 102
750 372 56 464 626 608 56 

Total: 21000 = 23 x 3 x 53 x 7. (There is no corresponding feature with the odd valued.)

3.4.2From the list of all 579 words, extract the even positioned words:

840 58 48 62 102 83 490 58 72 366 68 378 654 66 1216 114 340 64 311
898 68 326 101 68 63 473 489 315 64 44 294 43 205 12 205 170 100 251
211 170 421 536 227 111 620 296 101 68 121 610 407 407 62 68 12 47
44 90 210 87 588 790 168 107 860 750 44 154 407 407 407 407 407 407
407 407 407 407 215 834 31 205 28 74 28 321 148 400 62 898 733 376
43 13 62 19 48 340 513 46 68 166 609 611 401 344 401 308 360 340 113
68 296 25 175 401 407 407 407 407 407 407 407 407 407 407 407 407 50
62 31 381 345 149 62 898 733 36 62 910 82 64 209 31 296 409 63 222
153 293 324 263 31 12 132 615 75 83 20 278 12 86 83 392 86 130 100
50 220 631 285 82 58 50 26 110 391 120 83 481 302 50 63 12 93 820 31
311 281 26 380 140 296 482 100 301 34 340 26 50 386 26 140 296 840
340 441 56 605 209 34 219 401 348 355 102 611 348 355 401 34 219 401
630 279 355 102 344 680 56 272 338 61 272 400 447 56 464 272 686 56
113 272 61 113 355 447 56 464 113 355 401 34 219 401 770 497 56 464
276 686 56 509 276 61 509 400 355 102 34 680 56 264 509 61 264 355
102 34 770 355 401 34 219 401 770 355 355 102 

Once again the total is not divisible by 7 or 13: 79510 = 2 x 5 x 7951.

3.4.3Repeat by extracting the even positioned again.

58 62 83 58 366 378 66 114 64 898 326 68 473 315 44 43 12 170 251
170 536 111 296 68 610 407 68 47 90 87 790 107 750 154 407 407 407
407 407 834 205 74 321 400 898 376 13 19 340 46 166 611 344 308 340
68 25 401 407 407 407 407 407 407 62 381 149 898 36 910 64 31 409
222 293 263 12 615 83 278 86 392 130 50 631 82 50 110 120 481 50 12
820 311 26 140 482 301 340 50 26 296 340 56 209 219 348 102 348 401
219 630 355 344 56 338 272 447 464 686 113 61 355 56 113 401 219 770
56 276 56 276 509 355 34 56 509 264 102 770 401 219 770 355 

Total: 41028 = 22 x 3 x 13 x 263. Once again the result is divisible by 13.

3.5Taking the odd and even positioned words is taking every other word. One could also take every second, or third or Nth word. The following values of N extracts words where the total is divisible by 7 or 13.

3.5.1Every Nth word produces a total divisible by 7 when N is one of the following:

7 11 12 15 28 30 35 36 43 65 71 75 82 89 98 99 109 114 117 123
127 138 139 140 159 163 164 168 189 199 204 214 226 227 230 234 236
239 245 251 266 268 277 280 282

Total of N: 6524 = 22 x 7 x 233.

3.5.2Every Nth word produces a total divisible by 13 when N is one of the following:

4 6 15 26 43 46 84 92 95 108 136 152 174 186 199 206 220 221
238 242 244 250 260 263 277

Total of N: 3787 = 7 x 541.

3.5.3One could also begin with the first word before taking every Nth word after. These values of N produce totals divisible by 13.

4 14 18 33 56 99 107 140 167 174 186 197 198 200 229 235 246 287

Total of N: 2590 = 2 x 5 x 7 x 37.

3.5.4Beginning with the first word, and taking every Nth after, the following values of N produce totals divisible by 7 and 13.

140 174 186 235

Total of N: 735 = 3 x 5 x 72.

3.6.1Seventy-one words are divisible by seven.

a) 1  2   14  24  35 47  50 56  62  75 101 118 122 126 133 136 149
b) 42 840 490 378 21 196 63 315 294 70 280 210 588 168 196 154 385

a) 166 170 173 193 206 216 225 230 249 253 265 280 291 294 317 325
b) 28  28  56  490 609 308 168 175 84  287 28  910 385 63  259 280

a) 328 335 366 369 381 384 391 392 406 410 414 416 431 437 439 448
b) 392 140 63  259 441 140 70  301 140 840 441 56  56  686 56  630

a) 453 460 469 474 479 480 482 496 503 512 514 516 522 524 535 537
b) 56  56  630 56  273 686 56  56  56  770 497 56  686 56  497 56

a) 544 555 560 563 572 577 (Position in the passage.)
b) 56  56  770 56  770 56  (Word value.)

The sum of their positions is also divisible by 7: 22778 = 2 x 7 x 1627. These words are perfectly placed in the passage.

3.6.2Word value 17 is the lowest value of those that appeared only once. Word value 407 is the highest value that appeared the most at 32 times. Together: 17 + (407 x 32) = 13041 = 34 x 7 x 23. SF: 42 = 2 x 3 x 7.

3.6.3Exactly 117 word values (32 x 13) appeared only once. Thirteen is associated with the name of the one God. Thus the number of words that appear only once is also divisible by 13.

117 word values that appeared only once:
42 496 60 72 438 366 676 378 696 654 1216 470 114 76 21 416 65 473
489 315 332 294 451 251 314 211 911 536 227 111 17 507 610 310 47
210 87 588 790 860 154 228 256 521 29 135 463 215 834 41 194 109 148
376 19 150 46 247 241 166 609 308 360 25 175 410 744 218 255 139 108
84 287 59 388 381 149 94 828 910 262 222 184 153 177 324 137 132 641
615 92 278 392 431 130 220 631 257 55 110 391 120 481 302 820 426
186 482 301 225 52 800 273 372 491 626 575

The sum of these values is not divisible by 7 or 13: 38666 (nf).

3.6.4The positions of these unique word values:

1 7 17 18 19 20 21 24 25 26 30 31 32 33 35 39 51 52 54 56 59 62 65
76 77 78 83 84 86 88 93 95 100 105 112 118 120 122 124 130 136 137
143 145 147 151 157 158 160 163 165 171 174 184 192 197 200 201 203
204 206 216 218 228 230 235 237 239 241 245 247 249 253 255 263 264
268 275 277 280 293 296 297 298 299 302 309 310 311 312 315 320 328
329 332 338 340 349 351 352 354 356 360 362 372 375 379 388 392 403
413 419 479 533 553 561 573

Total: 24435 = 33 x 5 x 181. The feature is hidden in the sum of the factors: 195 = 3 x 5 x 13. SF: 21 = 3 x 7.

3.6.4.1The first and last of these positions: 574 = 2 x 7 x 41.

3.6.4.2The even positioned values from the list in 3.6.4:

7 18 20 24 26 31 33 39 52 56 62 76 78 84 88 95 105 118 122 130 137
145 151 158 163 171 184 197 201 204 216 228 235 239 245 249 255 264
275 280 296 298 302 310 312 320 329 338 349 352 356 362 375 388 403
419 533 561

Total: 12064 = 25 x 13 x 29. SF: 52 = 22 x 13. (There is no matching feature with the odd positioned values.)

3.6.5Eighty-eight word values have more than one appearance:

840 62 58 340 48 75 102 209 83 490 243 68 66 346 64 733 311 898 326
386 101 196 63 321 303 44 401 12 205 293 104 170 100 421 620 296 121
407 280 285 168 501 107 380 750 408 385 226 345 74 82 56 400 36 850
13 272 513 611 338 344 18 113 169 409 263 281 259 140 806 780 441
355 605 219 348 447 464 686 630 279 680 276 770 497 509 264 608

The total of these values is not divisible by 7 or 13: 28666 = 2 x 11 x 1303. The sum of the factors is a multiple of 7: 1316 = 22 x 7 x 47.

3.6.5.1The positions in the passage of these 88 values is something else.

2 410 3 8 13 106 178 190 195 260 270 278 347 397 4 16 103 109 279
346 5 34 196 220 271 283 303 331 371 396 411 412 423 6 43 179 194 9
314 319 10 219 432 454 475 497 517 538 556 578 11 286 420 12 287 316
326 358 421 14 193 15 23 22 27 42 48 55 96 108 202 224 28 41 183 281
29 207 227 36 58 284 387 37 182 274 38 305 376 40 180 272 44 49 45
113 402 46 94 47 133 50 294 366 53 172 57 251 60 114 134 185 209 213
217 231 243 61 97 115 135 210 214 232 341 417 426 440 446 461 467
483 489 504 510 525 531 545 551 564 570 63 68 110 187 308 322 368 66
70 161 164 267 67 89 285 300 71 79 72 80 74 334 383 390 405 82 313
90 301 92 226 290 337 386 401 408 98 107 99 102 104 117 119 121 123
125 131 138 140 142 144 146 148 150 152 154 156 234 236 238 240 242
244 246 248 250 252 254 256 343 101 325 111 342 389 126 225 127 345
365 373 128 323 129 382 132 521 139 167 149 291 153 159 333 155 266
393 168 175 169 282 344 173 416 431 439 453 460 474 482 496 503 516
524 537 544 555 563 577 176 449 470 513 534 177 259 269 276 409 181
273 188 353 191 215 462 468 478 486 198 327 199 208 434 211 441 447
464 212 456 221 357 435 457 222 484 490 500 507 229 261 292 355 304
321 307 378 317 369 335 384 406 359 367 377 399 381 414 415 430 438
452 459 473 481 492 495 502 515 523 536 543 554 562 574 576 418 427
443 424 444 465 487 508 529 549 568 428 436 429 451 472 494 575 433
455 476 498 518 539 557 579 437 480 522 448 469 450 471 493 458 491
501 542 505 511 520 528 512 560 572 514 535 526 532 541 548 546 552
559 567 565 571

Total: 120575 = 52 x 7 x 13 x 53. There are factors of 7 and 13.

3.6.5.2The odd valued positions from the list in 3.6.5.1:

3 13 195 347 397 103 109 279 5 271 283 303 331 371 411 423 43 179 9
319 219 475 497 517 11 287 421 193 15 23 27 55 41 183 281 29 207 227
387 37 305 49 45 113 47 133 53 57 251 185 209 213 217 231 243 61 97
115 135 341 417 461 467 483 489 525 531 545 551 63 187 161 267 67 89
285 71 79 383 405 313 301 337 401 107 99 117 119 121 123 125 131 343
101 325 111 389 225 127 345 365 373 323 129 521 139 167 149 291 153
159 333 155 393 175 169 173 431 439 453 503 537 555 563 577 449 513
177 259 269 409 181 273 353 191 215 327 199 211 441 447 221 357 435
457 507 229 261 355 321 307 317 369 335 359 367 377 399 381 415 459
473 481 495 515 523 543 427 443 465 487 529 549 429 451 575 433 455
539 557 579 437 469 471 493 491 501 505 511 535 541 559 567 565 571

Total: 59943 = 3 x 13 x 29 x 53. SF: 98 = 2 x 72

3.6.5.3The even valued positions from the list in 3.6.5.1:

2 410 8 106 178 190 260 270 278 4 16 346 34 196 220 396 412 6 194
314 10 432 454 538 556 578 286 420 12 316 326 358 14 22 42 48 96 108
202 224 28 36 58 284 182 274 38 376 40 180 272 44 402 46 94 50 294
366 172 60 114 134 210 214 232 426 440 446 504 510 564 570 68 110
308 322 368 66 70 164 300 72 80 74 334 390 82 90 92 226 290 386 408
98 102 104 138 140 142 144 146 148 150 152 154 156 234 236 238 240
242 244 246 248 250 252 254 256 342 126 128 382 132 266 168 282 344
416 460 474 482 496 516 524 544 176 470 534 276 188 462 468 478 486
198 208 434 464 212 456 222 484 490 500 292 304 378 384 406 414 430
438 452 492 502 536 554 562 574 576 418 424 444 508 568 428 436 472
494 476 498 518 480 522 448 450 458 542 520 528 512 560 572 514 526
532 548 546 552

Total: 60632 = 23 x 11 x 13 x 53.

3.6.5.4The list in 3.6.5.1 is reformatted to show the word value, and the positions in the passage.

Word  Positions
840   2 410
62    3 8 13 106 178 190 195 260 270 278 347 397
58    4 16 103 109 279 346
340   5 34 196 220 271 283 303 331 371 396 411 412 423
48    6 43 179 194
75    9 314 319
102   10 219 432 454 475 497 517 538 556 578
209   11 286 420
83    12 287 316 326 358 421
490   14 193
243   15 23
68    22 27 42 48 55 96 108 202 224
66    28 41 183 281
346   29 207 227
64    36 58 284 387
733   37 182 274
311   38 305 376
898   40 180 272
326   44 49
386   45 113 402
101   46 94
196   47 133
63    50 294 366
321   53 172
303   57 251
44    60 114 134 185 209 213 217 231 243
401   61 97 115 135 210 214 232 341 417 426 440 446 461 467 483 489 504 510 525 531 545 551 564 570
12    63 68 110 187 308 322 368
205   66 70 161 164 267
293   67 89 285 300
104   71 79
170   72 80
100   74 334 383 390 405
421   82 313
620   90 301
296   92 226 290 337 386 401 408
121   98 107
407   99 102 104 117 119 121 123 125 131 138 140 142 144 146 148 150 152 154 156 234 236 238 240 242 244 246 248 250 252 254 256 343
280   101 325
285   111 342 389
168   126 225
501   127 345 365 373
107   128 323
380   129 382
750   132 521
408   139 167
385   149 291
226   153 159 333
345   155 266 393
74    168 175
82    169 282 344
56    173 416 431 439 453 460 474 482 496 503 516 524 537 544 555 563 577
400   176 449 470 513 534
36    177 259 269 276 409
850   181 273
13    188 353
272   191 215 462 468 478 486
513   198 327
611   199 208 434
338   211 441 447 464
344   212 456
18    221 357 435 457
113   222 484 490 500 507
169   229 261
409   292 355
263   304 321
281   307 378
259   317 369
140   335 384 406
806   359 367
780   377 399
441   381 414
355   415 430 438 452 459 473 481 492 495 502 515 523 536 543 554 562 574 576
605   418 427 443
219   424 444 465 487 508 529 549 568
348   428 436
447   429 451 472 494 575
464   433 455 476 498 518 539 557 579
686   437 480 522
630   448 469
279   450 471 493
680   458 491 501 542
276   505 511 520 528
770   512 560 572
497   514 535
509   526 532 541 548
264   546 552 559 567
608   565 571

Total of the positions of the first and last appearances of the 88: 48531 = 3 x 7 x 2311.

Shouldn't the unique word values have more features than the word values that appear more than once? If this passage was about God, then it would be more appropriate for the word values that occur only once to have more features. Since this passage is about mankind, it is the word values that appear more than once that take centre stage.

3.7The first and last letters of each word have been covered previously for the chapters and verses. Here they stand on their own. The first and last letters of each word total 88501 (7 x 47 x 269). The positions of these letters (i.e. within their verses) total 25109 (7 x 17 x 211).

3.7.1A hundred and thirty-four words have their first and last letters adding up to a total that is divisible by 7. These are the positions of the words where this is true.

7 9 10 12 15 18 23 25 34 37 38 40 41 47 54 57 58 60 64 66 70 75 76
78 96 99 102 103 104 108 109 114 116 117 119 120 121 123 125 131 133
134 136 138 140 142 144 146 148 150 152 154 156 159 166 170 180 181
182 183 185 194 209 211 212 213 217 219 228 230 231 234 236 238 240
242 244 246 248 250 251 252 254 256 265 272 273 274 275 280 281 283
287 296 299 305 310 312 314 319 328 333 343 344 356 362 376 377 391
399 421 428 432 433 436 441 447 454 455 456 464 475 476 497 498 517
518 538 539 556 557 575 578 579

Total of the positions: 31479 = 3 x 7 x 1499. (134 is not divisible by 7 or 13, but it factors as 2 x 67. The sum of these factors is 69, which factors as 3 x 23. Thus hidden in the number 134 is the factor for man. And of course 3 + 23 is 26, which is associated with God’s name.)

3.7.1.1In 20 words the first and last letters are both odd valued. The sum of these words is 1592 (nf). In 364 words the first and last letters are both even valued. The sum of these words 106828 (nf). Put these two categories together. They are purely odd, or purely even: 1592 + 106828 = 108420 = 22 x 3 x 5 x 13 x 139.

3.7.1.2Seventy-one words are divisible by 7. They are listed below along with their first and last letters.

A   B   C       A   B    C      A   B   C       A   B   C       A   B  C
6   5   42      90  50  154     1   40  63      6   4   56      6   4  56
400 400 840     5   10  385     6   200 259     6   40  686     6   40 686
10  400 490     2   5   28      70  200 280     6   4   56      6   4  56
1   7   378     2   5   28      2   40  392     300 300 630     6   40 497
1   10  21      6   5   56      80  10  140     6   4   56      6   4  56
6   50  196     10  400 490     10  6   63      6   4   56      6   4  56
60  1   63      6   200 609     50  5   259     300 300 630     6   4  56
200 5   315     6   200 308     1   40  441     6   4   56      400 70 770
50  4   294     50  5   168     80  10  140     1   70  273     6   4  56
20  50  70      6   50  175     20  50  70      6   40  686     400 70 770
70  200 280     1   30  84      100 1   301     6   4   56      6   4  56
70  40  210     1   200 287     80  10  140     6   4   56
50  40  588     2   5   28      400 400 840     6   4   56
20  40  168     30  40  910     40  400 441     400 70  770
6   50  196     300 5   385     6   4   56      6   40  497

A: First letter of word.            B: Last letter of word.
C: Word value.

Total of the first and last letter of each word: 9422 = 2 x 7 x 673.

Total of the first letter of each word: 4354 = 2 x 7 x 311.

Total of the last letter of each word: 5068 = 22 x 7 x 181.

3.7.1.2.1Since the total of the first and last letters of each word are already divisible by seven, this means for words that are not divisible by 7, the total of their first and last letters is also divisible by 7: 88501 − 9422 = 79079 (7 x 11 x 13 x 79). Repeating digits of 79 are visual reminders of the same one God who is beginning and end. They also emphasize what is happening, words divisible by 7 versus words not divisible by 7. This is another variation of Revelation 1:8's complementary opposites.

3.7.1.2.1.1The first letter of each word (feature 3.7.2.1 below) less the first letter of words that are divisible by 7 gives the total of the first letter of each word for words that are not divisible by 7: 30772 − 4354 = 26418 = 2 x 3 x 7 x 17 x 37.

3.7.1.2.1.2The last letter of each word (feature 3.7.3 below) less the last letter of words that are divisible by 7 gives the total of the last letter of each word for words that are not divisible by 7: 57729 − 5068 = 52661 = 7 x 7523.

3.7.1.2.2The positions of these 71 first and last letters can be referenced to their place within the passage, the chapters, verses or words. Not much is revealed by the first letters of each word, but there is something in the last letters of each word.

The total of the positions of the last letter of each word within the passage: 87885 = 34 x 5 x 7 x 31.
The total of the positions of the last letter of each word within the chapters: 40719 = 3 x 72 x 277. SF: 294 = 2 x 3 x 72.
The total of the positions of the first and last letters of each word within the chapters: 81198 = 2 x 32 x 13 x 347. SF: 368 = 24 x 23.

How is it possible this just so happens to work for words divisible by 7? The complexity in these words can hardly be due to coincidence. After all, as seen in feature 3.6.1 the positions of these words in the passage have a total that is also divisible by 7. The words, and their first and last letters are perfectly placed.

3.7.1.2.3The very first word of the passage, value 42, is divisible by 7. The last word that is divisible by 7 is the 577th word with the value 56. Since both words are already divisible by 7, it is no surprise their sum is divisible by 7. However, the sum is 98 (2 x 72) and has an extra factor of 7. The first and last letters of this first word are 6 and 5. The first and last letters of the last word divisible by 7 are 6 and 4. The sum of these letters is 21 (3 x 7).

3.7.2Now the first and last letters are examined separately.

The first letter of each word.
6 400 2 50 300 8 6 6 30 2 1 5 2 10 3 6 6 6 6 6 6 6 3 1 6 6 6 10 1 6
20 6 40 50 1 5 2 1 30 30 2 6 8 20 6 6 6 6 20 60 6 6 6 6 6 200 300 6
6 10 1 50 5 5 30 3 2 5 5 3 90 30 10 70 20 10 20 3 90 30 10 6 200 40
2 6 6 6 2 300 40 5 5 10 1 6 1 50 6 200 70 6 20 6 200 2 50 6 20 5 5 5
6 10 1 30 6 70 6 30 6 50 6 80 6 20 1 10 40 80 6 20 6 10 1 90 2 6 8 6
5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 50 40 5 6 3 5 40 2 3 70 70 2 60
6 6 6 70 30 1 2 8 30 30 2 2 6 10 3 5 1 20 2 70 1 10 5 2 300 70 6 6 6
6 6 1 70 6 6 6 6 10 1 300 6 10 1 70 6 10 300 2 300 5 80 20 2 50 5 6
1 10 6 10 1 1 6 300 6 8 6 10 6 5 6 1 6 4 6 70 6 1 6 300 6 1 6 8 6 10
20 1 2 10 6 40 40 2 60 5 5 1 2 300 30 30 2 30 1 40 2 50 30 2 6 50 5
2 1 5 6 20 5 300 1 6 1 6 2 40 6 2 2 300 6 300 6 1 1 200 5 50 30 6 30
6 30 5 30 6 5 30 30 6 5 50 30 70 6 6 2 6 30 300 80 50 70 80 20 5 6
10 30 1 5 6 5 1 2 2 5 6 10 5 70 1 6 1 30 6 5 30 6 30 10 40 20 1 10
30 5 50 6 300 300 1 30 10 1 300 200 6 10 1 40 70 80 20 5 6 30 5 70
20 100 300 2 20 300 2 10 300 20 5 6 5 10 70 80 20 5 1 400 300 300 2
40 300 6 1 1 300 1 5 6 300 1 5 1 1 8 40 300 6 2 6 6 8 8 6 300 6 1
300 6 1 1 5 1 300 300 300 6 40 300 6 2 6 6 8 300 300 6 1 70 6 300 1
5 1 70 300 300 6 40 300 6 2 6 6 70 1 6 300 6 1 80 6 70 1 5 1 80 300
300 6 40 300 6 2 6 6 80 300 300 6 1 200 6 80 1 5 1 200 400 300 6 300
6 2 6 6 200 300 6 300 6 1 300 6 200 1 5 1 300 300 300 6 300 6 2 6 6
300 300 300 6 1 50 6 300 1 5 1 50 40 300 6 2 6 6 50 400 6 300 6 1
400 6 50 1 5 1 400 400 70 300 6 300 6 2 6

3.7.2.1Total of all the first letters of each word for the entire passage: 30772 = 22 x 72 x 157. SF: 175 = 52 x 7.

3.7.2.1.1From 3.7.2.1 take the even positioned letters:

400 50 8 6 2 5 10 6 6 6 6 1 6 10 6 6 50 5 1 30 6 20 6 6 60 6 6 200 6
10 50 5 3 5 3 30 70 10 3 30 6 40 6 6 300 5 10 6 50 200 6 6 2 6 5 5
10 30 70 30 50 80 20 10 80 20 10 90 6 6 6 6 6 6 6 6 6 6 6 40 6 5 2
70 2 6 6 30 2 30 2 6 3 1 2 1 5 300 6 6 6 70 6 6 1 6 1 6 300 300 80 2
5 1 6 1 6 6 6 6 6 6 6 6 6 6 6 6 20 2 6 40 60 5 2 30 2 1 2 30 6 5 1 6
5 1 1 2 6 2 6 6 1 5 30 30 30 30 5 30 5 30 6 2 30 80 70 20 6 30 5 5 2
5 10 70 6 30 5 6 10 20 10 5 6 300 30 1 200 10 40 80 5 30 70 100 2
300 10 20 6 10 80 5 400 300 40 6 1 1 6 1 1 8 300 2 6 8 300 1 6 1 1
300 6 300 2 6 300 6 70 300 5 70 300 40 6 6 70 6 6 80 70 5 80 300 40
6 6 80 300 1 6 1 1 400 6 6 6 200 6 6 300 200 5 300 300 300 2 6 300 6
50 300 5 50 300 2 6 400 300 1 6 1 1 400 300 300 2

Total: 14898 = 2 x 3 x 13 x 191. (There is no matching feature for the odd positioned letters.)

3.7.2.2From 3.7.1 take the odd valued letters:

1 5 3 3 1 1 1 5 1 1 5 5 3 5 5 3 3 5 5 1 1 5 5 5 1 1 1 5 5 5 5 5 5 5
5 5 5 3 5 3 1 3 5 1 1 5 1 1 1 5 5 1 1 1 5 1 1 1 1 5 5 1 1 5 1 5 5 1
1 1 1 5 5 5 5 5 1 5 5 1 5 5 1 1 5 1 5 1 1 1 5 5 5 5 5 1 1 1 1 5 1 5
1 1 1 1 1 5 1 1 1 5 1 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1

Total: 378 = 2 x 33 x 7.

3.7.2.2.1From 3.7.1.2 take the odd positioned letters:

1 3 1 1 1 5 3 5 3 5 1 5 1 1 5 5 5 5 5 5 1 5 1 1 1 5 1 5 1 1 5 1 1 5
1 1 5 5 1 5 5 1 5 5 1 5 5 5 1 1 1 1 1 1 1 1 1 1 5 1 5 1 5 1 5 1 5

Total: 189 = 33 x 7.

3.7.1.2.2From 3.7.1.2 take the even positioned letters:

5 3 1 5 1 5 5 3 5 1 5 5 1 5 5 5 5 5 3 3 3 1 5 1 5 1 1 1 1 5 1 5 5 1
1 5 5 5 5 1 5 1 1 1 1 5 5 1 1 5 5 1 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1

Total: 189 = 33 x 7. (Incredibly both add up to the same number!)

3.7.2.3From 3.7.1 take the even valued letters:

6 400 2 50 300 8 6 6 30 2 2 10 6 6 6 6 6 6 6 6 6 6 10 6 20 6 40 50 2
30 30 2 6 8 20 6 6 6 6 20 60 6 6 6 6 6 200 300 6 6 10 50 30 2 90 30
10 70 20 10 20 90 30 10 6 200 40 2 6 6 6 2 300 40 10 6 50 6 200 70 6
20 6 200 2 50 6 20 6 10 30 6 70 6 30 6 50 6 80 6 20 10 40 80 6 20 6
10 90 2 6 8 6 6 6 6 6 6 6 6 6 6 50 40 6 40 2 70 70 2 60 6 6 6 70 30
2 8 30 30 2 2 6 10 20 2 70 10 2 300 70 6 6 6 6 6 70 6 6 6 6 10 300 6
10 70 6 10 300 2 300 80 20 2 50 6 10 6 10 6 300 6 8 6 10 6 6 6 4 6
70 6 6 300 6 6 8 6 10 20 2 10 6 40 40 2 60 2 300 30 30 2 30 40 2 50
30 2 6 50 2 6 20 300 6 6 2 40 6 2 2 300 6 300 6 200 50 30 6 30 6 30
30 6 30 30 6 50 30 70 6 6 2 6 30 300 80 50 70 80 20 6 10 30 6 2 2 6
10 70 6 30 6 30 6 30 10 40 20 10 30 50 6 300 300 30 10 300 200 6 10
40 70 80 20 6 30 70 20 100 300 2 20 300 2 10 300 20 6 10 70 80 20
400 300 300 2 40 300 6 300 6 300 8 40 300 6 2 6 6 8 8 6 300 6 300 6
300 300 300 6 40 300 6 2 6 6 8 300 300 6 70 6 300 70 300 300 6 40
300 6 2 6 6 70 6 300 6 80 6 70 80 300 300 6 40 300 6 2 6 6 80 300
300 6 200 6 80 200 400 300 6 300 6 2 6 6 200 300 6 300 6 300 6 200
300 300 300 6 300 6 2 6 6 300 300 300 6 50 6 300 50 40 300 6 2 6 6
50 400 6 300 6 400 6 50 400 400 70 300 6 300 6 2 6

Total: 30394 = 2 x 7 x 13 x 167. SF: 189 = 33 x 7.

3.7.2.4Only two of the first letters of each word appear only once. They are the letters 4 and 100 (104 = 23 x 13).

3.7.2.4.1Their positions: 245 + 392 = 637 (72 x 13).

3.7.2.5Fourteen letters appear more than once:

6 400 2 50 300 8 1 10 20 60 200 90 70 80

3.7.2.6Not only is the total of the first letters of each word divisible by 7, but the total of their positions is also divisible by 7: 11732 = 22 x 7 x 419. (The positions in this case are with respect to their positions within their verses.)

3.7.2.7Thirty-eight first letters of a word are in positions divisible by 13 within their own verses. The total of these positions: 923 = 13 x 71. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7. The surprise is that the sum of the factors goes further.

3.7.2.7.1These 38 letters could also be referenced according to their positions within a chapter. In this case, the total of the positions would be 20580 = 22 x 3 x 5 x 73. There are three factors of 7.

3.7.2.7.2These 38 letters could also be referenced according to their positions within the entire passage. The total of the positions: 44163 = 32 x 7 x 701. SF: 714 = 2 x 3 x 7 x 17.

3.7.3Total of all the last letters of each word for the entire passage: 57729 = 3 x 7 x 2749. The positions of these letters (i.e. their positions within their verses) is 13377 (3 x 73 x 13).

The last letter of each word.
5 400 10 8 40 40 400 6 40 40 200 30 10 400 200 3 10 50 30 20 60 10
200 7 400 5 10 50 5 300 40 40 5 6 10 40 40 300 6 40 40 10 40 300 40
9 50 10 300 1 5 5 5 1 10 5 1 50 300 4 400 4 1 30 400 200 90 1 5 200
4 10 5 30 50 200 4 200 4 10 5 10 400 6 30 20 4 5 90 200 50 90 1 1
200 50 400 5 400 400 200 400 8 400 50 50 5 50 8 1 200 5 40 4 400 40
400 40 400 40 400 40 400 40 400 40 200 6 40 40 400 40 50 4 400 50 6
400 400 400 10 400 10 400 10 400 10 400 10 400 10 400 10 400 10 400
10 200 6 400 10 10 30 10 50 5 5 4 5 5 5 5 5 40 4 70 5 10 40 40 40 40
40 40 4 40 1 10 30 10 200 10 400 30 10 40 40 200 4 4 40 10 40 90 30
200 300 4 4 400 8 8 4 400 200 200 4 10 40 40 4 3 10 6 5 90 40 6 50
50 4 400 4 400 80 400 400 400 8 400 40 400 30 400 5 400 30 400 30
400 1 400 200 400 5 400 2 30 5 10 50 10 40 1 5 5 200 40 5 10 40 40
40 40 40 5 400 10 8 40 40 5 6 40 90 200 30 10 30 90 5 400 40 40 10
40 40 6 5 90 200 6 40 6 300 30 6 5 5 40 5 5 10 40 5 50 200 5 40 200
6 5 5 6 200 30 6 40 5 6 40 50 90 30 10 30 90 4 5 400 400 200 400 30
200 6 10 40 200 5 50 40 4 5 400 40 5 40 400 5 1 200 40 30 200 6 400
5 5 5 40 40 200 1 6 300 400 6 90 5 40 40 30 10 30 90 6 400 200 30 50
1 5 30 10 40 30 5 400 30 90 40 40 5 30 10 30 90 5 400 40 40 50 400 5
4 400 4 40 200 30 10 40 10 6 400 4 300 400 5 4 40 400 4 10 300 40 5
4 400 8 10 4 10 6 400 8 300 40 70 400 5 4 40 400 8 10 40 5 4 400 200
10 8 10 6 400 200 300 40 70 400 5 4 40 400 10 200 70 40 5 4 400 3 10
200 10 6 400 3 40 5 70 400 5 4 40 400 10 3 40 5 4 400 6 10 3 10 6
400 6 70 40 40 5 4 40 400 10 6 40 40 5 4 400 3 10 6 10 6 400 3 70 40
40 5 4 40 400 10 3 40 5 4 400 200 10 3 10 6 400 200 40 5 4 40 400 10
200 70 40 5 4 400 8 10 200 10 6 400 8 70 5 5 400 5 4 40 400

The last letters of each word are not the same as the first.

3.7.3.1Take the odd positioned letters from 3.7.3, and then take the odd positioned letters from that list again:

5 40 40 10 10 60 400 5 5 40 40 40 300 5 1 400 400 5 5 4 5 30 90 1
400 200 50 8 40 400 400 400 40 50 6 10 10 10 10 10 10 50 5 5 5 40 4
30 400 40 40 30 4 4 4 4 5 50 4 400 40 5 30 200 2 50 5 5 40 400 40 90
30 40 40 200 300 5 10 200 6 200 5 90 90 400 200 200 4 5 1 200 5 200
400 40 30 200 5 30 90 30 5 50 400 30 6 400 400 40 8 6 40 4 10 400 10
300 5 10 5 10 400 70 40 40 6 6 40 40 40 400 10 70 4 3 400 10 40 400
40 8 6 5 4

Total: 13503 = 3 x 7 x 643.

3.7.3.2Take the even positioned letters from 3.7.3 and then take the odd positioned letters from the list again:

400 40 40 400 50 10 5 300 6 300 10 9 1 1 50 4 200 200 30 200 10 20
200 1 5 400 50 1 4 40 40 40 40 4 400 400 400 400 400 200 10 5 5 40
10 40 40 10 30 200 10 200 400 400 10 3 90 50 400 400 400 400 400 400
30 10 5 10 40 10 5 200 90 40 6 6 30 40 40 5 5 30 6 30 4 200 6 5 5 40
200 6 5 1 6 40 90 30 30 5 40 10 400 400 4 10 400 5 4 5 10 400 70 40
40 200 6 40 4 200 4 200 3 400 400 5 10 400 40 400 40 3 6 40 40 40
200 6 5 10 5 10 400 5 40

Total: 15575 = 52 x 7 x 89.

3.7.3.3The first letter of a word is always in position one, and thus is always in an odd position. Depending on the length of a word, the last letter of a word could either be in an odd position or an even position. The last letters of each word could be subdivided in this manner.

3.7.3.3.1Total of the last letter of each word where the word has an odd number of letters: 33089 = 7 x 29 x 163.

3.7.3.3.2Total of the last letter of each word where the word has an even number of letters: 24640 = 26 x 5 x 7 x 11. SF: 35 = 5 x 7.

3.7.3.4Feature 3.7.2.7 looked at the first letter of each word where they were in positions divisible by 13 within their verses. A different result appears when this is tried with the last letter of each word. The positions total 988 = 22 x 13 x 19, but go no further. The total of these letters is also divisible by 13: 2886 = 2 x 3 x 13 x 37.

3.8Every 7th word from the passage: 24381 = 34 x 7 x 43.

3.8.1The total of the positions of the first letter of these words in the passage is a prime number: 91951 (nf).

3.8.2The total of the positions of the last letter of these words in the passage is divisible by 13: 92170 = 2 x 5 x 13 x 709.

3.8.3Together the positions of the first and last letters: 91951 + 92170 = 184121 = 7 x 29 x 907.

The words have an astonishing number of features structured after Revelation 1:8's principle of complementary opposites. This builds on the chapters and verses.

The Letters

4.There are 2224 (nf) letters.

4.1With the chapters, verses and words, it was possible to apply Revelation 1:8's "is, was, and is to come" by pulling out every other chapter, verse or word. With the letters, this is only possible with large groups of letters. This might be due to the fact that there are over two thousand letters, but more likely due to the fact that the passage is about people and not God. One cannot expect a passage about people to have more numeric features than a passage about God.

Gather the letters into groups of 556.

4.1.1The odd positioned groups of 556: 76307 = 7 x 11 x 991.

4.1.2The even positioned groups of 556: 80626 = 2 x 7 x 13 x 443.

4.2Here is a another difference between this passage and others. Odd and even valued letters also have no feature. Since this is a passage about the human race a change in perspective is needed. Numbers are odd or even depending on the last digit. Given the current method for converting letters to numbers, this heavily favours even valued letters. Thus for this passage, the letters are grouped according to the odd or even value of the first digit. This produces a more evenly balanced grouping.

4.2.1Odd valued first digit letters:

1 30 5 30 50 10 50 300 10 10 30 30 5 50 10 1 5 30 50 10 10 3 3 3 10 10 50 30 300 10 50 10 3 1 300 50 7 10 3 5 50 10 10 50 1 30 10 300 5 300
10 300 10 50 10 1 30 5 50 1 10 10 5 3 10 1 90 1 10 300 30 30 300 50 30 300 3 10 5 50 10 300 90 10 9 50 70 50 50 10 300 1 10 30 5 5 70 5 1 50
10 70 5 300 1 50 300 10 30 1 50 5 1 5 30 30 5 10 3 1 90 5 1 5 10 5 3 90 10 30 50 10 10 5 5 70 30 50 10 1 50 3 90 10 30 50 10 10 5 5
5 10 1 300 10 30 30 1 1 30 50 5 1 90 300 50 70 50 5 1 90 5 5 1 10 90 1 1 300 10 50 1 50 10 50 5 1 70 10 1 30 1 50 10 50 50 10 50 5 10
50 30 5 1 5 70 10 5 3 30 5 90 10 10 30 1 30 10 1 70 50 10 1 30 5 10 1 50 10 1 10 1 30 10 1 300 10 90 1 300 30 300 10 1 10 50 70 50 10 30
1 90 10 50 1 1 5 10 10 1 5 1 10 1 5 3 3 300 10 1 5 10 1 5 70 100 10 1 5 10 50 10 1 5 1 10 1 5 90 10 1 5 10 1 50 90 300 5 50 70
50 10 10 5 10 3 30 5 50 70 50 10 90 10 50 1 5 3 5 70 70 7 5 1 5 5 70 5 1 5 90 10 70 30 300 70 1 30 5 50 10 30 300 30 30 300 50 1 90 3
10 5 30 300 10 30 3 5 1 1 10 30 50 10 70 1 10 10 5 3 30 50 10 300 70 10 30 1 300 1 300 30 1 50 10 1 70 90 30 3 300 1 300 10 30 1 300 30 300 30
10 30 1 70 30 70 10 30 300 50 10 50 10 300 5 1 30 3 10 10 10 50 30 3 5 5 1 90 300 1 10 10 100 9 50 10 100 9 50 10 30 1 1 30 1 300 30 1 90 1
10 1 5 1 1 7 30 1 100 30 5 1 70 30 1 1 10 1 30 1 300 1 1 1 1 10 30 5 1 10 30 1 30 5 50 10 10 100 9 50 10 5 10 300 300 1 1 5 5 5
5 100 1 30 5 50 10 300 30 300 30 30 300 50 1 90 30 3 10 5 1 30 5 300 50 10 50 30 30 3 10 5 1 30 5 50 5 3 10 1 90 1 5 30 10 5 10 30 5 1
90 300 5 1 10 1 10 10 5 10 50 70 100 10 90 1 100 70 5 1 90 300 50 70 10 300 300 10 1 1 10 300 1 30 70 5 5 5 50 30 50 5 30 50 10 50 300 5 30 300
5 5 10 30 5 5 30 50 5 30 1 50 5 5 10 5 30 5 30 10 1 5 5 50 50 5 30 50 70 10 3 30 1 300 300 10 50 70 300 5 30 50 300 50 50 90 70 30 50 10
30 5 1 90 10 10 5 5 30 1 1 5 70 10 1 5 3 30 1 300 50 50 10 5 1 10 1 10 5 5 5 50 70 1 300 5 1 30 30 7 5 5 30 30 70 300 70 5 30 1
10 90 5 30 1 300 10 7 30 70 300 5 5 50 5 50 30 5 300 300 1 300 30 1 10 300 70 1 10 300 300 70 5 10 90 10 5 5 1 300 70 30 50 10 30 5 1 90 10 30
30 50 5 70 10 70 30 50 100 1 300 5 30 10 300 30 30 10 5 5 300 30 5 1 90 300 5 10 90 10 5 5 70 30 50 10 30 5 1 90 1 30 5 30 300 300 50 1 300 50
5 10 30 1 1 300 300 50 10 1 5 30 10 10 300 1 10 5 30 10 1 1 300 300 1 300 50 5 10 30 50 10 50 1 300 10 300 300 30 300 10 300 50 5 10 30 1 300 30 10
10 1 300 1 10 5 30 10 1 300 30 300 30 300 300 50 10 1 70 1 300 50 5 10 30 50 10 50 300 30 10 300 30 300 10 300 50 5 10 30 1 70 10 10 300 30 1 10 5 30
10 1 70 300 30 300 300 50 10 1 70 1 300 50 5 10 30 50 10 50 10 10 70 1 70 300 30 300 10 300 50 5 10 30 1 30 3 10 10 70 1 10 5 30 10 1 30 3 300 30
300 10 300 50 5 1 70 1 300 50 5 10 30 50 10 50 10 10 30 3 300 30 300 10 300 50 5 10 30 1 70 10 10 30 3 1 10 5 30 10 1 70 300 70 300 50 10 1 10 300
50 5 10 30 50 10 50 10 10 70 300 10 300 30 300 10 300 50 5 10 30 1 300 3 10 10 70 1 10 5 30 10 1 300 3 300 70 300 50 10 1 10 300 50 5 10 30 50 10 50
10 10 300 3 300 30 300 10 300 50 5 10 30 1 50 10 10 300 3 1 10 5 30 10 1 50 1 10 300 50 5 10 30 50 10 50 10 10 50 300 70 70 300 10 300 50 5 10 30 1
10 10 50 1 10 5 30 10 1 300 70 70 300 5 300 50 5 1 300 50 5 10 30 50 10 50 

Total: 63049 = 7 x 9007.

4.2.1.1From the list in 4.2.1, pair up the numbers and select pairs adding to an odd number.

1 30    90 5    1 70    5 70    1 300   10 5    30 1    30 5    10 5    30 1    1 300
5 30    10 5    1 30    70 7    30 1    1 30    3 30    1 90    1 300   10 5    300 5
5 50    3 90    5 10    70 5    90 1    5 50    1 300   5 70    10 1    1 70    5 10
10 1    10 5    1 50    1 30    10 1    10 1    10 5    100 1   70 1    10 1
5 30    5 70    10 1    5 50    30 1    90 1    1 10    300 5   5 10    50 5
10 3    10 1    10 1    50 1    10 1    5 30    1 10    5 10    50 5    5 10
7 10    50 3    1 300   90 3    30 1    10 5    5 50    30 5    1 70    30 1
1 30    5 10    1 300   10 5    300 1   10 1    70 1    1 90    1 10    300 3
5 300   1 300   10 1    70 1    1 10    5 10    300 5   1 30    5 30    70 1
10 1    30 1    1 90    30 1    30 5    90 1    1 30    5 30    10 1    10 5
30 5    1 30    5 10    300 1   1 10    1 30    30 7    50 1    10 1    1 300
50 1    50 5    10 1    1 50    30 1    70 5    70 5    5 10    70 1    3 300
10 1    1 90    10 1    10 1    30 5    50 5    30 1    30 1    5 10    1 10
90 1    90 5    3 300   30 3    9 50    300 5   5 30    1 300   70 1    5 10
3 10    50 1    10 1    300 1   10 5    5 30    1 300   10 1    50 5    300 3
5 50    50 5    5 10    30 1    300 1   1 50    10 7    5 30    1 30    5 10
9 50    1 70    10 1    1 70    5 100   10 5    300 5   300 1   3 10    30 1
300 1   10 1    5 10    30 3    1 30    30 5    5 50    10 5    1 10    10 5
70 5    30 1    1 10    30 3    5 50    5 50    5 50    1 300   5 30    1 50
1 50    5 10    10 1    1 90    1 90    50 5    30 5    50 5    10 1    1 10
5 300   5 70    300 5   300 1   30 3    3 30    1 300   50 1    30 3    5 10
1 50    10 5    10 5    100 9   10 5    1 300   30 1    50 5    70 1    5 10
30 1    3 30    10 3    100 9   1 30    300 5   70 1    1 300   5 10    30 1
50 5    5 90    30 5    30 1    5 300   30 5    5 10    10 1    30 3    50 1
5 10    30 1    50 1    1 30    30 3    1 90    1 300   300 1   5 10    10 5

Total of the pairs: 19579 = 7 x 2797.

4.2.1.2From the list in 4.2.1, pair up the numbers and select pairs adding to an even number.

50 10   90 10   300 10  90 10   5 3     5 1     90 300  70 30    30 50    10 30    10 300   300 10   300 10
50 300  70 50   50 10   1 5     30 50   70 30   50 70   50 10    30 10    30 10    10 30    300 30   300 50
10 10   50 10   50 10   50 90   10 300  1 1     10 300  10 10    300 30   30 10    10 70    300 10   10 10
30 30   10 30   50 50   50 70   70 10   1 1     300 10  5 5      30 10    30 300   300 30   300 50   30 10
50 10   5 5     10 50   50 10   300 30  50 10   1 1     1 5      5 5      30 300   300 10   10 10    70 70
3 3     10 70   50 30   50 70   70 90   10 100  10 300  70 10    300 30   300 50   300 50   30 10    300 50
10 10   300 10  5 1     50 10   300 10  10 300  5 5     1 5      5 1      300 50   5 1      70 300   5 1
50 30   1 5     10 10   90 10   300 30  1 5     50 30   50 50    90 300   30 50    300 50   50 10    300 50
300 10  30 30   30 10   5 3     300 30  5 5     30 50   5 5      90 10    10 50    30 50    300 50   30 50
50 10   3 1     50 10   5 1     10 30   10 300  10 50   5 5      5 5      300 30   10 50    30 50    10 50
3 1     1 5     30 10   5 5     30 70   30 300  30 300  30 30    70 30    10 300   10 10    10 50
300 50  10 30   10 90   1 5     10 30   30 30   5 5     70 300   50 10    30 300   300 30   10 10
3 5     50 10   30 300  90 10   300 50  300 50  10 30   10 90    300 300  10 300   300 10   300 30
50 10   30 50   10 50   70 30   10 50   50 10   5 5     30 70    300 50   10 30    300 50   300 10
10 50   90 10   70 50   300 70  10 300  50 30   30 50   300 300  300 50   10 10    70 10    300 50
10 300  30 50   10 30   10 30   5 1     5 3     5 5     10 300   10 10    300 30   10 30    50 10
10 300  10 10   10 50   300 30  10 10   10 30   30 10   10 300   30 10    70 300   3 1      10 300
10 50   5 5     1 1     30 300  10 50   5 1     1 5     300 70   1 1      30 300   30 10    3 1
10 10   10 30   5 1     30 300  5 5     90 300  30 50   90 10    300 300  300 50   300 70   30 10
5 3     300 50  5 3     10 30   10 10   5 1     70 10   5 5      10 30    300 50   300 50   300 50
10 300  70 50   1 5     3 5     50 10   10 10   300 10  70 30    50 10    30 50    10 300   30 50
30 30   5 1     70 100  1 1     50 10   50 70   50 70   50 10    300 10   10 50    10 30    10 50
300 50  5 1     50 10   10 30   5 1     100 10  30 50   10 30    300 300  10 10    50 10    10 10
30 300  10 90   1 5     50 10   1 7     100 70  300 50  30 50    30 300   70 300   50 10    50 300
10 300  1 1     1 5     10 10   100 30  5 1     50 90   10 70    10 300   30 300   10 70    70 70

Total of the pairs: 43470 = 2 x 33 x 5 x 7 x 23. SF: 46 = 2 x 23.

4.2.1.2.1From the list in 4.2.1.2 take the left hand columns. These would be the odd positioned.

50 50 10 30 50 3 10 50 300 50 3 300 3 50 10 10 10 10 10 5 10 30 300
30 10 90 70 50 10 5 10 300 1 30 3 1 10 50 30 90 30 10 5 10 300 70 5
5 10 1 300 50 50 50 10 50 5 10 30 50 30 10 30 10 70 10 10 1 5 5 1 70
50 1 1 90 1 50 50 50 50 50 90 5 5 5 1 90 70 300 10 300 30 30 10 3 1
10 50 10 5 30 10 70 300 70 300 300 300 10 30 10 300 10 10 5 10 10 5
10 50 50 5 1 100 5 70 1 1 50 10 10 1 5 10 30 30 300 50 50 5 10 5 90
5 10 50 100 100 5 90 50 10 300 1 10 5 50 30 10 30 5 10 5 30 5 30 1
30 70 300 50 30 300 50 70 50 10 5 1 70 1 50 5 5 30 70 10 30 300 10
10 300 90 5 70 50 10 30 10 30 30 300 30 5 300 5 90 90 5 70 50 300
300 300 10 30 1 300 10 50 300 300 30 10 10 30 30 30 30 300 300 30 10
300 10 30 10 10 10 300 70 30 300 300 30 10 10 70 30 10 10 10 300 300
300 5 300 30 10 10 300 300 300 70 10 3 30 300 300 10 10 50 50 10 300
300 300 300 10 30 70 50 300 30 10 10 300 300 300 50 10 3 30 300 30
10 10 50 70 300 300 10 30 70 300 5 300 30 10 

Total: 23450 = 2 x 52 x 7 x 67.

4.2.1.2.1.1From 4.2.1.2.1 take the odd valued:

3 3 3 5 5 1 3 1 5 5 5 1 5 1 5 5 1 1 1 1 5 5 5 1 3 1 5 5 5 5 1 5 1 1 1
5 5 5 5 5 1 5 5 5 5 1 5 1 1 5 5 5 5 5 5 1 5 3 3 5

Total: 210 = 2 x 3 x 5 x 7.

4.2.1.2.1.2From 4.2.1.2.1 take the even valued:

50 50 10 30 50 10 50 300 50 300 50 10 10 10 10 10 10 30 300 30 10 90
70 50 10 10 300 30 10 50 30 90 30 10 10 300 70 10 300 50 50 50 10 50
10 30 50 30 10 30 10 70 10 10 70 50 90 50 50 50 50 50 90 90 70 300
10 300 30 30 10 10 50 10 30 10 70 300 70 300 300 300 10 30 10 300 10
10 10 10 10 50 50 100 70 50 10 10 10 30 30 300 50 50 10 90 10 50 100
100 90 50 10 300 10 50 30 10 30 10 30 30 30 70 300 50 30 300 50 70
50 10 70 50 30 70 10 30 300 10 10 300 90 70 50 10 30 10 30 30 300 30
300 90 90 70 50 300 300 300 10 30 300 10 50 300 300 30 10 10 30 30
30 30 300 300 30 10 300 10 30 10 10 10 300 70 30 300 300 30 10 10 70
30 10 10 10 300 300 300 300 30 10 10 300 300 300 70 10 30 300 300 10
10 50 50 10 300 300 300 300 10 30 70 50 300 30 10 10 300 300 300 50
10 30 300 30 10 10 50 70 300 300 10 30 70 300 300 30 10 

Total: 23240 = 23 x 5 x 7 x 83.

4.2.1.2.2From the list in 4.2.1.2 take the right hand columns. These would be the even positioned.

10 300 10 30 10 3 10 30 10 10 1 50 5 10 50 300 300 50 10 3 300 30 50
300 300 10 50 10 30 5 70 10 5 30 1 5 30 10 50 10 50 10 5 30 50 50 1
1 90 1 10 10 10 50 50 30 1 10 10 10 10 90 300 50 50 30 50 1 1 3 5
100 10 5 5 10 5 90 70 10 70 10 10 3 1 5 5 10 30 70 30 30 300 300 30
5 1 30 10 10 3 50 300 10 30 90 10 30 30 30 70 30 50 50 300 1 10 50 5
10 10 10 1 7 30 1 30 1 1 10 100 300 5 5 300 300 30 50 10 30 3 30 1
300 1 10 70 10 70 1 300 70 300 10 1 300 5 30 50 50 300 5 30 5 50 5
10 5 50 10 10 70 50 50 90 30 10 10 5 5 10 5 50 5 5 30 300 90 70 300
300 300 70 10 5 30 10 30 50 70 50 10 30 10 5 30 1 300 10 5 30 10 300
50 50 10 10 1 300 30 10 10 300 300 300 30 10 10 300 300 50 50 50 50
30 300 300 300 30 10 30 300 300 50 50 50 50 10 300 300 300 30 70 30
10 50 1 50 50 50 10 30 10 50 10 30 1 10 70 50 300 30 10 10 70 10 30
10 50 10 10 300 10 50 50 50 10 30 10 50 10 300 1 10 50 50 50 10 300
70 10 50 10 10 70 50 1 50 50 50 

Total: 20020 = 22 x 5 x 7 x 11 x 13.

4.2.1.2.2.1From the list in 4.2.1.2.2 take the odd positioned:

10 10 10 10 10 1 5 50 300 10 300 50 300 50 30 70 5 1 30 50 50 5 50 1
90 10 10 50 1 10 10 300 50 50 1 5 10 5 5 70 70 10 1 5 30 30 300 30 1
10 3 300 30 10 30 70 50 300 10 5 10 1 30 30 1 100 5 300 30 10 3 1 1
70 70 300 300 1 5 50 300 30 50 10 50 10 50 90 10 5 10 50 5 300 70
300 70 5 10 50 50 30 5 1 10 30 300 50 10 300 10 300 300 10 300 50 50
30 300 30 30 300 50 50 300 300 70 10 1 50 10 10 10 1 70 300 10 70 30
50 10 10 50 10 10 10 1 50 50 300 10 10 70 1 50 

Total: 10703 = 7 x 11 x 139.

4.2.1.2.2.1From the list in 4.2.1.2.2 take the even positioned:

300 30 3 30 10 50 10 300 50 3 30 300 10 10 5 10 30 5 10 10 10 30 50
1 1 10 50 30 10 10 90 50 30 1 3 100 5 10 90 10 10 3 5 10 70 30 300 5
30 10 50 10 90 30 30 30 50 1 50 10 10 7 1 1 10 300 5 300 50 30 30
300 10 10 1 70 10 300 30 50 5 5 5 5 10 70 50 30 10 5 5 5 30 90 300
300 10 30 30 70 10 10 30 300 5 10 50 10 1 30 10 300 30 10 300 50 50
300 300 10 300 50 50 10 300 30 30 50 50 50 30 50 30 10 50 30 10 10
10 10 300 50 50 30 50 300 10 50 10 70 50 10 50 50 50 

Total: 9317 = 7 x 113.

4.2.2Having looked into the letters with an odd valued first digit, now we turn to the opposite, letters with an even valued first digit.

6 400 6 4 400 2 8 40 8 40 6 80 400 6 6 4 6 40 2 40 8 200 40 2 6 2 80 400 40 200 6 40 6 6 40 4 6 6 6 400 2 6 40 20 6 400 200 60 6 2
40 200 20 6 200 80 400 6 400 200 40 6 2 6 6 400 200 20 400 40 6 4 4 40 40 80 200 4 6 6 40 2 200 400 40 6 40 80 8 400 40 2 6 40 6 2 8 40 20 6
6 40 200 40 6 80 6 6 20 6 2 20 6 60 2 6 8 6 6 60 2 400 6 200 40 6 60 2 400 20 6 2 200 40 2 6 4 4 6 20 6 4 400 40 200 4 6 8 6 400
2 200 2 200 6 2 200 4 80 6 20 40 200 20 40 200 4 2 6 200 4 80 6 6 400 200 400 40 40 20 400 6 2 2 6 200 20 6 20 4 6 20 2 200 200 40 200 6 6 200
6 2 400 6 6 400 200 8 2 400 200 6 400 20 8 6 400 200 60 2 6 6 2 20 8 6 200 4 6 40 200 40 4 400 6 4 40 6 400 40 40 6 400 2 40 6 400 80 400 8
40 6 400 80 400 200 60 40 6 400 20 60 8 40 200 6 40 40 80 400 40 6 400 20 80 400 200 40 6 20 4 400 4 2 20 200 6 6 400 8 400 6 400 2 6 60 6 400 40 200
6 400 200 6 400 8 6 6 400 200 6 400 60 6 400 200 6 4 6 400 40 200 6 400 8 40 400 6 8 200 80 6 40 80 8 6 400 20 6 2 6 20 40 4 2 20 200 200 4 2
20 60 4 40 6 40 200 6 4 40 6 2 40 4 2 8 40 40 80 8 400 40 400 40 2 200 400 40 2 6 40 6 40 4 40 6 2 20 2 2 200 8 80 400 4 6 2 40 40 6
6 200 6 200 80 20 4 6 6 4 6 200 40 6 2 200 40 6 6 8 6 6 400 200 6 40 6 200 80 20 4 4 400 8 6 8 4 400 2 200 6 2 200 4 2 40 40 8 4 80
20 2 40 6 80 200 6 40 8 6 6 4 400 40 6 4 4 6 400 80 6 400 8 200 40 6 400 6 400 200 8 6 400 4 6 200 40 6 400 6 6 400 4 6 400 6 2 6 400 2
40 6 400 2 6 400 6 80 200 6 400 8 6 6 400 6 2 2 20 2 6 40 6 2 40 40 40 2 20 60 80 200 200 4 40 2 40 40 80 8 400 40 400 40 2 200 400 40 6 40
40 80 8 400 2 8 400 6 4 400 40 2 6 40 6 40 80 200 4 6 6 40 2 200 8 200 40 2 6 6 20 200 80 8 400 6 4 2 200 40 8 4 40 6 2 60 40 40 4 40
6 40 6 2 2 200 200 6 2 6 40 6 40 200 6 200 6 2 2 2 40 6 200 80 200 80 6 400 40 2 2 6 8 40 200 40 8 40 200 6 40 200 6 2 2 6 200 6 40 4
6 200 6 2 40 40 6 6 40 80 80 6 80 20 200 6 200 4 6 200 400 400 200 6 400 40 4 200 2 6 2 4 40 6 40 200 6 40 8 4 6 80 8 400 20 40 6 8 40 6
400 6 400 2 200 40 40 20 200 40 6 6 400 2 200 4 6 2 40 80 400 40 200 40 6 80 400 200 6 6 80 6 400 40 40 40 80 20 200 6 8 4 6 2 400 200 20 200 40 2
2 20 40 2 6 80 400 20 200 6 40 40 80 40 6 80 20 200 400 6 4 400 40 40 2 40 400 6 6 4 400 200 80 20 4 400 40 8 200 40 2 6 6 8 40 8 200 6 4 6
400 200 80 20 4 8 40 40 6 400 6 6 4 2 40 6 2 6 400 6 200 80 20 4 8 8 40 6 40 6 6 4 400 8 6 8 200 80 20 4 8 200 6 4 6 400 8 40 6 200
2 40 6 400 6 6 4 2 40 6 2 6 400 6 8 8 40 6 6 4 400 2 200 6 8 8 8 200 6 4 6 400 2 200 40 6 200 2 40 6 400 6 6 4 2 40 6 2 6 400
6 8 2 200 200 2 6 40 6 6 4 400 80 6 8 2 200 8 200 6 4 6 400 80 40 6 200 2 40 6 400 6 6 4 2 40 6 2 6 400 6 8 80 40 6 6 4 400 200 6
6 8 80 8 200 6 4 6 400 200 6 400 40 6 40 400 40 6 6 4 2 40 6 2 6 400 6 8 200 6 400 40 6 40 6 6 4 400 200 6 6 8 200 6 8 200 6 4 6 400
200 6 2 40 6 40 400 40 6 6 4 2 40 6 2 6 400 6 8 200 6 40 6 6 4 400 8 6 200 6 8 200 6 8 200 6 4 6 400 8 6 200 40 400 40 6 6 4 2 40
6 2 6 400 6 8 8 6 200 400 6 200 40 6 6 4 400 400 200 8 6 8 8 6 200 8 200 6 4 6 400 400 200 8 400 200 6 40 400 6 6 4 2 40 6 2 6 400

Total: 93884 = 22 x 72 x 479. SF: 497 = 7 x 71. SF: 78 = 2 x 3 x 13.

4.2.2.1From the list in 4.2.2 take every odd positioned group of nine letters:

6 400 6 4 400 2 8 40 8 2 40 8 200 40 2 6 2 80 6 6 6 400 2 6 40 20 6
200 80 400 6 400 200 40 6 2 4 40 40 80 200 4 6 6 40 40 2 6 40 6 2 8
40 20 20 6 2 20 6 60 2 6 8 60 2 400 20 6 2 200 40 2 200 4 6 8 6 400
2 200 2 200 20 40 200 4 2 6 200 4 400 6 2 2 6 200 20 6 20 6 200 6 2
400 6 6 400 200 400 200 60 2 6 6 2 20 8 6 4 40 6 400 40 40 6 400 400
80 400 200 60 40 6 400 20 40 6 400 20 80 400 200 40 6 400 8 400 6
400 2 6 60 6 6 6 400 200 6 400 60 6 400 8 40 400 6 8 200 80 6 40 40
4 2 20 200 200 4 2 20 6 2 40 4 2 8 40 40 80 2 6 40 6 40 4 40 6 2 2
40 40 6 6 200 6 200 80 2 200 40 6 6 8 6 6 400 400 8 6 8 4 400 2 200
6 20 2 40 6 80 200 6 40 8 400 80 6 400 8 200 40 6 400 40 6 400 6 6
400 4 6 400 6 400 6 80 200 6 400 8 6 6 2 40 40 40 2 20 60 80 400 40
400 40 2 200 400 40 6 4 400 40 2 6 40 6 40 80 40 2 6 6 20 200 80 8
400 2 60 40 40 4 40 6 40 6 40 200 6 200 6 2 2 2 40 2 6 8 40 200 40 8
40 200 40 4 6 200 6 2 40 40 6 200 4 6 200 400 400 200 6 400 40 200 6
40 8 4 6 80 8 400 2 200 40 40 20 200 40 6 400 40 200 40 6 80 400 200
6 200 6 8 4 6 2 400 200 20 400 20 200 6 40 40 80 40 6 2 40 400 6 6 4
400 200 80 6 8 40 8 200 6 4 6 400 6 6 4 2 40 6 2 6 400 40 6 6 4 400
8 6 8 200 8 40 6 200 2 40 6 400 6 8 8 40 6 6 4 400 2 200 2 200 40 6
200 2 40 6 400 6 8 2 200 200 2 6 40 6 200 6 4 6 400 80 40 6 200 6 2
6 400 6 8 80 40 6 200 6 4 6 400 200 6 400 40 6 2 6 400 6 8 200 6 400
6 8 200 6 8 200 6 4 6 6 6 4 2 40 6 2 6 400 8 6 200 6 8 200 6 8 200
40 6 6 4 2 40 6 2 6 40 6 6 4 400 400 200 8 6 400 400 200 8 400 200 6
40 400 

Total: 48720 = 24 x 3 x 5 x 7 x 29. SF: 52 = 22 x 13.

4.2.2.2From the list in 4.2.2 take every even positioned group of nine letters:

40 6 80 400 6 6 4 6 40 400 40 200 6 40 6 6 40 4 400 200 60 6 2 40
200 20 6 6 6 400 200 20 400 40 6 4 2 200 400 40 6 40 80 8 400 6 6 40
200 40 6 80 6 6 6 6 60 2 400 6 200 40 6 6 4 4 6 20 6 4 400 40 200 6
2 200 4 80 6 20 40 80 6 6 400 200 400 40 40 20 4 6 20 2 200 200 40
200 6 8 2 400 200 6 400 20 8 6 6 200 4 6 40 200 40 4 400 2 40 6 400
80 400 8 40 6 60 8 40 200 6 40 40 80 400 20 4 400 4 2 20 200 6 6 400
40 200 6 400 200 6 400 8 200 6 4 6 400 40 200 6 400 80 8 6 400 20 6
2 6 20 60 4 40 6 40 200 6 4 40 8 400 40 400 40 2 200 400 40 20 2 2
200 8 80 400 4 6 20 4 6 6 4 6 200 40 6 200 6 40 6 200 80 20 4 4 2
200 4 2 40 40 8 4 80 6 6 4 400 40 6 4 4 6 6 400 200 8 6 400 4 6 200
6 2 6 400 2 40 6 400 2 6 400 6 2 2 20 2 6 40 200 200 4 40 2 40 40 80
8 40 40 80 8 400 2 8 400 6 200 4 6 6 40 2 200 8 200 6 4 2 200 40 8 4
40 6 2 2 200 200 6 2 6 40 6 6 200 80 200 80 6 400 40 2 6 40 200 6 2
2 6 200 6 6 40 80 80 6 80 20 200 6 40 4 200 2 6 2 4 40 6 400 20 40 6
8 40 6 400 6 6 400 2 200 4 6 2 40 80 6 80 6 400 40 40 40 80 20 200
40 2 2 20 40 2 6 80 80 20 200 400 6 4 400 40 40 20 4 400 40 8 200 40
2 6 200 80 20 4 8 40 40 6 400 6 200 80 20 4 8 8 40 6 80 20 4 8 200 6
4 6 400 6 4 2 40 6 2 6 400 6 6 8 8 8 200 6 4 6 400 6 6 4 2 40 6 2 6
400 6 4 400 80 6 8 2 200 8 2 40 6 400 6 6 4 2 40 6 4 400 200 6 6 8
80 8 6 40 400 40 6 6 4 2 40 40 6 40 6 6 4 400 200 6 400 200 6 2 40 6
40 400 40 6 8 200 6 40 6 6 4 400 6 4 6 400 8 6 200 40 400 400 6 8 8
6 200 400 6 200 8 8 6 200 8 200 6 4 6 6 6 4 2 40 6 2 6 400 

Total: 45164 = 22 x 7 x 1613. SF: 1624 = 23 x 7 x 29. SF: 42 = 2 x 3 x 7.

4.2.2.3From the list in 4.2.2 take every odd positioned group of 366 letters:

6 400 6 4 400 2 8 40 8 40 6 80 400 6 6 4 6 40 2 40 8 200 40 2 6 2 80
400 40 200 6 40 6 6 40 4 6 6 6 400 2 6 40 20 6 400 200 60 6 2 40 200
20 6 200 80 400 6 400 200 40 6 2 6 6 400 200 20 400 40 6 4 4 40 40
80 200 4 6 6 40 2 200 400 40 6 40 80 8 400 40 2 6 40 6 2 8 40 20 6 6
40 200 40 6 80 6 6 20 6 2 20 6 60 2 6 8 6 6 60 2 400 6 200 40 6 60 2
400 20 6 2 200 40 2 6 4 4 6 20 6 4 400 40 200 4 6 8 6 400 2 200 2
200 6 2 200 4 80 6 20 40 200 20 40 200 4 2 6 200 4 80 6 6 400 200
400 40 40 20 400 6 2 2 6 200 20 6 20 4 6 20 2 200 200 40 200 6 6 200
6 2 400 6 6 400 200 8 2 400 200 6 400 20 8 6 400 200 60 2 6 6 2 20 8
6 200 4 6 40 200 40 4 400 6 4 40 6 400 40 40 6 400 2 40 6 400 80 400
8 40 6 400 80 400 200 60 40 6 400 20 60 8 40 200 6 40 40 80 400 40 6
400 20 80 400 200 40 6 20 4 400 4 2 20 200 6 6 400 8 400 6 400 2 6
60 6 400 40 200 6 400 200 6 400 8 6 6 400 200 6 400 60 6 400 200 6 4
6 400 40 200 6 400 8 40 400 6 8 200 80 6 40 80 8 6 400 20 6 2 6 20
40 4 2 20 200 200 4 2 20 60 4 40 6 40 200 6 4 40 6 2 40 4 2 8 400 40
40 40 80 20 200 6 8 4 6 2 400 200 20 200 40 2 2 20 40 2 6 80 400 20
200 6 40 40 80 40 6 80 20 200 400 6 4 400 40 40 2 40 400 6 6 4 400
200 80 20 4 400 40 8 200 40 2 6 6 8 40 8 200 6 4 6 400 200 80 20 4 8
40 40 6 400 6 6 4 2 40 6 2 6 400 6 200 80 20 4 8 8 40 6 40 6 6 4 400
8 6 8 200 80 20 4 8 200 6 4 6 400 8 40 6 200 2 40 6 400 6 6 4 2 40 6
2 6 400 6 8 8 40 6 6 4 400 2 200 6 8 8 8 200 6 4 6 400 2 200 40 6
200 2 40 6 400 6 6 4 2 40 6 2 6 400 6 8 2 200 200 2 6 40 6 6 4 400
80 6 8 2 200 8 200 6 4 6 400 80 40 6 200 2 40 6 400 6 6 4 2 40 6 2 6
400 6 8 80 40 6 6 4 400 200 6 6 8 80 8 200 6 4 6 400 200 6 400 40 6
40 400 40 6 6 4 2 40 6 2 6 400 6 8 200 6 400 40 6 40 6 6 4 400 200 6
6 8 200 6 8 200 6 4 6 400 200 6 2 40 6 40 400 40 6 6 4 2 40 6 2 6
400 6 8 200 6 40 6 6 4 400 8 6 200 6 8 200 6 8 200 6 4 6 400 8 6 200
40 400 40 6 6 4 2 40 6 2 6 400 6 8 8 6 200 400 6 200 40 6 6 4 400
400 200 8 6 8 8 6 200 8 200 6 4 6 400 400 200 8 400 200 6 40 400 6 6
4 2 40 6 2 6 400 

Total: 63980 = 22 x 5 x 7 x 457.

4.2.2.3.1From the list in 4.2.2.3 take the odd positioned letters:

6 6 400 8 8 6 400 6 6 2 8 40 6 80 40 6 6 40 6 6 2 40 6 200 6 40 20
200 400 400 40 2 6 200 400 6 4 40 200 6 40 200 40 40 8 40 6 6 8 20 6
200 6 6 20 2 6 2 8 6 2 6 40 60 400 6 200 2 4 6 6 400 200 6 6 2 2 6
200 80 20 200 40 4 6 4 6 400 400 40 400 2 6 20 20 6 2 200 200 6 6
400 6 200 2 200 400 8 400 60 6 2 8 200 6 200 4 6 40 400 40 400 40
400 400 40 400 400 60 6 20 8 200 40 80 40 400 80 200 6 4 4 20 6 400
400 400 6 6 40 6 200 400 6 400 6 60 400 6 6 40 6 8 400 8 80 40 8 400
6 6 40 2 200 4 20 4 6 200 4 6 40 2 400 40 80 200 8 6 400 20 40 2 40
6 400 200 40 80 6 20 400 4 40 2 400 6 400 80 4 40 200 2 6 40 200 4
400 80 4 40 6 6 4 40 2 400 200 20 8 40 40 6 400 6 200 20 8 6 6 8 6 2
6 6 4 40 2 400 8 40 6 400 200 8 8 6 6 2 40 200 40 400 6 2 6 6 6 2
200 6 6 4 80 8 200 200 4 400 40 200 40 400 6 2 6 6 6 80 6 4 200 6 80
200 4 400 6 40 40 40 6 2 6 6 6 200 400 6 6 4 200 6 200 8 6 6 200 2 6
400 6 4 40 2 400 8 6 6 4 8 200 8 6 200 4 400 6 40 40 6 2 6 6 6 8 200
6 40 6 400 200 6 8 200 200 4 400 200 400 6 400 6 2 6 6 

Total: 34048 = 28 x 7 x 19. SF: 42 = 2 x 3 x 7.

4.2.2.3.2From the list in 4.2.2.3 take the even positioned letters:

400 4 2 40 40 80 6 4 40 40 200 2 2 400 200 40 6 4 6 400 6 20 400 60
2 200 6 80 6 200 6 6 400 20 40 4 40 80 4 6 2 400 6 80 400 2 40 2 40
6 40 40 80 6 6 20 60 6 6 60 400 200 6 2 20 2 40 6 4 20 4 40 4 8 400
200 200 2 4 6 40 20 200 2 200 80 6 200 40 20 6 2 200 6 4 20 200 40 6
200 2 6 400 8 400 6 20 6 200 2 6 20 6 4 40 40 400 4 6 40 6 2 6 80 8
6 80 200 40 400 60 40 6 40 400 6 20 400 40 20 400 2 200 6 8 6 2 60
400 200 400 6 8 6 200 400 6 200 4 400 200 400 40 6 200 6 80 6 20 2
20 4 20 200 2 60 40 40 6 40 2 4 8 40 40 20 6 4 2 200 200 2 20 2 80
20 6 40 40 80 200 6 400 40 40 6 4 200 20 400 8 40 6 8 8 6 6 200 20 8
40 400 6 2 6 6 6 80 4 8 6 6 4 8 8 80 4 200 4 400 40 200 40 400 6 2 6
6 6 8 6 4 2 6 8 200 4 400 200 6 2 6 6 4 40 2 400 8 200 2 40 6 400 6
2 8 6 6 80 6 2 6 6 4 40 2 400 8 40 6 400 6 8 8 6 6 200 400 6 400 6 4
40 2 400 8 6 40 40 6 400 6 8 6 200 4 400 6 40 40 40 6 2 6 6 6 200 40
6 400 6 6 200 8 6 6 8 200 400 6 4 40 2 400 8 6 400 200 6 4 400 8 8 6
8 6 6 400 8 200 40 6 4 40 2 400 

Total: 29932 = 22 x 7 x 1069.

4.2.2.4From the list in 4.2.2 take every even positioned group of 366 letters:

40 40 80 8 400 40 400 40 2 200 400 40 2 6 40 6 40 4 40 6 2 20 2 2
200 8 80 400 4 6 2 40 40 6 6 200 6 200 80 20 4 6 6 4 6 200 40 6 2
200 40 6 6 8 6 6 400 200 6 40 6 200 80 20 4 4 400 8 6 8 4 400 2 200
6 2 200 4 2 40 40 8 4 80 20 2 40 6 80 200 6 40 8 6 6 4 400 40 6 4 4
6 400 80 6 400 8 200 40 6 400 6 400 200 8 6 400 4 6 200 40 6 400 6 6
400 4 6 400 6 2 6 400 2 40 6 400 2 6 400 6 80 200 6 400 8 6 6 400 6
2 2 20 2 6 40 6 2 40 40 40 2 20 60 80 200 200 4 40 2 40 40 80 8 400
40 400 40 2 200 400 40 6 40 40 80 8 400 2 8 400 6 4 400 40 2 6 40 6
40 80 200 4 6 6 40 2 200 8 200 40 2 6 6 20 200 80 8 400 6 4 2 200 40
8 4 40 6 2 60 40 40 4 40 6 40 6 2 2 200 200 6 2 6 40 6 40 200 6 200
6 2 2 2 40 6 200 80 200 80 6 400 40 2 2 6 8 40 200 40 8 40 200 6 40
200 6 2 2 6 200 6 40 4 6 200 6 2 40 40 6 6 40 80 80 6 80 20 200 6
200 4 6 200 400 400 200 6 400 40 4 200 2 6 2 4 40 6 40 200 6 40 8 4
6 80 8 400 20 40 6 8 40 6 400 6 400 2 200 40 40 20 200 40 6 6 400 2
200 4 6 2 40 80 400 40 200 40 6 80 400 200 6 6 80 6 

Total: 29904 = 24 x 3 x 7 x 89.

4.2.2.3.1From the list in 4.2.2.3 take the odd positioned letters:

6 6 400 8 8 6 400 6 6 2 8 40 6 80 40 6 6 40 6 6 2 40 6 200 6 40 20 
200 400 400 40 2 6 200 400 6 4 40 200 6 40 200 40 40 8 40 6 6 8 20 6 
200 6 6 20 2 6 2 8 6 2 6 40 60 400 6 200 2 4 6 6 400 200 6 6 2 2 6 
200 80 20 200 40 4 6 4 6 400 400 40 400 2 6 20 20 6 2 200 200 6 6 400 
6 200 2 200 400 8 400 60 6 2 8 200 6 200 4 6 40 400 40 400 40 400 400 
40 400 400 60 6 20 8 200 40 80 40 400 80 200 6 4 4 20 6 400 400 400 6 
6 40 6 200 400 6 400 6 60 400 6 6 40 6 8 400 8 80 40 8 400 6 6 40 2 
200 4 20 4 6 200 4 6 40 2 400 40 80 200 8 6 400 20 40 2 40 6 400 200 
40 80 6 20 400 4 40 2 400 6 400 80 4 40 200 2 6 40 200 4 400 80 4 40 
6 6 4 40 2 400 200 20 8 40 40 6 400 6 200 20 8 6 6 8 6 2 6 6 4 40 2 
400 8 40 6 400 200 8 8 6 6 2 40 200 40 400 6 2 6 6 6 2 200 6 6 4 80 8 
200 200 4 400 40 200 40 400 6 2 6 6 6 80 6 4 200 6 80 200 4 400 6 40 
40 40 6 2 6 6 6 200 400 6 6 4 200 6 200 8 6 6 200 2 6 400 6 4 40 2 
400 8 6 6 4 8 200 8 6 200 4 400 6 40 40 6 2 6 6 6 8 200 6 40 6 400 
200 6 8 200 200 4 400 200 400 6 400 6 2 6 6 

Total: 34048 = 28 x 7 x 19.

4.2.2.3.1.1First half of 4.2.2.3.1:

6 6 400 8 8 6 400 6 6 2 8 40 6 80 40 6 6 40 6 6 2 40 6 200 6 40 20 
200 400 400 40 2 6 200 400 6 4 40 200 6 40 200 40 40 8 40 6 6 8 20 6 
200 6 6 20 2 6 2 8 6 2 6 40 60 400 6 200 2 4 6 6 400 200 6 6 2 2 6 
200 80 20 200 40 4 6 4 6 400 400 40 400 2 6 20 20 6 2 200 200 6 6 400 
6 200 2 200 400 8 400 60 6 2 8 200 6 200 4 6 40 400 40 400 40 400 400 
40 400 400 60 6 20 8 200 40 80 40 400 80 200 6 4 4 20 6 400 400 400 6 
6 40 6 200 400 6 400 6 60 400 6 6 40 6 8 400 8 80 40 8 400 6 6 40 2 
200 4 20 4 6 200 4 6 40 2 

Total: 17710 = 2 x 5 x 7 x 11 x 23.

4.2.2.3.1.1.1   First and last third of 4.2.2.3.1.1 (groups of 61):

6 6 400 8 8 6 400 6 6 2 8 40 6 80 40 6 6 40 6 6 2 40 6 200 6 40 20 
200 400 400 40 2 6 200 400 6 4 40 200 6 40 200 40 40 8 40 6 6 8 20 6 
200 6 6 20 2 6 2 8 6 2 40 400 400 40 400 400 60 6 20 8 200 40 80 40 
400 80 200 6 4 4 20 6 400 400 400 6 6 40 6 200 400 6 400 6 60 400 6 6 
40 6 8 400 8 80 40 8 400 6 6 40 2 200 4 20 4 6 200 4 6 40 2 

Total: 11102 = 2 x 7 x 13 x 61.

4.2.2.3.1.1.1.1     First half of 4.2.2.3.1.1.1:

6 6 400 8 8 6 400 6 6 2 8 40 6 80 40 6 6 40 6 6 2 40 6 200 6 40 20 
200 400 400 40 2 6 200 400 6 4 40 200 6 40 200 40 40 8 40 6 6 8 20 6 
200 6 6 20 2 6 2 8 6 2 

Total: 3976 = 23 x 7 x 71. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

4.2.2.3.1.1.1.2     Last half of 4.2.2.3.1.1.1:

40 400 400 40 400 400 60 6 20 8 200 40 80 40 400 80 200 6 4 4 20 6 
400 400 400 6 6 40 6 200 400 6 400 6 60 400 6 6 40 6 8 400 8 80 40 8 
400 6 6 40 2 200 4 20 4 6 200 4 6 40 2 

Total: 7126 = 2 x 7 x 509. SF: 518 = 2 x 7 x 37.

4.2.2.3.1.1.2Middle third of 4.2.2.3.1.1 (group of 61):

6 40 60 400 6 200 2 4 6 6 400 200 6 6 2 2 6 200 80 20 200 40 4 6 4 6 
400 400 40 400 2 6 20 20 6 2 200 200 6 6 400 6 200 2 200 400 8 400 60 
6 2 8 200 6 200 4 6 40 400 40 400 

Total: 6608 = 24 x 7 x 59.

4.2.2.3.1.1Last half of 4.2.2.3.1:

400 40 80 200 8 6 400 20 40 2 40 6 400 200 40 80 6 20 400 4 40 2 400 
6 400 80 4 40 200 2 6 40 200 4 400 80 4 40 6 6 4 40 2 400 200 20 8 40 
40 6 400 6 200 20 8 6 6 8 6 2 6 6 4 40 2 400 8 40 6 400 200 8 8 6 6 2 
40 200 40 400 6 2 6 6 6 2 200 6 6 4 80 8 200 200 4 400 40 200 40 400 
6 2 6 6 6 80 6 4 200 6 80 200 4 400 6 40 40 40 6 2 6 6 6 200 400 6 6 
4 200 6 200 8 6 6 200 2 6 400 6 4 40 2 400 8 6 6 4 8 200 8 6 200 4 
400 6 40 40 6 2 6 6 6 8 200 6 40 6 400 200 6 8 200 200 4 400 200 400 
6 400 6 2 6 6 

Total: 16338 = 2 x 3 x 7 x 389.

4.2.2.3.1.1.1Odd positioned from 4.2.2.3.1.1:

400 80 8 400 40 40 400 40 6 400 40 400 400 4 200 6 200 400 4 6 4 2 
200 8 40 400 200 8 6 6 6 4 2 8 6 200 8 6 40 40 6 6 6 200 6 80 200 4 
40 40 6 6 6 6 200 80 4 6 40 6 6 6 400 6 200 200 6 200 6 6 40 400 6 4 
200 6 4 6 40 2 6 8 6 6 200 8 200 400 400 400 2 6 

Total: 9002 = 2 x 7 x 643.

4.2.2.3.1.1.2Even positioned 4.2.2.3.1.1:

40 200 6 20 2 6 200 80 20 4 2 6 80 40 2 40 4 80 40 6 40 400 20 40 6 6 
20 6 8 2 6 40 400 40 400 8 6 2 200 400 2 6 2 6 4 8 200 400 200 400 2 
6 80 4 6 200 400 40 40 2 6 200 6 4 6 8 6 2 400 4 2 8 6 8 8 200 400 40 
6 6 6 200 40 400 6 200 4 200 6 6 6 

Total: 7336 = 23 x 7 x 131.

4.2.2.3.2From the list in 4.2.2.3 take the even positioned letters:

400 4 2 40 40 80 6 4 40 40 200 2 2 400 200 40 6 4 6 400 6 20 400 60 2 
200 6 80 6 200 6 6 400 20 40 4 40 80 4 6 2 400 6 80 400 2 40 2 40 6 
40 40 80 6 6 20 60 6 6 60 400 200 6 2 20 2 40 6 4 20 4 40 4 8 400 200 
200 2 4 6 40 20 200 2 200 80 6 200 40 20 6 2 200 6 4 20 200 40 6 200 
2 6 400 8 400 6 20 6 200 2 6 20 6 4 40 40 400 4 6 40 6 2 6 80 8 6 80 
200 40 400 60 40 6 40 400 6 20 400 40 20 400 2 200 6 8 6 2 60 400 200 
400 6 8 6 200 400 6 200 4 400 200 400 40 6 200 6 80 6 20 2 20 4 20 
200 2 60 40 40 6 40 2 4 8 40 40 20 6 4 2 200 200 2 20 2 80 20 6 40 40 
80 200 6 400 40 40 6 4 200 20 400 8 40 6 8 8 6 6 200 20 8 40 400 6 2 
6 6 6 80 4 8 6 6 4 8 8 80 4 200 4 400 40 200 40 400 6 2 6 6 6 8 6 4 2 
6 8 200 4 400 200 6 2 6 6 4 40 2 400 8 200 2 40 6 400 6 2 8 6 6 80 6 
2 6 6 4 40 2 400 8 40 6 400 6 8 8 6 6 200 400 6 400 6 4 40 2 400 8 6 
40 40 6 400 6 8 6 200 4 400 6 40 40 40 6 2 6 6 6 200 40 6 400 6 6 200 
8 6 6 8 200 400 6 4 40 2 400 8 6 400 200 6 4 400 8 8 6 8 6 6 400 8 
200 40 6 4 40 2 400 

4.2.2.3.2.1Odd positioned groups of 3 from 4.2.2.3.2:

400 4 2 6 4 40 2 400 200 6 400 6 2 200 6 6 6 400 40 80 4 6 80 400 40 
6 40 6 20 60 400 200 6 40 6 4 4 8 400 4 6 40 200 80 6 6 2 200 200 40 
6 400 8 400 200 2 6 40 40 400 6 2 6 80 200 40 6 40 400 40 20 400 8 6 
2 400 6 8 6 200 4 40 6 200 20 2 20 2 60 40 2 4 8 6 4 2 20 2 80 40 80 
200 40 6 4 8 40 6 6 200 20 6 2 6 4 8 6 8 80 4 40 200 40 6 6 6 2 6 8 
200 6 2 40 2 400 40 6 400 6 6 80 6 4 40 40 6 400 6 6 200 6 4 40 6 40 
40 8 6 200 40 40 40 6 6 200 6 6 200 8 200 400 2 400 8 6 4 400 8 6 6 
40 6 4 

Total: 14000 = 24 x 53 x 7.

4.2.2.3.2.2Even positioned groups of 3 from 4.2.2.3.2:

40 40 80 40 200 2 40 6 4 20 400 60 80 6 200 20 40 4 6 2 400 2 40 2 40 
80 6 6 6 60 2 20 2 20 4 40 200 200 2 20 200 2 200 40 20 6 4 20 200 2 
6 6 20 6 20 6 4 4 6 40 80 8 6 400 60 40 6 20 400 2 200 6 60 400 200 6 
200 400 400 200 400 6 80 6 4 20 200 40 6 40 40 40 20 200 200 2 20 6 
40 6 400 40 200 20 400 8 8 6 8 40 400 6 6 80 6 4 8 200 4 400 400 6 2 
8 6 4 200 4 400 6 6 4 8 200 2 6 2 8 6 2 6 2 400 8 6 8 8 400 6 400 2 
400 8 6 400 6 4 400 6 6 2 6 40 6 400 8 6 6 6 4 40 6 400 200 8 8 6 400 
8 200 40 2 400 

Total: 15932 = 22 x 7 x 569.

4.2.2.4From the list in 4.2.2 take every even positioned group of 366 letters:

40 40 80 8 400 40 400 40 2 200 400 40 2 6 40 6 40 4 40 6 2 20 2 2 200 
8 80 400 4 6 2 40 40 6 6 200 6 200 80 20 4 6 6 4 6 200 40 6 2 200 40 
6 6 8 6 6 400 200 6 40 6 200 80 20 4 4 400 8 6 8 4 400 2 200 6 2 200 
4 2 40 40 8 4 80 20 2 40 6 80 200 6 40 8 6 6 4 400 40 6 4 4 6 400 80 
6 400 8 200 40 6 400 6 400 200 8 6 400 4 6 200 40 6 400 6 6 400 4 6 
400 6 2 6 400 2 40 6 400 2 6 400 6 80 200 6 400 8 6 6 400 6 2 2 20 2 
6 40 6 2 40 40 40 2 20 60 80 200 200 4 40 2 40 40 80 8 400 40 400 40 
2 200 400 40 6 40 40 80 8 400 2 8 400 6 4 400 40 2 6 40 6 40 80 200 4 
6 6 40 2 200 8 200 40 2 6 6 20 200 80 8 400 6 4 2 200 40 8 4 40 6 2 
60 40 40 4 40 6 40 6 2 2 200 200 6 2 6 40 6 40 200 6 200 6 2 2 2 40 6 
200 80 200 80 6 400 40 2 2 6 8 40 200 40 8 40 200 6 40 200 6 2 2 6 
200 6 40 4 6 200 6 2 40 40 6 6 40 80 80 6 80 20 200 6 200 4 6 200 400 
400 200 6 400 40 4 200 2 6 2 4 40 6 40 200 6 40 8 4 6 80 8 400 20 40 
6 8 40 6 400 6 400 2 200 40 40 20 200 40 6 6 400 2 200 4 6 2 40 80 
400 40 200 40 6 80 400 200 6 6 80 6 

4.2.2.4.1Odd positioned groups of 2 from 4.2.2.4:

40 40 400 40 2 200 2 6 40 4 2 20 200 8 4 6 40 6 6 200 4 6 6 200 2 200 
6 8 400 200 6 200 4 4 6 8 2 200 200 4 40 8 20 2 80 200 8 6 400 40 4 6 
6 400 40 6 400 200 400 4 40 6 6 400 400 6 400 2 400 2 6 80 400 8 400 
6 20 2 6 2 40 2 80 200 40 2 80 8 400 40 400 40 40 80 2 8 4 400 6 40 
80 200 6 40 8 200 6 6 80 8 4 2 8 4 2 60 4 40 6 2 200 6 40 6 6 200 2 2 
200 80 6 400 2 6 200 40 200 6 6 2 200 6 6 200 40 40 40 80 80 20 200 4 
400 400 400 40 2 6 40 6 6 40 6 80 20 40 40 6 400 2 40 20 6 6 200 4 40 
80 200 40 400 200 80 6 

Total: 16254 = 2 x 33 x 7 x 43.

4.2.2.4.1.1Odd positioned groups of 46 from 4.2.2.4.1:

40 40 400 40 2 200 2 6 40 4 2 20 200 8 4 6 40 6 6 200 4 6 6 200 2 200 
6 8 400 200 6 200 4 4 6 8 2 200 200 4 40 8 20 2 80 200 40 80 2 8 4 
400 6 40 80 200 6 40 8 200 6 6 80 8 4 2 8 4 2 60 4 40 6 2 200 6 40 6 
6 200 2 2 200 80 6 400 2 6 200 40 200 6 

Total: 6230 = 2 x 5 x 7 x 89.

4.2.2.4.1.2Even positioned groups of 46 from 4.2.2.4.1:

8 6 400 40 4 6 6 400 40 6 400 200 400 4 40 6 6 400 400 6 400 2 400 2 
6 80 400 8 400 6 20 2 6 2 40 2 80 200 40 2 80 8 400 40 400 40 6 2 200 
6 6 200 40 40 40 80 80 20 200 4 400 400 400 40 2 6 40 6 6 40 6 80 20 
40 40 6 400 2 40 20 6 6 200 4 40 80 200 40 400 200 80 6 

Total: 10024 = 23 x 7 x 179.

4.2.2.4.2Even positioned groups of 2 from 4.2.2.4:

80 8 400 40 400 40 40 6 40 6 2 2 80 400 2 40 6 200 80 20 6 4 40 6 40 
6 6 6 6 40 80 20 400 8 4 400 6 2 2 40 4 80 40 6 6 40 6 4 6 4 400 80 8 
200 400 6 8 6 6 200 400 6 4 6 2 6 40 6 6 400 200 6 6 6 2 2 6 40 40 40 
20 60 200 4 40 40 400 40 2 200 6 40 8 400 400 6 40 2 6 40 4 6 2 200 
40 2 20 200 400 6 200 40 40 6 40 40 6 40 2 200 2 6 40 200 6 2 40 6 
200 80 40 2 8 40 8 40 40 200 2 6 40 4 6 2 6 6 80 6 200 6 6 200 200 6 
4 200 2 4 40 200 8 4 8 400 6 8 400 6 200 40 200 40 400 2 6 2 400 40 6 
80 6 6 

Total: 13650 = 2 x 3 x 52 x 7 x 13. SF: 35 = 5 x 7.

4.2.2.4.2.1First half of 4.2.2.4.2:

80 8 400 40 400 40 40 6 40 6 2 2 80 400 2 40 6 200 80 20 6 4 40 6 40 
6 6 6 6 40 80 20 400 8 4 400 6 2 2 40 4 80 40 6 6 40 6 4 6 4 400 80 8 
200 400 6 8 6 6 200 400 6 4 6 2 6 40 6 6 400 200 6 6 6 2 2 6 40 40 40 
20 60 200 4 40 40 400 40 2 200 6 

Total: 6760 = 23 x 5 x 132

4.2.2.4.2.1.1Odd positioned from 4.2.2.4.2.1:

80 400 400 40 40 2 80 2 6 80 6 40 40 6 6 80 400 4 6 2 4 40 6 6 6 400 
8 400 8 6 400 4 2 40 6 200 6 2 6 40 20 200 40 400 2 6 

Total: 3978 = 2 x 32 x 13 x 17.

4.2.2.4.2.1.2Even positioned from 4.2.2.4.2.1:

8 40 40 6 6 2 400 40 200 20 4 6 6 6 40 20 8 400 2 40 80 6 40 4 4 80 
200 6 6 200 6 6 6 6 400 6 6 2 40 40 60 4 40 40 200 

Total: 2782 = 2 x 13 x 107.

4.2.2.4.2.1.3Odd positioned groups of 7 from 4.2.2.4.2.1:

80 8 400 40 400 40 40 2 40 6 200 80 20 6 6 40 80 20 400 8 4 40 6 6 40 
6 4 6 8 6 6 200 400 6 4 200 6 6 6 2 2 6 40 40 400 40 2 200 6 

Total: 3614 = 2 x 13 x 139. SF: 154 = 2 x 7 x 11.

4.2.2.4.2.1.3.1     Odd positioned from 4.2.2.4.2.1.3:

80 400 400 40 40 200 20 6 80 400 4 6 40 4 8 6 400 4 6 6 2 40 400 2 6

Total: 2600 = 23 x 52 x 13.

4.2.2.4.2.1.3.2     Even positioned from 4.2.2.4.2.1.3:

8 40 40 2 6 80 6 40 20 8 40 6 6 6 6 200 6 200 6 2 6 40 40 200

Total: 1014 = 2 x 3 x 132

4.2.2.4.2.1.4     Even positioned groups of 7 from 4.2.2.4.2.1:

6 40 6 2 2 80 400 4 40 6 40 6 6 6 400 6 2 2 40 4 80 4 400 80 8 200 
400 6 6 2 6 40 6 6 400 40 40 40 20 60 200 4 

Total: 3146 = 2 x 112 x 13.

4.2.2.4.2.2Last half of 4.2.2.4.2:

40 8 400 400 6 40 2 6 40 4 6 2 200 40 2 20 200 400 6 200 40 40 6 40 
40 6 40 2 200 2 6 40 200 6 2 40 6 200 80 40 2 8 40 8 40 40 200 2 6 40 
4 6 2 6 6 80 6 200 6 6 200 200 6 4 200 2 4 40 200 8 4 8 400 6 8 400 6 
200 40 200 40 400 2 6 2 400 40 6 80 6 6 

Total: 6890 = 2 x 5 x 13 x 53.

4.2.2.4.3Odd positioned groups of 6 from 4.2.2.4:

40 40 80 8 400 40 2 6 40 6 40 4 200 8 80 400 4 6 6 200 80 20 4 6 2 
200 40 6 6 8 6 200 80 20 4 4 2 200 6 2 200 4 20 2 40 6 80 200 400 40 
6 4 4 6 40 6 400 6 400 200 40 6 400 6 6 400 400 2 40 6 400 2 400 8 6 
6 400 6 6 2 40 40 40 2 40 2 40 40 80 8 400 40 6 40 40 80 4 400 40 2 6 
40 6 40 2 200 8 200 80 8 400 6 4 2 2 60 40 40 4 40 200 6 2 6 40 6 2 2 
40 6 200 80 2 6 8 40 200 40 6 2 2 6 200 6 40 40 6 6 40 80 200 4 6 200 
400 400 2 6 2 4 40 6 6 80 8 400 20 40 400 2 200 40 40 20 200 4 6 2 40 
80 400 200 6 6 80 6 

Total: 14560 = 25 x 5 x 7 x 13. SF: 35 = 5 x 7.

4.2.2.4.4Even positioned groups of 6 from 4.2.2.4:

400 40 2 200 400 40 40 6 2 20 2 2 2 40 40 6 6 200 6 4 6 200 40 6 6 6 
400 200 6 40 400 8 6 8 4 400 2 40 40 8 4 80 6 40 8 6 6 4 400 80 6 400 
8 200 8 6 400 4 6 200 4 6 400 6 2 6 6 400 6 80 200 6 2 2 20 2 6 40 20 
60 80 200 200 4 400 40 400 40 2 200 8 400 2 8 400 6 6 40 80 200 4 6 
40 2 6 6 20 200 200 40 8 4 40 6 6 40 6 2 2 200 40 200 6 200 6 2 200 
80 6 400 40 2 8 40 200 6 40 200 40 4 6 200 6 2 80 6 80 20 200 6 200 6 
400 40 4 200 40 200 6 40 8 4 6 8 40 6 400 6 200 40 6 6 400 2 400 40 
200 40 6 80 

Total: 15344 = 24 x 7 x 137.

4.2.2.4.4.1Odd positioned from 4.2.2.4.4:

400 2 400 40 2 2 2 40 6 6 6 40 6 400 6 400 6 4 2 40 4 6 8 6 400 6 8 8 
400 6 4 400 2 6 6 200 2 20 6 20 80 200 400 400 2 8 2 400 6 80 4 40 6 
20 200 8 40 6 6 2 40 6 6 200 6 40 8 200 40 40 6 6 80 80 200 200 400 4 
40 6 8 6 40 400 200 6 400 400 200 6 

Total: 8512 = 26 x 7 x 19.

4.2.2.4.4.1.1Odd positioned groups of 9 from 4.2.2.4.4.1:

400 2 400 40 2 2 2 40 6 2 40 4 6 8 6 400 6 8 2 20 6 20 80 200 400 400 
2 200 8 40 6 6 2 40 6 6 80 80 200 200 400 4 40 6 8 

Total: 3836 = 22 x 7 x 137.

4.2.2.4.4.1.1.1     Odd positioned groups of 3 from 4.2.2.4.4.1.1:

400 2 400 2 40 6 6 8 6 2 20 6 400 400 2 6 6 2 80 80 200 40 6 8

Total: 2128 = 24 x 7 x 19.

4.2.2.4.4.1.1.1.1       Odd positioned groups of 6 from 4.2.2.4.4.1.1.1:

400 2 400 2 40 6 400 400 2 6 6 2

Total: 1666 = 2 x 72 x 17.

4.2.2.4.4.1.1.1.2         Even positioned groups of 6 from 4.2.2.4.4.1.1.1:

6 8 6 2 20 6 80 80 200 40 6 8

Total: 462 = 2 x 3 x 7 x 11.

4.2.2.4.4.1.1.1.2.1           Odd positioned groups of 2 from 4.2.2.4.4.1.1.1.2:

6 8 20 6 200 40

Total: 280 = 23 x 5 x 7.

4.2.2.4.4.1.1.1.2.2           Even positioned groups of 2 from 4.2.2.4.4.1.1.1.2:

6 2 80 80 6 8

Total: 182 = 2 x 7 x 13.

4.2.2.4.4.1.1.2       Even positioned groups of 3 from 4.2.2.4.4.1.1:

40 2 2 2 40 4 400 6 8 20 80 200 200 8 40 40 6 6 200 400 4

Total: 1708 = 22 x 7 x 61.

4.2.2.4.4.1.1.3       Odd positioned groups of 15 from 4.2.2.4.4.1.1:

400 2 400 40 2 2 2 40 6 2 40 4 6 8 6 6 6 2 40 6 6 80 80 200 200 400 4 
40 6 8 

Total: 2044 = 22 x 7 x 73. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

4.2.2.4.4.1.1.3.1       Odd positioned from 4.2.2.4.4.1.1.3:

400 400 2 2 6 40 6 6 6 40 6 80 200 4 6

Total: 1204 = 22 x 7 x 43.

4.2.2.4.4.1.1.3.1.1           Odd positioned groups of 5 from 4.2.2.4.4.1.1.3.1:

400 400 2 2 6 6 80 200 4 6

Total: 1106 = 2 x 7 x 79.

4.2.2.4.4.1.1.3.1.2           Even positioned groups of 5 from 4.2.2.4.4.1.1.3.1:

40 6 6 6 40

Total: 98 = 2 x 72

4.2.2.4.4.1.1.3.2           Even positioned from 4.2.2.4.4.1.1.3:

2 40 2 40 2 4 8 6 2 6 80 200 400 40 8

Total: 840 = 23 x 3 x 5 x 7. SF: 21 = 3 x 7.

4.2.2.4.4.1.1.3.2.1           Odd positioned from 4.2.2.4.4.1.1.3.2:

2 2 2 8 2 80 400 8

Total: 504 = 23 x 32 x 7.

4.2.2.4.4.1.1.3.2.1.1             Odd positioned from 4.2.2.4.4.1.1.3.2.1:

2 2 2 400

Total: 406 = 2 x 7 x 29.

4.2.2.4.4.1.1.3.2.1.2               Even positioned from 4.2.2.4.4.1.1.3.2.1:

2 8 80 8

Total: 98 = 2 x 72.

4.2.2.4.4.1.1.3.2.1.1                 First half of 4.2.2.4.4.1.1.3.2.1:

2 2 2 8

Total: 14 = 2 x 7.

4.2.2.4.4.1.1.3.2.1.2             Last half of 4.2.2.4.4.1.1.3.2.1:

2 80 400 8

Total: 490 = 2 x 5 x 72 SF: 21 = 3 x 7.

4.2.2.4.4.1.1.3.2.2           Even positioned from 4.2.2.4.4.1.1.3.2:

40 40 4 6 6 200 40

Total: 336 = 24 x 3 x 7.

4.2.2.4.4.1.1.3.3           Odd positioned groups of 3 from 4.2.2.4.4.1.1.3:

400 2 400 2 40 6 6 8 6 40 6 6 200 400 4

Total: 1526 = 2 x 7 x 109.

4.2.2.4.4.1.1.3.4           Even positioned groups of 3 from 4.2.2.4.4.1.1.3:

40 2 2 2 40 4 6 6 2 80 80 200 40 6 8

Total: 518 = 2 x 7 x 37.

4.2.2.4.4.1.1.3.4.1           Odd positioned groups of 3 from 4.2.2.4.4.1.1.3.4:

40 2 2 6 6 2 40 6 8

Total: 112 = 24 x 7.

4.2.2.4.4.1.1.3.4.1.1               Odd positioned groups of 3 from 4.2.2.4.4.1.1.3.4.1:

40 2 2 40 6 8

Total: 98 = 2 x 72.

4.2.2.4.4.1.1.3.4.1.1.1                 Odd positioned groups of 2 from 4.2.2.4.4.1.1.3.4.1.1:

40 2 6 8

Total: 56 = 23 x 7. SF: 13.

4.2.2.4.4.1.1.3.4.1.1.1.1                   First half of 4.2.2.4.4.1.1.3.4.1.1.1:

40 2

Total: 42 = 2 x 3 x 7.

4.2.2.4.4.1.1.3.4.1.1.1.2                     Last half of 4.2.2.4.4.1.1.3.4.1.1.1:

6 8

Total: 14 = 2 x 7.

4.2.2.4.4.1.1.3.4.1.1.2                 Even positioned groups of 2 from 4.2.2.4.4.1.1.3.4.1.1:

2 40

Total: 42 = 2 x 3 x 7.

4.2.2.4.4.1.1.3.4.1.2                 Even positioned groups of 3 from 4.2.2.4.4.1.1.3.4.1:

6 6 2

Total: 14 = 2 x 7.

4.2.2.4.4.1.1.3.4.2           Even positioned groups of 3 from 4.2.2.4.4.1.1.3.4:

2 40 4 80 80 200

Total: 406 = 2 x 7 x 29.

4.2.2.4.4.1.1.3.4.2.1                 Odd positioned groups of 2 from 4.2.2.4.4.1.1.3.4.2:

2 40 80 200

Total: 322 = 2 x 7 x 23.

4.2.2.4.4.1.1.3.4.2.1.1                 First half of 4.2.2.4.4.1.1.3.4.2.1:

2 40

Total: 42 = 2 x 3 x 7.

4.2.2.4.4.1.1.3.4.2.1.2                 Last half of 4.2.2.4.4.1.1.3.4.2.1:

80 200

Total: 280 = 23 x 5 x 7.

4.2.2.4.4.1.1.3.4.2.2               Even positioned groups of 2 from 4.2.2.4.4.1.1.3.4.2:

4 80

Total: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

4.2.2.4.4.1.1.3.4.3           Odd positioned groups of 5 from 4.2.2.4.4.1.1.3.4:

40 2 2 2 40 80 200 40 6 8

Total: 420 = 22 x 3 x 5 x 7.

4.2.2.4.4.1.1.3.4.4           Even positioned groups of 5 from 4.2.2.4.4.1.1.3.4:

4 6 6 2 80

Total: 98 = 2 x 72

4.2.2.4.4.1.1.4           Even positioned groups of 15 from 4.2.2.4.4.1.1:

400 6 8 2 20 6 20 80 200 400 400 2 200 8 40

Total: 1792 = 28 x 7.

4.2.2.4.4.1.1.4.1           Odd positioned from 4.2.2.4.4.1.1.4:

400 8 20 20 200 400 200 40

Total: 1288 = 23 x 7 x 23.

4.2.2.4.4.1.1.4.1.1           Odd positioned groups of 2 from 4.2.2.4.4.1.1.4.1:

400 8 200 400

Total: 1008 = 24 x 32 x 7. SF: 21 = 3 x 7.

4.2.2.4.4.1.1.4.1.2           Even positioned groups of 2 from 4.2.2.4.4.1.1.4.1:

20 20 200 40

Total: 280 = 23 x 5 x 7.

4.2.2.4.4.1.1.4.1.3           First half of 4.2.2.4.4.1.1.4.1:

400 8 20 20

Total: 448 = 26 x 7.

4.2.2.4.4.1.1.4.1.3.1               Odd positioned of 4.2.2.4.4.1.1.4.1.3:

400 20

Total: 420 = 22 x 3 x 5 x 7.

4.2.2.4.4.1.1.4.1.3.2               Even positioned of 4.2.2.4.4.1.1.4.1.3:

8 20

Total: 28 = 22 x 7.

4.2.2.4.4.1.1.4.1.4           Last half of 4.2.2.4.4.1.1.4.1:

200 400 200 40

Total: 840 = 23 x 3 x 5 x 7. SF: 21 = 3 x 7.

4.2.2.4.4.1.1.4.2           Even positioned from 4.2.2.4.4.1.1.4:

6 2 6 80 400 2 8

Total: 504 = 23 x 32 x 7.

4.2.2.4.4.1.1.4.2.1           Odd positioned from 4.2.2.4.4.1.1.4.2:

6 6 400 8

Total: 420 = 22 x 3 x 5 x 7.

4.2.2.4.4.1.1.4.2.1.1               Odd positioned from 4.2.2.4.4.1.1.4.2.1:

6 400

Total: 406 = 2 x 7 x 29.

4.2.2.4.4.1.1.4.2.1.2               Even positioned from 4.2.2.4.4.1.1.4.2.1:

6 8

Total: 14 = 2 x 7.

4.2.2.4.4.1.1.4.2.2           Even positioned from 4.2.2.4.4.1.1.4.2:

2 80 2

Total: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

4.2.2.4.4.1.2           Even positioned groups of 9 from 4.2.2.4.4.1:

6 6 40 6 400 6 400 6 4 8 400 6 4 400 2 6 6 200 8 2 400 6 80 4 40 6 20 
200 6 40 8 200 40 40 6 6 6 40 400 200 6 400 400 200 6 

Total: 4676 = 22 x 7 x 167.

4.2.2.4.4.1.2.1           Odd positioned from 4.2.2.4.4.1.2:

6 40 400 400 4 400 4 2 6 8 400 80 40 20 6 8 40 6 6 400 6 400 6

Total: 2688 = 27 x 3 x 7.

4.2.2.4.4.1.2.1.1           Odd positioned from 4.2.2.4.4.1.2.1:

6 400 4 4 6 400 40 6 40 6 6 6

Total: 924 = 22 x 3 x 7 x 11.

4.2.2.4.4.1.2.1.2           Even positioned from 4.2.2.4.4.1.2.1:

40 400 400 2 8 80 20 8 6 400 400

Total: 1764 = 22 x 32 x 72.

4.2.2.4.4.1.2.2           Even positioned from 4.2.2.4.4.1.2:

6 6 6 6 8 6 400 6 200 2 6 4 6 200 40 200 40 6 40 200 400 200

Total: 1988 = 22 x 7 x 71.

4.2.2.4.4.1.3           Odd positioned groups of 30 from 4.2.2.4.4.1:

400 2 400 40 2 2 2 40 6 6 6 40 6 400 6 400 6 4 2 40 4 6 8 6 400 6 8 8 
400 6 40 6 6 200 6 40 8 200 40 40 6 6 80 80 200 200 400 4 40 6 8 6 40 
400 200 6 400 400 200 6 

Total: 5936 = 24 x 7 x 53.

4.2.2.4.4.1.3.1           Odd positioned groups of 5 from 4.2.2.4.4.1.3:

400 2 400 40 2 6 40 6 400 6 4 6 8 6 400 40 6 6 200 6 6 6 80 80 200 8 
6 40 400 200 

Total: 3010 = 2 x 5 x 7 x 43.

4.2.2.4.4.1.3.1.1           Odd positioned groups of 6 from 4.2.2.4.4.1.3.1:

400 2 400 40 2 6 8 6 400 40 6 6 200 8 6 40 400 200

Total: 2170 = 2 x 5 x 7 x 31.

4.2.2.4.4.1.3.1.2           Even positioned groups of 6 from 4.2.2.4.4.1.3.1:

40 6 400 6 4 6 200 6 6 6 80 80

Total: 840 = 23 x 3 x 5 x 7. SF: 21 = 3 x 7.

4.2.2.4.4.1.3.1.2.1           Odd positioned groups of 3 from 4.2.2.4.4.1.3.1.2:

40 6 400 200 6 6

Total: 658 = 2 x 7 x 47. SF: 56 = 23 x 7. SF: 13.

4.2.2.4.4.1.3.1.2.2           Even positioned groups of 3 from 4.2.2.4.4.1.3.1.2:

6 4 6 6 80 80

Total: 182 = 2 x 7 x 13.

4.2.2.4.4.1.3.1.2.3           First half of 4.2.2.4.4.1.3.1.2:

40 6 400 6 4 6

Total: 462 = 2 x 3 x 7 x 11.

4.2.2.4.4.1.3.1.2.3.1               Odd positioned groups of 2 from 4.2.2.4.4.1.3.1.2.3:

40 6 4 6

Total: 56 = 23 x 7. SF: 13.

4.2.2.4.4.1.3.1.2.3.2               Even positioned groups of 2 from 4.2.2.4.4.1.3.1.2.3:

400 6

Total: 406 = 2 x 7 x 29.

4.2.2.4.4.1.3.1.2           Last half of 4.2.2.4.4.1.3.1.2:

200 6 6 6 80 80

Total: 378 = 2 x 33 x 7.

4.2.2.4.4.1.3.2           Even positioned groups of 5 from 4.2.2.4.4.1.3:

2 2 40 6 6 400 6 4 2 40 6 8 8 400 6 40 8 200 40 40 200 400 4 40 6 6 
400 400 200 6 

Total: 2926 = 2 x 7 x 11 x 19. SF: 39 = 3 x 13.

4.2.2.4.4.1.3.2.1           Odd positioned groups of 3 from 4.2.2.4.4.1.3.2:

2 2 40 6 4 2 8 400 6 40 40 200 6 6 400

Total: 1162 = 2 x 7 x 83.

4.2.2.4.4.1.3.2.2           Even positioned groups of 3 from 4.2.2.4.4.1.3.2:

6 6 400 40 6 8 40 8 200 400 4 40 400 200 6

Total: 1764 = 22 x 32 x 72.

4.2.2.4.4.1.3.2.3           Odd positioned groups of 5 from 4.2.2.4.4.1.3.2:

2 2 40 6 6 6 8 8 400 6 200 400 4 40 6

Total: 1134 = 2 x 34 x 7. SF: 21 = 3 x 7.

4.2.2.4.4.1.3.2.4           Even positioned groups of 5 from 4.2.2.4.4.1.3.2:

400 6 4 2 40 40 8 200 40 40 6 400 400 200 6

Total: 1792 = 28 x 7.

4.2.2.4.4.1.3.2.5           Odd positioned groups of 10 from 4.2.2.4.4.1.3.2:

2 2 40 6 6 400 6 4 2 40 200 400 4 40 6 6 400 400 200 6

Total: 2170 = 2 x 5 x 7 x 31.

4.2.2.4.4.1.3.2.6           Even positioned groups of 10 from 4.2.2.4.4.1.3.2:

6 8 8 400 6 40 8 200 40 40

Total: 756 = 22 x 33 x 7.

4.2.2.4.4.1.3.2.6.1           Odd positioned groups of 2 from 4.2.2.4.4.1.3.2.6:

6 8 6 40 40 40

Total: 140 = 22 x 5 x 7.

4.2.2.4.4.1.3.2.6.2           Even positioned groups of 2 from 4.2.2.4.4.1.3.2.6:

8 400 8 200

Total: 616 = 23 x 7 x 11.

4.2.2.4.4.1.4           Even positioned groups of 30 from 4.2.2.4.4.1:

4 400 2 6 6 200 2 20 6 20 80 200 400 400 2 8 2 400 6 80 4 40 6 20 200 
8 40 6 6 2 

Total: 2576 = 24 x 7 x 23.

4.2.2.4.4.1.5           First half of 4.2.2.4.4.1:

400 2 400 40 2 2 2 40 6 6 6 40 6 400 6 400 6 4 2 40 4 6 8 6 400 6 8 8 
400 6 4 400 2 6 6 200 2 20 6 20 80 200 400 400 2 

Total: 4410 = 2 x 32 x 5 x 72.

4.2.2.4.4.1.6           Last half of 4.2.2.4.4.1:

8 2 400 6 80 4 40 6 20 200 8 40 6 6 2 40 6 6 200 6 40 8 200 40 40 6 6 
80 80 200 200 400 4 40 6 8 6 40 400 200 6 400 400 200 6 

Total: 4102 = 2 x 7 x 293.

4.2.2.4.4.1.6.1           Odd positioned groups of 5 from 4.2.2.4.4.1.6:

8 2 400 6 80 8 40 6 6 2 40 8 200 40 40 200 400 4 40 6 6 400 400 200 6

Total: 2548 = 22 x 72 x 13.

4.2.2.4.4.1.6.1.1           Odd positioned from 4.2.2.4.4.1.6.1:

8 400 80 40 6 40 200 40 400 40 6 400 6

Total: 1666 = 2 x 72 x 17.

4.2.2.4.4.1.6.1.2           Even positioned from 4.2.2.4.4.1.6.1:

2 6 8 6 2 8 40 200 4 6 400 200

Total: 882 = 2 x 32 x 72.

4.2.2.4.4.1.6.1.2.1           Odd positioned groups of 2 from 4.2.2.4.4.1.6.1.2:

2 6 2 8 4 6

Total: 28 = 22 x 7.

4.2.2.4.4.1.6.1.2.2           Even positioned groups of 2 from 4.2.2.4.4.1.6.1.2:

8 6 40 200 400 200

Total: 854 = 2 x 7 x 61. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

4.2.2.4.4.1.6.1.2.2.1               Odd positioned from 4.2.2.4.4.1.6.1.2.2:

8 40 400

Total: 448 = 26 x 7.

4.2.2.4.4.1.6.1.2.2.2               Even positioned from 4.2.2.4.4.1.6.1.2.2:

6 200 200

Total: 406 = 2 x 7 x 29.

4.2.2.4.4.1.6.2           Even positioned groups of 5 from 4.2.2.4.4.1.6:

4 40 6 20 200 40 6 6 200 6 6 6 80 80 200 8 6 40 400 200

Total: 1554 = 2 x 3 x 7 x 37. SF: 49 = 72 SF: 14 = 2 x 7.

4.2.2.4.4.2           Even positioned from 4.2.2.4.4:

40 200 40 6 20 2 40 6 200 4 200 6 6 200 40 8 8 400 40 8 80 40 6 4 80 
400 200 6 4 200 6 6 6 400 80 6 2 2 40 60 200 4 40 40 200 400 8 6 40 
200 6 2 6 200 40 4 6 40 2 200 200 200 2 80 400 2 40 6 200 4 200 2 6 
20 6 6 40 200 200 40 4 8 6 6 40 6 2 40 40 80 

Total: 6832 = 24 x 7 x 61.

4.2.2.4.4.2.1           Odd positioned groups of 2 from 4.2.2.4.4.2:

40 200 20 2 200 4 6 200 8 400 80 40 80 400 4 200 6 400 2 2 200 4 200 
400 40 200 6 200 6 40 200 200 400 2 200 4 6 20 40 200 4 8 40 6 40 80 

Total: 5040 = 24 x 32 x 5 x 7. SF: 26 = 2 x 13.

4.2.2.4.4.2.2           Even positioned groups of 2 from 4.2.2.4.4.2:

40 6 40 6 200 6 40 8 40 8 6 4 200 6 6 6 80 6 40 60 40 40 8 6 6 2 40 4 
2 200 2 80 40 6 200 2 6 6 200 40 6 6 2 40 

Total: 1792 = 28 x 7.

4.2.2.4.4.2.2.1           Odd positioned groups of 2 from 4.2.2.4.4.2.2:

40 6 200 6 40 8 200 6 80 6 40 40 6 2 2 200 40 6 6 6 6 6

Total: 952 = 23 x 7 x 17.

4.2.2.4.4.2.2.2           Even positioned groups of 2 from 4.2.2.4.4.2.2:

40 6 40 8 6 4 6 6 40 60 8 6 40 4 2 80 200 2 200 40 2 40

Total: 840 = 23 x 3 x 5 x 7. SF: 21 = 3 x 7.

4.2.2.4.4.2.2.2.1           First half of 4.2.2.4.4.2.2.2:

40 6 40 8 6 4 6 6 40 60 8

Total: 224 = 25 x 7.

4.2.2.4.4.2.2.2.1.1           Odd positioned of 4.2.2.4.4.2.2.2.1:

40 40 6 6 40 8

Total: 140 = 22 x 5 x 7.

4.2.2.4.4.2.2.2.1.2           Even positioned of 4.2.2.4.4.2.2.2.1:

6 8 4 6 60

Total: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

4.2.2.4.4.2.2.2.1.2.1               Odd positioned from 4.2.2.4.4.2.2.2.1.2:

6 4 60

Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

4.2.2.4.4.2.2.2.1.2.2               Even positioned from 4.2.2.4.4.2.2.2.1.2:

8 6

Total: 14 = 2 x 7.

4.2.2.4.4.2.2.2.2           Last half of 4.2.2.4.4.2.2.2:

6 40 4 2 80 200 2 200 40 2 40

Total: 616 = 23 x 7 x 11.

4.2.2.4.4.3           Odd positioned groups of 2 from 4.2.2.4.4:

400 40 400 40 2 20 2 40 6 200 6 200 6 6 6 40 6 8 2 40 4 80 8 6 400 80 
8 200 400 4 4 6 2 6 6 80 2 2 6 40 80 200 400 40 2 200 2 8 6 40 4 6 6 
6 200 40 40 6 6 2 40 200 6 2 6 400 8 40 40 200 6 200 80 6 200 6 400 
40 40 200 8 4 40 6 200 40 400 2 200 40 

Total: 7168 = 210 x 7.

4.2.2.4.4.3.1           Odd positioned groups of 6 from 4.2.2.4.4.3:

400 40 400 40 2 20 6 6 6 40 6 8 400 80 8 200 400 4 2 2 6 40 80 200 6 
40 4 6 6 6 40 200 6 2 6 400 80 6 200 6 400 40 200 40 400 2 200 40 

Total: 4732 = 22 x 7 x 132.

4.2.2.4.4.3.2           Even positioned groups of 6 from 4.2.2.4.4.3:

2 40 6 200 6 200 2 40 4 80 8 6 4 6 2 6 6 80 400 40 2 200 2 8 200 40 
40 6 6 2 8 40 40 200 6 200 40 200 8 4 40 6 

Total: 2436 = 22 x 3 x 7 x 29.

4.2.2.4.4.4           Even positioned groups of 2 from 4.2.2.4.4:

2 200 40 6 2 2 40 6 6 4 40 6 400 200 400 8 4 400 40 8 6 40 6 4 6 400 
8 6 6 200 400 6 6 400 200 6 20 2 20 60 200 4 400 40 8 400 400 6 80 
200 40 2 20 200 8 4 6 40 2 200 6 200 200 80 40 2 200 6 40 4 6 2 80 20 
200 6 4 200 6 40 6 8 400 6 6 6 400 40 6 80 

Total: 8176 = 24 x 7 x 73.

4.2.2.4.4.4.1           Odd positioned groups of 2 from 4.2.2.4.4.4:

2 200 2 2 6 4 400 200 4 400 6 40 6 400 6 200 6 400 20 2 200 4 8 400 
80 200 20 200 6 40 6 200 40 2 40 4 80 20 4 200 6 8 6 6 6 80 

Total: 4172 = 22 x 7 x 149.

4.2.2.4.4.4.2           Even positioned groups of 2 from 4.2.2.4.4.4:

40 6 40 6 40 6 400 8 40 8 6 4 8 6 400 6 200 6 20 60 400 40 400 6 40 2 
8 4 2 200 200 80 200 6 6 2 200 6 6 40 400 6 400 40 

Total: 4004 = 22 x 7 x 11 x 13. SF: 35 = 5 x 7.

4.2.2.4.4.4.2.1           Odd positioned groups of 2 from 4.2.2.4.4.4.2:

40 6 40 6 40 8 8 6 200 6 400 40 40 2 2 200 200 6 200 6 400 6

Total: 1862 = 2 x 72 x 19. SF: 35 = 5 x 7.

4.2.2.4.4.4.2.2           Even positioned groups of 2 from 4.2.2.4.4.4.2:

40 6 400 8 6 4 400 6 20 60 400 6 8 4 200 80 6 2 6 40 400 40

Total: 2142 = 2 x 32 x 7 x 17.

4.2.2.4.4.4.2.3           Odd positioned groups of 11 from 4.2.2.4.4.4.2:

40 6 40 6 40 6 400 8 40 8 6 400 6 40 2 8 4 2 200 200 80 200

Total: 1742 = 2 x 13 x 67.

4.2.2.4.4.4.2.3.1           Odd positioned from 4.2.2.4.4.4.2.3:

40 40 40 400 40 6 6 2 4 200 80

Total: 858 = 2 x 3 x 11 x 13.

4.2.2.4.4.4.2.3.2           Even positioned from 4.2.2.4.4.4.2.3:

6 6 6 8 8 400 40 8 2 200 200

Total: 884 = 22 x 13 x 17.

4.2.2.4.4.4.2.4           Even positioned groups of 11 from 4.2.2.4.4.4.2:

4 8 6 400 6 200 6 20 60 400 40 6 6 2 200 6 6 40 400 6 400 40

Total: 2262 = 2 x 3 x 13 x 29.

4.2.2.4.4.4.2.5           First half of 4.2.2.4.4.4.2:

40 6 40 6 40 6 400 8 40 8 6 4 8 6 400 6 200 6 20 60 400 40

Total: 1750 = 2 x 53 x 7.

4.2.2.4.4.4.2.6           Last half of 4.2.2.4.4.4.2:

400 6 40 2 8 4 2 200 200 80 200 6 6 2 200 6 6 40 400 6 400 40

Total: 2254 = 2 x 72 x 23. SF: 39 = 3 x 13.

4.2.2.4.4.4.2.6.1           Odd positioned from 4.2.2.4.4.4.2.6:

400 40 8 2 200 200 6 200 6 400 400

Total: 1862 = 2 x 72 x 19. SF: 35 = 5 x 7.

4.2.2.4.4.4.2.6.2           Even positioned from 4.2.2.4.4.4.2.6:

6 2 4 200 80 6 2 6 40 6 40

Total: 392 = 23 x 72.

4.2.2.4.4.5           Odd positioned groups of 36 from 4.2.2.4.4:

400 40 2 200 400 40 40 6 2 20 2 2 2 40 40 6 6 200 6 4 6 200 40 6 6 6 
400 200 6 40 400 8 6 8 4 400 2 2 20 2 6 40 20 60 80 200 200 4 400 40 
400 40 2 200 8 400 2 8 400 6 6 40 80 200 4 6 40 2 6 6 20 200 80 6 80 
20 200 6 200 6 400 40 4 200 40 200 6 40 8 4 6 8 40 6 400 6 200 40 6 6 
400 2 400 40 200 40 6 80 

Total: 9772 = 22 x 7 x 349.

4.2.2.4.4.6           Even positioned groups of 36 from 4.2.2.4.4:

2 40 40 8 4 80 6 40 8 6 6 4 400 80 6 400 8 200 8 6 400 4 6 200 4 6 
400 6 2 6 6 400 6 80 200 6 200 40 8 4 40 6 6 40 6 2 2 200 40 200 6 
200 6 2 200 80 6 400 40 2 8 40 200 6 40 200 40 4 6 200 6 2 

Total: 5572 = 22 x 7 x 199. SF: 210 = 2 x 3 x 5 x 7.

4.2.2.4.4.6.1           Odd positioned groups of 8 from 4.2.2.4.4.6:

2 40 40 8 4 80 6 40 8 200 8 6 400 4 6 200 6 80 200 6 200 40 8 4 40 
200 6 200 6 2 200 80 40 200 40 4 6 200 6 2 

Total: 2828 = 22 x 7 x 101. SF: 112 = 24 x 7.

4.2.2.4.4.6.1.1           Odd positioned 4.2.2.4.4.6.1:

2 40 4 6 8 8 400 6 6 200 200 8 40 6 6 200 40 40 6 6

Total: 1232 = 24 x 7 x 11. SF: 26 = 2 x 13.

4.2.2.4.4.6.1.2           Even positioned from 4.2.2.4.4.6.1:

40 8 80 40 200 6 4 200 80 6 40 4 200 200 2 80 200 4 200 2

Total: 1596 = 22 x 3 x 7 x 19.

4.2.2.4.4.6.1.3           Odd positioned groups of 10 from 4.2.2.4.4.6.1:

2 40 40 8 4 80 6 40 8 200 200 40 8 4 40 200 6 200 6 2

Total: 1134 = 2 x 34 x 7. SF: 21 = 3 x 7.

4.2.2.4.4.6.1.4           Even positioned groups of 10 from 4.2.2.4.4.6.1:

8 6 400 4 6 200 6 80 200 6 200 80 40 200 40 4 6 200 6 2

Total: 1694 = 2 x 7 x 112.

4.2.2.4.4.6.1.5           First half of 4.2.2.4.4.6.1:

2 40 40 8 4 80 6 40 8 200 8 6 400 4 6 200 6 80 200 6

Total: 1344 = 26 x 3 x 7.

4.2.2.4.4.6.1.5.1           First half of 4.2.2.4.4.6.1.5:

2 40 40 8 4 80 6 40 8 200

Total: 428 = 22 x 107.

4.2.2.4.4.6.1.5.2           Last half of 4.2.2.4.4.6.1.5:

8 6 400 4 6 200 6 80 200 6

Total: 916 = 22 x 229.

4.2.2.4.4.6.1.6           Last half of 4.2.2.4.4.6.1:

200 40 8 4 40 200 6 200 6 2 200 80 40 200 40 4 6 200 6 2

Total: 1484 = 22 x 7 x 53.

4.2.2.4.4.6.2           Even positioned groups of 8 from 4.2.2.4.4.6:

8 6 6 4 400 80 6 400 4 6 400 6 2 6 6 400 40 6 6 40 6 2 2 200 6 400 40 
2 8 40 200 6 

Total: 2744 = 23 x 73.

4.2.2.4.4.6.2.1           Odd positioned groups of 4 from 4.2.2.4.4.6.2:

8 6 6 4 4 6 400 6 40 6 6 40 6 400 40 2

Total: 980 = 22 x 5 x 72.

4.2.2.4.4.6.2.1.1           Odd positioned groups of 2 from 4.2.2.4.4.6.2.1:

8 6 4 6 40 6 6 400

Total: 476 = 22 x 7 x 17. SF: 28 = 22 x 7.

4.2.2.4.4.6.2.1.2           Even positioned groups of 2 from 4.2.2.4.4.6.2.1:

6 4 400 6 6 40 40 2

Total: 504 = 23 x 32 x 7.

4.2.2.4.4.6.2.1.2.1           Odd positioned groups of 2 from 4.2.2.4.4.6.2.1.2:

6 4 6 40

Total: 56 = 23 x 7. SF: 13.

4.2.2.4.4.6.2.1.2.2           Even positioned groups of 2 from 4.2.2.4.4.6.2.1.2:

400 6 40 2

Total: 448 = 26 x 7.

4.2.2.4.4.6.2.1.2.2.1               First half of 4.2.2.4.4.6.2.1.2.2:

400 6

Total: 406 = 2 x 7 x 29.

4.2.2.4.4.6.2.1.2.2.2               Last half of 4.2.2.4.4.6.2.1.2.2:

40 2

Total: 42 = 2 x 3 x 7.

4.2.2.4.4.6.2.2           Even positioned groups of 4 from 4.2.2.4.4.6.2:

400 80 6 400 2 6 6 400 6 2 2 200 8 40 200 6

Total: 1764 = 22 x 32 x 72.

4.2.2.4.4.6.2.2.1           Odd positioned from 4.2.2.4.4.6.2.2:

400 6 2 6 6 2 8 200

Total: 630 = 2 x 32 x 5 x 7.

4.2.2.4.4.6.2.2.2           Even positioned from 4.2.2.4.4.6.2.2:

80 400 6 400 2 200 40 6

Total: 1134 = 2 x 34 x 7. SF: 21 = 3 x 7.

4.2.2.4.4.6.3           Odd positioned groups of 12 from 4.2.2.4.4.6:

2 40 40 8 4 80 6 40 8 6 6 4 4 6 400 6 2 6 6 400 6 80 200 6 40 200 6 
200 6 2 200 80 6 400 40 2 

Total: 2548 = 22 x 72 x 13.

4.2.2.4.4.6.4           Even positioned groups of 12 from 4.2.2.4.4.6:

400 80 6 400 8 200 8 6 400 4 6 200 200 40 8 4 40 6 6 40 6 2 2 200 8 
40 200 6 40 200 40 4 6 200 6 2 

Total: 3024 = 24 x 33 x 7.

4.2.2.4.4.6.4.1           Odd positioned groups of 3 from 4.2.2.4.4.6.4:

400 80 6 8 6 400 200 40 8 6 40 6 8 40 200 40 4 6

Total: 1498 = 2 x 7 x 107.

4.2.2.4.4.6.4.1.1           First half of 4.2.2.4.4.6.4.1:

400 80 6 8 6 400 200 40 8

Total: 1148 = 22 x 7 x 41. SF: 52 = 22 x 13.

4.2.2.4.4.6.4.1.2           Last half of 4.2.2.4.4.6.4.1:

6 40 6 8 40 200 40 4 6

Total: 350 = 2 x 52 x 7.

4.2.2.4.4.6.4.1.2.1           Odd positioned of 4.2.2.4.4.6.4.1.2:

6 6 40 40 6

Total: 98 = 2 x 72.

4.2.2.4.4.6.4.1.2.2           Even positioned of 4.2.2.4.4.6.4.1.2:

40 8 200 4

Total: 252 = 22 x 32 x 7.

4.2.2.4.4.6.4.2           Even positioned groups of 3 from 4.2.2.4.4.6.4:

400 8 200 4 6 200 4 40 6 2 2 200 6 40 200 200 6 2

Total: 1526 = 2 x 7 x 109.

4.2.2.4.4.6.4.2.1           First half of 4.2.2.4.4.6.4.2:

400 8 200 4 6 200 4 40 6

Total: 868 = 22 x 7 x 31. SF: 42 = 2 x 3 x 7.

4.2.2.4.4.6.4.2.1.1           Odd positioned of 4.2.2.4.4.6.4.2.1:

400 200 6 4 6

Total: 616 = 23 x 7 x 11.

4.2.2.4.4.6.4.2.1.2           Even positioned of 4.2.2.4.4.6.4.2.1:

8 4 200 40

Total: 252 = 22 x 32 x 7.

4.2.2.4.4.6.4.2.1.3           Odd positioned groups of 3 from 4.2.2.4.4.6.4.2.1:

400 8 200 4 40 6

Total: 658 = 2 x 7 x 47. SF: 56 = 23 x 7. SF: 13.

4.2.2.4.4.6.4.2.1.4           Even positioned groups of 3 from 4.2.2.4.4.6.4.2.1:

4 6 200

Total: 210 = 2 x 3 x 5 x 7.

4.2.2.4.4.6.4.2.2           Last half of 4.2.2.4.4.6.4.2:

2 2 200 6 40 200 200 6 2

Total: 658 = 2 x 7 x 47. SF: 56 = 23 x 7. SF: 13.

4.2.2.4.4.6.4.3           First half of 4.2.2.4.4.6.4:

400 80 6 400 8 200 8 6 400 4 6 200 200 40 8 4 40 6

Total: 2016 = 25 x 32 x 7.

4.2.2.4.4.6.4.3.1           Odd positioned groups of 3 from 4.2.2.4.4.6.4.3:

400 80 6 8 6 400 200 40 8

Total: 1148 = 22 x 7 x 41. SF: 52 = 22 x 13.

4.2.2.4.4.6.4.3.2           Even positioned groups of 3 from 4.2.2.4.4.6.4.3:

400 8 200 4 6 200 4 40 6

Total: 868 = 22 x 7 x 31. SF: 42 = 2 x 3 x 7.

4.2.2.4.4.6.4.3.2.1           Odd positioned from 4.2.2.4.4.6.4.3.2:

400 200 6 4 6

Total: 616 = 23 x 7 x 11.

4.2.2.4.4.6.4.3.2.2           Even positioned from 4.2.2.4.4.6.4.3.2:

8 4 200 40

Total: 252 = 22 x 32 x 7.

4.2.2.4.4.6.4.3.2.3           Odd positioned groups of 3 from 4.2.2.4.4.6.4.3.2:

400 8 200 4 40 6

Total: 658 = 2 x 7 x 47. SF: 56 = 23 x 7. SF: 13.

4.2.2.4.4.6.4.3.2.4           Even positioned groups of 3 from 4.2.2.4.4.6.4.3.2:

4 6 200

Total: 210 = 2 x 3 x 5 x 7.

4.2.2.4.4.6.4.4           Last half of 4.2.2.4.4.6.4:

6 40 6 2 2 200 8 40 200 6 40 200 40 4 6 200 6 2

Total: 1008 = 24 x 32 x 7. SF: 21 = 3 x 7.

4.2.2.4.4.6.4.4.1           Odd positioned groups of 3 from 4.2.2.4.4.6.4.4:

6 40 6 8 40 200 40 4 6

Total: 350 = 2 x 52 x 7.

4.2.2.4.4.6.4.4.1.1           Odd positioned from 4.2.2.4.4.6.4.4.1:

6 6 40 40 6

Total: 98 = 2 x 72.

4.2.2.4.4.6.4.4.1.2           Even positioned from 4.2.2.4.4.6.4.4.1:

40 8 200 4

Total: 252 = 22 x 32 x 7.

4.2.2.4.4.6.4.4.2           Even positioned groups of 3 from 4.2.2.4.4.6.4.4:

2 2 200 6 40 200 200 6 2

Total: 658 = 2 x 7 x 47. SF: 56 = 23 x 7. SF: 13.

4.2.2.4.4.6.4.4.3           First half of 4.2.2.4.4.6.4.4:

6 40 6 2 2 200 8 40 200

Total: 504 = 23 x 32 x 7.

4.2.2.4.4.6.4.4.4           Last half of 4.2.2.4.4.6.4.4:

6 40 200 40 4 6 200 6 2

Total: 504 = 23 x 32 x 7.

As can be seen the letters are every bit as structured as the rest of the passage.

Conclusion

The same type of numeric features can be found at all levels, from the entire passage to the chapters, verses, words and letters. Firsts in the Bible are always of vast importance. The time period covered in Genesis 10:1-11:25 was a time of firsts: the first expansion of Noah's children, the drift of languages, the first kingdom, and the confusion of languages. The numeric features illuminate this passage's lessons as history that should not have been forgotten.

(Related numeric studies: The World After Eden, The Tower Of Babel, and The Structure Of History .)

Notes

  1. The Flood date is from the literal Bible chronology presented in the book, Miracle In History, by Raymond Chin, Toronto, Canada, 1989.
  2. English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.
  3. What does it mean that the beast was, is not, and is to come? It did not exist in the Apostle John's time. It existed before John's time, and it will return in a time after John. Government systems in John's time were mostly monarchical or tribal. Exceptions were Rome and the Greek city states. Rome was a hybrid emperor/king and senate government. Only the Greek city states were democratic, but only those meeting narrow definitions were citizens and could vote. Thus the beast that was is most likely a type of representative democracy.
  4. Strong's Exhaustive Concordance Of The Bible, by James Strong, S.T.D., LL.D, Riverside Book and Bible House, Iowa Falls, Iowa
  5. Interlinear English is from The NIV Interlinear Hebrew-English Old Testament, edited by John R. Kohleberger III, Zondervan Publishing House, volume 1, 1979.
  6. Speaking of the confusion of languages, here's one. During the time of the Sung Dynasty, there was a famous family of generals in China with the surname Yang. The Yang family had seven sons who were sent to fight barbarians in the north. The mother consulted an oracle to know the fate of her sons. This is what the oracle said: 七子出門六子回. There is no singular or plural in Chinese. Cardinal and ordinal numbers have the same form. It is understood by context. Thus the mother thought 七 (seven) 子 (sons) 出門 (leave home) 六 (six) 子 (sons) 回 (return). She was willing to lose one son for the sake of the nation. Only the sixth son returned. 六子 could mean six sons, but it could also mean the sixth son.
  7. Hebrew text is from Bibleworks 3.2.009 by Michael S. Bushell, 1995. Vowels and punctuation have been removed.
  8. The digits of 57, 579, and 2224 can be sorted (2 2 2 4 5 5 7 7 9). This forms a number: 222455779 = 7 x 13 x 2444569. SF: 2444589 = 32 x 7 x 38803.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




The numbers highlight important lessons. Mediate on those lessons and apply them.