Bible Numbers 2.0

Isaiah 48:5-12 & Revelation 1:8

There are very few instances where God speaks in the New Testament. The most unique is Revelation 1:8 where God describes Himself as the Alpha and the Omega. A similar statement can be found in Isaiah 48:12 where He said He is the first and the last. Joining Revelation 1:8 to Isaiah 48:5-12, creates a passage with amazing numeric features showing the link between the two. The additional verses from Isaiah show God speaking to Israel, reminding them He is the only one true God.

5 I declared them to you from of old, before they came to pass I announced them to you, lest you should say, `My idol did them, my graven image and my molten image commanded them.' 6 "You have heard; now see all this; and will you not declare it? From this time forth I make you hear new things, hidden things which you have not known. 7 They are created now, not long ago; before today you have never heard of them, lest you should say, `Behold, I knew them.' 8 You have never heard, you have never known, from of old your ear has not been opened. For I knew that you would deal very treacherously, and that from birth you were called a rebel. 9 "For my name's sake I defer my anger, for the sake of my praise I restrain it for you, that I may not cut you off. 10 Behold, I have refined you, but not like silver; I have tried you in the furnace of affliction. 11 For my own sake, for my own sake, I do it, for how should my name be profaned? My glory I will not give to another. 12 "Hearken to me, O Jacob, and Israel, whom I called! I am He, I am the first, and I am the last." (Isaiah 48:5-12)1

It might seem strange, beginning Isaiah's passage with verse 5, when this verse refers to something before it. But this is just a matter of translation. In some Bibles, verse 5 has the word them italicized: I declared them to you–. This is because the original Hebrew does not have this word. It is interpolated in translating to English. Some Bibles simply read, I declared to you from of old. This makes verse 5 a more natural opening to the verses that follow.

The purpose of prophecy is proof. It is to prevent people from attributing God’s work to idols and false gods. And now that what was prophesied has come to pass, God declares new things, things people never even thought about. God creates new things that people have never seen. He does this because He knows how stubborn people can be in their own blindness and circumspect thinking. God afflicts people who deliberately refuse to see.

What new thing has God created? For one thing, He gave us the Old Testament and the New Testament. These are now centuries old. However, He has given new ways of looking at the two by putting them together. The numbers are a new way of showing how both books fit together.

Isaiah 48:5-122
4321:A
251485024:B
1413121110987654321:C
402009271402030410316:D
בטרםמאזלךואגיד:E
765:A
130845409:B
27262524232221201918171615:C
5080201040070403005162400:D
פןהשמעתיךתבוא:E
111098:A
186410172641:B
43424140393837363534333231302928:C
10306080640300701029070200401400:D
ופסליעשםעצביתאמר:E
15141312:A
20810136146:B
585756555453525150494847464544:C
578400704030040690102060506:D
חזהשמעתצוםונסכי:E
19181716:A
4234244755:B
74737271706968676665646362616059:C
6410340016305404001653020:D
תגידוהלואואתםכלה:E
222120:A
515718845:B
90898887868584838281807978777675:C
54007040400630048201040070403005:D
מעתהחדשותהשמעתיך:E
252423:A
52437752:B
104103102101100999897969594939291:C
40400704101306400620090506:D
ידעתםולאונצרות:E
29282726:A
4837259475:B
118117116115114113112111110109108107106105:C
7140130661200250540070:D
מאזולאנבראועתה:E
33323130:A
8503756176:B
134133132131130129128127126125124123122121120119:C
404007040300130640610105080306:D
שמעתםולאיוםולפני:E
37363534:A
54460641130:B
149148147146145144143142141140139138137136135:C
50104007041055052004014005080:D
ידעתיןהנהתאמרפן:E
434241403938:A
48431438103143:B
165164163162161160159158157156155154153152151150:C
400704101304034007040300130403:D
ידעתלאגםשמעתלאגם:E
4847464544:A
78493314843:B
180179178177176175174173172171170169168167166:C
20507158400801307140403:D
אזנךפתחהלאמאזגם:E
52515049:A
4151549430:B
196195194193192191190189188187186185184183182181:C
4632400463210400704101020:D
תבגודבגודידעתיכי:E
56555453:A
50301101456:B
209208207206205204203202201200199198197:C
2030120010050924070300806:D
לךקראמבטןופשע:E
60595857:A
91232350190:B
224223222221220219218217216215214213212211210:C
10801201020011104030050704030:D
אפיאאריךשמילמען:E
636261:A
5058851:B
236235234233232231230229228227226225:C
203040981104003054006:D
לךאחטםותהלתי:E
666564:A
60655472:B
250249248247246245244243242241240239238237:C
550520400102002051040030230:D
הנההכריתךלבלתי:E
696867:A
16237800:B
263262261260259258257256255254253252251:C
8060202130620104008020090:D
בכסףולאצרפתיך:E
727170:A
130228640:B
276275274273272271270269268267266265264:C
1050702006202201040020082:D
עניבכורבחרתיך:E
76757473:A
30376200200:B
292291290289288287286285284283282281280279278277:C
1020530070110507040301050704030:D
כיאעשהלמענילמעני:E
80797877:A
239484831:B
308307306305304303302301300299298297296295294293:C
2008130104622063081020101:D
לאחרוכבודייחלאיך:E
8584838281:A
1824141045131:B
323322321320319318317316315314313312311310309:C
21007010103017040300504001130:D
יעקבאלישמעאתןלא:E
888786:A
61351547:B
337336335334333332331330329328327326325324:C
1050110120010040301200300106:D
אנימקראיוישראל:E
9392919089:A
61815576112:B
353352351350349348347346345344343342341340339338:C
10501801506300120010501165:D
אניאףראשוןאניהוא:E
94:A
265:B
358357356355354:C
50620081:D
אחרון:E

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Hebrew.

There are 94 words and 358 letters. The numeric total: 25235 = 5 x 72 x 103.

The passage from Isaiah has to be a multiple of 7 because Revelation 1:8 is a multiple of 7.

I am the Alpha and the Omega, says the Lord God, who is and who was and who is to come, the Almighty. (Revelation 1:8)
Revelation 1:8 (GNT)3
A:12345
B:6085316032220
C:12345678910111213141516
D:53600593091006012030011019
E:εγωειμιτοαλφακαι
A:678910
B:1606004244960
C:171819202122232425262728293031
D:1006060020535910200809609060
E:τοωλεγεικυριοςο
A:11121314151617
B:1636064020604720
C:32333435363738394041424344454647
D:85609060600401019607401019
E:θεοςοωνκαιοηνκαι
A:181920
B:6077060
C:4849505152535455565758
D:605804006030540609060
E:οερχομενοςο
A:21
B:1142
C:5960616263646566676869
D:70140100601080110060080
E:παντοκρατωρ

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Greek.

There are 21 words, 69 letters, and a numeric total of 5516 = 22 x 7 x 197. SF: 208 = 24 x 13. SF: 21 = 3 x 7.

The two passages are put together with Revelation 1:8 after Isaiah 48:5-12.

Primary Features

(Derived from Revelation 1:8 and grouped for easy reference.)

I Am (Present tense - living through it) Add up everything.

A.1Numeric total: 30751 = 7 x 23 x 191. (See feature 1.)

A.5Number of letters: 427 = 7 x 61. (See feature 7.)

Is, Was, Is To Come (Second present tense - skipping sequentially through it) Add up every other occurrance.

B.2.2Every other verse (even): 13871 = 11 x 13 x 97. (See feature 1.1.3.)

B.3Every other word (odd): 18347 = 7 x 2621. (See feature 2.2.1.)

B.3.2Every other word (even): 12404 = 22 x 7 x 443. (See feature 2.2.2.)

B.4Every other letter (odd): 13972 = 22 x 7 x 499. (See feature 7.2.1.)

B.4.2Every other letter (even): 16779 = 3 x 7 x 17 x 47. (See feature 7.2.2.)

Alpha & Omega (The first and last) Add up the first item with the last item.

C.3.2First and last letter of each word: 13923 = 32 x 7 x 13 x 17. (See feature 3.)

Alpha (The first) Add up the first item.

D.3.3First letter of each word: 7308 = 22 x 32 x 7 x 29. (See feature 4.)

Omega (The last) Add up the last item.

E.3.3Last letter of each word: 6615 = 33 x 5 x 72. (See feature 5.)

The Verses

Nine verses:
3448 5188 3313 3997 2949 2057 1654 2629 5516

1Total of the verses: 30751 = 7 x 23 x 191. SF: 221 = 13 x 17.

1.1.1Odd valued verses:

3313 3997 2949 2057 2629

Total: 14945 = 5 x 72 x 61.

1.1.2Even valued verses:

3448 5188 1654 5516

Total: 15806 = 2 x 7 x 1129.

1.1.3Even positioned verses:

5188 3997 2057 2629

Total: 13871 = 11 x 13 x 97. SF: 121 = 112. Although there is no corresponding feature with the odd positioned verses (aside from the fact that their positions total 26), this feature makes up for it with a higher factor of 13. There is also the factor of 11, a visual representation of the same one God who is beginning and end. The sum of the factors emphasizes this with two factors of 11.

1.2.1Verses in positions that are prime numbers:

Verse position: 2    3    5    7
Verse value:    5188 3313 2949 1654

Total of these verses: 13104 = 24 x 32 x 7 x 13.

1.2.2Verses in positions that are not prime numbers:

Verse position: 1    4    6    8    9
Verse value:    3448 3997 2057 2629 5516

Total of these verses: 17647 = 7 x 2521.

1.2.3Difference between 1.2.1 and 1.22: 4543 = 7 x 11 x 59. SF: 77 = 7 x 11.

1.3Two of the verses are multiples of 7:

4    9
3997 5516

The total of the positions of these two verses: 13.

1.4Rather than taking every other verses (N = 2), one could progressively take every N verses where N increases by one each time.

Verse position: 1    2    4    7    
N:              1    2    3    4    
Verse total:    3448 5188 3997 1654 

Total of the verses: 14287 = 7 x 13 x 157.

1.5.1The digits of the verse totals have a curious providence:

3 4 4 8 5 1 8 8 3 3 1 3 3 9 9 7 2 9 4 9 2 0 5 7 1 6 5 4 2 6 2 9 5 5 1 6

Total of the digits: 169 = 132. SF: 26 = 2 x 13.

1.5.2The digits pair up for a similar result:

34 48 51 88 33 13 39 97 29 49 20 57 16 54 26 29 55 16

Total of the pairs: 754 = 2 x 13 x 29.

1.5.1.1There is only one zero among the digits. There are 21 (3 x 7) digits before it. There are 14 (2 x 7) digits after it.

1.5.1.2The sum of the digits before zero: 105 (3 x 5 x 7).

1.5.1.3The sum of the digits after zero: 64. This is not a multiple of 7 or 13, but it is a perfect square, and factors into six factors of 2.

1.5.3The odd positioned digits total 65 (5 x 13).

1.5.3.2The even positioned digits total 104 (23 x 13).

1.5.4As there is only one true God, providentially, digits of 1 reside in these positions:

11 6 25 35

Total of these digit positions: 77 = 7 x 11.

1.6 The core of the passage is the fifth verse.

For my name's sake I defer my anger, for the sake of my praise I restrain it for you, that I may not cut you off. (Isaiah 48:9)

And because God said He is the first and the last, and Alpha and Omega, focus is placed on the first and last words of this verse: 190 + 655 = 845 (5 x 132). The first and last letters of these two words: 105 (3 x 5 x 7).

Even though there are only nine verses to work with, there are quite a few numeric features.

The Words

2The letter values of God’s name in Hebrew (10-5-6-5) count through the words of the combined passage in three ways.

2.1.1When the Name is used 5 times, this covers all the words and wraps around to the beginning.

a) 10  5  6   5   10 5  6   5   10 5   6   5  10 5  6  5   10  5   6
b) 10  15 21  26  36 41 47  52  62 67  73  78 88 93 99 104 114 119 10
c) 10  15 21  26  36 41 47  52  62 67  73  78 88 93 99 104 114 4   10
d) 410 20 718 475 60 43 493 415 58 800 200 48 61 61 20 60  60  251 410

a) 5   (Value from the Name.)
b) 15  (Count.)
c) 15  (Count adjusted to 115 words.)
d) 20  (Word found.)

Total: 4683 = 3 x 7 x 223.

2.1.2Apply the Name seven times.

a) 10  5  6   5   10 5  6   5   10 5   6   5  10 5  6  5   10  5   6
b) 10  15 21  26  36 41 47  52  62 67  73  78 88 93 99 104 114 119 10
c) 10  15 21  26  36 41 47  52  62 67  73  78 88 93 99 104 114 4   10
d) 410 20 718 475 60 43 493 415 58 800 200 48 61 61 20 60  60  251 410

a) 5  10  5   6  5  10 5  6  5    (Value from the Name.)
b) 15 25  30  36 41 51 56 62 67   (Count.)
c) 15 25  30  36 41 51 56 62 67   (Count adjusted to 115 words.)
d) 20 524 176 60 43 15 50 58 800  (Word found.)

Total: 6409 = 13 x 17 x 29.

2.1.3Apply the Name 13 times.

a) 10  5  6   5   10 5  6   5   10 5   6   5  10 5  6  5   10  5   6
b) 10  15 21  26  36 41 47  52  62 67  73  78 88 93 99 104 114 119 10
c) 10  15 21  26  36 41 47  52  62 67  73  78 88 93 99 104 114 4   10
d) 410 20 718 475 60 43 493 415 58 800 200 48 61 61 20 60  60  251 410

a) 5  10  5   6  5  10 5  6  5   10 5   6  5  10  5   6   5   10  5
b) 15 25  30  36 41 51 56 62 67  77 82  88 93 103 108 114 119 14  19
c) 15 25  30  36 41 51 56 62 67  77 82  88 93 103 108 114 4   14  19
d) 20 524 176 60 43 15 50 58 800 31 451 61 61 449 20  60  251 810 423

a) 6   5   10  5  6  5  10 5   6  5   10 5   6   5   (Name letter value.)
b) 25  30  40  45 51 56 66 71  77 82  92 97  103 108 (Count.)
c) 25  30  40  45 51 56 66 71  77 82  92 97  103 108 (Adjusted to 115.)
d) 524 176 810 48 15 50 60 228 31 451 81 160 449 20  (Word found.)

Total: 12129 = 3 x 13 x 311.

2.2.1The odd positioned words:

a) 1  3  5   7   9   11  13  15 17  19  21  23  25  27  29 31 33  35
b) 24 48 409 130 172 186 136 20 447 423 718 752 524 259 48 56 850 641

a) 37  39 41 43  45 47  49 51 53  55  57  59  61  63 65  67  69  71
b) 544 31 43 484 48 493 30 15 456 301 190 232 851 50 655 800 162 228

a) 73  75  77 79 81 83  85  87  89 91  93 95  97  99 101 103 105 107
b) 200 376 31 48 31 410 182 351 12 557 61 608 160 20 600 449 163 640

a) 109 111 113 115   (Word position.)
b) 60  20  770 1142  (Word value.)

Total of the words (b): 18347 = 7 x 2621.

2.2.2The even positioned words:

a) 2  4   6   8   10  12  14  16 18 20  22  24 26  28 30  32 34  36 38
b) 50 251 845 641 410 146 810 55 42 845 515 37 475 37 176 37 130 60 43

a) 40  42 44 46 48 50  52  54  56 58  60 62 64  66 68 70  72  74  76
b) 810 31 43 31 78 494 415 101 50 350 91 58 472 60 37 640 130 200 30

a) 78 80  82  84 86  88 90 92 94  96 98  100 102 104 106 108 110 112
b) 48 239 451 41 547 61 61 81 265 53 322 160 42  60  60  20  47  60

a) 114 (Word position.)
b) 60  (Word value.)

Total of the words (b): 12404 = 22 x 7 x 443.

2.2.3Classify the words into four categories depending on whether the positions of the first and last letters are odd or even valued.

2.2.3.1Total of the words where the first and last letters are both odd valued, or both even valued: 15316 = 22 x 7 x 547. (This breaks down perfectly into those that are odd valued, and those that are even valued.)

2.2.3.1.1Words where the positions of the first and last letters are both odd valued:

24 845 186 136 55 845 37 475 37 176 37 60 494 301 232 472
37 200 31 451 41 61 61 61 608 600 60 20 20 770 1142

Total of the words: 8575 = 52 x 73.

2.2.3.1.2Words where the positions of the first and last letters are both even valued:

48 410 146 20 423 718 524 259 48 56 850 48 415 350 91 60
130 200 48 410 351 12 557 265 20 42 60 60 60 60

Total of the words: 6741 = 32 x 7 x 107.

2.2.3.2Total of the words where the first and last letters are mixed (one is odd while the other is even): 15435 = 32 x 5 x 73. (This does not break down further like 2.2.3.1.)

2.2.4.1Words where the sum of the positions of the first and last letter is odd:

50 251 409 130 641 172 810 447 42 515 752 130 641 544 43 31 
810 43 31 484 43 31 493 78 30 15 456 101 50 190 851 58 50 655 
800 162 640 228 376 30 48 239 31 182 547 81 53 160 322 160 
449 163 640 47

Total: 15435 = 32 x 5 x 73.

2.2.4.2Words where the sum of the positions of the first and last letter is even:

24 48 845 410 186 146 136 20 55 423 845 718 37 524 475 259 37 
48 176 56 37 850 60 48 494 415 301 350 232 91 472 60 37 130 
200 200 31 48 451 410 41 351 61 12 61 557 61 265 608 20 600 
42 60 60 20 60 20 60 770 60 1142

Total: 15316 = 22 x 7 x 547.

2.3.1Beginning with the first word and taking every Nth word after, the following values of N produce totals divisible by 7:

2 24 39 40 44 54

Total of the N values: 203 = 7 x 29.

2.3.2Taking every Nth word, these values produce multiples of 7:

2 4 9 11 16 25 29 31 36 38 46

Total of the N values: 247 = 13 x 19.

2.4Features 2.2.1 and 2.2.2 go further when odd/even positioned words and groups of words are repeatedly extracted from their results.

2.4.2.1Odd positioned groups of 1 from 2.2.2:

50 845 410 810 42 515 475 176 130 43 31 31 494 101 350 58 60 640 200 48 451 547 61 265 322 42 60 47 60

Total: 7364 = 22 x 7 x 263.

2.4.2.2Even positioned groups of 1 from 2.2.2:

251 641 146 55 845 37 37 37 60 810 43 78 415 50 91 472 37 130 30 239 41 61 81 53 160 60 20 60

Total: 5040 = 24 x 32 x 5 x 7. SF: 26 = 2 x 13.

2.4.2.2.1Odd positioned groups of 2 from 2.4.2.2:

251 641 845 37 60 810 415 50 37 130 41 61 160 60

Total: 3598 = 2 x 7 x 257. SF: 266 = 2 x 7 x 19. SF: 28 = 22 x 7.

2.4.2.2.1.1Odd positioned groups of 2 from 2.4.2.2.1:

251 641 60 810 37 130 160 60

Total: 2149 = 7 x 307.

2.4.2.2.1.2Even positioned groups of 2 from 2.4.2.2.1:

845 37 415 50 41 61

Total: 1449 = 32 x 7 x 23.

2.4.2.2.1.3Last half of 7 from 2.4.2.2.1:

50 37 130 41 61 160 60

Total: 539 = 72 x 11.

2.4.2.2.1.3.1Odd positioned groups of 1 from 2.4.2.2.1.3:

50 130 61 60

Total: 301 = 7 x 43.

2.4.2.2.1.3.2Even positioned groups of 1 from 2.4.2.2.1.3:

37 41 160

Total: 238 = 2 x 7 x 17. SF: 26 = 2 x 13.

2.4.2.2.1.4First half of 7 from 2.4.2.2.1:

251 641 845 37 60 810 415

Total: 3059 = 7 x 19 x 23. SF: 49 = 72 SF: 14 = 2 x 7.

2.4.2.2.2Even positioned groups of 2 from 2.4.2.2:

146 55 37 37 43 78 91 472 30 239 81 53 20 60

Total: 1442 = 2 x 7 x 103. SF: 112 = 24 x 7.

2.4.2.2.2.1Odd positioned groups of 1 from 2.4.2.2.2:

146 37 43 91 30 81 20

Total: 448 = 26 x 7.

2.4.2.2.2.2Even positioned groups of 1 from 2.4.2.2.2:

55 37 78 472 239 53 60

Total: 994 = 2 x 7 x 71.

2.4.2.2.3Odd positioned groups of 7 from 2.4.2.2:

37 60 810 43 78 415 50 61 81 53 160 60 20 60

Total: 1988 = 22 x 7 x 71.

2.4.2.2.4Even positioned groups of 7 from 2.4.2.2:

251 641 146 55 845 37 37 91 472 37 130 30 239 41

Total: 3052 = 22 x 7 x 109.

2.5Ten words are divisible by 13.

Position: 6   7   20  34  48 50  60 72  85  87
Word:     845 130 845 130 78 494 91 130 182 351

Total of their positions: 469 = 7 x 67. The total of these words is also a multiple of 7: 3276 = 22 x 32 x 7 x 13.

2.6The middle N words add up to a total divisible by 7 when N is one of the following:

95 71 67 63 55 53 25 11 7 1

Total of the N values: 448 = 26 x 7.

2.7Extract the Nth word with N increasing each time.

Count:      1  2  4   7   11  16 22  29 37  46 56 67  79 92 106 
N value:    1  2  3   4   5   6  7   8  9   10 11 12  13 14 15  
Word found: 24 50 251 130 186 55 515 48 544 31 50 800 48 81 60  

Total of the words: 2873 = 132 x 17.

2.8Five words have the function of dividing the rest of the words into complementary opposite groups: what is between them, and what is not between them.

Between & Not Between The Nth & Nth Last Words
WordNth & Nth Last
Occurrences
Total Of Words In BetweenTotal Of Words Not Between
48212334 = 2 x 7 x 881.18417 = 3 x 7 x 877.
372280 = 23 x 5 x 7.30471 = 3 x 7 x 1451.
60118144 = 25 x 34 x 7.12607 = 7 x 1801.
31110101 = 3 x 7 x 13 x 37.20650 = 2 x 52 x 7 x 59. SF: 78 = 2 x 3 x 13.
2001030751 = 7 x 23 x 191. SF: 221 = 13 x 17.

2.8.1The highest and lowest of the five (column 1): 231 = 3 x 7 x 11. SF: 21 = 3 x 7.

2.8.2The total of the Nth and Nth last occurrences (column 2): 7.

2.9Load the 115 words into a 5 x 23 rectangle.

2.9.1.1Outside (perimeter): 15876 = 22 x 34 x 72.

2.9.1.2Inside: 14875 = 53 x 7 x 17. SF: 39 = 3 x 13.

2.9.1.3Difference between outside and inside: 1001 = 7 x 11 x 13.

2.9.2Odd positioned columns: 20982 = 2 x 3 x 13 x 269. SF: 287 = 7 x 41. (No matching feature with the even positioned columns.)

2.9.3First and last columns: 14637 = 3 x 7 x 17 x 41.

2.9.4Odd positioned rows: 17550 = 2 x 33 x 52 x 13. (No corresponding feature with the even positioned rows.)

2.9.5.1First and last rows: 2834 = 2 x 13 x 109.

2.9.5.2First and last two rows: 5859 = 33 x 7 x 31.

2.9.5.3First and last four rows: 10998 = 2 x 32 x 13 x 47.

2.9.5.4First and last six rows: 17143 = 7 x 31 x 79. SF: 117 = 32 x 13.

2.9.5.5First and last nine rows: 23639 = 7 x 11 x 307. SF: 325 = 52 x 13.

The features in 2.9.5 might appear random, but they are more than the odds would suggest. With 23 rows there are eleven ways of having the first and last Nth rows. Out of eleven possible ways, the odds would suggest only two being divisible by 7, but there were three. And out of eleven possible totals, the odds would predict only one being divisible by 13. but there were two.

2.9.6.1Every sixth row: 2940 = 22 x 3 x 5 x 72. SF: 26 = 2 x 13.

2.9.6.2Four 5 x 5 squares: 27811 = 7 x 29 x 137.

2.9.7.1The first letter of each word from 2.9.1.1, the outside of the rectangle:

6 30 40 2 400 5 70 6 8 20 5 8 10 70 6 10 400 5 300 3 40 30 10 2 100 30 1
6 5 5 2 2 1 20 30 30 10 6 1 200 5 5 100 600 8 60 7 10 60 5 60 70

Total of the letters: 2925 = 32 x 52 x 13.

2.9.7.2Since the first and last letters of each word total 13923 (see next section), this means the first letter of each word from 2.9.1.2 (the inside of the rectangle) would also be a multiple of 13: 10998 = 2 x 32 x 13 x 47. (Unfortunately, there is no matching feature with the last letter of each word.)

2.10The 115 words could also have been arranged as a 23 x 5 rectangle. In this case, the words on the outside no longer have a feature. However, the total of the first and last letters of these words is 8064 (27 x 32 x 7).

First And Last

3The first and last letters of each word: 13923 = 32 x 7 x 13 x 17.

3.1The letters of God’s name in Hebrew are applied 13 times to count through the first and last letters.

a) 10  5  6   5  10 5  6  5   10 5   6  5  10 5  6  5   10  5   6   5
b) 10  15 21  26 36 41 47 52  62 67  73 78 88 93 99 104 114 119 10  15
c) 10  15 21  26 36 41 47 52  62 67  73 78 88 93 99 104 114 4   10  15
d) 110 13 408 75 10 43 85 404 41 110 40 40 11 11 19 120 120 42  110 13

a) 10 5  6  5  10 5  6  5   10 5  6  5  10  5   6   5   10  5   6  5
b) 25 30 36 41 51 56 62 67  77 82 88 93 103 108 114 119 14  19  25 30
c) 25 30 36 41 51 56 62 67  77 82 88 93 103 108 114 4   14  19  25 30
d) 50 16 10 43 6  50 41 110 21 51 11 11 100 19  120 42  700 406 50 16

a) 10  5  6  5  10 5   6  5  10 5   6   5    (Value from the Name.)
b) 40  45 51 56 66 71  77 82 92 97  103 108  (Count.)
c) 40  45 51 56 66 71  77 82 92 97  103 108  (Adjusted to 115.)
d) 700 47 6  50 10 202 21 51 81 160 100 19   (First/last total found.)

Total: 5145 = 3 x 5 x 73.

3.2The totals from feature 3 form 16 groups, paired and positioned symmetrically Nth and Nth last in the list. Each paired group is a multiple of 13, and each individual group is also divisible by 13.

a) Beginning of group:   4    5    20   21   23   26   36   41
b) End of group:         11   12   28   37   41   33   52   51
c) Total of both groups: 2587 2561 2119 4147 3952 1105 3016 1391

(The beginning and end positions apply to both groups as Nth
from the beginning, and Nth from the end.)

Total of the start and end positions (a + b): 441 = 32 x 72.

3.3Taking every Nth from the list in feature 3, the following values of N produce totals divisible by 13.

3 10 21 22

Total of the N values: 56 = 23 x 7. SF: 13.

3.4.165 (5 x 13) of the totals in feature 3 have an odd valued first digit:

10 50 130 110 16 16 130 700 13 7 50 75 56 7 16 50 7 340 130 10 31 700 31 31 30 76 90 101 50 310 11 16 50 10 110 7 30 16 31 51 370 11 12 36 50 11 11 11 51 14 160 19 160 1200 100 120 98 120 19 120 19 120 95 120 150

Sum of the totals: 6902 = 2 x 7 x 17 x 29.

3.4.1.1Take the odd positioned numbers in feature 3.4.1:

10 130 16 130 13 50 56 16 7 130 31 31 30 90 50 11 50 110 30 31 370 12 50 11 51 160 160 100 98 19 19 95 150

Total: 2317 = 7 x 331. SF: 338 = 2 x 132.

3.4.1.2Take the even positioned numbers from feature 3.4.1:

50 110 16 700 7 75 7 50 340 10 700 31 76 101 310 16 10 7 16 51 11 36 11 11 14 19 1200 120 120 120 120 120

Total: 4585 = 5 x 7 x 131. SF> 143 = 11 x 13.

3.4.250 of the totals in feature 3 have an even valued first digit:

47 42 401 25 600 80 25 46 6 406 25 408 45 406 47 600 60 43 43 410 43 47 85 21 20 6 404 80 21 41 40 25 82 22 202 80 40 40 6 21 40 230 6 250 81 605 2 29 640 47

Sum of the totals: 7021 = 7 x 17 x 59.

3.530 of the 115 totals in feature 3 are in word positions that are prime numbers.

a) 2  3  5   7   11 13  17 19  23  29 31 37 41 43  47 53 59 61 67  71
b) 50 47 401 130 16 130 46 406 406 47 50 60 43 410 85 76 21 16 110 202

a) 73 79 83  89 97  101  103 107 109 113 (Word position.)
b) 40 16 370 6  160 1200 100 640 120 95  (First/last total.)

Sum of the totals (b): 5499 = 32 x 13 x 47.

3.5.2The remaining 85 are in word positions that are not prime numbers.

a) 1  4  6  8   9  10  12 14  15 16 18 20 21  22 24 25 26 27 28 30 32
b) 10 42 25 600 80 110 16 700 13 25 6  25 408 45 7  50 75 56 7  16 7

a) 33  34  35  36 38 39 40  42 44 45 46 48 49 50 51 52  54 55  56 57
b) 340 130 600 10 43 31 700 31 43 47 31 21 30 20 6  404 90 101 50 80

a) 58  60 62 63 64 65 66 68 69 70 72 74 75 76 77 78 80  81 82 84 85 86
b) 310 11 41 50 40 25 10 7  82 22 80 40 6  30 21 40 230 31 51 11 12 36

a) 87 88 90 91  92 93 94 95  96 98 99 100 102 104 105 106 108 110 111
b) 50 11 11 250 81 11 51 605 14 2  19 160 29  120 98  120 19  47  19

a) 112 114 115 (Word position that is not a prime number.)
b) 120 120 150 (First/last total.)

Sum of the totals (b): 8424 = 23 x 34 x 13.

3.6Beginning with the first number in feature 3, take every Nth after, where N increases by 1 each time.

Word position:    1  2  4  7   11 16 22 29 37 46 56 67  79 92 106
Increasing N:     1  2  3  4   5  6  7  8  9  10 11 12  13 14 15
First/last found: 10 50 42 130 16 25 45 47 60 31 50 110 16 81 120

Total of the first/last found: 833 = 72 x 17.

3.7Keep a running total of the numbers in feature 3 as they are added one by one. Gather all those with an odd valued accumulated total, and all those with an even valued accumulated total.

3.7.1Sum of the first/last totals where the accumulated total is odd: 7254 = 2 x 32 x 13 x 31. SF: 52 = 22 x 13.

3.7.2Sum of the first/last totals where the accumulated total is even: 6669 = 33 x 13 x 19.

3.7.3 There are 11 times when the word position, the first/last total, and the accumulated total are all even valued. There are 8 times when all three are odd valued.

All Even        All Odd

a)  b)  c)      a)  b)  c)
2   50  60      3   47  107
34  130 4522    29  47  3979
36  10  5132    41  43  6009
40  700 5966    59  21  7865
56  50  7454    81  31  9015
58  310 7844    93  11  9915
66  10  8058    95  605 10571
78  40  8738    113 95  13653
80  230 8984
100 160 10926
112 120 13558

a) Word position.
b) First/last total.
c) Accumulated total.

Total of the positions (a): 1176 = 23 x 3 x 72.

3.8.1Some of the numbers in feature 3 are repeated more than once. Track this along with the total of their positions in the list.

First/last totals where column D is a prime number.

a)   b) c)   d)       a)   b) c)   d)
6    4  24   233      100  1  100  103
10   3  30   103      160  2  320  197
16   5  80   193      202  1  202  71
25   4  100  107      370  1  370  83
46   1  46   17       401  1  401  5
60   1  60   37       410  1  410  43
76   1  76   53       600  2  1200 43
85   1  85   47       640  1  640  107
95   1  95   113      1200 1  1200 101

a) First/last total
b) Number of occurrences.
c) Grand total (a x b).
d) Total of their positions.

The sum of all these first/last totals (c): 5439 = 3 x 72 x 37.

3.8.2The opposite of feature 3.8.1 would be where column D is not a prime number.

        First/last totals where column D is not a prime number.

a)  b)  c)   d)          a)  b)  c)   d)          a)  b)  c)   d)          a)  b)  c)   d)
2   1   2    98          30  2   60   125         56  1   56   27          150 1   150  115
7   4   28   152         31  4   124  208         75  1   75   26          230 1   230  80
11  5   55   415         36  1   36   86          80  3   240  138         250 1   250  91
12  1   12   85          40  4   160  289         81  1   81   92          310 1   310  58
13  1   13   15          41  1   41   62          82  1   82   69          340 1   340  33
14  1   14   96          42  1   42   4           90  1   90   54          404 1   404  52
19  3   57   318         43  3   129  123         98  1   98   105         406 2   812  42
20  1   20   50          45  1   45   22          101 1   101  55          408 1   408  21
21  3   63   184         47  4   188  187         110 2   220  77          605 1   605  95
22  1   22   70          50  6   300  264         120 5   600  545         700 2   1400 54
29  1   29   102         51  2   102  176         130 3   390  54

a) First/last total
b) Number of occurrences.
c) Grand total (a x b).
d) Total of their positions.

Total of the first/last letters (c): 8484 = 22 x 3 x 7 x 101.

3.9Apply both numbers, 7 and 13, at the same time to the list in feature 3. Collect the first/last totals into alternating groups of multiples of 7 and 13.

3.9.1Groups of 21:

10 50 47 42 401 25 130 600 80 110 16 16 130 700 13 25 46 6 406 25 408
21 30 20 6 404 76 90 101 50 80 310 21 11 16 41 50 40 25 10 110 7
605 14 160 2 19 160 1200 29 100 120 98 120 640 19 120 47 19 120 95 120 150

Total: 8762 = 2 x 13 x 337.

3.9.2Groups of 26:

45 406 7 50 75 56 7 47 16 50 7 340 130 600 10 60 43 31 700 43 31 410 43 47 31 85
82 22 202 80 40 40 6 30 21 40 16 230 31 51 370 11 12 36 50 11 6 11 250 81 11 51

Total: 5161 = 13 x 397.

3.10Ten of the first/last totals in feature 3 divide the rest of the list into opposite categories of what is between their Nth and Nth last occurrences, and what is not between them.

Between & Not Between The Nth & Nth Last Totals
Of The First & Last Letters Of Each Word
WordNth & Nth Last
Occurrences
Total Of Words In BetweenTotal Of Words Not Between
47113265 = 5 x 7 x 379.658 = 2 x 7 x 47. SF: 56 = 23 x 7. SF: 13.
2517448 = 23 x 72 x 19. SF: 39 = 3 x 13.6475 = 52 x 7 x 37.
1626349 = 7 x 907.7574 = 2 x 7 x 541.
714424 = 23 x 7 x 79.9499 = 7 x 23 x 59.
3113718 = 2 x 11 x 132 SF: 39 = 3 x 13.10205 = 5 x 13 x 157. SF: 175 = 52 x 7.
1112028 = 22 x 3 x 13211895 = 3 x 5 x 13 x 61.
4020 =13923 = 32 x 7 x 13 x 17.
160121 = 3 x 7.13902 = 2 x 3 x 7 x 331. SF: 343 = 73 SF: 21 = 3 x 7.
1912653 = 7 x 379.11270 = 2 x 5 x 72 x 23.
1202845 = 5 x 13213078 = 2 x 13 x 503. SF: 518 = 2 x 7 x 37.

3.10.1The numbers in the first column:

47 25 16 7 31 11 40 160 19 120

Total: 476 = 22 x 7 x 17.

3.10.1.1Odd valued numbers from the results in 3.10.1:

47 25 7 31 11 19

Total: 140 = 22 x 5 x 7.

3.10.1.2Even valued numbers from the results in 3.10.1:

16 40 160 120

Total: 336 = 24 x 3 x 7.

3.10.2Sum of the Nth occurrences in the second column of the table: 13.

3.10.3The ten first/last totals in the table appear multiple times in feature 3. These are their positions in feature 3:

3 29 45 110 6 16 20 65 11 12 30 61 79 24 28 32 68 39 42 46 81 60 84 88 90 93 64 73 74 78 97 100 99 108 111 104 106 109 112 114

Total of the positions: 2611 = 7 x 373.

3.10.3.1Eight of the positions in 3.10.3 are prime numbers:

3 29 11 61 79 73 97 109

Total of the prime numbers: 462 = 2 x 3 x 7 x 11.

3.10.3.2The remaining positions in 3.10.3 that are not prime numbers:

a) 3  4   5 6  7  8   10 11   14 15 16 17 18 19 20 21 22 23 24 25 26
b) 45 110 6 16 20 65  12 30   24 28 32 68 39 42 46 81 60 84 88 90 93

a) 27  29 30  32  33 34  35  36  37   39  40  (Position in 3.10.3.)
b) 64  74 78  100 99 108 111 104 106  112 114 (Position in feature 3.)

Total of their positions in the list (a): 686 = 2 x 73. Total of the non-prime numbers (b): 2149 = 7 x 307.

3.10.3.2.1Numbers with a first digit that is odd in 3.10.3.2:

110 16 12 30 32 39 90 93 74 78 100 99 108 111 104 106 112 114

Total: 1428 = 22 x 3 x 7 x 17.

3.10.3.2.1.1Odd positioned from the results in 3.10.3.2.1:

110 12 32 90 74 100 108 104 112

Total: 742 = 2 x 7 x 53.

3.10.3.2.1.2Even positioned from the results in 3.10.3.2.1:

16 30 39 93 78 99 111 106 114

Total: 686 = 2 x 73.

3.10.3.2.2Numbers with a first digit that is even in 3.10.3.2:

45 6 20 65 24 28 68 42 46 81 60 84 88 64

Total: 721 = 7 x 103.

3.10.3.2.3The difference between 3.10.3.2.1 and 3.10.3.2.2 is naturally divisible by 7, but it is also a symmetrical number: 707 = 7 x 101.

3.10.4Exactly 7 of the numbers in the table have an Nth occurrence of 1.

3.10.5.1The first half of the list in 3.10.1: 126 = 2 x 32 x 7.

3.10.5.2The last half of the list in 3.10.1: 350 = 2 x 52 x 7.

3.11Load the first/last totals into a 23 x 5 rectangle.

3.11.1The outside of the rectangle (perimeter): 8064 = 27 x 32 x 7.

3.11.2The inside of the rectangle: 5859 = 33 x 7 x 31.

3.11.3The difference between the inside and outside: 2205 = 32 x 5 x 72.

3.11.4The outside with an inner line: 9555 = 3 x 5 x 72 x 13. SF: 35 = 5 x 7.

3.11.5.1Odd positioned columns: 7735 = 5 x 7 x 13 x 17. SF: 42 = 2 x 3 x 7. (This is a one in 91 chance.)

3.11.5.2Even positioned columns: 6188 = 22 x 7 x 13 x 17.

3.11.6First and last rows: 7756 = 22 x 7 x 277.

The First Letter Of Each Word

4Now we turn to the first letter of each word on its own. Total of these letters: 7308 = 22 x 32 x 7 x 29.

4.1The letters of God’s name in Hebrew (10-5-6-5) point to letters in the list of feature 4.

Value from the Name: 10 5   6 5
First letter found:  70 400 5 400

Total of the letters found: 875 = 53 x 7.

4.1.2The letters of God’s name can be applied 5 times to count through the list of first letters. This overshoots slightly and wraps around to the beginning.

a) 10 5  6  5  10 5  6  5   10 5  6  5  10 5  6  5   10  5   6  5
b) 10 15 21 26 36 41 47 52  62 67 73 78 88 93 99 104 114 119 10 15
c) 10 15 21 26 36 41 47 52  62 67 73 78 88 93 99 104 114 4   10 15
d) 70 8  8  70 5  3  80 400 1  90 30 10 1  1  10 60  60  2   70 8

a) Letter from the Name.
b) Count.
c) Count adjusted to 115.
d) First letter found.

Total of the first letters found: 987 = 3 x 7 x 47.

4.1.3Apply the letters from the Name a full 7 times.

a) 10 5  6  5  10 5  6  5   10 5  6  5  10 5  6  5   10  5   6  5  10
b) 10 15 21 26 36 41 47 52  62 67 73 78 88 93 99 104 114 119 10 15 25
c) 10 15 21 26 36 41 47 52  62 67 73 78 88 93 99 104 114 4   10 15 25
d) 70 8  8  70 5  3  80 400 1  90 30 10 1  1  10 60  60  2   70 8  10

a) 5  6  5  10 5  6  5   (Letter from the Name.)
b) 30 36 41 51 56 62 67  (Count.)
c) 30 36 41 51 56 62 67  (Count adjusted to 115.)
d) 6  5  3  2  30 1  90  (First letter found.)

Total: 1134 = 2 x 34 x 7. SF: 21 = 3 x 7.

4.2Ten pairs of first letter groups positioned symmetrically (Nth and Nth last in the list) are together and individually divisible by 13.

a) 1   3    9    13   13   18   19   20 30   47
b) 4   14   42   18   32   53   32   24 44   54
c) 273 2379 4680 1170 2210 3510 1040 78 1742 728

a) Starting position of both groups, Nth from the beginning
    and Nth from the end.
b) Ending position of both groups, Nth from the beginning
    and Nth from the end.
c) Total of both groups.

Total of the starting and ending positions (a + b): 490 = 2 x 5 x 72. SF: 21 = 3 x 7.

4.3Taking every Nth of the first letters, only two values are possible for N to produce a total divisible by 13:

15 27

Total of the N values: 42 = 2 x 3 x 7.

4.4Just over 60 sub-features are in the first letters when alternating groups are extracted from the list, and this is repeated with the results.

4.5Divide the first letters into two groups, odd and even. For the odd valued group, the total of the positions are the feature. This is reversed in the even valued group. It is the total of the letters that is a multiple of 13.

4.5.1There are precisely 28 odd valued first letters.

a) 6 18 20 36 38 41 44 48 59 60 62 65 66 75 77 82 84 88 89 90 92 93 94
b) 5 5  5  5  3  3  3  1  1  1  1  5  5  1  1  1  1  1  5  1  1  1  1

a) 95 96 98 110 113 (Word position or position in list.)
b) 5  5  1  7   5   (First letter of word.)

Total of the positions (a): 1939 = 7 x 277. (The total of the letters, 80, is not a multiple of 7 or 13, but the sum of its factors is 13: 80 = 24 x 5. SF: 13.)

4.5.287 of the first letters are even valued.

a) 1 2  3  4 5   7  8   9  10 11 12 13 14  15 16 17 19  21 22 23 24 25
b) 6 30 40 2 400 80 400 70 70 6  6  90 300 8  20 6  400 8  40 6  6  10

a) 26 27 28 29 30 31 32 33  34 35  37 39 40  42 43 45 46 47 49 50 51
b) 70 50 6  40 6  10 6  300 80 400 10 30 300 30 10 40 30 80 20 10 2

a) 52  53 54 55  56 57 58  61 63 64 67 68 69 70 71 72 73 74 76 78 79
b) 400 6  40 100 30 30 300 6  30 30 90 6  2  2  2  70 30 30 20 10 6

a) 80 81 83  85 86 87 91  97  99 100 101 102 103 104 105 106 107 108
b) 30 30 300 10 6  40 200 100 10 100 600 20  10  60  8   60  600 10

a) 109 111 112 114 115  (Word position or position in list.)
b) 60  10  60  60  70   (First letter.)

Unlike the odd valued letters, the total of the positions (a) is 4731 (3 x 19 x 83) and not divisible by 7 or 13, but the sum of its factors is 105 (3 x 5 x 7). The sum of the letters: 7228 = 22 x 13 x 139. SF: 156 = 22 x 3 x 13.

4.6Only one first letter is a prime number that appeared only once in the entire list in feature 4. This means its total in the list is also a prime number. It just so happens to be the letter 7. The end result is that all the other letters do not have a total that is a prime number. These letters with non-prime totals together are also a multiple of 7: 7301 = 72 x 149.

4.7Twelve of the first letters appeared multiple times in the list of feature 4. Their number of appearances is a prime number.

a) First letter:  2  3 8  10  60  70  80  90  100 300  400  600
b) Occurrences:   5  3 3  11  5   5   3   2   3   5    5    2
c) Total (a x b): 10 9 24 110 300 350 240 180 300 1500 2000 1200

Total of the occurrences (b): 52 = 22 x 13. Total of the letters (c): 6223 = 72 x 127.

4.7.2The opposite is a group of 9 first letters appearing a number of times that are not prime numbers.

a) First letter:  1  5  6  7 20 30  40  50 200
b) Occurrences:   14 10 14 1 4  12  6   1  1
c) Total (a x b): 14 50 84 7 80 360 240 50 200

Total of the occurrences (b): 63 = 32 x 7. SF: 13. Total of the letters (c): 1085 = 5 x 7 x 31.

4.8Six of the first letters divide the rest of the list in feature 4 into two groups: what is between their Nth and Nth last occurrences, and what is not between them.

Between & Not Between The Nth & Nth Last Occurrences
Of The First Letter Of Each Word
First LetterNth & Nth Last OccurrencesTotal Of First Letters In BetweenTotal Of First Letters Not Between
642933 = 7 x 419.4375 = 54 x 7.
214571 = 7 x 653.2737 = 7 x 17 x 23.
40021624 = 23 x 7 x 29. SF: 42 = 2 x 3 x 7.5684 = 22 x 72 x 29.
550 =7308 = 22 x 32 x 7 x 29.
13973 = 7 x 139.6335 = 5 x 7 x 181.
16434 = 2 x 7 x 31.6874 = 2 x 7 x 491.

4.8.1The sum of the Nth/Nth last occurrences (column 2): 21 = 3 x 7.

4.8.2.1The position of the Nth occurrences in feature 4:

17 4 8 65 60 77

Total of the positions: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.

4.8.2.2The positions of the Nth occurrences in the actual passage:

Letter from table: 6   2   400 5   1   1
Nth occurrence:    4   1   2   5   3   6
Passage position:  62  11  28  242 222 293

Total of the passage positions: 858 = 2 x 3 x 11 x 13.

4.8.3These six letters (actually 5 since one is repeated), occur multiple times in feature 4's list. The total of all their occurrences: 2158 = 2 x 13 x 83. SF: 98 = 2 x 72.

4.8.4In the table above, first letters 400, 5, and 1 have Nth occurrences that are prime numbers. Their total: 406 = 2 x 7 x 29. (There is no corresponding match with the first letters having Nth occurrences that are not prime numbers.)

The Last Letter Of Each Word

5Total of the last letter of each word: 6615 = 33 x 5 x 72. SF: 28 = 22 x 7.

5.1Beginning with the first of the last letters in feature 5 and taking every Nth after, the following values of N produce totals divisible by 13.

11 12 14 21 30 47 54

Total of the N values: 189 = 33 x 7. (Note: The first N value where this is true is 11. The last is 54. First and last: 65 = 5 x 13.)

5.1.2Similar to feature 5.1, but beginning with the Nth letter, there is only one N value where the total will be 91. This is when N is 28 (22 x 7).

5.2Divide the last letters into two groups: odd valued and even valued.

5.2.129 of the last letters are odd valued:

a) 3 5 15 16 18 22 24 26 28 29 32 36 39 42 45 46 47 55 66 68 75 81 89
b) 7 1 5  5  1  5  1  5  1  7  1  5  1  1  7  1  5  1  5  1  5  1  1

a) 96 98 99 102 108 111 (Word position.)
b) 9  1  9  9   9   9   (Last letter of word.)

Total of their positions in the list of feature 5 (a): 1521 = 32 x 132. Total of the letters (b): 119 = 7 x 17.

5.2.286 of the last letters are even valued:

a) 1 2  4  6  7  8   9  10 11 12 13 14  17 19 20 21  23  25 27 30 31
b) 4 20 40 20 50 200 10 40 10 10 40 400 40 6  20 400 400 40 6  10 40

a) 33 34 35  37 38 40  41 43  44 48 49 50 51 52 53 54 56 57 58 59 60
b) 40 50 200 50 40 400 40 400 40 20 10 10 4  4  70 50 20 50 10 20 10

a) 61 62 63 64 65 67 69 70 71  72 73 74 76 77 78 79 80  82 83 84 85 86
b) 10 40 20 10 20 20 80 20 200 10 10 10 10 20 30 10 200 50 70 10 2  30

a) 87 88 90 91 92 93 94 95  97 100 101 103 104 105 106 107 109 110 112
b) 10 10 10 50 80 10 50 600 60 60  600 90  60  90  60  40  60  40  60

a) 113 114 115 (Word position.)
b) 90  60  80  (Last letter of word.)

Total of the letters (b): 6496 = 25 x 7 x 29.

5.3Divide the last letters into two groups depending on whether it is a prime number or not.

5.3.1Twelve of the last letters are prime numbers:

Word position: 3 15 16 22 26 29 36 45 47 66 75 85
Last letter:   7 5  5  5  5  7  5  7  5  5  5  2

Total of the last letters: 63 = 32 x 7. SF: 13.

5.3.2103 of the last letters are not prime numbers:

a) 1 2   4  5 6  7  8   9  10 11 12 13 14    17 18 19 20 21   23  24
b) 4 20  40 1 20 50 200 10 40 10 10 40 400   40 1  6  20 400  400 1

a) 25  27 28  30 31 32 33 34 35   37 38 39 40  41 42 43  44  46  48 49
b) 40  6  1   10 40 1  40 50 200  50 40 1  400 40 1  400 40  1   20 10

a) 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65  67 68 69 70 71  72
b) 10 4  4  70 50 1  20 50 10 20 10 10 40 20 10 20  20 1  80 20 200 10

a) 73 74  76 77 78 79 80  81 82 83 84  86 87 88 89 90 91 92 93 94 95
b) 10 10  10 20 30 10 200 1  50 70 10  30 10 10 1  10 50 80 10 50 600

a) 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
b) 9  60 1  9  60  600 9   90  60  90  60  40  9   60  40  9   60  90

a) 114 115 (Word position.)
b) 60 80   (Last letter of word.)

Total of the last letters (b): 6552 = 23 x 32 x 7 x 13.

5.4The middle 49 last letters in feature 5 total 2301 (3 x 13 x 59).

5.5Divide the last letters into two groups depending on their number of occurrences in the list is a prime number or not.

5.5.1Fourteen letters whose number of appearances is a prime number:

Last letter:   1  4  6  7  9  20  30 40  60  70  80  90  400  600
# occurrences: 13 3  2  3  5  11  2  13  7   2   3   3   5    2
Total (a x b): 13 12 12 21 45 220 60 520 420 140 240 270 2000 1200

Total of the letters (a): 1417 = 13 x 109. Total of all occurrences (c): 5173 = 7 x 739.

5.5.2Five letters whose number of appearances is not a prime number:

Last letter:   2 5  10  50  200
# occurrences: 1 8  20  8   4
Total (a x b): 2 40 200 400 800

Total of all occurrences (c): 1442 = 2 x 7 x 103. SF: 112 = 24 x 7.

5.6The last letters divide into alternating groups of 13 and 21 letters.

5.6.1Groups of 13 letters:

4 20 7 40 1 20 50 200 10 40 10 10 40
200 5 50 40 1 400 40 1 400 40 7 1 5
80 20 200 10 10 10 5 10 20 30 10 200 1
90 60 90 60 40 9 60 40 9 60 90 60 80

Total: 2996 = 2 x 2 x 7 x 107.

5.6.2Groups of 21 letters:

400 5 5 40 1 6 20 400 5 400 1 40 5 6 1 7 10 40 1 40 50
20 10 10 4 4 70 50 1 20 50 10 20 10 10 40 20 10 20 5 20 1
50 70 10 2 30 10 10 1 10 50 80 10 50 600 9 60 1 9 60 600 9

Total: 3619 = 7 x 11 x 47. SF: 65 = 5 x 13.

Letters Not First Or Last In A Word

6203 (7 x 29) letters not first or last in a word. Even though the sum of these letters is not divisible by 7 or 13, there still are a few numeric features.

6.1The letter values of God’s name in Hebrew (10-5-6-5) are applied 7 times to count through the list in feature 6. This almost covers 90% of these letters.

a) 10 5  6  5  10 5  6  5  10 5  6  5  10 5  6  5   10  5   6   5   10
b) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130 140
c) 40 40 30 40 4  10 50 4  80 70 70 4  3  80 70 80  20  200 60  20  300

a) 5   6   5   10  5   6   5   (Value from the Name.)
b) 145 151 156 166 171 177 182 (Count.)
c) 6   30  200 6   3   5   9   (Letter not first/last found.)

Total of the letters found (c): 1534 = 2 x 13 x 59.

6.1.1Providentially, the very first and very last letter found in the previous feature together total 49 (72).

6.1.2From the result in feature 6.1 gather all those whose first digit is odd valued.

30 10 50 70 70 3 70 300 30 3 5 9

Total: 650 = 2 x 52 x 13.

6.1.2.2From the result in feature 6.1 gather all those whose first digit is even valued.

40 40 40 4 4 80 4 80 80 20 200 60 20 6 200 6

Total: 884 = 22 x 13 x 17.

6.2Exactly 26 (2 x 13) paired groups of the last letters are possible that are symmetrically positioned in the list from feature 6 that together and individually are multiples of 13.

a) 4    6    6    8     10   12   13   18    19    21   21   24    26
b) 41   26   48   82    44   19   59   95    97    51   74   92    57
c) 5577 3107 6955 12324 5135 1560 7943 13390 13728 5057 8801 12194 6162

a) 27   30   31   32    33   33   38   50   51   52   53   59   68
b) 48   46   38   89    49   55   85   55   62   74   98   76   75
c) 3848 3094 1105 10595 3445 5005 8827 1560 1937 3744 8437 2574 1261

a) Start position of both groups, Nth from the beginning and Nth from the end.
b) End position of both groups, Nth from the beginning and Nth from the end.
c) Total of both groups.

Sum of the starting and ending group positions (a + b): 2380 = 22 x 5 x 7 x 17.

6.3Taking every Nth last letter from feature 6, the following values of N produce multiples of 7:

7 8 16 18 26 35 37 41 42 45 81 87 96

Total of the N values: 539 = 72 x 11.

6.4Divide the last letters into four groups.

a) Odd positioned in the list of feature 6 and odd valued.
b) Odd positioned in the list of feature 6 and even valued.
c) Even positioned in the list of feature 6 and odd valued.
d) Even positioned in the list of feature 6 and even valued.

The total of the letters that a purely odd (a) or purely even (d): 7168 = 210 x 7.

All The Letters

7There are 427 (7 x 61) letters.

7.1The values from the Name run 7 times covers less than half the letters.

a) 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5
b) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130
c) 7 400 40 80 70 60 20 300 6 30 4 70 70 90 1 40 30 6 6 300

a) 10 5 6 5 10 5 6 5 (Value from the Name.)
b) 140 145 151 156 166 171 177 182 (Count.)
c) 200 4 40 70 3 30 1 10 (Letter found.)

Total: 1988 = 22 x 7 x 71.

7.2.1Odd positioned from 7:

6 3 4 20 1 2 200 400 6 5 40 400 20 50 1 200 90 10 300 6 60 10 50 20 90 40 40 400 7 20 5 1 40 30 1 3 4 5 40 400 20 4 6 40 400 6 90 6 6 1 4 400 70 5 2 1 6 1 1 6 80 10 6 6 1 40 400 80 400 40 5 5 4 400 50 40 1 40 400 40 1 4 400 40 1 30 80 8 1 50 20 10 70 10 3 4 2 6 6 300 40 9 100 1 20 40 50 40 1 200 20 80 6 5 400 1 9 30 30 30 10 20 10 20 50 90 80 10 6 1 20 80 8 400 20 20 200 50 30 70 10 40 50 1 300 20 1 20 8 6 2 4 30 8 30 1 50 40 1 10 70 2 10 200 30 100 1 1 10 6 1 10 1 6 1 1 10 8 6 5 600 9 9 60 20 1 1 100 600 5 5 10 80 60 60 5 90 600 10 9 7 10 9 5 400 30 40 90 70 40 60 80 100 80

Total: 13972 = 22 x 7 x 499.

7.2.1.1Odd positioned from 7.2.1:

6 4 1 200 6 40 20 1 90 300 60 50 90 40 7 5 40 1 4 40 20 6 400 90 6 4 70 2 6 1 80 6 1 400 400 5 4 50 1 400 1 400 1 80 1 20 70 3 2 6 40 100 20 50 1 20 6 400 9 30 10 10 50 80 6 20 8 20 200 30 10 50 300 1 8 2 30 30 50 1 70 10 30 1 10 1 1 1 10 6 600 9 20 1 600 5 80 60 90 10 7 9 400 40 70 60 100

Total: 7434 = 2 x 32 x 7 x 59.

7.2.1.2Even positioned from 7.2.1:

3 20 2 400 5 400 50 200 10 6 10 20 40 400 20 1 30 3 5 400 4 40 6 6 1 400 5 1 1 6 10 6 40 80 40 5 400 40 40 40 4 40 30 8 50 10 10 4 6 300 9 1 40 40 200 80 5 1 30 30 20 20 90 10 1 80 400 20 50 70 40 1 20 20 6 4 8 1 40 10 2 200 100 1 6 10 6 1 8 5 9 60 1 100 5 10 60 5 600 9 10 5 30 90 40 80 80

Total: 6538 = 2 x 7 x 467. SF: 476 = 22 x 7 x 17. SF: 28 = 22 x 7.

7.2.2Even positioned from 7:

1 10 30 40 7 9 40 2 1 300 70 10 80 400 40 70 2 70 40 80 30 6 60 10 6 300 70 8 5 30 6 400 5 6 400 10 6 300 70 10 8 300 400 70 5 50 200 400 30 10 70 40 400 50 200 6 30 40 7 30 50 10 40 30 300 70 40 50 1 200 50 10 70 10 3 30 300 70 3 30 10 70 3 40 7 1 400 5 7 20 10 4 400 2 6 400 3 4 80 70 2 50 200 30 30 70 300 10 1 10 1 10 400 30 10 8 40 20 2 400 5 200 400 5 5 200 400 20 30 2 60 2 200 10 2 6 70 10 40 50 30 70 10 70 5 10 10 10 30 20 6 10 1 200 1 400 300 70 30 10 100 6 300 1 40 200 10 50 5 1 50 200 300 50 80 50 1 200 50 3 5 30 100 1 300 10 9 60 20 3 9 200 9 90 8 60 60 40 1 60 40 1 60 80 60 5 60 60 1 100 10 1 600

Total: 16779 = 3 x 7 x 17 x 47.

7.2.2.1Odd positioned groups of 3 from 7.2.2:

40 7 9 300 70 10 70 2 70 6 60 10 8 5 30 6 400 10 10 8 300 50 200 400 40 400 50 40 7 30 30 300 70 200 50 10 30 300 70 70 3 40 5 7 20 2 6 400 70 2 50 70 300 10 10 400 30 20 2 400 5 5 200 2 60 2 6 70 10 70 10 70 10 30 20 200 1 400 10 100 6 200 10 50 200 300 50 200 50 3 1 300 10 3 9 200 60 60 40 1 60 80 60 1 100

Total: 8960 = 28 x 5 x 7. SF: 28 = 22 x 7.

7.2.2.2Even positioned groups of 3 from 7.2.2:

1 10 30 40 2 1 80 400 40 40 80 30 6 300 70 6 400 5 6 300 70 400 70 5 30 10 70 200 6 30 50 10 40 40 50 1 70 10 3 3 30 10 7 1 400 10 4 400 3 4 80 200 30 30 1 10 1 10 8 40 5 200 400 400 20 30 200 10 2 40 50 30 5 10 10 6 10 1 300 70 30 300 1 40 5 1 50 80 50 1 5 30 100 9 60 20 9 90 8 1 60 40 60 5 60 10 1 600

Total: 7819 = 7 x 1117.

7.2.2.3Odd positioned groups of 71 from 7.2.2:

1 10 30 40 7 9 40 2 1 300 70 10 80 400 40 70 2 70 40 80 30 6 60 10 6 300 70 8 5 30 6 400 5 6 400 10 6 300 70 10 8 300 400 70 5 50 200 400 30 10 70 40 400 50 200 6 30 40 7 30 50 10 40 30 300 70 40 50 1 200 50 10 70 5 10 10 10 30 20 6 10 1 200 1 400 300 70 30 10 100 6 300 1 40 200 10 50 5 1 50 200 300 50 80 50 1 200 50 3 5 30 100 1 300 10 9 60 20 3 9 200 9 90 8 60 60 40 1 60 40 1 60 80 60 5 60 60 1 100 10 1 600

Total: 11270 = 2 x 5 x 72 x 23.

7.2.2.4Even positioned groups of 71 from 7.2.2:

10 70 10 3 30 300 70 3 30 10 70 3 40 7 1 400 5 7 20 10 4 400 2 6 400 3 4 80 70 2 50 200 30 30 70 300 10 1 10 1 10 400 30 10 8 40 20 2 400 5 200 400 5 5 200 400 20 30 2 60 2 200 10 2 6 70 10 40 50 30 70

Total: 5509 = 7 x 787.

7.3Starting with the first letter and taking every Nth after, the following values of N produce totals divisible by 13.

29 35 53 101 191 211 212

Total of the N values: 832 = 26 x 13.

7.3.1Extract the first letter and every 7th after.

a) 1 8  15  22 29 36 43 50 57 64  71 78 85 92 99 106 113 120 127 134
b) 6 40 400 70 1  70 10 6  7  400 3  70 6  50 1  400 6   30  6   40

a) 141 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253
b) 5   10  40  10  1   5   10  6   6   50  40  1   6   8   30  400 80

a) 260 267 274 281 288 295 302 309 316 323 330 337 344 351 358 365 372
b) 2   400 70  10  70  20  6   30  70  2   40  10  200 1   50  9   10

a) 379 386 393 400 407 414 421 (Letter position.)
b) 5   9   90  60  5   60  60  (Letter value.)

Total of the letters found (b): 3619 = 7 x 11 x 47. SF: 65 = 5 x 13.

7.3.2Extract the first letter and every 13th after.

a) 1 14 27 40 53 66 79  92 105 118 131 144 157 170 183 196 209 222 235
b) 6 40 50 80 40 5  400 50 70  7   40  10  400 7   10  4   20  1   30

a) 248 261 274 287 300 313 326 339 352 365 378 391 404 417 (Position.)
b) 5   20  70  1   20  50  300 6   50  9   20  5   1   70  (Value.)

Total of the letters (b): 1897 = 7 x 271.

7.3.3Pull every 13th letter.

a) 13  26 39 52  65 78 91 104 117 130 143 156 169 182 195 208 221 234
b) 200 80 6  300 40 70 6  40  1   300 5   70  1   10  6   30  20  40

a) 247 260 273 286 299 312 325 338 351 364 377 390 403 416 (Position.)
b) 20  2   200 10  6   400 10  5   1   30  600 8   10  60  (Value.)

Total of the letters (b): 2587 = 13 x 199.

7.4Divide the letters into two groups: prime numbers and not prime numbers.

7.4.151 of the letters are prime numbers.

a) 3   10  11  16  19  34  57  58  61  66  71  75  90  107 109 118 141
b) 3   7   2   2   5   2   7   5   5   5   3   5   5   5   2   7   5

a) 143 150 158 166 170 176 178 188 189 193 194 202 227 238 242 248 250
b) 5   3   3   3   7   5   7   2   3   2   3   2   5   2   5   5   5

a) 260 264 270 290 301 323 338 359 360 362 379 380 381 391 401 407 412
b) 2   2   2   5   2   2   5   5   3   5   5   3   5   5   7   5   5

a) Letter position.
b) Letter value.

Total of the letters that are prime numbers (b): 210 = 2 x 3 x 5 x 7.

7.4.2Total of the remaining letters that are not prime numbers: 30541 = 7 x 4363.

7.4.3Difference between letters that are prime numbers and not prime numbers: 30331 = 72 x 619.

7.4.482 letters are in positions that are prime numbers.

a) 2 3 5 7  11 13  17 19 23  29 31  37  41 43 47 53 59 61 67 71 73 79
b) 1 3 4 20 2  200 6  5  400 1  200 300 60 10 20 40 20 5  30 3  4  400

a) 83 89  97 101 103 107 109 113 127 131 137 139 149 151 157 163 167
b) 4  400 6  4   400 5   2   6   6   40  400 40  50  40  400 4   40

a) 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263
b) 80  50  20  4   2   6   300 40  80  5   400 9   30  10  90  6   80

a) 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367
b) 20  20  30  10  40  1   8   1   50  1   100 10  6   1   10  5   60

a) 373 379 383 389 397 401 409 419 421 (Letter position.)
b) 1   5   10  60  10  7   400 40  60  (Letter value.)

Total of the letters (b): 5759 = 13 x 443. (Since the total of the letters is a multiple of 7, there is no corresponding feature with the letters in positions that are not prime numbers.)

7.5The total of the middle N letters is a multiple of 13 when N is one of the following:

323 261 239 209 137 91 87 69 65 3

Total of the N values: 1484 = 22 x 7 x 53.

7.6Add the letters one by one. Track the accumulated total, and divide the letters into two groups according to the odd or even value of that total.

7.6.1Total of letters where the accumulated total is odd valued: 13167 = 32 x 7 x 11 x 19.

7.6.2Total of letters where the accumulated total is even valued: 17584 = 24 x 7 x 157.

7.7Letter values range from 1 to 600. For each letter, add up all their positions in the passage. Group the letters according to the odd or even value of the total positions.

7.7.1Letters whose total positions is odd valued: 1430 = 2 x 5 x 11 x 13.

7.7.2Letters whose total positions is even valued: 665 = 5 x 7 x 19. (Curiously, the sum of the factors for 7.7.1 and 7.7.2 is the same 31.)

7.8.1Total of the positions of letters whose number of occurrences is a prime number: 30114 = 2 x 32 x 7 x 239.

7.8.2Total of the positions of letters whose number of occurrences is not a prime number: 61264 = 24 x 7 x 547.

7.9Since 7 is related to God’s perfection, and 13 is related to God’s name, both numbers are applied at the same time as alternating groups of letters that are multiples of these two numbers.

7.9.1Alternating groups of 7 and 98.

7.9.1.1Groups of 7: 2471 = 7 x 353.

7.9.1.2Groups of 98: 28280 = 23 x 5 x 7 x 101. SF: 119 = 7 x 17.

7.9.2Alternating groups of 210 and 7.

7.9.2.1Groups of 210: 30240 = 25 x 33 x 5 x 7.

7.9.2.2Groups of 7: 511 = 7 x 73.

7.9.3Alternating groups of 35 and 14.

7.9.3.1Groups of 35: 23401 = 7 x 3343.

7.9.3.2Groups of 14: 7350 = 2 x 3 x 52 x 72

7.9.4Alternating groups of 49 and 14.

7.9.4.1Groups of 49: 25067 = 7 x 3581. SF: 3588 = 22 x 3 x 13 x 23.

7.9.4.2Groups of 14: 5684 = 22 x 72 x 29.

7.9.5Alternating groups of 35 and 14.

7.9.5.1Groups of 35: 23401 = 7 x 3343.

7.9.5.2Groups of 14: 7350 = 2 x 3 x 52 x 72

7.9.6Alternating groups of 42 and 35.

7.9.6.1Groups of 42: 18949 = 7 x 2707.

7.9.6.2Groups of 35: 11802 = 2 x 3 x 7 x 281.

7.9.7Alternating groups of 35 and 161.

7.9.7.1Groups of 35: 8162 = 2 x 7 x 11 x 53.

7.9.7.2Groups of 161: 22589 = 72 x 461.

7.9.8Alternating groups of 42 and 35.

7.9.8.1Groups of 42: 18949 = 7 x 2707.

7.9.8.2Groups of 35: 11802 = 2 x 3 x 7 x 281.

7.9.9Alternating groups of 49 and 14.

7.9.9.1Groups of 49: 25067 = 7 x 3581. SF: 3588 = 22 x 3 x 13 x 23.

7.9.9.2Groups of 14: 5684 = 22 x 72 x 29.

7.9.10Alternating groups of 49 and 77.

7.9.10.1Groups of 49: 13909 = 7 x 1987.

7.9.10.2Groups of 77: 16842 = 2 x 3 x 7 x 401. SF: 413 = 7 x 59.

7.9.11Alternating groups of 182 and 63.

7.9.11.1Groups of 182: 26390 = 2 x 5 x 7 x 13 x 29. SF: 56 = 23 x 7. SF: 13.

7.9.11.2Groups of 63: 4361 = 72 x 89.

7.9.12Alternating groups of 49 and 77.

7.9.12.1Groups of 49: 13909 = 7 x 1987.

7.9.12.2Groups of 77: 16842 = 2 x 3 x 7 x 401. SF: 413 = 7 x 59.

7.9.13Alternating groups of 7 and 98.

7.9.13.1Groups of 7: 2471 = 7 x 353.

7.9.13.2Groups of 98: 28280 = 23 x 5 x 7 x 101. SF: 119 = 7 x 17.

7.9.14Alternating groups of 119 and 189.

7.9.14.1Groups of 119: 18088 = 23 x 7 x 17 x 19. SF: 49 = 72 SF: 14 = 2 x 7.

7.9.14.2Groups of 189: 12663 = 33 x 7 x 67.

7.9.15Alternating groups of 133 and 161.

7.9.15.1Groups of 133: 19516 = 22 x 7 x 17 x 41.

7.9.15.2Groups of 161: 11235 = 3 x 5 x 7 x 107.

7.9.16Alternating groups of 35 and 161.

7.9.16.1Groups of 35: 8162 = 2 x 7 x 11 x 53.

7.9.16.2Groups of 161: 22589 = 72 x 461.

7.9.17Alternating groups of 133 and 161.

7.9.17.1Groups of 133: 19516 = 22 x 7 x 17 x 41.

7.9.17.2Groups of 161: 11235 = 3 x 5 x 7 x 107.

7.9.18Alternating groups of 182 and 63.

7.9.18.1Groups of 182: 26390 = 2 x 5 x 7 x 13 x 29. SF: 56 = 23 x 7. SF: 13.

7.9.18.2Groups of 63: 4361 = 72 x 89.

7.9.19Alternating groups of 119 and 189.

7.9.19.1Groups of 119: 18088 = 23 x 7 x 17 x 19. SF: 49 = 72 SF: 14 = 2 x 7.

7.9.19.2Groups of 189: 12663 = 33 x 7 x 67.

7.9.20Alternating groups of 210 and 7.

7.9.20.1Groups of 210: 30240 = 25 x 33 x 5 x 7.

7.9.20.2Groups of 7: 511 = 7 x 73.

7.10Exactly 7 letters divide the rest of the letters into two groups with their first and last occurrences: what is between them, and what is not between them.

Between & Not Between The Nth & Nth Last Letter
LetterNth & Nth Last OccurrencesTotal Of Letters In BetweenTotal Of Letters Not Between
4121847 = 7 x 3121.8904 = 23 x 3 x 7 x 53.
400128091 = 7 x 4013.2660 = 22 x 5 x 7 x 19. SF: 35 = 5 x 7.
5128567 = 72 x 11 x 53. SF: 78 = 2 x 3 x 13.2184 = 23 x 3 x 7 x 13.
300124990 = 2 x 3 x 5 x 72 x 17.5761 = 7 x 823.
90126901 = 32 x 72 x 61.3850 = 2 x 52 x 7 x 11.
8123443 = 7 x 17 x 197. SF: 221 = 13 x 17.7308 = 22 x 32 x 7 x 29.
60014228 = 22 x 7 x 151.26523 = 32 x 7 x 421. SF: 434 = 2 x 7 x 31.

7.10.1The sum of these seven letters (column 1): 1407 = 3 x 7 x 67. SF: 77 = 7 x 11.

7.10.2Since there are only seven of them, and their Nth and Nth last occurrences are all 1, the total of column 2 is also 7.

7.10.3These are the positions of their first and last occurrences in the passage.

a) Letter from table:             4   400 5   300 90  8   600
b) Position of first occurrence:  5   15  19  20  33  56  361
c) Position of last occurrence:   303 409 412 370 415 390 426

Total of the first and last occurrences (b + c): 3234 = 2 x 3 x 72 x 11.

7.11The 115 words count through the 427 letters.

a) 24  50  48   251  409  845   130  641  172  410  186  146  136  810
b) 24  74  122  373  782  1200  476  690  435  418  604  323  459  842
c) 24  74  122  373  355  346   49   263  8    418  177  323  32   415
d) 10  6   50   1    8    300   90   80   40   1    1    2    70   90

a) 20   55  447  42   423  845  718  515  752  37   524  475  259  37
b) 435  63  510  125  548  966  830  918  816  426  950  571  403  440
c) 8    63  83   125  121  112  403  64   389  426  96   144  403  13
d) 40   1   4    6    80   6    10   400  60   600  400  10   10   200

a) 48  176  56   37   850   130  641  60   544  43   31  810  43  31
b) 61  237  293  330  1180  456  670  303  847  463  67  877  66  97
c) 61  237  293  330  326   29   243  303  420  36   67  23   66  97
d) 5   30   1    40   300   1    20   4    100  70   30  400  5   6

a) 484  43   48   31   493  78   30   494  15   415  456  101  301  50
b) 581  197  245  276  769  420  450  517  105  520  549  223  524  147
c) 154  197  245  276  342  420  23   90   105  93   122  223  97   147
d) 300  6    10   10   50   100  400  5    70   90   50   80   6    400

a) 190  350  232  91   851   58   50   472  655  60   800  37   162
b) 337  687  492  156  1007  211  261  733  961  167  967  150  312
c) 337  260  65   156  153   211  261  306  107  167  113  150  312
d) 10   2    40   70   1     40   20   1    5    40   6    3    400

a) 640  228  130  200  200  376  30   31   48  48   239  31   451  410
b) 952  326  456  229  429  378  408  439  60  108  347  378  829  812
c) 98   326  29   229  2    378  408  12   60  108  347  378  402  385
d) 30   300  1    400  1    20   80   9    30  50   6    20   40   80

a) 41   182  547  351  61   12   61   557  81   61   265  608  53   160
b) 426  608  728  652  286  298  359  916  143  204  469  650  276  436
c) 426  181  301  225  286  298  359  62   143  204  42   223  276  9
d) 600  20   2    6    10   30   5    6    5    50   30   80   10   1

a) 322  20   160  600  42   449  60   163  60   640  20   60   47  20
b) 331  351  511  684  299  748  381  544  177  817  410  470  90  110
c) 331  351  84   257  299  321  381  117  177  390  410  43   90  110
d) 100  1    300  6    6    70   5    1    1    8    60   10   5   200

a) 60   770  60   1142  (Word value.)
b) 170  940  146  1288  (Count.)
c) 170  86   146  7     (Count adjusted to 427 letters.)
d) 7    400  70   20    (Letter found.)

Letter total (d): 8995 = 5 x 7 x 257.

Conclusion

Only God could have foreseen and guided Isaiah in writing his prophecy. Only God could have inspired John to write as he did (Revelation 1:11, 19). And only God could have known how Isaiah 48:5-12 and Revelation 1:8 would fit together.

Notes

  1. English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.
  2. Hebrew text is from, The Biblia Hebraica Stuttgartensia (BHS), edited by K. Elliger and W. Rudolph of the Deutsche Biblegesselchaft (German Bible Society) 1983.
  3. The Greek text is from The Nestle-Aland 27th Edition of the Greek New Testament (GNT), Copyright © 1966, 1968, 1975, 1993-1994 United Bible Societies, found within Bibleworks 3.0 by Hermeneutika, Michael S. Bushell, 1995. Vowel marks and punctuation have been removed.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




The foolishness of God is greater than anything we can imagine (1 Corinthians 1:25). On the off chance the numbers are a form of foolishness, do not spend too much time on them.