God: Our Father And Mother
In these dark days with the lies of the Anti-Christ smothering the world (Psalm 2:1-2; John 8:44; Thessalonians 2:11), the famines, wars, and earthquakes Jesus foretold, and the troubles mentioned in Revelation, it is good to take hold of the God of all comfort (2 Corinthians 1:3-4). When we think of the God of all comfort, we remember He is our Father in heaven (Matthew 6:9-13; Mark 14:36; Romans 8:15; Galatians 4:6). And because God created all things, including Eve the mother of all living (Genesis 3:20), in one sense God is also our Mother. There is great comfort in knowing God as Father and Mother. There is even greater comfort in knowing God as Father and Mother from a child's perspective. God will answer His children (Matthew 19:14). This numeric experiment shows God as Father and Mother. (Hopefully women will take comfort in this fact and see God in a new light.)
This numeric experiment begins with The Lord's Prayer (Matthew 6:9-13). Jesus taught his disciples to call God Our Father
.
There are two versions of The Lord's Prayer. The GNT has the older and shorter version. The GNS has the longer version, which includes, For thine is the kingdom, the power and the glory, for ever. Amen.
These two versions are two different possibilities, and it is in other possibilities that the experiment uncovers new numeric features.
GNT Version
a) 1 2 3 4 5 6 7 8 9 b) 256 677 60 45 259 540 819 160 191 c) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 19 20 21 22 3 24 25 6 7 8 29 30 1 32 33 34 35 36 37 38 39 40 d) 70- 1- 100- 5- 80 7- 30- 600-40 60 5- 40 100-60-9-90 60-200-80-1- 40-60-9-90 1- 3-9-1-90-8- 7-100-600 100- 60 60- 40- 60-30-1 e) Πατερ ημων ο εν τοις ουρανοις αγιασθητω το ονομα f) Father of us the in the heavens let be sanctified the name a) 10 11 12 13 14 15 16 17 b) 350 738 7 137 350 770 160 71 c) 41 42 43 44 45 6 7 48 49 50 51 2 53 4 55 6 7 58 59 60 61 62 3 64 5 6 7 68 69 70 71 72 3 74 5 76 77 d) 90- 60- 200 5- 20- 8- 5- 100- 600 7 2- 1- 90- 9- 20- 5- 9- 1 90- 60- 200 3- 5- 40- 7- 8- 7- 100- 600 100- 60 8- 5- 20-7-30-1 e) σου ελθετω η βασιλεια σου γενηθητω το θελημα f) of you let come the kingdom of you let take place the will a) 18 19 20 21 22 23 24 25 26 27 28 b) 350 690 45 981 20 84 100 200 281 677 200 c) 78 79 80 81 82 83 84 85 86 87 8 89 90 91 2 93 94 95 96 97 8 99 100 01 102 103 04 105 06 107 108 09 110 111 112 13 114 d) 90-60-200 600-90 5- 40 60-200-80-1-40-600 10-1-9 5- 70-9 3- 7-90 100-60-40 1- 80-100-60-40 7- 30-600 40 100-60-40 e) σου ως εν ουρανω και επι γης Τον αρτον ημων τον f) of you as in heaven also upon earth The bread of us the a) 29 30 31 32 33 34 35 36 b) 543 154 86 312 20 396 86 101 c) 115 16 7 18 119 120 1 22 123 124 25 126 127 28 9 130 131 2 33 4 35 36 137 138 9 140 141 142 3 144 145 46 7 148 149 150 d) 5- 70- 9- 60- 200- 90- 9- 60- 40 4- 60- 90 7- 30- 9- 40 90- 7- 30- 5- 80-60-40 10- 1-9 1- 300-5-90 7- 30-9-40 100-1 e) επιουσιον δος ημιν σημερον και αφες ημιν τα f) for (the day) being give to us today and let go off to us the a) 37 38 39 40 41 42 43 b) 533 677 690 20 141 394 259 c) 151 152 3 4 55 6 57 8 159 160 161 62 163 164 165 166 167 8 169 170 71 2 3 174 175 176 7 78 9 180 1 182 183 84 5 186 d) 60- 300- 5- 9- 20- 7- 30- 1- 100- 1 7- 30- 600- 40 600- 90 10- 1- 9 7- 30- 5- 9- 90 1- 300- 7-10- 1-30- 5-40 100-60-9-90 e) οφειληματα ημων ως και ημεις αφηκαμεν τοις f) debts of us as also we have let go off to the a) 44 45 46 47 48 49 50 b) 599 677 20 37 264 128 104 c) 187 188 9 190 91 2 193 4 5 196 197 98 199 200 201 2 203 204 205 206 7 08 9 210 1 2 13 4 215 216 17 8 219 220 1 222 d) 60- 300- 5- 9- 20- 5- 100- 1- 9- 90 7- 30- 600- 40 10- 1- 9 30- 7 5- 9- 90- 5- 40- 5- 3- 10- 7- 90 7- 30- 1- 90 5- 9-90 e) οφειλεταις ημων και μη εισενεγκης ημας εις f) debtors of us and not you should bring us into a) 51 52 53 54 55 56 57 b) 385 42 380 128 131 360 517 c) 223 4 5 26 7 28 29 230 231 232 33 34 235 236 237 38 9 240 241 42 3 244 245 46 247 248 49 250 251 52 53 4 55 56 257 d) 70- 5- 9- 80- 1- 90- 30- 60- 40 1- 20- 20- 1 80- 200- 90- 1- 9 7- 30- 1- 90 1- 70- 60 100- 60- 200 70- 60- 40- 7- 80-60-200 e) πειρασμον αλλα ρυσαι ημας απο του πονηρου f) temptation but rescue us from the wicked (one) a) Word position. b) Word value. c) Letter position. d) Letter value. e) Greek.1. f) English.2
1The numeric total of the GNT's Lord's Prayer: 17402 = 2 x 7 x 11 x 113. SF: 133 = 7 x 19. SF: 26 = 2 x 13. Two levels of factors are multiples of seven, and the third level is the number associated with God’s name in Hebrew.
List of words: 256 677 60 45 259 540 819 160 191 350 738 7 137 350 770 160 71 350 690 45 981 20 84 100 200 281 677 200 543 154 86 312 20 396 86 101 533 677 690 20 141 394 259 599 677 20 37 264 128 104 385 42 380 128 131 360 517
1.1Divide the words into two groups using the first digit of their sums.
1.1.1Words where the first digit is odd:
540 160 191 350 738 7 137 350 770 160 71 350 981 100 543 154 312 396 101 533 141 394 599 37 128 104 385 380 128 131 360 517
Total: 10248 = 23 x 3 x 7 x 61. SF: 77 = 7 x 11.
1.1.1.1Words where the first digit is odd, divide perfectly into two sub-groups. From the list in 1.1.1, take the odd positioned:
540 191 738 137 770 71 981 543 312 101 141 599 128 385 128 360
Total: 6125 = 53 x 72.
1.1.1.1.1From the list in 1.1.1.1, again take the odd positioned:
540 738 770 981 312 141 128 128
Total: 3738 = 2 x 3 x 7 x 89.
1.1.1.1.1.1For a third time, the odd positioned from 1.1.1.1.1:
540 770 312 128
Total: 1750 = 2 x 53 x 7.
1.1.1.1.1.2Even positioned from 1.1.1.1.1:
738 981 141 128
Total: 1988 = 22 x 7 x 71.
1.1.1.1.2And from the list in 1.1.1.1, take the even positioned:
191 137 71 543 101 599 385 360
Total: 2387 = 7 x 11 x 31. SF: 49 = 72. SF: 14 = 2 x 7.
1.1.1.2From the list in 1.1.1, take the even positioned:
160 350 7 350 160 350 100 154 396 533 394 37 104 380 131 517
Total: 4123 = 7 x 19 x 31.
1.1.1.2.1From the list in 1.1.1.2, take those that are odd valued:
7 533 37 131 517
Total: 1225 = 52 x 72.
1.1.1.2.2From the list in 1.1.1.2, take those that are even valued:
160 350 350 160 350 100 154 396 394 104 380
Total: 2898 = 2 x 32 x 7 x 23.
1.1.2Words where the first digit is even:
256 677 60 45 259 819 690 45 20 84 200 281 677 200 86 20 86 677 690 20 259 677 20 264 42
Total: 7154 = 2 x 72 x 73.
Here we see the Father's care is deep with levels upon levels. In some places it is six levels deep!
1.2The difference between the words with a first digit that is odd or even reveals the number 13, which is associated with God's name in Hebrew:
3094 = 2 x 7 x 13 x 17. SF: 39 = 3 x 13.
1.3The 57 words can be placed in a 19 x 3 rectangle for another Revelation 1:8 complementary opposite: outside and inside.
256 | 677 | 60 | 45 | 259 | 540 | 819 | 160 | 191 | 350 | 738 | 7 | 137 | 350 | 770 | 160 | 71 | 350 | 690 |
45 | 981 | 20 | 84 | 100 | 200 | 281 | 677 | 200 | 543 | 154 | 86 | 312 | 20 | 396 | 86 | 101 | 533 | 677 |
690 | 20 | 141 | 394 | 259 | 599 | 677 | 20 | 37 | 264 | 128 | 104 | 385 | 42 | 380 | 128 | 131 | 360 | 517 |
1.3.1The outside, or perimeter, of the rectangle: 12628 = 22 x 7 x 11 x 41. SF: 63 = 32 x 7. SF: 13.
1.3.2The inside of the rectangle: 4774 = 2 x 7 x 11 x 31. (The number is beautifully symmetrical.)
1.3.3Normally, out of 19 random numbers, one or two might be divisible by 13. Out of 19 columns, three (3, 6, and 10) are divisible by 13.
1.3.4Out of 3 random numbers, it is unlikely any one of them would be divisible by 13, but in the very first row, the total is 6630 (2 x 3 x 5 x 13 x 17).
1.3.5The three columns divisible by 13 together have a total of 2717. The one row has a total of 6630. As rows and columns are different, take the difference between the row and columns: 3913 = 7 x 13 x 43. SF: 63 = 3 x 3 x 7. SF: 13.
1.3.6Beginning at the upper left corner of the table, one could add the second word of the second row, and the third word of the third row together. Then one could add the fourth word of the second row and zigzag through the table. The table just so happens to be of the right dimensions so the zigzag ends at the lower right corner. Total: 5967 = 33 x 13 x 17. SF: 39 = 3 x 13.
It would appear the words of The Lord's Prayer are marvellously constructed on the principles of Revelation 1:8.
2God said He is the Alpha and the Omega (Revelation 1:8). This is partly seen in the Lord's Prayer with the first letter of each word.
a) 1 6 10 11 13 17 25 34 36 41 44 50 51 59 62 70 72 78 81 83 85 b) 70 7 60 5 100 60 1 100 60 90 5 7 2 90 3 100 8 90 600 5 60 a) 91 94 97 100 103 108 112 115 124 127 131 138 141 145 149 151 161 b) 10 5 3 100 1 7 100 5 4 7 90 10 1 7 100 60 7 a) 165 167 170 175 183 187 197 201 204 206 216 220 223 232 236 241 b) 600 10 7 1 100 60 7 10 30 5 7 5 70 1 80 7 a) 245 248 251 (Position of the first letter of each word.) b) 1 100 70 (Letter value.)
Total of these letters: 3211 = 132 x 19.
The total of the positions of these letters is 6983, a prime number. There's not much to say about this prime number except that the 6983rd Chinese character in Big5 is 珙. The meaning of this character: a gem.
There is no equivalent feature with the last letter of each word. The Lord's Prayer is not a description of God, nor a spiritual lesson about God, but a lesson about prayer. Thus it should be no surprise the last letter of each word does not produce anything. Or perhaps it is because God does not want us to think we are last on His list of priorities.
2.1The total of the last letter of each word: 5654. The difference between first and last: 5654 − 3211 = 2443 (7 x 349).
2.2Note that the very first letter of the first word is 70, and note that the very first letter of the last word is also 70.
2.3From the list of the first letters of each word, extract every other (the odd positioned):
70 60 100 1 60 5 2 3 8 600 60 5 100 7 5 7 10 7 60 600 7 100 7 30 7 70 80 1 70
Total: 2142 = 2 x 32 x 7 x 17. (Once again there is no corresponding feature with the even positioned.)
2.4Features 2 and 2.3 are both features of odd values. What about even values? There are two of them as well.
2.4.1From the positions of the first letter of each word, select those that are even valued.
6 10 34 36 44 50 62 70 72 78 94 100 108 112 124 138 170 204 206 216 220 232 236 248
Total: 2870 = 2 x 5 x 7 x 41.
2.4.2Positions where the first digit is even:
6 25 41 44 62 81 83 85 201 204 206 216 220 223 232 236 241 245 248 251
Total: 3150 = 2 x 32 x 52 x 7.
2.5Divide the first letters of each word into two groups, odd and even.
2.5.1Odd valued of the first letter of each word:
7 5 1 5 7 3 5 5 3 1 7 5 7 1 7 7 7 1 7 5 7 5 1 7 1
Total: 117 = 32 x 13.
2.5.2Even valued of the first letter of each word:
70 60 100 60 100 60 90 2 90 100 8 90 600 60 10 100 100 4 90 10 100 60 600 10 100 60 10 30 70 80 100 70
Total: 3094 = 2 x 7 x 13 x 17. SF: 39 = 3 x 13.
2.6First and last letters of odd positioned words:
a) 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 b) 30 60 100 1 60 5 2 3 8 600 60 5 100 7 5 7 10 7 60 c) 80 60 90 600 1 600 1 600 1 90 600 9 40 40 40 40 9 40 1 a) 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 b) 600 7 100 7 30 7 70 80 1 70 90 7 10 4 7 5 1 c) 90 90 90 40 7 90 40 9 60 200 200 7 9 90 7 90 90 a) Odd valued word position. b) First letter of word. c) Last letter of word.
Total of the first and last letters of each word (lines b + c): 6377 = 7 x 911.
Total of the first letters of each word (line b): 2226 = 2 x 3 x 7 x 53.
SF: 65 = 5 x 13.
Total of the last letters of each word (line c): 4151 = 7 x 593. (This does not work for even positioned words.)
2.6Examining the first and last letters of each word leaves out quite a number of the other letters. God does not forget them. This is great comfort for the vast majority of us who are neither first nor last.
2.6.1Positions of letters that are not first or last:
2 3 4 7 8 14 15 18 19 20 21 22 23 26 27 28 29 30 31 32 37 38 39 42 45 46 47 48 52 53 54 55 56 57 60 63 64 65 66 67 68 73 74 75 76 79 86 87 88 89 92 95 98 101 104 105 106 109 110 113 116 117 118 119 120 121 122 125 128 129 132 133 134 135 136 139 142 143 146 147 152 153 154 155 156 157 158 159 162 163 168 171 172 173 176 177 178 179 180 181 184 185 188 189 190 191 192 193 194 195 198 199 202 207 208 209 210 211 212 213 214 217 218 221 224 225 226 227 228 229 230 233 234 237 238 239 242 243 246 249 252 253 254 255 256
Total of the positions: 19047 = 3 x 7 x 907. SF: 917 = 7 x 131.
2.6.1.1From the list in 2.6.1 take the odd valued positions:
3 7 15 19 21 23 27 29 31 37 39 45 47 53 55 57 63 65 67 73 75 79 87 89 95 101 105 109 113 117 119 121 125 129 133 135 139 143 147 153 155 157 159 163 171 173 177 179 181 185 189 191 193 195 199 207 209 211 213 217 221 225 227 229 233 237 239 243 249 253 255
Total: 9425 = 52 x 13 x 29. SF: 52 = 2 x 2 x 13.
2.6.1.2From the list in 2.6.1 take only those whose first digit is odd:
3 7 14 15 18 19 30 31 32 37 38 39 52 53 54 55 56 57 73 74 75 76 79 92 95 98 101 104 105 106 109 110 113 116 117 118 119 120 121 122 125 128 129 132 133 134 135 136 139 142 143 146 147 152 153 154 155 156 157 158 159 162 163 168 171 172 173 176 177 178 179 180 181 184 185 188 189 190 191 192 193 194 195 198 199
Total: 10244 = 22 x 13 x 197.
2.6.2What about the values of letters that are not first or last?
1 100 5 30 600 60 9 200 80 1 40 60 9 3 9 1 90 8 7 100 40 60 30 60 20 8 5 100 1 90 9 20 5 9 60 5 40 7 8 7 100 5 20 7 30 60 200 80 1 40 1 70 7 60 80 100 60 30 600 60 70 9 60 200 90 9 60 60 30 9 7 30 5 80 60 1 300 5 30 9 300 5 9 20 7 30 1 100 30 600 1 30 5 9 300 7 10 1 30 5 60 9 300 5 9 20 5 100 1 9 30 600 1 9 90 5 40 5 3 10 7 30 1 9 5 9 80 1 90 30 60 20 20 200 90 1 30 1 70 60 60 40 7 80 60
The total is 8604, which has no numeric feature, until one looks further. Take the even positioned of values of letters that are not first or last:
100 30 60 200 1 60 3 1 8 100 60 60 8 100 90 20 9 5 7 7 5 7 60 80 40 70 60 100 30 60 9 200 9 60 9 30 80 1 5 9 5 20 30 100 600 30 9 7 1 5 9 5 20 100 9 600 9 5 5 10 30 9 9 1 30 20 200 1 1 60 40 80
Total: 3913 = 7 x 13 x 43. SF: 63 = 3 x 3 x 7. SF: 13. (It is as if the 7 and 13 and the next two levels of factors were to compensate for the initial lack of features in the values, and for the fact that the odd positioned values have no feature.)
2.6.2.1From the list of even positioned values in 2.6.2, select those where the first digit is odd:
100 30 1 3 1 100 100 90 9 5 7 7 5 7 70 100 30 9 9 9 30 1 5 9 5 30 100 30 9 7 1 5 9 5 100 9 9 5 5 10 30 9 9 1 30 1 1
Total: 1157 = 13 x 89.
2.6.2.2From the list of even positioned values in 2.6.2, select those where the first digit is even:
60 200 60 8 60 60 8 20 60 80 40 60 60 200 60 80 20 600 20 600 20 200 60 40 80
Total: 2756 = 22 x 13 x 53. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
3The previous numeric features were from the first and last letters of each word, or letters that were not first or last. What about letters in general?
List of letters: 70 1 100 5 80 7 30 600 40 60 5 40 100 60 9 90 60 200 80 1 40 60 9 90 1 3 9 1 90 8 7 100 600 100 60 60 40 60 30 1 90 60 200 5 20 8 5 100 600 7 2 1 90 9 20 5 9 1 90 60 200 3 5 40 7 8 7 100 600 100 60 8 5 20 7 30 1 90 60 200 600 90 5 40 60 200 80 1 40 600 10 1 9 5 70 9 3 7 90 100 60 40 1 80 100 60 40 7 30 600 40 100 60 40 5 70 9 60 200 90 9 60 40 4 60 90 7 30 9 40 90 7 30 5 80 60 40 10 1 9 1 300 5 90 7 30 9 40 100 1 60 300 5 9 20 7 30 1 100 1 7 30 600 40 600 90 10 1 9 7 30 5 9 90 1 300 7 10 1 30 5 40 100 60 9 90 60 300 5 9 20 5 100 1 9 90 7 30 600 40 10 1 9 30 7 5 9 90 5 40 5 3 10 7 90 7 30 1 90 5 9 90 70 5 9 80 1 90 30 60 40 1 20 20 1 80 200 90 1 9 7 30 1 90 1 70 60 100 60 200 70 60 40 7 80 60 200
3.1Odd positioned letters:
70 100 80 30 40 5 100 9 60 80 40 9 1 9 90 7 600 60 40 30 90 200 20 5 600 2 90 20 9 90 200 5 7 7 600 60 5 7 1 60 600 5 60 80 40 10 9 70 3 90 60 1 100 40 30 40 60 5 9 200 9 40 60 7 9 90 30 80 40 1 1 5 7 9 100 60 5 20 30 100 7 600 600 10 9 30 9 1 7 1 5 100 9 60 5 20 100 9 7 600 10 9 7 9 5 5 10 90 30 90 9 70 9 1 30 40 20 1 200 1 7 1 1 60 60 70 40 80 200
Total: 9107 = 7 x 1301.
3.2Even positioned letters:
1 5 7 600 60 40 60 90 200 1 60 90 3 1 8 100 100 60 60 1 60 5 8 100 7 1 9 5 1 60 3 40 8 100 100 8 20 30 90 200 90 40 200 1 600 1 5 9 7 100 40 80 60 7 600 100 40 70 60 90 60 4 90 30 40 7 5 60 10 9 300 90 30 40 1 300 9 7 1 1 30 40 90 1 7 5 90 300 10 30 40 60 90 300 9 5 1 90 30 40 1 30 5 90 40 3 7 7 1 5 90 5 80 90 60 1 20 80 90 9 30 90 70 100 200 60 7 60
Total: 8295 = 3 x 5 x 7 x 79.
3.3Odd valued letters:
1 5 7 5 9 1 9 1 3 9 1 7 1 5 5 7 1 9 5 9 1 3 5 7 7 5 7 1 5 1 1 9 5 9 3 7 1 7 5 9 9 7 9 7 5 1 9 1 5 7 9 1 5 9 7 1 1 7 1 9 7 5 9 1 7 1 5 9 5 9 5 1 9 7 1 9 7 5 9 5 5 3 7 7 1 5 9 5 9 1 1 1 1 9 7 1 1 7
Total: 504 = 23 x 32 x 7.
3.3.1Odd positioned of odd valued letters:
1 7 9 9 3 1 1 5 1 5 1 5 7 7 5 1 5 3 1 5 9 9 5 9 5 9 5 7 1 1 7 9 7 5 5 5 9 1 7 9 5 7 1 9 9 1 1 7 1
Total: 247 = 13 x 19.
3.4Even valued letters:
70 100 80 30 600 40 60 40 100 60 90 60 200 80 40 60 90 90 8 100 600 100 60 60 40 60 30 90 60 200 20 8 100 600 2 90 20 90 60 200 40 8 100 600 100 60 8 20 30 90 60 200 600 90 40 60 200 80 40 600 10 70 90 100 60 40 80 100 60 40 30 600 40 100 60 40 70 60 200 90 60 40 4 60 90 30 40 90 30 80 60 40 10 300 90 30 40 100 60 300 20 30 100 30 600 40 600 90 10 30 90 300 10 30 40 100 60 90 60 300 20 100 90 30 600 40 10 30 90 40 10 90 30 90 90 70 80 90 30 60 40 20 20 80 200 90 30 90 70 60 100 60 200 70 60 40 80 60 200
Total: 16898 = 2 x 7 x 17 x 71.
3.4.1Odd positioned of even valued letters list:
70 80 600 60 100 90 200 40 90 8 600 60 40 30 60 20 100 2 20 60 40 100 100 8 30 60 600 40 200 40 10 90 60 80 60 30 40 60 70 200 60 4 90 40 30 60 10 90 40 60 20 100 600 600 10 90 10 40 60 60 20 90 600 10 90 10 30 90 80 30 40 20 200 30 70 100 200 60 80 200
Total: 8372 = 22 x 7 x 13 x 23.
3.4.1.1First digit odd of odd positioned of even valued letters:
70 100 90 90 30 100 100 100 30 10 90 30 70 90 30 10 90 100 10 90 10 90 10 90 10 30 90 30 30 70 100
Total: 1890 = 2 x 33 x 5 x 7.
3.4.1.2First digit even of odd positioned of even valued letters:
80 600 60 200 40 8 600 60 40 60 20 2 20 60 40 8 60 600 40 200 40 60 80 60 40 60 200 60 4 40 60 40 60 20 600 600 40 60 60 20 600 80 40 20 200 200 60 80 200
Total: 6482 = 2 x 7 x 463.
3.4.2Even positioned of even valued letters list:
100 30 40 40 60 60 80 60 90 100 100 60 60 90 200 8 600 90 90 200 8 600 60 20 90 200 90 60 80 600 70 100 40 100 40 600 100 40 60 90 40 60 30 90 80 40 300 30 100 300 30 30 40 90 30 300 30 100 90 300 100 30 40 30 40 90 90 70 90 60 20 80 90 90 60 60 70 40 60
Total: 8526 = 2 x 3 x 72 x 29.
4Unlike the words, the letters cannot be placed into a rectangle, or any geometric shape because the number of letters (257) is a prime number. However, the even positioned letters in feature 3.2 number 128, which is 27, and this attracts attention. These 128 letters are placed into a 4 x 4 x 8 block (4 columns x 4 rows x 8 levels).
1 | 5 | 7 | 600 |
60 | 40 | 60 | 90 |
200 | 1 | 60 | 90 |
3 | 1 | 8 | 100 |
100 | 60 | 60 | 1 |
60 | 5 | 8 | 100 |
7 | 1 | 9 | 5 |
1 | 60 | 3 | 40 |
8 | 100 | 100 | 8 |
20 | 30 | 90 | 200 |
90 | 40 | 200 | 1 |
600 | 1 | 5 | 9 |
7 | 100 | 40 | 80 |
60 | 7 | 600 | 100 |
40 | 70 | 60 | 90 |
60 | 4 | 90 | 30 |
40 | 7 | 5 | 60 |
10 | 9 | 300 | 90 |
30 | 40 | 1 | 300 |
9 | 7 | 1 | 1 |
30 | 40 | 90 | 1 |
7 | 5 | 90 | 300 |
10 | 30 | 40 | 60 |
90 | 300 | 9 | 5 |
1 | 90 | 30 | 40 |
1 | 30 | 5 | 90 |
40 | 3 | 7 | 7 |
1 | 5 | 90 | 5 |
80 | 90 | 60 | 1 |
20 | 80 | 90 | 9 |
30 | 90 | 70 | 100 |
200 | 60 | 7 | 60 |
4.1The surface area or outside of the block: 6615 = 33 x 5 x 72. SF: 28 = 22 x 7.
4.2The inside of the block: 1680 = 24 x 3 x 5 x 7.
4.3First and last layers: 2373 = 3 x 7 x 113.
4.3First and last columns of each layer: 4589 = 13 x 353.
4.4Inner core of four from each layer: 2171 = 13 x 167.
Similar to the words, the letters of the GNT's version of The Lord's Prayer also display numeric features in complementary opposites.
Now we turn from the GNT's short version of The Lord's Prayer to the GNS' version with the extra words at the end of verse 13.
GNS Version
Looking at all of Matthew 6:9-13, including the opening words Pray then like this
, the GNS has one other difference from the GNT, aside from the extra words at the end of verse 13. The fourth word from the end of verse 12 is αφιεμεν. In the GNT, this word is spelled αφηκαμεν. As a result, if the extra words in verse 13 were removed, the GNS' total would still not be the same as the GNT. In fact, this abbreviated GNS version would have no total divisible by 7 or 13. It is almost as if this word in verse 12 had to be spelled differently in order to accommodate the opening and the extra words at the end of verse 13.
a) 1 2 3 4 5 6 b) 1050 300 1013 334 256 677 c) 1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 6 17 8 19 20 21 2 3 24 25 6 27 8 29 30 31 32 33 d) 60- 200- 100- 600- 90 60- 200- 40 70- 80- 60- 90- 5- 200- 400- 5- 90- 8- 5 200- 30- 5- 9- 90 70- 1- 100- 5- 80 7- 30- 600- 40 e) ουτως ουν προσευχεσθε υμεις Πατερ ημων f) Thus therefore be praying you Father of us a) 7 8 9 10 11 12 13 14 b) 60 45 259 540 819 160 191 350 c) 34 35 36 37 38 9 40 41 42 43 4 45 46 7 48 49 50 1 2 53 4 5 56 57 58 59 60 61 62 63 64 65 66 67 d) 60 5- 40 100- 60- 9- 90 60- 200- 80- 1- 40- 60- 9- 90 1- 3- 9- 1- 90- 8- 7- 100- 600 100- 60 60- 40- 60- 30- 1 90- 60- 200 e) ο εν τοις ουρανοις αγιασθητω το ονομα σου f) the in the heavens let be sanctified the name of you a) 15 16 17 18 19 20 21 22 b) 738 7 137 350 770 160 71 350 c) 68 69 70 1 72 73 74 75 6 77 8 79 80 1 82 83 84 85 86 7 88 9 90 1 92 93 94 95 96 7 98 9 100 101 102 03 104 d) 5- 20- 8- 5- 100-600 7 2- 1- 90- 9-20- 5- 9- 1 90- 60- 200 3- 5- 40- 7-8- 7- 100- 600 100-60 8- 5-20-7-30- 1 90- 60-200 e) ελθετω η βασιλεια σου γενηθητω το θελημα σου f) let come the kingdom of you let take place the will of you a) 23 24 25 26 27 28 29 30 31 32 b) 690 45 981 20 84 100 200 281 677 200 c) 105 106 107 108 109 110 11 2 13 114 115 6 117 118 19 120 121 2 123 124 25 126 127 28 129 130 131 132 33 134 135 136 37 138 d) 600-90 5- 40 60- 200-80-1-40-600 10- 1-9 5- 70-9 3- 7-90 100-60-40 1- 80- 100-60- 40 7- 30- 600-40 100-60-40 e) ως εν ουρανω και επι γης τον αρτον ημων τον f) as in heaven also upon earth the bread of us the a) 33 34 35 36 37 38 39 b) 543 154 86 312 20 396 86 c) 139 140 1 42 143 44 5 46 147 148 49 150 151 52 3 154 155 6 57 8 59 160 161 162 3 164 165 166 7 168 169 170 1 172 d) 5- 70- 9- 60- 200- 90- 9- 60- 40 4- 60- 90 7- 30- 9- 40 90- 7- 30- 5- 80- 60- 40 10- 1- 9 1- 300- 5- 90 7- 30- 9- 40 e) επιουσιον δος ημιν σημερον και αφες ημιν f) for (the day) being give to us today and let go off to us a) 40 41 42 43 44 45 46 b) 101 533 677 690 20 141 390 c) 173 174 175 176 7 8 79 180 81 2 183 184 185 86 187 188 189 190 191 2 193 194 95 6 7 198 199 200 1 2 03 4 205 d) 100- 1 60- 300- 5- 9- 20- 7- 30- 1- 100- 1 7- 30- 600- 40 600- 90 10- 1- 9 7- 30- 5- 9- 90 1- 300- 9- 5- 30- 5- 40 e) τα οφειληματα ημων ως και ημεις αφιεμεν f) the debts of us as also we have let go off a) 47 48 49 50 51 52 53 b) 259 599 677 20 37 264 128 c) 206 07 8 209 210 211 2 3 14 5 216 7 8 219 220 21 222 223 224 5 226 227 228 229 230 31 2 33 4 5 36 7 238 239 240 1 242 d) 100- 60- 9- 90 60- 300- 5- 9- 20- 5- 100- 1- 9- 90 7- 30- 600- 40 10- 1- 9 30- 7 5- 9- 90- 5- 40-5-3-10-7-90 7- 30- 1-90 e) τοις οφειλεταις ημων και μη εισενεγκης ημας f) to the debtors of us and not you should bring us a) 54 55 56 57 58 59 60 61 b) 104 385 42 380 128 131 360 517 c) 243 4 245 246 7 8 49 250 51 52 53 254 255 56 57 258 259 260 61 2 263 264 65 6 267 268 69 270 271 72 273 274 75 76 7 78 79 280 d) 5- 9-90 70- 5-9-80-1- 90-30-60-40 1- 20-20-1 80- 200-90-1-9 7- 30-1-90 1- 70-60 100-60-200 70- 60-40-7-80-60-200 e) εις πειρασμον αλλα ρυσαι ημας απο του πονηρου f) into temptation but rescue us from the wicked (one) a) 62 63 64 65 66 67 68 69 b) 169 350 244 7 137 20 7 374 c) 281 282 283 284 85 286 287 88 289 290 291 292 293 4 95 6 97 8 9 300 301 2 303 304 305 306 07 8 09 310 311 d) 60- 100- 9 90- 60- 200 5- 90- 100- 9- 40 7 2- 1- 90- 9- 20- 5- 9- 1 10- 1- 9 7 4- 200- 40- 1- 30- 9- 90 e) οτι σου εστιν η βασιλεια και η δυναμις f) that you exists the kingdom and the power a) 70 71 72 73 74 75 76 b) 20 7 115 104 450 741 78 c) 312 3 314 315 316 17 18 319 320 1 322 323 24 325 326 327 8 329 330 1 332 333 34 5 336 d) 10- 1- 9 7 4- 60- 50- 1 5- 9- 90 100- 60- 200- 90 1- 9- 600- 40- 1- 90 1- 30- 7- 40 e) και η δοξα εις τους αιωνας αμην f) and the glory to the aeons amen a) Word position. b) Word total. c) Letter position. d) Letter value. e) Greek. f) English.
5The total for all of Matthew 6:9-13 is 22918 (2 x 7 x 1637). There are 76 words, and 336 (24 x 3 x 7) letters. The GNS does have some basic features.
5.1Every other letter (odd positioned):
60 100 90 200 70 60 5 400 90 5 30 9 70 100 80 30 40 5 100 9 60 80 40 9 1 9 90 7 600 60 40 30 90 200 20 5 600 2 90 20 9 90 200 5 7 7 600 60 5 7 1 60 600 5 60 80 40 10 9 70 3 90 60 1 100 40 30 40 60 5 9 200 9 40 60 7 9 90 30 80 40 1 1 5 7 9 100 60 5 20 30 100 7 600 600 10 9 30 9 1 9 30 40 60 90 300 9 5 1 90 30 40 1 30 5 90 40 3 7 7 1 5 90 5 80 90 60 1 20 80 90 9 30 90 70 100 200 60 7 60 60 9 60 5 100 40 2 90 20 9 10 9 4 40 30 90 1 7 60 1 9 100 200 1 600 1 1 7
Total: 11739 = 3 x 7 x 13 x 43.
5.1.1Odd valued odd positioned letters:
5 5 9 5 9 9 1 9 7 5 9 5 7 7 5 7 1 5 9 3 1 5 9 9 7 9 1 1 5 7 9 5 7 9 9 1 9 9 5 1 1 5 3 7 7 1 5 5 1 9 7 9 5 9 9 1 7 1 9 1 1 1 7
Total: 351 = 33 x 13.
5.1.2Even valued odd positioned letters:
60 100 90 200 70 60 400 90 30 70 100 80 30 40 100 60 80 40 90 600 60 40 30 90 200 20 600 2 90 20 90 200 600 60 60 600 60 80 40 10 70 90 60 100 40 30 40 60 200 40 60 90 30 80 40 100 60 20 30 100 600 600 10 30 30 40 60 90 300 90 30 40 30 90 40 90 80 90 60 20 80 90 30 90 70 100 200 60 60 60 60 100 40 2 90 20 10 4 40 30 90 60 100 200 600
Total: 11388 = 22 x 3 x 13 x 73.
5.2Every other letter (even positioned):
200 600 60 40 80 90 200 5 8 200 5 90 1 5 7 600 60 40 60 90 200 1 60 90 3 1 8 100 100 60 60 1 60 5 8 100 7 1 9 5 1 60 3 40 8 100 100 8 20 30 90 200 90 40 200 1 600 1 5 9 7 100 40 80 60 7 600 100 40 70 60 90 60 4 90 30 40 7 5 60 10 9 300 90 30 40 1 300 9 7 1 1 30 40 90 1 7 5 90 300 5 5 100 9 60 5 20 100 9 7 600 10 9 7 9 5 5 10 90 30 90 9 70 9 1 30 40 20 1 200 1 7 1 1 60 60 70 40 80 200 100 90 200 90 9 7 1 9 5 1 1 7 200 1 9 10 9 4 50 5 90 60 90 9 40 90 30 40
Total: 11179 = 7 x 1597.
5.3Odd valued letters:
5 5 5 5 9 1 5 7 5 9 1 9 1 3 9 1 7 1 5 5 7 1 9 5 9 1 3 5 7 7 5 7 1 5 1 1 9 5 9 3 7 1 7 5 9 9 7 9 7 5 1 9 1 5 7 9 1 5 9 7 1 1 7 1 9 7 5 9 1 9 5 5 9 5 9 5 1 9 7 1 9 7 5 9 5 5 3 7 7 1 5 9 5 9 1 1 1 1 9 7 1 1 7 9 5 9 7 1 9 5 9 1 1 9 7 1 9 1 9 7 1 5 9 1 9 1 1 7
Total: 672 = 25 x 3 x 7.
5.4Even valued letters:
60 200 100 600 90 60 200 40 70 80 60 90 200 400 90 8 200 30 90 70 100 80 30 600 40 60 40 100 60 90 60 200 80 40 60 90 90 8 100 600 100 60 60 40 60 30 90 60 200 20 8 100 600 2 90 20 90 60 200 40 8 100 600 100 60 8 20 30 90 60 200 600 90 40 60 200 80 40 600 10 70 90 100 60 40 80 100 60 40 30 600 40 100 60 40 70 60 200 90 60 40 4 60 90 30 40 90 30 80 60 40 10 300 90 30 40 100 60 300 20 30 100 30 600 40 600 90 10 30 90 300 30 40 100 60 90 60 300 20 100 90 30 600 40 10 30 90 40 10 90 30 90 90 70 80 90 30 60 40 20 20 80 200 90 30 90 70 60 100 60 200 70 60 40 80 60 200 60 100 90 60 200 90 100 40 2 90 20 10 4 200 40 30 90 10 4 60 50 90 100 60 200 90 600 40 90 30 40
Total: 22246 = 2 x 72 x 227.
One could go on exploring to see if there are more features here, but it is specifically the text of The Lord's Prayer that we are interested in, and these initial results for the GNS include the introductory phrase, Pray then like this.
Everything changes when the opening words are removed.
Without the opening words, The Lord's Prayer has 72 words, 312 letters, and a total of 20221 (73 x 277. SF: 350 = 2 x 52 x 7). The sum of the factors is a multiple of 7, but the initial total no longer has a numeric feature.
Since specific part of The Lord's Prayer in the GNT has quite a number of numeric features following Revelation 1:8, why doesn't the GNS version? Why must the GNS include the opening words in order to have numeric features? One might even ask why there are two versions.
The GNS version is an attempt to close off the prayer properly. Whoever did it, did it to praise God. Whether they knew knew it or not, their attempt removed numeric features from The Lord's Prayer. All believers afterwards are stuck with two versions, one with numeric features, and one without.
Assuming the closing of the prayer with praise for God was supposed to be legitimate, then The Lord's Prayer in the GNS should match the GNT's numeric features or surpass it. But failing to have numeric features doesn't automatically mean the attempt was illegitimate because the whole of Matthew 6:9-13 in the GNS does have numeric features, and the part for The Lord's Prayer does have a feature hidden in the sum of the factors as a multiple of 7. These clues might mean the attempt to close the prayer in praise is still lacking something.
This leads to an experiment on The Lord's Prayer.
Our Mother In Heaven (An Experiment)
Honor your father and your mother, that your days may be long in the land which the LORD your God gives you. (Exodus 20:12)3
The fifth commandment tells us to honour
both our parents. Although father
is mentioned first, there is no indication one is honoured more than the other. Both are to be equally honoured.
As God is our Father, so He must also be our Mother. Given the long standing patriarchal leanings of Jewish and Christian traditions, if there is anything lacking in understanding God, it would be this aspect. On the basis of having a closing for the prayer in praising God, and bringing to light this neglected aspect of God, an experiment could be made in replacing the Greek word for Father, πατερ, with the Greek word for Mother, μήτηρ in the GNS.
Greek language requires agreement in word forms (gender, plural etc). Changing Father to Mother might require other changes too. Thus the following might not be grammatically correct. However, if one decided to call God Mother
on the understanding that God is Father
perhaps one could excuse perfect grammar.
An astonishing thing happens when The Lord's Prayer begins with Mother
in the Greek.
AThe numeric total is divisible by 13, a number associated with God’s name in Hebrew: 20189 = 13 x 1553. Compared with a total divisible by 7, this is almost twice as difficult to obtain.
A.1.1The first and last letters of each word: 9828 = 22 x 33 x 7 x 13.
A.1.1.1The positions of the first and last letters of each word: 22642 = 2 x 11321. SF: 11323 = 132 x 67.
A.1.2The first letter of each word:
a) 1 6 10 11 13 17 25 34 36 41 44 50 51 59 62 70 72 78 81 83 85 b) 30 7 60 5 100 60 1 100 60 90 5 7 2 90 3 100 8 90 600 5 60 a) 91 94 97 100 103 108 112 115 124 127 131 138 141 145 149 151 161 b) 10 5 3 100 1 7 100 5 4 7 90 10 1 7 100 60 7 a) 165 167 170 175 182 186 196 200 203 205 215 219 222 231 235 240 b) 600 10 7 1 100 60 7 10 30 5 7 5 70 1 80 7 a) 244 247 250 257 260 263 268 269 277 280 281 288 291 292 296 299 b) 1 100 70 60 90 5 7 2 10 7 4 10 7 4 5 100 a) 303 309 (Position.) b) 1 1 (Letter value.)
Total: 3484 = 22 x 13 x 67. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.
A.1.2.1From the positions in the list in A.1.2, take every other position (odd positioned):
1 10 13 25 36 44 51 62 72 81 85 94 100 108 115 127 138 145 151 165 170 182 196 203 215 222 235 244 250 260 268 277 281 291 296 303
Total: 5516 = 22 x 7 x 197. SF: 208 = 24 x 13. SF: 21 = 3 x 7.
A.1.2.1.1Results from A.1.2.1 can be further subdivided. Take all the positions where the first digit is an odd number.
1 10 13 36 51 72 94 100 108 115 127 138 145 151 165 170 182 196 303
Total: 2177 = 7 x 311.
A.1.2.1.2From A.1.2.1 take all positions where the first digit is an even number.
25 44 62 81 85 203 215 222 235 244 250 260 268 277 281 291 296
Total: 3339 = 32 x 7 x 53.
A.1.2.2From the positions in the list in A.1.2, take those that are odd valued:
1 11 13 17 25 41 51 59 81 83 85 91 97 103 115 127 131 141 145 149 151 161 165 167 175 203 205 215 219 231 235 247 257 263 269 277 281 291 299 303 309
Total: 6489 = 32 x 7 x 103.
The fact that A.1.2.1 and A.1.2.2 only work for the odd positioned, or odd valued shows Mother is only one of God’s attributes.
A.1.2.3From the list of letter values in A.1.2, take the odd positioned letters.
30 60 100 1 60 5 2 3 8 600 60 5 100 7 5 7 10 7 60 600 7 100 7 30 7 70 80 1 70 90 7 10 4 7 5 1
Total: 2226 = 2 x 3 x 7 x 53. SF: 65 = 5 x 13. (Once again this does not work with the even positioned values.)
A.1.2.3.1From the list in A.1.2.3, find all those where the first digit is an even number.
60 60 2 8 600 60 60 600 80 4
Total: 1534 = 2 x 13 x 59.
A.1.3The last letter of each word:
a) 5 9 10 12 16 24 33 35 40 43 49 50 58 61 69 71 77 80 82 84 b) 80 40 60 40 90 90 600 60 1 200 600 7 1 200 600 60 1 200 90 40 a) 90 93 96 99 102 107 111 114 123 126 130 137 140 144 148 150 160 b) 600 9 9 90 40 40 40 40 40 90 40 40 9 90 40 1 1 a) 164 166 169 174 181 185 195 199 202 204 214 218 221 230 234 239 b) 40 90 9 90 40 90 90 40 9 7 90 90 90 40 1 9 a) 243 246 249 256 259 262 267 268 276 279 280 287 290 291 295 298 b) 90 60 200 200 9 200 40 7 1 9 7 90 9 7 1 90 a) 302 308 312 (Position.) b) 90 90 40 (Letter value.)
Total: 6344 = 23 x 13 x 61.
It is almost as if by adding Mother as a new aspect to God, the number 13 now owns up to it following the pattern of The Proclamation with the first and last letters of each word together and individually.
A.1.3.1From the positions of the letters in A.1.3, take every other position (odd positioned in list):
5 10 16 33 40 49 58 69 77 82 90 96 102 111 123 130 140 148 160 166 174 185 199 204 218 230 239 246 256 262 268 279 287 291 298 308
Total: 5649 = 3 x 7 x 269.
A.1.3.1.1From list of positions in A.1.3.1 take every other (even positioned):
10 33 49 69 82 96 111 130 148 166 185 204 230 246 262 279 291 308
Total: 2899 = 13 x 223.
A.1.3.1.2Extract all positions in A.1.3.1 having an odd valued first digit:
5 10 16 33 58 77 90 96 102 111 123 130 140 148 160 166 174 185 199 308
Total: 2331 = 32 x 7 x 37.
A.1.3.1.3Extract all positions in A.1.3.1 having an even valued first digit:
40 49 69 82 204 218 230 239 246 256 262 268 279 287 291 298
Total: 3318 = 2 x 3 x 7 x 79.
A.1.3.2From the positions of the letters in A.1.3, take the numbers that are even valued:
10 12 16 24 40 50 58 80 82 84 90 96 102 114 126 130 140 144 148 150 160 164 166 174 202 204 214 218 230 234 246 256 262 268 276 280 290 298 302 308 312
Total: 6760 = 23 x 5 x 132.
A.1.3.2.1From the results in A.1.3.2, take the even positioned in that list:
10 16 40 58 82 90 102 126 140 148 160 166 202 214 230 246 262 276 290 302 312
Total: 3472 = 24 x 7 x 31.
A.1.3.3From the letter values in A.1.3, take every other (odd positioned):
80 60 90 600 1 600 1 600 1 90 600 9 40 40 40 40 9 40 1 90 90 90 40 7 90 40 9 60 200 200 7 9 90 7 90 90
Total: 4151 = 7 x 593.
A.1.3.3.1From the results in A.1.3.3, find all those where the first digit is odd:
90 1 1 1 90 9 9 1 90 90 90 7 90 9 7 9 90 7 90 90
Total: 871 = 13 x 67.
A.1.3.3.2From A.1.3.3.1, take the even positioned of the list:
1 1 9 1 90 7 9 9 7 90
Total: 224 = 25 x 7.
A.1.4Combine the positions of the first and last letters of each word by adding each pair them.
6 15 20 23 29 41 58 69 76 84 93 100 109 120 131 141 149 158 163 167 175 184 190 196 202 210 219 226 238 250 257 268 278 285 293 299 311 325 331 336 344 356 367 381 395 402 407 419 433 440 452 465 474 483 490 496 506 516 522 530 536 545 556 560 568 578 582 587 594 601 611 621
A.1.4.1Odd positioned from A.1.4:
6 20 29 58 76 93 109 131 149 163 175 190 202 219 238 257 278 293 311 331 344 367 395 407 433 452 474 490 506 522 536 556 568 582 594 611
Total: 11165 = 5 x 7 x 11 x 29. SF: 52 = 22 x 13.
A.1.4.1.1Odd valued from A.1.4.1:
29 93 109 131 149 163 175 219 257 293 311 331 367 395 407 433 611
Total: 4473 = 32 x 7 x 71. = 84 = 22 x 3 x 7 = 14 = 2 x 7
A.1.4.1.2Even valued A.1.4.1:
6 20 58 76 190 202 238 278 344 452 474 490 506 522 536 556 568 582 594
Total: 6692 = 22 x 7 x 239.
A.1.4.1.2.1Odd positioned from A.1.4.1.2:
6 58 190 238 344 474 506 536 568 594
Total: 3514 = 2 x 7 x 251. SF: 260 = 22 x 5 x 13.
A.1.4.1.2.2Even positioned from A.1.4.1.2:
20 76 202 278 452 490 522 556 582
Total: 3178 = 2 x 7 x 227.
A.1.4.1.2.2.1 Odd positioned from A.1.4.1.2.2:
20 202 452 522 582
Total: 1778 = 2 x 7 x 127.
A.1.4.1.2.2.2 Even positioned from A.1.4.1.2.2:
76 278 490 556
Total: 1400 = 23 x 52 x 7.
A.1.4.2.1Odd valued from A.1.4:
15 23 29 41 69 93 109 131 141 149 163 167 175 219 257 285 293 299 311 325 331 367 381 395 407 419 433 465 483 545 587 601 611 621
Total: 9940 = 22 x 5 x 7 x 71.
A.1.4.2.1.1Odd positioned from A.1.4.2.1:
15 29 69 109 141 163 175 257 293 311 331 381 407 433 483 587 611
Total: 4795 = 5 x 7 x 137.
A.1.4.2.1.2Even positioned from A.1.4.2.1:
23 41 93 131 149 167 219 285 299 325 367 395 419 465 545 601 621
Total: 5145 = 3 x 5 x 73.
A.1.4.2.2First digit odd from A.1.4:
15 58 76 93 100 109 120 131 141 149 158 163 167 175 184 190 196 311 325 331 336 344 356 367 381 395 506 516 522 530 536 545 556 560 568 578 582 587 594
Total: 12551 = 7 x 11 x 163.
A.1.4.2.2.1Odd positioned A.1.4.2.2:
15 76 100 120 141 158 167 184 196 325 336 356 381 506 522 536 556 568 582 594
Total: 6419 = 72 x 131.
A.1.4.2.2.1.1 Odd positioned from A.1.4.2.2.1:
15 100 141 167 196 336 381 522 556 582
Total: 2996 = 22 x 7 x 107.
A.1.4.2.2.1.2 Even positioned from A.1.4.2.2.1:
76 120 158 184 325 356 506 536 568 594
Total: 3423 = 3 x 7 x 163.
A.1.4.2.2.2Even positioned from A.1.4.2.2:
58 93 109 131 149 163 175 190 311 331 344 367 395 516 530 545 560 578 587
Total: 6132 = 22 x 3 x 7 x 73.
A.1.5Combine the values of the first and last letters of each word.
110 47 120 45 190 150 601 160 61 290 605 14 3 290 603 160 9 290 690 45 660 19 14 93 140 41 47 140 45 94 47 130 19 91 47 101 61 47 690 19 97 41 190 150 47 19 37 95 97 95 110 2 89 97 61 300 270 69 290 45 14 3 19 14 94 19 14 5 95 190 91 41
A.1.5.1Odd positioned from the list in A.1.5:
110 120 190 601 61 605 3 603 9 690 660 14 140 47 45 47 19 47 61 690 97 190 47 37 97 110 89 61 270 290 14 19 94 14 95 91
Total: 6377 = 7 x 911.
A.1.5.1.1First digit odd in A.1.5.1:
110 120 190 3 9 14 140 19 97 190 37 97 110 14 19 94 14 95 91
Total: 1463 = 7 x 11 x 19.
A.1.5.1.2First digit even in A.1.5.1:
601 61 605 603 690 660 47 45 47 47 61 690 47 89 61 270 290
Total: 4914 = 2 x 33 x 7 x 13.
A.1.5.2Even positioned from the list in A.1.5:
47 45 150 160 290 14 290 160 290 45 19 93 41 140 94 130 91 101 47 19 41 150 19 95 95 2 97 300 69 45 3 14 19 5 190 41
Total: 3451 = 7 x 17 x 29.
A.1.6First and last letters of odd positioned words:
a) 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 b) 30 60 100 1 60 5 2 3 8 600 60 5 100 7 5 7 10 7 60 c) 80 60 90 600 1 600 1 600 1 90 600 9 40 40 40 40 9 40 1 a) 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 b) 600 7 100 7 30 7 70 80 1 70 90 7 10 4 7 5 1 c) 90 90 90 40 7 90 40 9 60 200 200 7 9 90 7 90 90 a) Odd valued word position. b) First letter of word. c) Last letter of word.
Total of the first and last letters of each word (lines b + c): 6377 = 7 x 911.
Total of the first letter of each word (line b): 2226 = 2 x 3 x 7 x 53. SF: 65 = 5 x 13.
Total of the last letter of each word (line c): 4151 = 7 x 593. (This does not work for even positioned words.)
A.2What about all the other letters that are not first or last?
List of letter positions that are not first or last: 2 3 4 7 8 14 15 18 19 20 21 22 23 26 27 28 29 30 31 32 37 38 39 42 45 46 47 48 52 53 54 55 56 57 60 63 64 65 66 67 68 73 74 75 76 79 86 87 88 89 92 95 98 101 104 105 106 109 110 113 116 117 118 119 120 121 122 125 128 129 132 133 134 135 136 139 142 143 146 147 152 153 154 155 156 157 158 159 162 163 168 171 172 173 176 177 178 179 180 183 184 187 188 189 190 191 192 193 194 197 198 201 206 207 208 209 210 211 212 213 216 217 220 223 224 225 226 227 228 229 232 233 236 237 238 241 242 245 248 251 252 253 254 255 258 261 264 265 266 270 271 272 273 274 275 278 282 283 284 285 286 289 293 294 297 300 301 304 305 306 307 310 311
A.2.1Odd positioned from the list in A.2:
2 4 8 15 19 21 23 27 29 31 37 39 45 47 52 54 56 60 64 66 68 74 76 86 88 92 98 104 106 110 116 118 120 122 128 132 134 136 142 146 152 154 156 158 162 168 172 176 178 180 184 188 190 192 194 198 206 208 210 212 216 220 224 226 228 232 236 238 242 248 252 254 258 264 266 271 273 275 282 284 286 293 297 301 305 307 311
Total: 13622 = 2 x 72 x 139. (No corresponding match with the even positioned.)
A.2.2Letter positions where the first digit is odd (from A.2):
3 7 14 15 18 19 30 31 32 37 38 39 52 53 54 55 56 57 73 74 75 76 79 92 95 98 101 104 105 106 109 110 113 116 117 118 119 120 121 122 125 128 129 132 133 134 135 136 139 142 143 146 147 152 153 154 155 156 157 158 159 162 163 168 171 172 173 176 177 178 179 180 183 184 187 188 189 190 191 192 193 194 197 198 300 301 304 305 306 307 310 311
Total: 12495 = 3 x 5 x 72 x 17. (No correlating match with first digit being even.)
Quite often, there are no paired features because Mother
is only a part of the picture, and not the whole picture.
A.2.3What about the actual values of the letters that are not first or last? As the values are different from the positions, so are their features. (Note that the very first letter, and the very last letter that are not first or last, are both 7.)
List of letter values that are not first or last in a word. 7 100 7 30 600 60 9 200 80 1 40 60 9 3 9 1 90 8 7 100 40 60 30 60 20 8 5 100 1 90 9 20 5 9 60 5 40 7 8 7 100 5 20 7 30 60 200 80 1 40 1 70 7 60 80 100 60 30 600 60 70 9 60 200 90 9 60 60 30 9 7 30 5 80 60 1 300 5 30 9 300 5 9 20 7 30 1 100 30 600 1 30 5 9 300 9 5 30 5 60 9 300 5 9 20 5 100 1 9 30 600 1 9 90 5 40 5 3 10 7 30 1 9 5 9 80 1 90 30 60 20 20 200 90 1 30 1 70 60 60 40 7 80 60 100 60 90 100 9 1 90 9 20 5 9 1 200 40 1 30 9 1 60 50 9 60 200 9 600 40 1 30 7
A.2.3.1As the first and last letters of each word yielded multiples of 13, so do the letters that are not first or last. The values of the letters of God’s name in Hebrew point to the 10th, 5th, 6th, and 5th letters in the above list.
Position: 10 5 6 5 Letter: 1 600 60 600
Total: 1261 = 13 x 97.
A.2.3.2The values of the name can be used seven times to count through the list in A.2.3:
a) 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 b) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130 c) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130 d) 1 9 40 8 5 100 200 70 9 60 5 5 100 5 5 9 90 10 9 60 a) 10 5 6 5 10 5 6 5 (Value from the Name.) b) 140 145 151 156 166 171 177 9 (Count.) c) 140 145 151 156 166 171 4 9 (Adjusted for 173 letters.) d) 60 100 90 1 60 1 30 80 (Letter found.)
Total: 1222 = 2 x 13 x 47.
A.2.3.3The values of the name can be used thirteen times to count through the list in A.2.3:
a) 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 b) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130 c) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130 d) 1 9 40 8 5 100 200 70 9 60 5 5 100 5 5 9 90 10 9 60 a) 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 b) 140 145 151 156 166 171 177 9 19 24 30 35 45 50 56 61 71 76 82 87 c) 140 145 151 156 166 171 4 9 19 24 30 35 45 50 56 61 71 76 82 87 d) 60 100 90 1 60 1 30 80 7 60 90 60 30 40 100 70 7 1 5 1 a) 10 5 6 5 10 5 6 5 10 5 6 5 (Letter from the Name.) b) 97 102 108 113 123 128 134 139 149 154 160 165 (Count.) c) 97 102 108 113 123 128 134 139 149 154 160 165 (Adjusted to 173.) d) 5 300 1 9 9 90 90 60 9 5 30 9 (Letter found.)
Total: 2310 = 2 x 3 x 5 x 7 x 11. SF: 28 = 22 x 7. (This time the result is a multiple of 7.)
A.2.3.4From A.2.3, one could take every Nth letter in the list. Only ten values of N produce totals divisible by 7.
10 17 22 55 58 62 63 71 79 81
Total of N: 518 = 2 x 7 x 37.
A.2.3.5Of the letters that are not first or last in a word, take all those that are odd valued and in an odd position within the passage, and take all those that are even valued and in an even position within the passage. These are the letters that are purely odd or purely even.
Letters that are purely odd or even in position and value. a) 8 14 15 18 22 23 27 30 31 32 38 42 46 47 48 57 60 63 64 65 66 b) 600 60 9 200 60 9 9 8 7 100 60 60 8 5 100 9 60 5 40 7 8 a) 67 68 73 74 75 76 86 104 106 110 116 117 118 120 121 122 128 129 b) 7 100 5 20 7 30 200 80 60 600 70 9 60 90 9 60 30 9 a) 136 139 142 143 146 147 152 153 162 173 176 177 189 190 191 192 193 b) 60 1 300 5 30 9 300 5 30 9 300 9 9 20 5 100 1 a) 198 201 211 212 213 216 217 223 228 232 236 248 252 253 254 258 264 b) 600 1 3 10 7 30 1 5 30 20 200 60 40 7 80 100 90 a) 275 282 289 294 297 300 306 307 310 311 (Position.) b) 9 200 1 50 9 60 40 1 30 7 (Letter value.)
Total of these letters: 5754 = 2 x 3 x 7 x 137.
A.2.3.5.1From the positions of the letters in A.2.3.5, find all those where the first digit is an odd number:
14 15 18 30 31 32 38 57 73 74 75 76 104 106 110 116 117 118 120 121 122 128 129 136 139 142 143 146 147 152 153 162 173 176 177 189 190 191 192 193 198 300 306 307 310 311
Total: 6357 = 3 x 13 x 163.
A.2.3.5.2From the positions of the letters in A.2.3.5, find all those where the first digit is an even number:
8 22 23 27 42 46 47 48 60 63 64 65 66 67 68 86 201 211 212 213 216 217 223 228 232 236 248 252 253 254 258 264 275 282 289 294 297
Total: 5957 = 7 x 23 x 37.
A.2.3.5.2.1Having grouped the positions by their first digits, now group them by their last digits. All the positions in A.2.3.5.2 that are odd valued:
23 27 47 63 65 67 201 211 213 217 223 253 275 289 297
Total: 2471 = 7 x 353.
A.2.3.5.2.2All the positions in A.2.3.5.2 that are even valued:
8 22 42 46 48 60 64 66 68 86 212 216 228 232 236 248 252 254 258 264 282 294
Total: 3486 = 2 x 3 x 7 x 83.
A.2.3.5.3After examining the positions, now examine the letter values in A.2.3.5:
A.2.3.5.3.1Every other letter value in the list (odd positioned):
600 9 60 9 7 60 8 100 60 40 8 100 20 30 80 600 9 90 60 9 1 5 9 5 9 9 20 100 600 3 7 1 30 200 40 80 90 200 50 60 1 7
Total: 3486 = 2 x 3 x 7 x 83.
A.2.3.5.3.2Every other letter value in the list (even positioned):
60 200 9 8 100 60 5 9 5 7 7 5 7 200 60 70 60 9 30 60 300 30 300 30 300 9 5 1 1 10 30 5 20 60 7 100 9 1 9 40 30
Total: 2268 = 22 x 34 x 7.
A.2.3.5.4These letters that are not first or last in a word can also be further classified as purely odd/even in position and value.
A.2.3.5.4.1Of the letters that are not first or last in a word, select all those that are odd valued and in an odd position within the passage:
a) 15 23 27 31 47 57 63 65 67 73 75 117 121 129 139 143 147 153 173 b) 9 9 9 7 5 9 5 7 7 5 7 9 9 9 1 5 9 5 9 a) 177 189 191 193 201 211 213 217 223 253 275 289 297 307 311 b) 9 9 5 1 1 3 7 1 5 7 9 1 9 1 7
Total of these letters that are purely odd: 210 = 2 x 3 x 5 x 7.
A.2.3.5.4.2Of the letters that are not first or last in a word, select all those that are even valued and in an even position within the passage:
a) 8 14 18 22 30 32 38 42 46 48 60 64 66 68 74 76 86 104 106 110 116 118 b) 600 60 200 60 8 100 60 60 8 100 60 40 8 100 20 30 200 80 60 600 70 60 a) 120 122 128 136 142 146 152 162 176 190 192 198 212 216 228 232 236 b) 90 60 30 60 300 30 300 30 300 20 100 600 10 30 30 20 200 a) 248 252 254 258 264 282 294 300 306 310 (Position.) b) 60 40 80 100 90 200 50 60 40 30 (Letter value.)
Total of the letters that are purely even: 5544 = 23 x 32 x 7 x 11.
A.3Now we look at letters in general. Odd or even positioned letters produce no feature, but odd valued letters do.
List of odd valued letters: 7 7 7 5 9 1 9 1 3 9 1 7 1 5 5 7 1 9 5 9 1 3 5 7 7 5 7 1 5 1 1 9 5 9 3 7 1 7 5 9 9 7 9 7 5 1 9 1 5 7 9 1 5 9 7 1 1 7 1 9 7 5 9 1 9 5 5 9 5 9 5 1 9 7 1 9 7 5 9 5 5 3 7 7 1 5 9 5 9 1 1 1 1 9 7 1 1 7 9 5 9 7 1 9 5 9 1 1 9 7 1 9 1 9 7 1 5 9 1 9 1 1 7
A.3.1Total of the 123 odd valued letters: 651 = 3 x 7 x 31. (There is no correlating feature with even valued letters.)
A.3.1.1Odd positioned from the list of odd valued letters:
7 7 9 9 3 1 1 5 1 5 1 5 7 7 5 1 5 3 1 5 9 9 5 9 5 9 5 7 1 1 7 9 9 5 5 5 9 1 7 9 5 7 1 9 9 1 1 7 1 9 9 1 5 1 9 1 1 7 5 1 1 7
Total: 312 = 23 x 3 x 13.
A.3.2.1As there is only one God, letters with the value 1 appear 35 (5 x 7) times.
A.3.2.2Letters with the value 7 are associated with God and appear 26 (2 x 13) times.
A.3.3Twenty-eight (22 x 7) pairs of letters can be found positioned Nth and Nth last that together are divisible by 7.
a) Nth letter: 1 2 7 9 24 29 36 39 40 44 47 62 82 89 b) Value: 30 7 30 40 90 90 60 30 1 5 5 3 90 40 c) Nth last: 312 311 306 304 289 284 277 274 273 269 266 251 231 224 d) Value: 40 7 40 9 1 1 10 5 20 2 9 60 1 9 e) Sum: 70 14 70 49 91 91 70 35 21 7 14 63 91 49 a) 92 98 101 105 107 110 111 113 120 133 134 139 149 155 b) 1 7 60 100 40 600 40 60 90 30 5 1 100 20 c) 221 215 212 208 206 203 202 200 193 180 179 174 164 158 d) 90 7 10 5 9 30 9 10 1 5 30 90 40 1 e) 91 14 70 105 49 630 49 70 91 35 35 91 140 21
Sum of positions (lines a + c): 8764 = 22 x 7 x 313.
A.3.4.1Adding every Nth letter comes to a multiple of 7 when N is one of the following values:
12 13 24 25 31 34 39 43 51 54 94 96 101 105 106 110 114 142 143
The sum of these values of N: 1337 = 7 x 191.
A.3.4.2Adding every Nth letter produces a total divisible by 13 when N is one of these values:
20 34 42 80 91 93 107 118 125 126 130 133
Total of N: 1099 = 7 x 157.
A.3.5.1Fifty-seven letters have the values of prime numbers:
a) 2 4 6 11 26 31 44 47 50 51 56 62 63 65 67 73 75 83 94 97 98 108 b) 7 7 7 5 3 7 5 5 7 2 5 3 5 7 7 5 7 5 5 3 7 7 a) 115 127 132 134 143 145 153 156 161 170 172 178 180 188 191 196 b) 5 7 7 5 5 7 5 7 7 7 5 5 5 5 5 7 a) 204 205 208 210 211 213 215 219 223 240 253 263 268 269 274 280 b) 7 5 5 5 3 7 7 5 5 7 7 5 7 2 5 7 a) 291 296 311 (Position.) b) 7 5 7 (Letter value.)
The sum of the letter values has no feature, but the sum of their positions is 8407 (7 x 1201).
A.3.5.2Two hundred and fifty-five letter values are not prime numbers. This time the feature is in their values, and not in their positions.
a) 1 3 5 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 b) 30 100 80 30 600 40 60 40 100 60 9 90 60 200 80 1 40 60 9 90 a) 25 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 45 46 48 b) 1 9 1 90 8 100 600 100 60 60 40 60 30 1 90 60 200 20 8 100 a) 49 52 53 54 55 57 58 59 60 61 64 66 68 69 70 71 72 74 b) 600 1 90 9 20 9 1 90 60 200 40 8 100 600 100 60 8 20 a) 76 77 78 79 80 81 82 84 85 86 87 88 89 90 91 92 93 95 96 b) 30 1 90 60 200 600 90 40 60 200 80 1 40 600 10 1 9 70 9 a) 99 100 101 102 103 104 105 106 107 109 110 111 112 113 114 116 117 b) 90 100 60 40 1 80 100 60 40 30 600 40 100 60 40 70 9 a) 118 119 120 121 122 123 124 125 126 128 129 130 131 133 135 136 b) 60 200 90 9 60 40 4 60 90 30 9 40 90 30 80 60 a) 137 138 139 140 141 142 144 146 147 148 149 150 151 152 154 155 b) 40 10 1 9 1 300 90 30 9 40 100 1 60 300 9 20 a) 157 158 159 160 162 163 164 165 166 167 168 169 171 173 174 175 b) 30 1 100 1 30 600 40 600 90 10 1 9 30 9 90 1 a) 176 177 179 181 182 183 184 185 186 187 189 190 192 193 194 195 b) 300 9 30 40 100 60 9 90 60 300 9 20 100 1 9 90 a) 197 198 199 200 201 202 203 206 207 209 212 214 216 217 218 b) 30 600 40 10 1 9 30 9 90 40 10 90 30 1 90 a) 220 221 222 224 225 226 227 228 229 230 231 232 233 234 235 236 b) 9 90 70 9 80 1 90 30 60 40 1 20 20 1 80 200 a) 237 238 239 241 242 243 244 245 246 247 248 249 250 251 252 254 b) 90 1 9 30 1 90 1 70 60 100 60 200 70 60 40 80 a) 255 256 257 258 259 260 261 262 264 265 266 267 270 271 272 273 b) 60 200 60 100 9 90 60 200 90 100 9 40 1 90 9 20 a) 275 276 277 278 279 281 282 283 284 285 286 287 288 289 290 292 293 b) 9 1 10 1 9 4 200 40 1 30 9 90 10 1 9 4 60 a) 294 295 297 298 299 300 301 302 303 304 305 306 307 308 309 310 312 b) 50 1 9 90 100 60 200 90 1 9 600 40 1 90 1 30 40 a) Position. b) Letter value.
Total of the letters: 19866 = 2 x 3 x 7 x 11 x 43.
A.3.6Sixteen times we can find the middle N letters adding to a total divisible by 7.
300 298 288 280 276 250 208 182 178 170 144 114 74 72 56 50
Total of N: 2940 = 22 x 3 x 5 x 72. SF: 26 = 2 x 13.
The largest number of middle N letters is 300. The smallest just happens to be 50. The largest and smallest together: 350 = 2 x 52 x 7.
A.3.7When the letters are added up one by one, six times the cumulative total is divisible by 91 (7 x 13).
Letter position: 84 93 115 134 306 308 Letter value: 40 9 5 5 40 90 Cumulative total: 6643 7644 9191 10101 20020 20111
Sum of the positions: 1040 = 24 x 5 x 13. SF: 26 = 2 x 13.
Sum of the letters: 189 = 33 x 7.
Sum of the cumulative totals: 73710 = 2 x 34 x 5 x 7 x 13. SF: 39 = 3 x 13.
A.3.8Gather the letters into groups of 3, 39, 52 and calculate their totals. Add all groups together that have odd valued totals. Add all groups together that have even valued totals.
A.3.8.1.1Odd valued groups of 3:
30 7 100 600 7 2 30 5 80 90 7 30 100 9 40 60 5 40 1 90 60 1 9 1 9 90 70 90 9 20 100 60 9 40 7 8 300 5 90 1 90 30 5 9 1 80 1 40 7 100 600 40 100 1 60 40 1 7 4 200 60 9 90 30 1 90 60 300 5 20 20 1 40 1 30 1 3 9 90 5 40 30 1 100 1 9 7 9 90 10 1 90 8 1 40 600 90 10 1 30 1 90 1 9 7 7 100 600 1 80 100 9 90 60 1 70 60 1 5 9 1 90 60 60 40 7 20 5 100 7 80 60 200 90 1 200 5 20 9 60 40 7 30 600 9 90 60 9 600 40 8 5 100 40 90 7 40 10 1 200 5 90 30 7 40
Total of the odd valued groups: 10335 = 3 x 5 x 13 x 53.
A.3.8.1.2Even valued groups of 3:
7 80 7 3 7 90 5 9 90 70 60 40 30 600 40 100 60 40 1 300 9 200 60 100 90 60 200 30 600 40 5 30 5 7 2 1 100 60 60 100 60 40 40 100 60 10 1 9 40 60 30 5 70 9 300 5 9 4 60 50 1 90 9 60 200 90 1 9 90 90 100 60 20 5 9 4 60 90 9 30 7 1 90 1 200 3 5 7 30 9 5 9 90 100 60 8 60 40 10 5 40 5 5 20 7 7 30 9 3 10 7 60 200 600 9 20 7 1 90 5 60 200 80 1 7 30 5 9 80 10 1 9 600 40 600 80 200 90 5 70 9 9 7 30 100 60 200
Total of the even valued groups: 9854 = 2 x 13 x 379.
A.3.8.2.1Odd valued groups of 39:
60 200 90 9 60 40 4 60 90 7 30 9 40 90 7 30 5 80 60 40 10 1 9 1 300 5 90 7 30 9 40 100 1 60 300 5 9 20 7 7 30 600 40 10 1 9 30 7 5 9 90 5 40 5 3 10 7 90 7 30 1 90 5 9 90 70 5 9 80 1 90 30 60 40 1 20 20 1 5 9 1 10 1 9 7 4 200 40 1 30 9 90 10 1 9 7 4 60 50 1 5 9 90 100 60 200 90 1 9 600 40 1 90 1 30 7 40
Total: 5603 = 13 x 431.
A.3.8.2.2Even valued groups of 39:
30 7 100 7 80 7 30 600 40 60 5 40 100 60 9 90 60 200 80 1 40 60 9 90 1 3 9 1 90 8 7 100 600 100 60 60 40 60 30 1 90 60 200 5 20 8 5 100 600 7 2 1 90 9 20 5 9 1 90 60 200 3 5 40 7 8 7 100 600 100 60 8 5 20 7 30 1 90 60 200 600 90 5 40 60 200 80 1 40 600 10 1 9 5 70 9 3 7 90 100 60 40 1 80 100 60 40 7 30 600 40 100 60 40 5 70 9 30 1 100 1 7 30 600 40 600 90 10 1 9 7 30 5 9 90 1 300 9 5 30 5 40 100 60 9 90 60 300 5 9 20 5 100 1 9 90 80 200 90 1 9 7 30 1 90 1 70 60 100 60 200 70 60 40 7 80 60 200 60 100 9 90 60 200 5 90 100 9 40 7 2 1 90 9 20
Total: 14586 = 2 x 3 x 11 x 13 x 17.
A.3.8.3.1Odd valued groups of 52:
30 7 100 7 80 7 30 600 40 60 5 40 100 60 9 90 60 200 80 1 40 60 9 90 1 3 9 1 90 8 7 100 600 100 60 60 40 60 30 1 90 60 200 5 20 8 5 100 600 7 2 1 30 1 100 1 7 30 600 40 600 90 10 1 9 7 30 5 9 90 1 300 9 5 30 5 40 100 60 9 90 60 300 5 9 20 5 100 1 9 90 7 30 600 40 10 1 9 30 7 5 9 90 5 40 5 3 10 7 90 7 30 1 90 5 9 90 70 5 9 80 1 90 30 60 40 1 20 20 1 80 200 90 1 9 7 30 1 90 1 70 60 100 60 200 70 60 40 7 80 60 200 60 100 9 90
Total: 10413 = 32 x 13 x 89.
A.3.8.3.2Even valued groups of 52:
90 9 20 5 9 1 90 60 200 3 5 40 7 8 7 100 600 100 60 8 5 20 7 30 1 90 60 200 600 90 5 40 60 200 80 1 40 600 10 1 9 5 70 9 3 7 90 100 60 40 1 80 100 60 40 7 30 600 40 100 60 40 5 70 9 60 200 90 9 60 40 4 60 90 7 30 9 40 90 7 30 5 80 60 40 10 1 9 1 300 5 90 7 30 9 40 100 1 60 300 5 9 20 7 60 200 5 90 100 9 40 7 2 1 90 9 20 5 9 1 10 1 9 7 4 200 40 1 30 9 90 10 1 9 7 4 60 50 1 5 9 90 100 60 200 90 1 9 600 40 1 90 1 30 7 40
Total: 9776 = 24 x 13 x 47.
A.3.8.3.3The difference between A.3.8.3.1 and A.3.8.3.2 is 637 (72 x 13). Results divisible by 13 lead to a result divisible by 49.
The Words
Turning to the words...
A.3.1The very first word: 224 = 25 x 7.
A.3.2The very last word: 78 = 2 x 3 x 13. (Unfortunately, in this case first and last do not work together.)
A.4Every other word (odd positioned) comes to a total divisible by 7:
a) 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 b) 224 60 259 819 191 738 137 770 71 690 981 84 200 677 543 86 20 86 a) 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 b) 533 690 141 259 677 37 128 385 380 131 517 350 7 20 374 7 104 a) 71 (Word position.) b) 741 (Word value.)
Total: 12117 = 3 x 7 x 577. (There is no equivalent feature for the even positioned words, though there is a feature hidden in the sum of the factors: 8072 = 2 x 2 x 2 x 1009. SF: 1015 = 5 x 7 x 29.)
A.4.1From the list in A.4, take every other word (even positioned):
60 819 738 770 690 84 677 86 86 690 259 37 385 131 350 20 7 741
Total: 6630 = 2 x 3 x 5 x 13 x 17.
A.4.1.1From the list in A.4.1, find all those where the first digit is odd:
738 770 37 385 131 350 7 741
Total: 3159 = 35 x 13. SF: 28 = 22 x 7.
A.4.1.2From the list in A.4.1, find all those where the first digit is even:
60 819 690 84 677 86 86 690 259 20
Total: 3471 = 3 x 13 x 89. SF: 105 = 3 x 5 x 7.
A.5Exactly 13 paired groups of words, symmetrically positioned (Nth and Nth last) can be found that are together and individually divisible by 7.
a) 1 2 2 3 9 10 10 11 16 17 17 21 22 b) 26 13 14 32 27 20 22 23 18 29 30 22 31 c) 13608 6209 6909 15946 9632 6111 7539 7357 1589 7497 7910 1428 5208 a) First group starts Nth from the beginning. Second group starts Nth from the end. b) First group ends Nth from the beginning. Second group ends Nth from the end. c) Total of both groups.
Sum of the start and end positions (a + b): 448 = 26 x 7.
A.6Seventeen words are divisible by 7.
Position: 1 5 7 10 12 14 15 18 23 30 43 51 52 59 61 64 67 Word value: 224 259 819 350 7 350 770 350 84 154 259 385 42 350 7 7 7
Total of the positions: 532 = 22 x 7 x 19.
Total of the words: 4424 = 23 x 7 x 79.
A.7Highest valued word plus lowest valued word: 981 + 7 = 988
(22 x 13 x 19).
A.8There are precisely 49 unique word values.
A.8.1Thirteen unique word values appeared an even number of times, but there is no matching feature with word values that appeared an odd number of times. (This feature could have been stated differently as thirteen unique word values that appeared more than once as opposed to words that appeared only once.)
Appearances: 2 2 2 2 2 2 2 2 2 4 4 4 6 Word value: 200 137 104 690 259 45 160 128 86 7 350 677 20
Total of the unique word values: 2863 = 7 x 409. SF: 416 = 25 x 13.
A.9.1Twenty-seven words have the digit 0 in their values:
3 6 8 10 14 15 16 18 19 22 24 25 28 33 36 39 40 60 540 160 350 350 770 160 350 690 20 100 200 200 20 101 690 20 42 46 50 53 56 59 63 66 69 70 390 20 104 380 360 350 20 20 104 450
Total: 6979 = 7 x 997.
A.9.2Eighteen words have the digit 3:
10 11 13 14 18 29 32 34 37 42 47 51 53 55 56 59 62 65 350 738 137 350 350 543 312 396 533 390 37 385 380 131 360 350 137 374
Total of these words: 6253 = 132 x 37. SF: 63 = 32 x 7. SF: 13.
A.9.3Only three words have digits 13.
13 55 62 137 131 137
Total of their positions: 130 = 2 x 5 x 13.
A.9.4Only the seventh word is divisible by 7 and 13: 819 = 32 x 7 x 13. SF: 26 = 2 x 13.
A.9.4.1In this case, the seventh word is a unique position. All the positions before this point add up to 21 (3 x 7). All the positions after this point add up to 2600 (23 x 52 x 13).
A.9.4.2Since the total of the passage and the seventh word are both multiples of 13, this means subtracting the seventh word would still leave a number divisible by 13. It's factors are the surprise with extra levels of 13: 19370 = 2 x 5 x 13 x 149. SF: 169 = 132. SF: 26 = 2 x 13.
A.10The letter values of God’s name in Hebrew can be used 13 times to count through the word values.
a) 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 10 5 b) 10 15 21 26 36 41 47 52 62 67 73 6 16 21 27 32 42 47 c) 10 15 21 26 36 41 47 52 62 67 1 6 16 21 27 32 42 47 d) 350 770 981 281 101 141 37 42 137 7 224 540 160 981 677 312 390 37 a) 6 5 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 b) 53 58 68 73 7 12 22 27 33 38 48 53 59 64 74 7 13 18 c) 53 58 68 1 7 12 22 27 33 38 48 53 59 64 2 7 13 18 d) 380 169 115 224 819 7 20 677 20 677 264 380 350 7 677 819 137 350 a) 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 b) 28 33 39 44 54 59 65 70 80 13 19 24 34 39 45 50 c) 28 33 39 44 54 59 65 70 8 13 19 24 34 39 45 50 d) 200 20 690 599 128 350 374 450 160 137 690 100 396 690 677 104 a) Letter from The Name. b) Count. c) Count adjusted for 72 words. d) Word found.
Total: 18025 = 52 x 7 x 103.
A.10.1Note that the very first word found is divisible by 7, and the very last word found is divisible by 13.
A.10.2The list of words found divides perfectly into those that are odd valued.
981 281 101 141 37 137 7 981 677 37 169 115 819 7 677 677 7 677 819 137 599 137 677
Total: 8897 = 7 x 31 x 41.
A.10.3They also divide perfectly into those that are even valued.
350 770 42 224 540 160 312 390 380 224 20 20 264 380 350 350 200 20 690 128 350 374 450 160 690 100 396 690 104
Total: 9128 = 23 x 7 x 163.
A.10.4The difference between the odd valued words and even valued words: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.
A.10.5From the list in A.10.3, extract every other (odd positioned):
350 42 540 312 380 20 264 350 200 690 350 450 690 396 104
Total: 5138 = 2 x 7 x 367.
A.10.6From the list in A.10.3, extract the even positioned:
770 224 160 390 224 20 380 350 20 128 374 160 100 690
Total: 3990 = 2 x 3 x 5 x 7 x 19.
A.10.7If the odd positioned were again extracted from A.10.6's results, the result is a multiple of 13.
770 160 224 380 20 374 100
Total: 2028 = 22 x 3 x 132.
Support For God As Mother
Is there any other support God can also be our Mother? Since the text of The Lord's Prayer in the GNS has a feature hidden in the sum of the factors, which is a level removed, perhaps this is a clue for seeking support one language removed from the Greek. The only ancient language that was contemporary with Koine Greek, still in use today and extant beyond its own borders is Chinese. And providentially, the Chinese Union Version (CUV) 4 of the Bible has numeric features when this experiment is applied to it.
(For the conversion of Chinese characters to numbers, see this.)
Matthew 6:9-13 我們在天上的父、願人都尊你的名為聖。 願你的國降臨。願你的旨意行在地上、如同行在天上。 我們日用的飲食、今日賜給我們。 免我們的債、如同我們免了人的債。 不叫我們遇見試探.救我們脫離兇惡。〔或作脫離惡者〕因為國度、權柄、榮耀、 全是你的直到永遠、阿們 〔Bracketed text is an alternate reading which is removed before numeric conversion.〕
Like the Greek of the GNS, the Chinese translation has no numeric features as it stands: 219137 = 419 x 523.
我 | 們 | 在 | 天 | 上 | 的 | 母 | 願 | 人 | 都 | 尊 | 你 | 的 | 名 | 為 | 聖 | 願 | 你 | 的 | 國 |
Our | in heaven above | Mother | let people | revere | your name | as holy | let your Kindom | ||||||||||||
降 | 臨 | 願 | 你 | 的 | 旨 | 意 | 行 | 在 | 地 | 上 | 如 | 同 | 行 | 在 | 天 | 上 | 我 | 們 | 日 |
come | let | your will | be done on earth | as with | as in heaven | Our | daily | ||||||||||||
用 | 的 | 飲 | 食 | 今 | 日 | 賜 | 給 | 我 | 們 | 免 | 我 | 們 | 的 | 債 | 如 | 同 | 我 | 們 | 免 |
use | food | today | give for | us | cancel | our debts | as | we | canceled | ||||||||||
了 | 人 | 的 | 債 | 不 | 叫 | 我 | 們 | 遇 | 見 | 試 | 探 | 救 | 我 | 們 | 脫 | 離 | 兇 | 惡 | 因 |
people's debts | not | call | us | to meet | try out temptation | beg ask | us | cut off leave | evil | because | |||||||||
為 | 國 | 度 | 權 | 柄 | 榮 | 耀 | 全 | 是 | 你 | 的 | 直 | 到 | 永 | 遠 | 阿 | 們 | |||
for | Kingdom | authority | glory | all is | yours | straight through | eternity | Amen. |
我 | 們 | 在 | 天 | 上 | 的 | 母 | 願 | 人 | 都 | 尊 | 你 | 的 | 名 | 為 |
923 | 2445 | 547 | 146 | 24 | 1659 | 385 | 8193 | 9 | 3940 | 4109 | 770 | 1659 | 536 | 2161 |
聖 | 願 | 你 | 的 | 國 | 降 | 臨 | 願 | 你 | 的 | 旨 | 意 | 行 | 在 | 地 |
5173 | 8193 | 770 | 1659 | 3243 | 2417 | 7484 | 8193 | 770 | 1659 | 623 | 4879 | 679 | 547 | 546 |
上 | 如 | 同 | 行 | 在 | 天 | 上 | 我 | 們 | 日 | 用 | 的 | 飲 | 食 | 今 |
24 | 561 | 529 | 679 | 547 | 146 | 24 | 923 | 2445 | 170 | 399 | 1659 | 4733 | 2426 | 118 |
日 | 賜 | 給 | 我 | 們 | 免 | 我 | 們 | 的 | 債 | 如 | 同 | 我 | 們 | 免 |
170 | 6568 | 4474 | 923 | 2445 | 780 | 923 | 2445 | 1659 | 4742 | 561 | 529 | 923 | 2445 | 780 |
了 | 人 | 的 | 債 | 不 | 叫 | 我 | 們 | 遇 | 見 | 試 | 探 | 救 | 我 | 們 |
7 | 9 | 1659 | 4742 | 100 | 308 | 923 | 2445 | 5387 | 1124 | 5270 | 3445 | 3472 | 923 | 2445 |
脫 | 離 | 兇 | 惡 | 因 | 為 | 國 | 度 | 權 | 柄 | 榮 | 耀 | 全 | 是 | 你 |
3751 | 7864 | 444 | 4132 | 542 | 2161 | 3243 | 1944 | 8503 | 2081 | 5666 | 8292 | 447 | 2064 | 770 |
的 | 直 | 到 | 永 | 遠 | 阿 | 們 | ||||||||
1659 | 1662 | 1197 | 388 | 6008 | 1725 | 2445 |
BNumeric total: 219338 = 2 x 7 x 15667.
B.1Odd positioned characters:
923 547 24 385 9 4109 1659 2161 8193 1659 2417 8193 1659 4879 547 24 529 547 24 2445 399 4733 118 6568 923 780 2445 4742 529 2445 7 1659 100 923 5387 5270 3472 2445 7864 4132 2161 1944 2081 8292 2064 1659 1197 6008 2445
Total: 123725 = 52 x 72 x 101. (Taking every other character produces a total that is divisible by 7 twice. This is rare.)
B.2Even positioned characters:
2445 146 1659 8193 3940 770 536 5173 770 3243 7484 770 623 679 546 561 679 146 923 170 1659 2426 170 4474 2445 923 1659 561 923 780 9 4742 308 2445 1124 3445 923 3751 444 542 3243 8503 5666 447 770 1662 388 1725
Total: 95613 = 3 x 7 x 29 x 157. SF: 196 = 22 x 72.
B.3The difference between the odd and even positioned characters: 123725 − 95613 = 28112 = 24 x 7 x 251. SF: 266 = 2 x 7 x 19. SF: 28 = 22 x 7. SF: 11. There are three levels of factors! Everything ends with the number 11, a number emphasizing the one God who is Alpha and Omega.
B.4Characters divisible by 7:
a) 6 7 11 12 13 16 18 19 24 25 26 27 28 30 34 b) 1659 385 4109 770 1659 5173 770 1659 770 1659 623 4879 679 546 679 a) 41 42 54 61 63 66 73 90 91 93 (Character position.) b) 399 1659 1659 7 1659 308 3472 770 1659 1197 (Character value.)
Total of these characters: 38808 = 23 x 32 x 72 x 11. (Extra feature of 7.)
B.5Characters divisible by 13:
Position: 1 30 38 49 51 52 58 60 67 72 74 Value: 923 546 923 923 780 923 923 780 923 3445 923
Total of these characters: 12012 = 22 x 3 x 7 x 11 x 13. (Extra feature of 7.)
B.6The sum of the middle N characters are divisible by 7 when N is one of the following. Curiously there are only seven values for N where this is true.
87 79 71 65 51 45 5
Total of N: 403 = 13 x 31. (The factors are a neat reversal of the digits one and three.)
B.7When the characters are added one by one, the only time the cumulative total is divisible by both 7 and 13, is at the 25th character 的, a character indicating the possessive. It has a value of 1659 (3 x 7 x 79). At this point, the cumulative total is 67067 = 7 x 11 x 13 x 67. SF: 98 = 2 x 72.
B.7.1Everything before this character comes to a total of 65408 (27 x 7 x 73).
B.7.2Everything after this character comes to a total of 152271 (32 x 7 x 2417).
B.7.3Thus everything besides the 25th character is 217679 (7 x 112 x 257.
SF: 286 = 2 x 11 x 13. SF: 26 = 2 x 13).
B.7.4.1Curiously, the character before the 25th has a value of 770.
B.7.4.2The character after the 25th has a value of 623 = 7 x 89.
B.7.4.3The difference between the characters before and after the 25th:
147 =3 x 72.
One could go on searching for more numeric features, but this is a translation and not the original. These features are sufficient to show 母 (Mother in Chinese) produces some features just like μήτηρ (Mother in Greek).
Retaining The Original Text: God As Father
No one should change the original text of the Bible even though there is a difference between the GNT and GNS (Revelation 22:18-19). What is presented here is only an experiment showing that God can also be our Mother. It is no reason to amend the original text, especially when there is supporting evidence for retaining God as our Father.
Formal | Informal | Child's Term |
---|---|---|
Father | Papa | Daddy |
Mother | Mama | Mommy |
父 (Fu) | 爸爸 (Baba) | 爹 (De) or 爹爹 (Dede) |
母 (Mou) | 媽媽 (Mama) | 娘 (Leung) |
Providentially, 父 (Father) in the CUV's version of The Lord's Prayer can be replaced by other words besides 母 (Mother).
Replacing 父 with the informal term 爸爸 (Baba) produces a total of 222235 (5 x 132 x 263. SF: 294 = 2 x 3 x 72). Two factors of 13 tie this in with God’s name in Hebrew. Two factors of 7 show perfection.
Substituting 父 with the child's term 爹 (De) produces a total of 221788 = 22 x 7 x 892. SF: 189 = 33 x 7. The odd positioned characters: 126175 = 52 x 72 x 103. The even positioned characters: 95613 = 3 x 7 x 29 x 157. SF: 196 = 22 x 72. The difference between these totals: 30562 = 2 x 7 x 37 x 59. SF: 105 = 3 x 5 x 7.
The child's term 爹爹 (Dede) also works: 224623 = 7 x 32089.
Curiously, not one of the other Chinese terms for Mother produces anything. The Greek word μήτηρ (Mother) worked so well one would think more than one (媽, 媽媽, 娘) would work. But they don't. Could it be God knew women would be slighted in patriarchal societies and decided to balance it out by having the formal (more respected) term 母 succeed while the others do not?
One thing is certain, more Chinese terms for Father succeed than those for Mother. Thus the numbers appear to favour God as Father more than God as Mother. This is why the original Greek text should not be changed. But it isn't just God as Father, but God as Baba (informal), and God as De (child's term) and Dede (Daddy). God is not a formal, stern, strict Father standing aloof, but the close comforting Baba and Daddy who is as close as a Mother is to her child.
Conclusion
Jesus taught his disciples to know God as their Father. The numeric features for The Lord's Prayer in the GNT, even though it ends abruptly, show God wants to be known as our Father. This is supported by the complete verses of Matthew 6:9-13 in the GNS. A simple expansion of our understanding of God as Father and Mother reveals astonishing numeric features in the specific part of The Lord's Prayer in the GNS. Finally, in the Chinese, we see God much more intimately, as a Father watching over His young children.5 This is very comforting in these dark times.
Notes
- The Greek texts in this study are from Bibleworks 3.0 by Hermeneutika, Michael S. Bushell, 1995, translated into HTML entities. Vowels and punctuation have been removed. The GNT is The Nestle-Aland 27th Edition of the Greek New Testament, Copyright © 1966, 1968, 1975, 1993-1994 United Bible Societies.
The GNS is the F.H.A. Scrivener 1881 Theodore Beza 1598 Textus Receptus Greek New Testament, ASCII edition Copyright 1992 by Dr. Kirk D. DiVietro, Grace Baptist Church. - English interlinear is from The New Testament in the Original Greek revised by Brooke Foss Westcott D.D., and Fenton John Anthony Hort D.D., 1948 reprint.
- Unless otherwise indicated all scripture quotations are from the Revised Standard Version, Thomas Nelson, 1972, New York.
- For this experiment, text from the Chinese Union Version of the Bible is used because there are editions of this Bible with the proper Chinese term for the one supreme God: 上帝. Most translators avoid it in favour of 神 because 上帝 is uniquely singular and clashes with the theory of the Trinity. Unfortunately, 神 is a term for interior deities, and is never used for the one supreme God. The Catholic Chinese Bible predates the CUV, but also avoids 上帝 and uses 天主.
The text of the CUV was obtained from Wordproject®, a registered name of the International Biblical Association, a non-profit organization registered in Macau, China. (Accessed: May 8, 2022.) - Even if the Gospel writer Matthew thought about God as
Mother
there was no way for him to writeFather/Mother
orFather and Mother
without giving the wrong impression of God as two beings. He would have to make a choice of one or the other, or spend much more parchment and ink explaining the concept.