Bible Numbers 2.0

God: Our Father And Mother

In these dark days with the lies of the Anti-Christ smothering the world (Psalm 2:1-2; John 8:44; Thessalonians 2:11), the famines, wars, and earthquakes Jesus foretold, and the troubles mentioned in Revelation, it is good to take hold of the God of all comfort (2 Corinthians 1:3-4). When we think of the God of all comfort, we remember He is our Father in heaven (Matthew 6:9-13; Mark 14:36; Romans 8:15; Galatians 4:6). And because God created all things, including Eve the mother of all living (Genesis 3:20), in one sense God is also our Mother. There is great comfort in knowing God as Father and Mother. There is even greater comfort in knowing God as Father and Mother from a child's perspective. God will answer His children (Matthew 19:14). This numeric experiment shows God as Father and Mother. (Hopefully women will take comfort in this fact and see God in a new light.)

This numeric experiment begins with The Lord's Prayer (Matthew 6:9-13). Jesus taught his disciples to call God Our Father.

There are two versions of The Lord's Prayer. The GNT has the older and shorter version. The GNS has the longer version, which includes, For thine is the kingdom, the power and the glory, for ever. Amen. These two versions are two different possibilities, and it is in other possibilities that the experiment uncovers new numeric features.

GNT Version

a) 1                    2                 3     4        5              6                          7                         8          9
b) 256                  677               60    45       259            540                        819                       160        191
c) 1   2  3    4  5     6   7   8   9     10    11 12    13  14 5 16    17 18  19 20 21 22 3 24    25 6 7 8 29 30 1 32  33   34   35    36  37  38 39 40
d) 70- 1- 100- 5- 80    7-  30- 600-40    60    5- 40    100-60-9-90    60-200-80-1- 40-60-9-90    1- 3-9-1-90-8- 7-100-600  100- 60    60- 40- 60-30-1
e) Πατερ                ημων              ο     εν       τοις           ουρανοις                   αγιασθητω                 το         ονομα
f) Father               of us             the   in       the            heavens                    let be sanctified         the        name

a) 10             11                        12    13                            14           15                              16         17
b) 350            738                       7     137                           350          770                             160        71
c) 41  42  43     44  45  6  7  48   49     50    51  2  53  4  55  6  7  58    59  60  61   62  3  64  5  6  7  68   69     70   71    72 3  74 5 76 77
d) 90- 60- 200    5-  20- 8- 5- 100- 600    7     2-  1- 90- 9- 20- 5- 9- 1     90- 60- 200  3-  5- 40- 7- 8- 7- 100- 600    100- 60    8- 5- 20-7-30-1
e) σου            ελθετω                    η     βασιλεια                      σου          γενηθητω                        το         θελημα
f) of you         let come                  the   kingdom                       of you       let take place                  the        will

a) 18           19        20       21                  22         23          24         25            26                   27                28
b) 350          690       45       981                 20         84          100        200           281                  677               200
c) 78 79 80     81  82    83 84    85 86  87 8 89 90   91 2 93    94 95 96    97 8 99    100 01 102    103 04 105 06 107    108 09 110 111    112 13 114
d) 90-60-200    600-90    5- 40    60-200-80-1-40-600  10-1-9     5- 70-9     3- 7-90    100-60-40     1-  80-100-60-40     7-  30-600 40     100-60-40
e) σου          ως        εν       ουρανω              και        επι         γης        Τον           αρτον                ημων              τον
f) of you       as        in       heaven              also       upon        earth      The           bread                of us             the

a) 29                                    30             31                32                         33         34               35              36
b) 543                                   154            86                312                        20         396              86              101
c) 115 16  7  18  119  120 1  22  123    124 25  126    127 28  9  130    131 2  33  4  35 36 137    138 9 140  141 142 3 144    145 46 7 148    149 150
d) 5-  70- 9- 60- 200- 90- 9- 60- 40     4-  60- 90     7-  30- 9- 40     90- 7- 30- 5- 80-60-40     10- 1-9    1-  300-5-90     7-  30-9-40     100-1
e) επιουσιον                             δος            ημιν              σημερον                    και        αφες             ημιν            τα
f) for (the day) being                   give           to us             today                      and        let go off       to us           the

a) 37                                       38                  39         40            41                   42                            43
b) 533                                      677                 690        20            141                  394                           259
c) 151 152  3  4  55  6  57  8  159  160    161 62  163  164    165  166   167 8  169    170 71  2  3  174    175 176  7 78  9 180 1 182    183 84 5 186
d) 60- 300- 5- 9- 20- 7- 30- 1- 100- 1      7-  30- 600- 40     600- 90    10- 1- 9      7-  30- 5- 9- 90     1-  300- 7-10- 1-30- 5-40     100-60-9-90
e) οφειληματα                               ημων                ως         και           ημεις                αφηκαμεν                      τοις
f) debts                                    of us               as         also          we                   have let go off               to the

a) 44                                     45                  46            47         48                                    49                50
b) 599                                    677                 20            37         264                                   128               104
c) 187 188  9  190 91  2  193  4  5  196  197 98  199  200    201 2  203    204 205    206 7  08  9  210 1  2  13  4  215    216 17  8  219    220 1 222
d) 60- 300- 5- 9-  20- 5- 100- 1- 9- 90   7-  30- 600- 40     10- 1- 9      30- 7      5-  9- 90- 5- 40- 5- 3- 10- 7- 90     7-  30- 1- 90     5-  9-90
e) οφειλεταις                             ημων                και           μη         εισενεγκης                            ημας              εις
f) debtors                                of us               and           not        you should bring                      us                into

a) 51                                  52                 53                     54                55           56              57
b) 385                                 42                 380                    128               131          360             517
c) 223 4  5  26  7  28  29  230 231    232 33  34  235    236 237  38  9  240    241 42  3  244    245 46  247  248  49  250    251 52  53  4  55 56 257
d) 70- 5- 9- 80- 1- 90- 30- 60- 40     1-  20- 20- 1      80- 200- 90- 1- 9      7-  30- 1- 90     1-  70- 60   100- 60- 200    70- 60- 40- 7- 80-60-200
e) πειρασμον                           αλλα               ρυσαι                  ημας              απο          του             πονηρου
f) temptation                          but                rescue                 us                from         the             wicked (one)

a) Word position.
b) Word value.
c) Letter position.
d) Letter value.
e) Greek.1.
f) English.2

1The numeric total of the GNT's Lord's Prayer: 17402 = 2 x 7 x 11 x 113. SF: 133 = 7 x 19. SF: 26 = 2 x 13. Two levels of factors are multiples of seven, and the third level is the number associated with God’s name in Hebrew.

List of words:
256 677 60 45 259 540 819 160 191 350 738 7 137 350 770 160 71 350 
690 45 981 20 84 100 200 281 677 200 543 154 86 312 20 396 86 101 533 
677 690 20 141 394 259 599 677 20 37 264 128 104 385 42 380 128 131 
360 517

1.1Divide the words into two groups using the first digit of their sums.

1.1.1Words where the first digit is odd:

540 160 191 350 738 7 137 350 770 160 71 350 981 100 543 154 312 396 
101 533 141 394 599 37 128 104 385 380 128 131 360 517

Total: 10248 = 23 x 3 x 7 x 61. SF: 77 = 7 x 11.

1.1.1.1Words where the first digit is odd, divide perfectly into two sub-groups. From the list in 1.1.1, take the odd positioned:

540 191 738 137 770 71 981 543 312 101 141 599 128 385 128 360

Total: 6125 = 53 x 72.

1.1.1.1.1From the list in 1.1.1.1, again take the odd positioned:

540 738 770 981 312 141 128 128

Total: 3738 = 2 x 3 x 7 x 89.

1.1.1.1.1.1For a third time, the odd positioned from 1.1.1.1.1:

540 770 312 128

Total: 1750 = 2 x 53 x 7.

1.1.1.1.1.2Even positioned from 1.1.1.1.1:

738 981 141 128

Total: 1988 = 22 x 7 x 71.

1.1.1.1.2And from the list in 1.1.1.1, take the even positioned:

191 137 71 543 101 599 385 360

Total: 2387 = 7 x 11 x 31. SF: 49 = 72. SF: 14 = 2 x 7.

1.1.1.2From the list in 1.1.1, take the even positioned:

160 350 7 350 160 350 100 154 396 533 394 37 104 380 131 517

Total: 4123 = 7 x 19 x 31.

1.1.1.2.1From the list in 1.1.1.2, take those that are odd valued:

7 533 37 131 517

Total: 1225 = 52 x 72.

1.1.1.2.2From the list in 1.1.1.2, take those that are even valued:

160 350 350 160 350 100 154 396 394 104 380

Total: 2898 = 2 x 32 x 7 x 23.

1.1.2Words where the first digit is even:

256 677 60 45 259 819 690 45 20 84 200 281 677 200 86 20 86 677 690 
20 259 677 20 264 42

Total: 7154 = 2 x 72 x 73.

Here we see the Father's care is deep with levels upon levels. In some places it is six levels deep!

1.2The difference between the words with a first digit that is odd or even reveals the number 13, which is associated with God's name in Hebrew:
3094 = 2 x 7 x 13 x 17. SF: 39 = 3 x 13.

1.3The 57 words can be placed in a 19 x 3 rectangle for another Revelation 1:8 complementary opposite: outside and inside.

Words In A 19 x 3 Rectangle
2566776045259540819160191350738713735077016071350690
459812084100200281677200543154863122039686101533677
69020141394259599677203726412810438542380128131360517

1.3.1The outside, or perimeter, of the rectangle: 12628 = 22 x 7 x 11 x 41. SF: 63 = 32 x 7. SF: 13.

1.3.2The inside of the rectangle: 4774 = 2 x 7 x 11 x 31. (The number is beautifully symmetrical.)

1.3.3Normally, out of 19 random numbers, one or two might be divisible by 13. Out of 19 columns, three (3, 6, and 10) are divisible by 13.

1.3.4Out of 3 random numbers, it is unlikely any one of them would be divisible by 13, but in the very first row, the total is 6630 (2 x 3 x 5 x 13 x 17).

1.3.5The three columns divisible by 13 together have a total of 2717. The one row has a total of 6630. As rows and columns are different, take the difference between the row and columns: 3913 = 7 x 13 x 43. SF: 63 = 3 x 3 x 7. SF: 13.

1.3.6Beginning at the upper left corner of the table, one could add the second word of the second row, and the third word of the third row together. Then one could add the fourth word of the second row and zigzag through the table. The table just so happens to be of the right dimensions so the zigzag ends at the lower right corner. Total: 5967 = 33 x 13 x 17. SF: 39 = 3 x 13.

It would appear the words of The Lord's Prayer are marvellously constructed on the principles of Revelation 1:8.

2God said He is the Alpha and the Omega (Revelation 1:8). This is partly seen in the Lord's Prayer with the first letter of each word.

a) 1  6 10 11 13  17 25 34  36 41 44 50 51 59 62 70  72 78 81  83 85
b) 70 7 60 5  100 60 1  100 60 90 5  7  2  90 3  100 8  90 600 5  60

a) 91 94 97 100 103 108 112 115 124 127 131 138 141 145 149 151 161
b) 10 5  3  100 1   7   100 5   4   7   90  10  1   7   100 60  7

a) 165 167 170 175 183 187 197 201 204 206 216 220 223 232 236 241
b) 600 10  7   1   100 60  7   10  30  5   7   5   70  1   80  7

a) 245 248 251   (Position of the first letter of each word.)
b) 1   100 70    (Letter value.)

Total of these letters: 3211 = 132 x 19.
The total of the positions of these letters is 6983, a prime number. There's not much to say about this prime number except that the 6983rd Chinese character in Big5 is 珙. The meaning of this character: a gem.

There is no equivalent feature with the last letter of each word. The Lord's Prayer is not a description of God, nor a spiritual lesson about God, but a lesson about prayer. Thus it should be no surprise the last letter of each word does not produce anything. Or perhaps it is because God does not want us to think we are last on His list of priorities.

2.1The total of the last letter of each word: 5654. The difference between first and last: 5654 − 3211 = 2443 (7 x 349).

2.2Note that the very first letter of the first word is 70, and note that the very first letter of the last word is also 70.

2.3From the list of the first letters of each word, extract every other (the odd positioned):

70 60 100 1 60 5 2 3 8 600 60 5 100 7 5 7 10 7 60 600 7 100 7 30 7
70 80 1 70

Total: 2142 = 2 x 32 x 7 x 17. (Once again there is no corresponding feature with the even positioned.)

2.4Features 2 and 2.3 are both features of odd values. What about even values? There are two of them as well.

2.4.1From the positions of the first letter of each word, select those that are even valued.

6 10 34 36 44 50 62 70 72 78 94 100 108 112 124 138 170 204 206 216
220 232 236 248

Total: 2870 = 2 x 5 x 7 x 41.

2.4.2Positions where the first digit is even:

6 25 41 44 62 81 83 85 201 204 206 216 220 223 232 236 241 245 248 251

Total: 3150 = 2 x 32 x 52 x 7.

2.5Divide the first letters of each word into two groups, odd and even.

2.5.1Odd valued of the first letter of each word:

7 5 1 5 7 3 5 5 3 1 7 5 7 1 7 7 7 1 7 5 7 5 1 7 1

Total: 117 = 32 x 13.

2.5.2Even valued of the first letter of each word:

70 60 100 60 100 60 90 2 90 100 8 90 600 60 10 100 100 4 90 10 100 60 
600 10 100 60 10 30 70 80 100 70

Total: 3094 = 2 x 7 x 13 x 17. SF: 39 = 3 x 13.

2.6First and last letters of odd positioned words:

a) 1  3  5   7   9  11  13 15  17 19  21  23 25  27 29 31 33 35 37
b) 30 60 100 1   60 5   2  3   8  600 60  5  100 7  5  7  10 7  60
c) 80 60 90  600 1  600 1  600 1  90  600 9  40  40 40 40 9  40 1

a) 39  41 43  45 47 49 51 53 55 57  59  61 63 65 67 69 71
b) 600 7  100 7  30 7  70 80 1  70  90  7  10 4  7  5  1
c) 90  90 90  40 7  90 40 9  60 200 200 7  9  90 7  90 90

a) Odd valued word position.
b) First letter of word.
c) Last letter of word.

Total of the first and last letters of each word (lines b + c): 6377 = 7 x 911.
Total of the first letters of each word (line b): 2226 = 2 x 3 x 7 x 53.
SF: 65 = 5 x 13.
Total of the last letters of each word (line c): 4151 = 7 x 593. (This does not work for even positioned words.)

2.6Examining the first and last letters of each word leaves out quite a number of the other letters. God does not forget them. This is great comfort for the vast majority of us who are neither first nor last.

2.6.1Positions of letters that are not first or last:

2 3 4 7 8 14 15 18 19 20 21 22 23 26 27 28 29 30 31 32 37 38 39 42 45
46 47 48 52 53 54 55 56 57 60 63 64 65 66 67 68 73 74 75 76 79 86 87
88 89 92 95 98 101 104 105 106 109 110 113 116 117 118 119 120 121
122 125 128 129 132 133 134 135 136 139 142 143 146 147 152 153 154
155 156 157 158 159 162 163 168 171 172 173 176 177 178 179 180 181
184 185 188 189 190 191 192 193 194 195 198 199 202 207 208 209 210
211 212 213 214 217 218 221 224 225 226 227 228 229 230 233 234 237
238 239 242 243 246 249 252 253 254 255 256

Total of the positions: 19047 = 3 x 7 x 907. SF: 917 = 7 x 131.

2.6.1.1From the list in 2.6.1 take the odd valued positions:

3 7 15 19 21 23 27 29 31 37 39 45 47 53 55 57 63 65 67 73 75 79 87 89
95 101 105 109 113 117 119 121 125 129 133 135 139 143 147 153 155
157 159 163 171 173 177 179 181 185 189 191 193 195 199 207 209 211
213 217 221 225 227 229 233 237 239 243 249 253 255

Total: 9425 = 52 x 13 x 29. SF: 52 = 2 x 2 x 13.

2.6.1.2From the list in 2.6.1 take only those whose first digit is odd:

3 7 14 15 18 19 30 31 32 37 38 39 52 53 54 55 56 57 73 74 75 76 79 92
95 98 101 104 105 106 109 110 113 116 117 118 119 120 121 122 125 128
129 132 133 134 135 136 139 142 143 146 147 152 153 154 155 156 157
158 159 162 163 168 171 172 173 176 177 178 179 180 181 184 185 188
189 190 191 192 193 194 195 198 199

Total: 10244 = 22 x 13 x 197.

2.6.2What about the values of letters that are not first or last?

1 100 5 30 600 60 9 200 80 1 40 60 9 3 9 1 90 8 7 100 40 60 30 60 20
8 5 100 1 90 9 20 5 9 60 5 40 7 8 7 100 5 20 7 30 60 200 80 1 40 1 70
7 60 80 100 60 30 600 60 70 9 60 200 90 9 60 60 30 9 7 30 5 80 60 1
300 5 30 9 300 5 9 20 7 30 1 100 30 600 1 30 5 9 300 7 10 1 30 5 60 9
300 5 9 20 5 100 1 9 30 600 1 9 90 5 40 5 3 10 7 30 1 9 5 9 80 1 90
30 60 20 20 200 90 1 30 1 70 60 60 40 7 80 60

The total is 8604, which has no numeric feature, until one looks further. Take the even positioned of values of letters that are not first or last:

100 30 60 200 1 60 3 1 8 100 60 60 8 100 90 20 9 5 7 7 5 7 60 80 40
70 60 100 30 60 9 200 9 60 9 30 80 1 5 9 5 20 30 100 600 30 9 7 1 5 9
5 20 100 9 600 9 5 5 10 30 9 9 1 30 20 200 1 1 60 40 80

Total: 3913 = 7 x 13 x 43. SF: 63 = 3 x 3 x 7. SF: 13. (It is as if the 7 and 13 and the next two levels of factors were to compensate for the initial lack of features in the values, and for the fact that the odd positioned values have no feature.)

2.6.2.1From the list of even positioned values in 2.6.2, select those where the first digit is odd:

100 30 1 3 1 100 100 90 9 5 7 7 5 7 70 100 30 9 9 9 30 1 5 9 5 30 100
30 9 7 1 5 9 5 100 9 9 5 5 10 30 9 9 1 30 1 1

Total: 1157 = 13 x 89.

2.6.2.2From the list of even positioned values in 2.6.2, select those where the first digit is even:

60 200 60 8 60 60 8 20 60 80 40 60 60 200 60 80 20 600 20 600 20 200
60 40 80

Total: 2756 = 22 x 13 x 53. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

3The previous numeric features were from the first and last letters of each word, or letters that were not first or last. What about letters in general?

List of letters:
70 1 100 5 80 7 30 600 40 60 5 40 100 60 9 90 60 200 80 1 40 60 9 90
1 3 9 1 90 8 7 100 600 100 60 60 40 60 30 1 90 60 200 5 20 8 5 100
600 7 2 1 90 9 20 5 9 1 90 60 200 3 5 40 7 8 7 100 600 100 60 8 5 20
7 30 1 90 60 200 600 90 5 40 60 200 80 1 40 600 10 1 9 5 70 9 3 7 90
100 60 40 1 80 100 60 40 7 30 600 40 100 60 40 5 70 9 60 200 90 9 60
40 4 60 90 7 30 9 40 90 7 30 5 80 60 40 10 1 9 1 300 5 90 7 30 9 40
100 1 60 300 5 9 20 7 30 1 100 1 7 30 600 40 600 90 10 1 9 7 30 5 9
90 1 300 7 10 1 30 5 40 100 60 9 90 60 300 5 9 20 5 100 1 9 90 7 30
600 40 10 1 9 30 7 5 9 90 5 40 5 3 10 7 90 7 30 1 90 5 9 90 70 5 9 80
1 90 30 60 40 1 20 20 1 80 200 90 1 9 7 30 1 90 1 70 60 100 60 200 70
60 40 7 80 60 200

3.1Odd positioned letters:

70 100 80 30 40 5 100 9 60 80 40 9 1 9 90 7 600 60 40 30 90 200 20 5
600 2 90 20 9 90 200 5 7 7 600 60 5 7 1 60 600 5 60 80 40 10 9 70 3
90 60 1 100 40 30 40 60 5 9 200 9 40 60 7 9 90 30 80 40 1 1 5 7 9 100
60 5 20 30 100 7 600 600 10 9 30 9 1 7 1 5 100 9 60 5 20 100 9 7 600
10 9 7 9 5 5 10 90 30 90 9 70 9 1 30 40 20 1 200 1 7 1 1 60 60 70 40
80 200

Total: 9107 = 7 x 1301.

3.2Even positioned letters:

1 5 7 600 60 40 60 90 200 1 60 90 3 1 8 100 100 60 60 1 60 5 8 100 7
1 9 5 1 60 3 40 8 100 100 8 20 30 90 200 90 40 200 1 600 1 5 9 7 100
40 80 60 7 600 100 40 70 60 90 60 4 90 30 40 7 5 60 10 9 300 90 30 40
1 300 9 7 1 1 30 40 90 1 7 5 90 300 10 30 40 60 90 300 9 5 1 90 30 40
1 30 5 90 40 3 7 7 1 5 90 5 80 90 60 1 20 80 90 9 30 90 70 100 200 60
7 60

Total: 8295 = 3 x 5 x 7 x 79.

3.3Odd valued letters:

1 5 7 5 9 1 9 1 3 9 1 7 1 5 5 7 1 9 5 9 1 3 5 7 7 5 7 1 5 1 1 9 5 9 3
7 1 7 5 9 9 7 9 7 5 1 9 1 5 7 9 1 5 9 7 1 1 7 1 9 7 5 9 1 7 1 5 9 5 9
5 1 9 7 1 9 7 5 9 5 5 3 7 7 1 5 9 5 9 1 1 1 1 9 7 1 1 7

Total: 504 = 23 x 32 x 7.

3.3.1Odd positioned of odd valued letters:

1 7 9 9 3 1 1 5 1 5 1 5 7 7 5 1 5 3 1 5 9 9 5 9 5 9 5 7 1 1 7 9 7 5 5
5 9 1 7 9 5 7 1 9 9 1 1 7 1

Total: 247 = 13 x 19.

3.4Even valued letters:

70 100 80 30 600 40 60 40 100 60 90 60 200 80 40 60 90 90 8 100 600
100 60 60 40 60 30 90 60 200 20 8 100 600 2 90 20 90 60 200 40 8 100
600 100 60 8 20 30 90 60 200 600 90 40 60 200 80 40 600 10 70 90 100
60 40 80 100 60 40 30 600 40 100 60 40 70 60 200 90 60 40 4 60 90 30
40 90 30 80 60 40 10 300 90 30 40 100 60 300 20 30 100 30 600 40 600
90 10 30 90 300 10 30 40 100 60 90 60 300 20 100 90 30 600 40 10 30
90 40 10 90 30 90 90 70 80 90 30 60 40 20 20 80 200 90 30 90 70 60
100 60 200 70 60 40 80 60 200

Total: 16898 = 2 x 7 x 17 x 71.

3.4.1Odd positioned of even valued letters list:

70 80 600 60 100 90 200 40 90 8 600 60 40 30 60 20 100 2 20 60 40 100
100 8 30 60 600 40 200 40 10 90 60 80 60 30 40 60 70 200 60 4 90 40
30 60 10 90 40 60 20 100 600 600 10 90 10 40 60 60 20 90 600 10 90 10
30 90 80 30 40 20 200 30 70 100 200 60 80 200

Total: 8372 = 22 x 7 x 13 x 23.

3.4.1.1First digit odd of odd positioned of even valued letters:

70 100 90 90 30 100 100 100 30 10 90 30 70 90 30 10 90 100 10 90 10
90 10 90 10 30 90 30 30 70 100

Total: 1890 = 2 x 33 x 5 x 7.

3.4.1.2First digit even of odd positioned of even valued letters:

80 600 60 200 40 8 600 60 40 60 20 2 20 60 40 8 60 600 40 200 40 60
80 60 40 60 200 60 4 40 60 40 60 20 600 600 40 60 60 20 600 80 40 20
200 200 60 80 200

Total: 6482 = 2 x 7 x 463.

3.4.2Even positioned of even valued letters list:

100 30 40 40 60 60 80 60 90 100 100 60 60 90 200 8 600 90 90 200 8
600 60 20 90 200 90 60 80 600 70 100 40 100 40 600 100 40 60 90 40 60
30 90 80 40 300 30 100 300 30 30 40 90 30 300 30 100 90 300 100 30 40
30 40 90 90 70 90 60 20 80 90 90 60 60 70 40 60

Total: 8526 = 2 x 3 x 72 x 29.

4Unlike the words, the letters cannot be placed into a rectangle, or any geometric shape because the number of letters (257) is a prime number. However, the even positioned letters in feature 3.2 number 128, which is 27, and this attracts attention. These 128 letters are placed into a 4 x 4 x 8 block (4 columns x 4 rows x 8 levels).

Layer 1
157600
60406090
20016090
318100
Layer 2
10060601
6058100
7195
160340
Layer 3
81001008
203090200
90402001
600159
Layer 4
71004080
607600100
40706090
6049030
Layer 5
407560
10930090
30401300
9711
Layer 6
3040901
7590300
10304060
9030095
Layer 7
1903040
130590
40377
15905
Layer 8
8090601
2080909
309070100
20060760
To see the various layers, slowly move mouse along the right or bottom edges of the block's layers.

4.1The surface area or outside of the block: 6615 = 33 x 5 x 72. SF: 28 = 22 x 7.

4.2The inside of the block: 1680 = 24 x 3 x 5 x 7.

4.3First and last layers: 2373 = 3 x 7 x 113.

4.3First and last columns of each layer: 4589 = 13 x 353.

4.4Inner core of four from each layer: 2171 = 13 x 167.

Similar to the words, the letters of the GNT's version of The Lord's Prayer also display numeric features in complementary opposites.

Now we turn from the GNT's short version of The Lord's Prayer to the GNS' version with the extra words at the end of verse 13.

GNS Version

Looking at all of Matthew 6:9-13, including the opening words Pray then like this, the GNS has one other difference from the GNT, aside from the extra words at the end of verse 13. The fourth word from the end of verse 12 is αφιεμεν. In the GNT, this word is spelled αφηκαμεν. As a result, if the extra words in verse 13 were removed, the GNS' total would still not be the same as the GNT. In fact, this abbreviated GNS version would have no total divisible by 7 or 13. It is almost as if this word in verse 12 had to be spelled differently in order to accommodate the opening and the extra words at the end of verse 13.

a) 1                          2               3                                              4                     5                     6
b) 1050                       300             1013                                           334                   256                   677
c) 1    2    3    4    5      6   7    8      9    10  11  12  3  14   15   6  17  8  19     20   21  2  3  24     25  6  27   8  29     30  31  32   33
d) 60-  200- 100- 600- 90     60- 200- 40     70-  80- 60- 90- 5- 200- 400- 5- 90- 8- 5      200- 30- 5- 9- 90     70- 1- 100- 5- 80     7-  30- 600- 40
e) ουτως                      ουν             προσευχεσθε                                    υμεις                 Πατερ                 ημων
f) Thus                       therefore       be praying                                     you                   Father                of us

a) 7     8         9                  10                                11                                  12         13                    14
b) 60    45        259                540                               819                                 160        191                   350
c) 34    35 36     37   38  9  40     41  42   43  4  45  46  7  48     49  50 1  2  53  4  5  56   57      58   59    60  61  62  63  64    65  66  67
d) 60    5- 40     100- 60- 9- 90     60- 200- 80- 1- 40- 60- 9- 90     1-  3- 9- 1- 90- 8- 7- 100- 600     100- 60    60- 40- 60- 30- 1     90- 60- 200
e) ο     εν        τοις               ουρανοις                          αγιασθητω                           το         ονομα                 σου
f) the   in        the                heavens                           let be sanctified                   the        name                  of you

a) 15                       16    17                            18             19                             20         21                   22
b) 738                      7     137                           350            770                            160        71                   350
c) 68  69  70 1  72  73     74    75  6  77  8 79  80 1  82     83  84  85     86  7  88  9 90 1  92   93     94  95     96 7 98 9 100 101    102 03 104
d) 5-  20- 8- 5- 100-600    7     2-  1- 90- 9-20- 5- 9- 1      90- 60- 200    3-  5- 40- 7-8- 7- 100- 600    100-60     8- 5-20-7-30- 1      90- 60-200
e) ελθετω                   η     βασιλεια                      σου            γενηθητω                       το         θελημα               σου
f) let come                 the   kingdom                       of you         let take place                 the        will                 of you

a) 23         24         25                   26           27            28           29            30                     31                 32
b) 690        45         981                  20           84            100          200           281                    677                200
c) 105 106    107 108    109 110 11 2 13 114  115 6 117    118 19 120    121 2 123    124 25 126    127 28  129 130 131    132 33  134 135    136 37 138
d) 600-90     5-  40     60- 200-80-1-40-600  10- 1-9      5-  70-9      3-  7-90     100-60-40     1-  80- 100-60- 40     7-  30- 600-40     100-60-40
e) ως         εν         ουρανω               και          επι           γης          τον           αρτον                  ημων               τον
f) as         in         heaven               also         upon          earth        the           bread                  of us              the

a) 33                                    34              35                 36                           37            38                 39
b) 543                                   154             86                 312                          20            396                86
c) 139 140 1  42  143  44  5  46  147    148 49  150     151 52  3  154     155 6  57  8  59  160 161    162 3  164    165 166  7  168    169 170 1  172
d) 5-  70- 9- 60- 200- 90- 9- 60- 40     4-  60- 90      7-  30- 9- 40      90- 7- 30- 5- 80- 60- 40     10- 1- 9      1-  300- 5- 90     7-  30- 9- 40
e) επιουσιον                             δος             ημιν               σημερον                      και           αφες               ημιν
f) for (the day) being                   give            to us              today                        and           let go off         to us

a) 40          41                                         42                   43           44            45                   46
b) 101         533                                        677                  690          20            141                  390
c) 173  174    175 176  7  8  79  180 81  2  183  184     185 86  187  188     189  190     191 2  193    194 95  6  7  198    199 200  1  2  03  4  205
d) 100- 1      60- 300- 5- 9- 20- 7-  30- 1- 100- 1       7-  30- 600- 40      600- 90      10- 1- 9      7-  30- 5- 9- 90     1-  300- 9- 5- 30- 5- 40
e) τα          οφειληματα                                 ημων                 ως           και           ημεις                αφιεμεν
f) the         debts                                      of us                as           also          we                   have let go off

a) 47                 48                                    49                  50            51         52                                53
b) 259                599                                   677                 20            37         264                               128
c) 206  07  8  209    210 211  2  3  14  5  216  7  8  219  220 21  222  223    224 5  226    227 228    229 230 31  2  33 4 5 36 7 238    239 240 1 242
d) 100- 60- 9- 90     60- 300- 5- 9- 20- 5- 100- 1- 9- 90   7-  30- 600- 40     10- 1- 9      30- 7      5-  9-  90- 5- 40-5-3-10-7-90     7-  30- 1-90
e) τοις               οφειλεταις                            ημων                και           μη         εισενεγκης                        ημας
f) to the             debtors                               of us               and           not        you should bring                  us

a) 54            55                              56                57                   58              59           60            61
b) 104           385                             42                380                  128             131          360           517
c) 243 4 245     246 7 8 49 250 51 52 53 254     255 56 57 258     259 260 61 2 263     264 65 6 267    268 69 270   271 72 273    274 75 76 7 78 79 280
d) 5-  9-90      70- 5-9-80-1-  90-30-60-40      1-  20-20-1       80- 200-90-1-9       7-  30-1-90     1-  70-60    100-60-200    70- 60-40-7-80-60-200
e) εις           πειρασμον                       αλλα              ρυσαι                ημας            απο          του           πονηρου
f) into          temptation                      but               rescue               us              from         the           wicked (one)

a) 62               63              64                       65      66                               67             68      69
b) 169              350             244                      7       137                              20             7       374
c) 281 282  283     284 85  286     287 88  289  290 291     292     293 4  95  6  97  8  9  300      301 2  303     304     305 306  07  8  09  310 311
d) 60- 100- 9       90- 60- 200     5-  90- 100- 9-  40      7       2-  1- 90- 9- 20- 5- 9- 1        10- 1- 9       7       4-  200- 40- 1- 30- 9-  90
e) οτι              σου             εστιν                    η       βασιλεια                         και            η       δυναμις
f) that             you             exists                   the     kingdom                          and            the     power

a) 70            71     72                 73            74                 75                        76
b) 20            7      115                104           450                741                       78
c) 312 3  314    315    316 17  18  319    320 1  322    323  24  325  326  327 8  329  330 1  332    333 34  5  336
d) 10- 1- 9      7      4-  60- 50- 1      5-  9- 90     100- 60- 200- 90   1-  9- 600- 40- 1- 90     1-  30- 7- 40
e) και           η      δοξα               εις           τους               αιωνας                    αμην
f) and           the    glory              to            the                aeons                     amen

a) Word position.
b) Word total.
c) Letter position.
d) Letter value.
e) Greek.
f) English.

5The total for all of Matthew 6:9-13 is 22918 (2 x 7 x 1637). There are 76 words, and 336 (24 x 3 x 7) letters. The GNS does have some basic features.

5.1Every other letter (odd positioned):

60 100 90 200 70 60 5 400 90 5 30 9 70 100 80 30 40 5 100 9 60 80 40
9 1 9 90 7 600 60 40 30 90 200 20 5 600 2 90 20 9 90 200 5 7 7 600 60
5 7 1 60 600 5 60 80 40 10 9 70 3 90 60 1 100 40 30 40 60 5 9 200 9
40 60 7 9 90 30 80 40 1 1 5 7 9 100 60 5 20 30 100 7 600 600 10 9 30
9 1 9 30 40 60 90 300 9 5 1 90 30 40 1 30 5 90 40 3 7 7 1 5 90 5 80
90 60 1 20 80 90 9 30 90 70 100 200 60 7 60 60 9 60 5 100 40 2 90 20
9 10 9 4 40 30 90 1 7 60 1 9 100 200 1 600 1 1 7

Total: 11739 = 3 x 7 x 13 x 43.

5.1.1Odd valued odd positioned letters:

5 5 9 5 9 9 1 9 7 5 9 5 7 7 5 7 1 5 9 3 1 5 9 9 7 9 1 1 5 7 9 5 7 9 9
1 9 9 5 1 1 5 3 7 7 1 5 5 1 9 7 9 5 9 9 1 7 1 9 1 1 1 7

Total: 351 = 33 x 13.

5.1.2Even valued odd positioned letters:

60 100 90 200 70 60 400 90 30 70 100 80 30 40 100 60 80 40 90 600 60
40 30 90 200 20 600 2 90 20 90 200 600 60 60 600 60 80 40 10 70 90 60
100 40 30 40 60 200 40 60 90 30 80 40 100 60 20 30 100 600 600 10 30
30 40 60 90 300 90 30 40 30 90 40 90 80 90 60 20 80 90 30 90 70 100
200 60 60 60 60 100 40 2 90 20 10 4 40 30 90 60 100 200 600

Total: 11388 = 22 x 3 x 13 x 73.

5.2Every other letter (even positioned):

200 600 60 40 80 90 200 5 8 200 5 90 1 5 7 600 60 40 60 90 200 1 60
90 3 1 8 100 100 60 60 1 60 5 8 100 7 1 9 5 1 60 3 40 8 100 100 8 20
30 90 200 90 40 200 1 600 1 5 9 7 100 40 80 60 7 600 100 40 70 60 90
60 4 90 30 40 7 5 60 10 9 300 90 30 40 1 300 9 7 1 1 30 40 90 1 7 5
90 300 5 5 100 9 60 5 20 100 9 7 600 10 9 7 9 5 5 10 90 30 90 9 70 9
1 30 40 20 1 200 1 7 1 1 60 60 70 40 80 200 100 90 200 90 9 7 1 9 5 1
1 7 200 1 9 10 9 4 50 5 90 60 90 9 40 90 30 40

Total: 11179 = 7 x 1597.

5.3Odd valued letters:

5 5 5 5 9 1 5 7 5 9 1 9 1 3 9 1 7 1 5 5 7 1 9 5 9 1 3 5 7 7 5 7 1 5 1
1 9 5 9 3 7 1 7 5 9 9 7 9 7 5 1 9 1 5 7 9 1 5 9 7 1 1 7 1 9 7 5 9 1 9
5 5 9 5 9 5 1 9 7 1 9 7 5 9 5 5 3 7 7 1 5 9 5 9 1 1 1 1 9 7 1 1 7 9 5
9 7 1 9 5 9 1 1 9 7 1 9 1 9 7 1 5 9 1 9 1 1 7

Total: 672 = 25 x 3 x 7.

5.4Even valued letters:

60 200 100 600 90 60 200 40 70 80 60 90 200 400 90 8 200 30 90 70 100
80 30 600 40 60 40 100 60 90 60 200 80 40 60 90 90 8 100 600 100 60
60 40 60 30 90 60 200 20 8 100 600 2 90 20 90 60 200 40 8 100 600 100
60 8 20 30 90 60 200 600 90 40 60 200 80 40 600 10 70 90 100 60 40 80
100 60 40 30 600 40 100 60 40 70 60 200 90 60 40 4 60 90 30 40 90 30
80 60 40 10 300 90 30 40 100 60 300 20 30 100 30 600 40 600 90 10 30
90 300 30 40 100 60 90 60 300 20 100 90 30 600 40 10 30 90 40 10 90
30 90 90 70 80 90 30 60 40 20 20 80 200 90 30 90 70 60 100 60 200 70
60 40 80 60 200 60 100 90 60 200 90 100 40 2 90 20 10 4 200 40 30 90
10 4 60 50 90 100 60 200 90 600 40 90 30 40

Total: 22246 = 2 x 72 x 227.

One could go on exploring to see if there are more features here, but it is specifically the text of The Lord's Prayer that we are interested in, and these initial results for the GNS include the introductory phrase, Pray then like this. Everything changes when the opening words are removed.

Without the opening words, The Lord's Prayer has 72 words, 312 letters, and a total of 20221 (73 x 277. SF: 350 = 2 x 52 x 7). The sum of the factors is a multiple of 7, but the initial total no longer has a numeric feature.

Since specific part of The Lord's Prayer in the GNT has quite a number of numeric features following Revelation 1:8, why doesn't the GNS version? Why must the GNS include the opening words in order to have numeric features? One might even ask why there are two versions.

The GNS version is an attempt to close off the prayer properly. Whoever did it, did it to praise God. Whether they knew knew it or not, their attempt removed numeric features from The Lord's Prayer. All believers afterwards are stuck with two versions, one with numeric features, and one without.

Assuming the closing of the prayer with praise for God was supposed to be legitimate, then The Lord's Prayer in the GNS should match the GNT's numeric features or surpass it. But failing to have numeric features doesn't automatically mean the attempt was illegitimate because the whole of Matthew 6:9-13 in the GNS does have numeric features, and the part for The Lord's Prayer does have a feature hidden in the sum of the factors as a multiple of 7. These clues might mean the attempt to close the prayer in praise is still lacking something.

This leads to an experiment on The Lord's Prayer.

Our Mother In Heaven (An Experiment)

Honor your father and your mother, that your days may be long in the land which the LORD your God gives you. (Exodus 20:12)3

The fifth commandment tells us to honour both our parents. Although father is mentioned first, there is no indication one is honoured more than the other. Both are to be equally honoured.

As God is our Father, so He must also be our Mother. Given the long standing patriarchal leanings of Jewish and Christian traditions, if there is anything lacking in understanding God, it would be this aspect. On the basis of having a closing for the prayer in praising God, and bringing to light this neglected aspect of God, an experiment could be made in replacing the Greek word for Father, πατερ, with the Greek word for Mother, μήτηρ in the GNS.

Greek language requires agreement in word forms (gender, plural etc). Changing Father to Mother might require other changes too. Thus the following might not be grammatically correct. However, if one decided to call God Mother on the understanding that God is Father perhaps one could excuse perfect grammar.

An astonishing thing happens when The Lord's Prayer begins with Mother in the Greek.

AThe numeric total is divisible by 13, a number associated with God’s name in Hebrew: 20189 = 13 x 1553. Compared with a total divisible by 7, this is almost twice as difficult to obtain.

A.1.1The first and last letters of each word: 9828 = 22 x 33 x 7 x 13.

A.1.1.1The positions of the first and last letters of each word: 22642 = 2 x 11321. SF: 11323 = 132 x 67.

A.1.2The first letter of each word:

a) 1  6 10 11 13  17 25 34  36 41 44 50 51 59 62 70  72 78 81  83 85
b) 30 7 60 5  100 60 1  100 60 90 5  7  2  90 3  100 8  90 600 5  60

a) 91 94 97 100 103 108 112 115 124 127 131 138 141 145 149 151 161
b) 10 5  3  100 1   7   100 5   4   7   90  10  1   7   100 60  7

a) 165 167 170 175 182 186 196 200 203 205 215 219 222 231 235 240
b) 600 10  7   1   100 60  7   10  30  5   7   5   70  1   80  7

a) 244 247 250 257 260 263 268 269 277 280 281 288 291 292 296 299
b) 1   100 70  60  90  5   7   2   10  7   4   10  7   4   5   100

a) 303 309   (Position.)
b) 1   1     (Letter value.)

Total: 3484 = 22 x 13 x 67. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

A.1.2.1From the positions in the list in A.1.2, take every other position (odd positioned):

1 10 13 25 36 44 51 62 72 81 85 94 100 108 115 127 138 145 151 165 
170 182 196 203 215 222 235 244 250 260 268 277 281 291 296 303

Total: 5516 = 22 x 7 x 197. SF: 208 = 24 x 13. SF: 21 = 3 x 7.

A.1.2.1.1Results from A.1.2.1 can be further subdivided. Take all the positions where the first digit is an odd number.

1 10 13 36 51 72 94 100 108 115 127 138 145 151 165 170 182 196 303

Total: 2177 = 7 x 311.

A.1.2.1.2From A.1.2.1 take all positions where the first digit is an even number.

25 44 62 81 85 203 215 222 235 244 250 260 268 277 281 291 296

Total: 3339 = 32 x 7 x 53.

A.1.2.2From the positions in the list in A.1.2, take those that are odd valued:

1 11 13 17 25 41 51 59 81 83 85 91 97 103 115 127 131 141 145 149 151 
161 165 167 175 203 205 215 219 231 235 247 257 263 269 277 281 291 
299 303 309

Total: 6489 = 32 x 7 x 103.

The fact that A.1.2.1 and A.1.2.2 only work for the odd positioned, or odd valued shows Mother is only one of God’s attributes.

A.1.2.3From the list of letter values in A.1.2, take the odd positioned letters.

30 60 100 1 60 5 2 3 8 600 60 5 100 7 5 7 10 7 60 600 7 100 7 30 7 70 
80 1 70 90 7 10 4 7 5 1

Total: 2226 = 2 x 3 x 7 x 53. SF: 65 = 5 x 13. (Once again this does not work with the even positioned values.)

A.1.2.3.1From the list in A.1.2.3, find all those where the first digit is an even number.

60 60 2 8 600 60 60 600 80 4

Total: 1534 = 2 x 13 x 59.

A.1.3The last letter of each word:

a) 5  9  10 12 16 24 33  35 40 43  49  50 58 61  69  71 77 80  82 84
b) 80 40 60 40 90 90 600 60 1  200 600 7  1  200 600 60 1  200 90 40

a) 90  93 96 99 102 107 111 114 123 126 130 137 140 144 148 150 160
b) 600 9  9  90 40  40  40  40  40  90  40  40  9   90  40  1   1

a) 164 166 169 174 181 185 195 199 202 204 214 218 221 230 234 239
b) 40  90  9   90  40  90  90  40  9   7   90  90  90  40  1   9

a) 243 246 249 256 259 262 267 268 276 279 280 287 290 291 295 298
b) 90  60  200 200 9   200 40  7   1   9   7   90  9   7   1   90

a) 302 308 312   (Position.)
b) 90  90  40    (Letter value.)

Total: 6344 = 23 x 13 x 61.

It is almost as if by adding Mother as a new aspect to God, the number 13 now owns up to it following the pattern of The Proclamation with the first and last letters of each word together and individually.

A.1.3.1From the positions of the letters in A.1.3, take every other position (odd positioned in list):

5 10 16 33 40 49 58 69 77 82 90 96 102 111 123 130 140 148 160 166 
174 185 199 204 218 230 239 246 256 262 268 279 287 291 298 308

Total: 5649 = 3 x 7 x 269.

A.1.3.1.1From list of positions in A.1.3.1 take every other (even positioned):

10 33 49 69 82 96 111 130 148 166 185 204 230 246 262 279 291 308

Total: 2899 = 13 x 223.

A.1.3.1.2Extract all positions in A.1.3.1 having an odd valued first digit:

5 10 16 33 58 77 90 96 102 111 123 130 140 148 160 166 174 185 199 308

Total: 2331 = 32 x 7 x 37.

A.1.3.1.3Extract all positions in A.1.3.1 having an even valued first digit:

40 49 69 82 204 218 230 239 246 256 262 268 279 287 291 298

Total: 3318 = 2 x 3 x 7 x 79.

A.1.3.2From the positions of the letters in A.1.3, take the numbers that are even valued:

10 12 16 24 40 50 58 80 82 84 90 96 102 114 126 130 140 144 148 150 
160 164 166 174 202 204 214 218 230 234 246 256 262 268 276 280 290 
298 302 308 312

Total: 6760 = 23 x 5 x 132.

A.1.3.2.1From the results in A.1.3.2, take the even positioned in that list:

10 16 40 58 82 90 102 126 140 148 160 166 202 214 230 246 262 276 290 
302 312

Total: 3472 = 24 x 7 x 31.

A.1.3.3From the letter values in A.1.3, take every other (odd positioned):

80 60 90 600 1 600 1 600 1 90 600 9 40 40 40 40 9 40 1 90 90 90 40 7 
90 40 9 60 200 200 7 9 90 7 90 90

Total: 4151 = 7 x 593.

A.1.3.3.1From the results in A.1.3.3, find all those where the first digit is odd:

90 1 1 1 90 9 9 1 90 90 90 7 90 9 7 9 90 7 90 90

Total: 871 = 13 x 67.

A.1.3.3.2From A.1.3.3.1, take the even positioned of the list:

1 1 9 1 90 7 9 9 7 90

Total: 224 = 25 x 7.

A.1.4Combine the positions of the first and last letters of each word by adding each pair them.

6 15 20 23 29 41 58 69 76 84 93 100 109 120 131 141 149 158 163 167 
175 184 190 196 202 210 219 226 238 250 257 268 278 285 293 299 311 
325 331 336 344 356 367 381 395 402 407 419 433 440 452 465 474 483 
490 496 506 516 522 530 536 545 556 560 568 578 582 587 594 601 611 
621

A.1.4.1Odd positioned from A.1.4:

6 20 29 58 76 93 109 131 149 163 175 190 202 219 238 257 278 293 311 
331 344 367 395 407 433 452 474 490 506 522 536 556 568 582 594 611

Total: 11165 = 5 x 7 x 11 x 29. SF: 52 = 22 x 13.

A.1.4.1.1Odd valued from A.1.4.1:

29 93 109 131 149 163 175 219 257 293 311 331 367 395 407 433 611

Total: 4473 = 32 x 7 x 71. = 84 = 22 x 3 x 7 = 14 = 2 x 7

A.1.4.1.2Even valued A.1.4.1:

6 20 58 76 190 202 238 278 344 452 474 490 506 522 536 556 568 582 594

Total: 6692 = 22 x 7 x 239.

A.1.4.1.2.1Odd positioned from A.1.4.1.2:

6 58 190 238 344 474 506 536 568 594

Total: 3514 = 2 x 7 x 251. SF: 260 = 22 x 5 x 13.

A.1.4.1.2.2Even positioned from A.1.4.1.2:

20 76 202 278 452 490 522 556 582

Total: 3178 = 2 x 7 x 227.

A.1.4.1.2.2.1   Odd positioned from A.1.4.1.2.2:

20 202 452 522 582

Total: 1778 = 2 x 7 x 127.

A.1.4.1.2.2.2   Even positioned from A.1.4.1.2.2:

76 278 490 556

Total: 1400 = 23 x 52 x 7.

A.1.4.2.1Odd valued from A.1.4:

15 23 29 41 69 93 109 131 141 149 163 167 175 219 257 285 293 299 311 
325 331 367 381 395 407 419 433 465 483 545 587 601 611 621

Total: 9940 = 22 x 5 x 7 x 71.

A.1.4.2.1.1Odd positioned from A.1.4.2.1:

15 29 69 109 141 163 175 257 293 311 331 381 407 433 483 587 611

Total: 4795 = 5 x 7 x 137.

A.1.4.2.1.2Even positioned from A.1.4.2.1:

23 41 93 131 149 167 219 285 299 325 367 395 419 465 545 601 621

Total: 5145 = 3 x 5 x 73.

A.1.4.2.2First digit odd from A.1.4:

15 58 76 93 100 109 120 131 141 149 158 163 167 175 184 190 196 311 
325 331 336 344 356 367 381 395 506 516 522 530 536 545 556 560 568 
578 582 587 594

Total: 12551 = 7 x 11 x 163.

A.1.4.2.2.1Odd positioned A.1.4.2.2:

15 76 100 120 141 158 167 184 196 325 336 356 381 506 522 536 556 568 
582 594

Total: 6419 = 72 x 131.

A.1.4.2.2.1.1   Odd positioned from A.1.4.2.2.1:

15 100 141 167 196 336 381 522 556 582

Total: 2996 = 22 x 7 x 107.

A.1.4.2.2.1.2   Even positioned from A.1.4.2.2.1:

76 120 158 184 325 356 506 536 568 594

Total: 3423 = 3 x 7 x 163.

A.1.4.2.2.2Even positioned from A.1.4.2.2:

58 93 109 131 149 163 175 190 311 331 344 367 395 516 530 545 560 578 
587

Total: 6132 = 22 x 3 x 7 x 73.

A.1.5Combine the values of the first and last letters of each word.

110 47 120 45 190 150 601 160 61 290 605 14 3 290 603 160 9 290 690
45 660 19 14 93 140 41 47 140 45 94 47 130 19 91 47 101 61 47 690 19
97 41 190 150 47 19 37 95 97 95 110 2 89 97 61 300 270 69 290 45 14 3
19 14 94 19 14 5 95 190 91 41

A.1.5.1Odd positioned from the list in A.1.5:

110 120 190 601 61 605 3 603 9 690 660 14 140 47 45 47 19 47 61 690
97 190 47 37 97 110 89 61 270 290 14 19 94 14 95 91

Total: 6377 = 7 x 911.

A.1.5.1.1First digit odd in A.1.5.1:

110 120 190 3 9 14 140 19 97 190 37 97 110 14 19 94 14 95 91

Total: 1463 = 7 x 11 x 19.

A.1.5.1.2First digit even in A.1.5.1:

601 61 605 603 690 660 47 45 47 47 61 690 47 89 61 270 290

Total: 4914 = 2 x 33 x 7 x 13.

A.1.5.2Even positioned from the list in A.1.5:

47 45 150 160 290 14 290 160 290 45 19 93 41 140 94 130 91 101 47 19
41 150 19 95 95 2 97 300 69 45 3 14 19 5 190 41

Total: 3451 = 7 x 17 x 29.

A.1.6First and last letters of odd positioned words:

a) 1  3  5   7   9  11  13 15  17 19  21  23 25  27 29 31 33 35 37
b) 30 60 100 1   60 5   2  3   8  600 60  5  100 7  5  7  10 7  60
c) 80 60 90  600 1  600 1  600 1  90  600 9  40  40 40 40 9  40 1

a) 39  41 43  45 47 49 51 53 55 57  59  61 63 65 67 69 71
b) 600 7  100 7  30 7  70 80 1  70  90  7  10 4  7  5  1
c) 90  90 90  40 7  90 40 9  60 200 200 7  9  90 7  90 90

a) Odd valued word position.
b) First letter of word.
c) Last letter of word.

Total of the first and last letters of each word (lines b + c): 6377 = 7 x 911.
Total of the first letter of each word (line b): 2226 = 2 x 3 x 7 x 53. SF: 65 = 5 x 13.
Total of the last letter of each word (line c): 4151 = 7 x 593. (This does not work for even positioned words.)

A.2What about all the other letters that are not first or last?

List of letter positions that are not first or last: 2 3 4 7 8 14 15
18 19 20 21 22 23 26 27 28 29 30 31 32 37 38 39 42 45 46 47 48 52 53
54 55 56 57 60 63 64 65 66 67 68 73 74 75 76 79 86 87 88 89 92 95 98
101 104 105 106 109 110 113 116 117 118 119 120 121 122 125 128 129
132 133 134 135 136 139 142 143 146 147 152 153 154 155 156 157 158
159 162 163 168 171 172 173 176 177 178 179 180 183 184 187 188 189
190 191 192 193 194 197 198 201 206 207 208 209 210 211 212 213 216
217 220 223 224 225 226 227 228 229 232 233 236 237 238 241 242 245
248 251 252 253 254 255 258 261 264 265 266 270 271 272 273 274 275
278 282 283 284 285 286 289 293 294 297 300 301 304 305 306 307 310
311

A.2.1Odd positioned from the list in A.2:

2 4 8 15 19 21 23 27 29 31 37 39 45 47 52 54 56 60 64 66 68 74 76 86
88 92 98 104 106 110 116 118 120 122 128 132 134 136 142 146 152 154
156 158 162 168 172 176 178 180 184 188 190 192 194 198 206 208 210
212 216 220 224 226 228 232 236 238 242 248 252 254 258 264 266 271
273 275 282 284 286 293 297 301 305 307 311

Total: 13622 = 2 x 72 x 139. (No corresponding match with the even positioned.)

A.2.2Letter positions where the first digit is odd (from A.2):

3 7 14 15 18 19 30 31 32 37 38 39 52 53 54 55 56 57 73 74 75 76 79 92
95 98 101 104 105 106 109 110 113 116 117 118 119 120 121 122 125 128
129 132 133 134 135 136 139 142 143 146 147 152 153 154 155 156 157
158 159 162 163 168 171 172 173 176 177 178 179 180 183 184 187 188
189 190 191 192 193 194 197 198 300 301 304 305 306 307 310 311

Total: 12495 = 3 x 5 x 72 x 17. (No correlating match with first digit being even.)

Quite often, there are no paired features because Mother is only a part of the picture, and not the whole picture.

A.2.3What about the actual values of the letters that are not first or last? As the values are different from the positions, so are their features. (Note that the very first letter, and the very last letter that are not first or last, are both 7.)

List of letter values that are not first or last in a word.
7 100 7 30 600 60 9 200 80 1 40 60 9 3 9 1 90 8 7 100 40 60 30 60 20
8 5 100 1 90 9 20 5 9 60 5 40 7 8 7 100 5 20 7 30 60 200 80 1 40 1
70 7 60 80 100 60 30 600 60 70 9 60 200 90 9 60 60 30 9 7 30 5 80 60
1 300 5 30 9 300 5 9 20 7 30 1 100 30 600 1 30 5 9 300 9 5 30 5 60 9
300 5 9 20 5 100 1 9 30 600 1 9 90 5 40 5 3 10 7 30 1 9 5 9 80 1 90
30 60 20 20 200 90 1 30 1 70 60 60 40 7 80 60 100 60 90 100 9 1 90 9
20 5 9 1 200 40 1 30 9 1 60 50 9 60 200 9 600 40 1 30 7

A.2.3.1As the first and last letters of each word yielded multiples of 13, so do the letters that are not first or last. The values of the letters of God’s name in Hebrew point to the 10th, 5th, 6th, and 5th letters in the above list.

Position: 10 5   6  5
Letter:   1  600 60 600

Total: 1261 = 13 x 97.

A.2.3.2The values of the name can be used seven times to count through the list in A.2.3:

a) 10 5  6  5  10 5   6   5  10 5  6  5  10  5  6  5   10  5   6   5
b) 10 15 21 26 36 41  47  52 62 67 73 78 88  93 99 104 114 119 125 130
c) 10 15 21 26 36 41  47  52 62 67 73 78 88  93 99 104 114 119 125 130
d) 1  9  40 8  5  100 200 70 9  60 5  5  100 5  5  9   90  10  9   60

a) 10  5   6   5   10  5   6   5   (Value from the Name.)
b) 140 145 151 156 166 171 177 9   (Count.)
c) 140 145 151 156 166 171 4   9   (Adjusted for 173 letters.)
d) 60  100 90  1   60  1   30  80  (Letter found.)

Total: 1222 = 2 x 13 x 47.

A.2.3.3The values of the name can be used thirteen times to count through the list in A.2.3:

a) 10 5  6  5  10 5   6   5  10 5  6  5  10  5  6  5   10  5   6   5
b) 10 15 21 26 36 41  47  52 62 67 73 78 88  93 99 104 114 119 125 130
c) 10 15 21 26 36 41  47  52 62 67 73 78 88  93 99 104 114 119 125 130
d) 1  9  40 8  5  100 200 70 9  60 5  5  100 5  5  9   90  10  9   60

a) 10  5   6   5   10  5   6   5  10 5  6  5  10 5  6   5  10 5  6  5
b) 140 145 151 156 166 171 177 9  19 24 30 35 45 50 56  61 71 76 82 87
c) 140 145 151 156 166 171 4   9  19 24 30 35 45 50 56  61 71 76 82 87
d) 60  100 90  1   60  1   30  80 7  60 90 60 30 40 100 70 7  1  5  1

a) 10 5   6   5   10  5   6   5   10  5   6   5    (Letter from the Name.)
b) 97 102 108 113 123 128 134 139 149 154 160 165  (Count.)
c) 97 102 108 113 123 128 134 139 149 154 160 165  (Adjusted to 173.)
d) 5  300 1   9   9   90  90  60  9   5   30  9    (Letter found.)

Total: 2310 = 2 x 3 x 5 x 7 x 11. SF: 28 = 22 x 7. (This time the result is a multiple of 7.)

A.2.3.4From A.2.3, one could take every Nth letter in the list. Only ten values of N produce totals divisible by 7.

10 17 22 55 58 62 63 71 79 81

Total of N: 518 = 2 x 7 x 37.

A.2.3.5Of the letters that are not first or last in a word, take all those that are odd valued and in an odd position within the passage, and take all those that are even valued and in an even position within the passage. These are the letters that are purely odd or purely even.

Letters that are purely odd or even in position and value.
a) 8   14 15 18  22 23 27 30 31 32  38 42 46 47 48  57 60 63 64 65 66
b) 600 60 9  200 60 9  9  8  7  100 60 60 8  5  100 9  60 5  40 7  8

a) 67 68  73 74 75 76 86  104 106 110 116 117 118 120 121 122 128 129
b) 7  100 5  20 7  30 200 80  60  600 70  9   60  90  9   60  30  9

a) 136 139 142 143 146 147 152 153 162 173 176 177 189 190 191 192 193
b) 60  1   300 5   30  9   300 5   30  9   300 9   9   20  5   100 1

a) 198 201 211 212 213 216 217 223 228 232 236 248 252 253 254 258 264
b) 600 1   3   10  7   30  1   5   30  20  200 60  40  7   80  100 90

a) 275 282 289 294 297 300 306 307 310 311 (Position.)
b) 9   200 1   50  9   60  40  1   30  7   (Letter value.)

Total of these letters: 5754 = 2 x 3 x 7 x 137.

A.2.3.5.1From the positions of the letters in A.2.3.5, find all those where the first digit is an odd number:

14 15 18 30 31 32 38 57 73 74 75 76 104 106 110 116 117 118 120 121 
122 128 129 136 139 142 143 146 147 152 153 162 173 176 177 189 190 
191 192 193 198 300 306 307 310 311

Total: 6357 = 3 x 13 x 163.

A.2.3.5.2From the positions of the letters in A.2.3.5, find all those where the first digit is an even number:

8 22 23 27 42 46 47 48 60 63 64 65 66 67 68 86 201 211 212 213 216 
217 223 228 232 236 248 252 253 254 258 264 275 282 289 294 297

Total: 5957 = 7 x 23 x 37.

A.2.3.5.2.1Having grouped the positions by their first digits, now group them by their last digits. All the positions in A.2.3.5.2 that are odd valued:

23 27 47 63 65 67 201 211 213 217 223 253 275 289 297

Total: 2471 = 7 x 353.

A.2.3.5.2.2All the positions in A.2.3.5.2 that are even valued:

8 22 42 46 48 60 64 66 68 86 212 216 228 232 236 248 252 254 258 264 
282 294

Total: 3486 = 2 x 3 x 7 x 83.

A.2.3.5.3After examining the positions, now examine the letter values in A.2.3.5:

A.2.3.5.3.1Every other letter value in the list (odd positioned):

600 9 60 9 7 60 8 100 60 40 8 100 20 30 80 600 9 90 60 9 1 5 9 5 9 9 
20 100 600 3 7 1 30 200 40 80 90 200 50 60 1 7

Total: 3486 = 2 x 3 x 7 x 83.

A.2.3.5.3.2Every other letter value in the list (even positioned):

60 200 9 8 100 60 5 9 5 7 7 5 7 200 60 70 60 9 30 60 300 30 300 30 300 
9 5 1 1 10 30 5 20 60 7 100 9 1 9 40 30

Total: 2268 = 22 x 34 x 7.

A.2.3.5.4These letters that are not first or last in a word can also be further classified as purely odd/even in position and value.

A.2.3.5.4.1Of the letters that are not first or last in a word, select all those that are odd valued and in an odd position within the passage:

a) 15 23 27 31 47 57 63 65 67 73 75 117 121 129 139 143 147 153 173
b) 9  9  9  7  5  9  5  7  7  5  7  9   9   9   1   5   9   5   9

a) 177 189 191 193 201 211 213 217 223 253 275 289 297 307 311
b) 9   9   5   1   1   3   7   1   5   7   9   1   9   1   7

Total of these letters that are purely odd: 210 = 2 x 3 x 5 x 7.

A.2.3.5.4.2Of the letters that are not first or last in a word, select all those that are even valued and in an even position within the passage:

a) 8 14 18 22 30 32 38 42 46 48 60 64 66 68 74 76 86 104 106 110 116 118
b) 600 60 200 60 8 100 60 60 8 100 60 40 8 100 20 30 200 80 60 600 70 60

a) 120 122 128 136 142 146 152 162 176 190 192 198 212 216 228 232 236
b) 90  60  30  60  300 30  300 30  300 20  100 600 10  30  30  20  200

a) 248 252 254 258 264 282 294 300 306 310  (Position.)
b) 60  40  80  100 90  200 50  60  40  30   (Letter value.)

Total of the letters that are purely even: 5544 = 23 x 32 x 7 x 11.

A.3Now we look at letters in general. Odd or even positioned letters produce no feature, but odd valued letters do.

List of odd valued letters:
7 7 7 5 9 1 9 1 3 9 1 7 1 5 5 7 1 9 5 9 1 3 5 7 7 5 7 1 5 1 1 9 5 9 3
7 1 7 5 9 9 7 9 7 5 1 9 1 5 7 9 1 5 9 7 1 1 7 1 9 7 5 9 1 9 5 5 9 5 9
5 1 9 7 1 9 7 5 9 5 5 3 7 7 1 5 9 5 9 1 1 1 1 9 7 1 1 7 9 5 9 7 1 9 5
9 1 1 9 7 1 9 1 9 7 1 5 9 1 9 1 1 7 

A.3.1Total of the 123 odd valued letters: 651 = 3 x 7 x 31. (There is no correlating feature with even valued letters.)

A.3.1.1Odd positioned from the list of odd valued letters:

7 7 9 9 3 1 1 5 1 5 1 5 7 7 5 1 5 3 1 5 9 9 5 9 5 9 5 7 1 1 7 9 9 5 5
5 9 1 7 9 5 7 1 9 9 1 1 7 1 9 9 1 5 1 9 1 1 7 5 1 1 7

Total: 312 = 23 x 3 x 13.

A.3.2.1As there is only one God, letters with the value 1 appear 35 (5 x 7) times.

A.3.2.2Letters with the value 7 are associated with God and appear 26 (2 x 13) times.

A.3.3Twenty-eight (22 x 7) pairs of letters can be found positioned Nth and Nth last that together are divisible by 7.

a) Nth letter: 1   2   7   9   24  29  36  39  40  44  47  62  82  89
b) Value:      30  7   30  40  90  90  60  30  1   5   5   3   90  40
c) Nth last:   312 311 306 304 289 284 277 274 273 269 266 251 231 224
d) Value:      40  7   40  9   1   1   10  5   20  2   9   60  1   9
e) Sum:        70  14  70  49  91  91  70  35  21  7   14  63  91  49

a) 92  98  101 105 107 110 111 113 120 133 134 139 149 155
b) 1   7   60  100 40  600 40  60  90  30  5   1   100 20
c) 221 215 212 208 206 203 202 200 193 180 179 174 164 158
d) 90  7   10  5   9   30  9   10  1   5   30  90  40  1
e) 91  14  70  105 49  630 49  70  91  35  35  91  140 21

Sum of positions (lines a + c): 8764 = 22 x 7 x 313.

A.3.4.1Adding every Nth letter comes to a multiple of 7 when N is one of the following values:

12 13 24 25 31 34 39 43 51 54 94 96 101 105 106 110 114 142 143

The sum of these values of N: 1337 = 7 x 191.

A.3.4.2Adding every Nth letter produces a total divisible by 13 when N is one of these values:

20 34 42 80 91 93 107 118 125 126 130 133

Total of N: 1099 = 7 x 157.

A.3.5.1Fifty-seven letters have the values of prime numbers:

a) 2 4 6 11 26 31 44 47 50 51 56 62 63 65 67 73 75 83 94 97 98 108
b) 7 7 7 5  3  7  5  5  7  2  5  3  5  7  7  5  7  5  5  3  7  7

a) 115 127 132 134 143 145 153 156 161 170 172 178 180 188 191 196
b) 5   7   7   5   5   7   5   7   7   7   5   5   5   5   5   7

a) 204 205 208 210 211 213 215 219 223 240 253 263 268 269 274 280
b) 7   5   5   5   3   7   7   5   5   7   7   5   7   2   5   7

a) 291 296 311   (Position.)
b) 7   5   7     (Letter value.)

The sum of the letter values has no feature, but the sum of their positions is 8407 (7 x 1201).

A.3.5.2Two hundred and fifty-five letter values are not prime numbers. This time the feature is in their values, and not in their positions.

a) 1   3    5   7  8   9  10  12 13  14 15 16 17 18  19 20 21 22 23 24
b) 30  100  80  30 600 40 60  40 100 60 9  90 60 200 80 1  40 60 9  90

a) 25  27 28 29 30  32  33  34  35 36 37 38 39 40 41 42 43   45 46  48
b) 1   9  1  90 8   100 600 100 60 60 40 60 30 1  90 60 200  20 8   100

a) 49    52 53 54 55  57 58 59 60 61    64  66  68  69  70  71 72  74
b) 600   1  90 9  20  9  1  90 60 200   40  8   100 600 100 60 8   20

a) 76 77 78 79 80  81  82  84 85 86  87 88 89 90  91 92 93  95 96
b) 30 1  90 60 200 600 90  40 60 200 80 1  40 600 10 1  9   70 9

a) 99 100 101 102 103 104 105 106 107  109 110 111 112 113 114  116 117
b) 90 100 60  40  1   80  100 60  40   30  600 40  100 60  40   70  9

a) 118 119 120 121 122 123 124 125 126  128 129 130 131  133  135 136
b) 60  200 90  9   60  40  4   60  90   30  9   40  90   30   80  60

a) 137 138 139 140 141 142  144  146 147 148 149 150 151 152  154 155
b) 40  10  1   9   1   300  90   30  9   40  100 1   60  300  9   20

a) 157 158 159 160  162 163 164 165 166 167 168 169  171  173 174 175
b) 30  1   100 1    30  600 40  600 90  10  1   9    30   9   90  1

a) 176 177  179  181 182 183 184 185 186 187  189 190  192 193 194 195
b) 300 9    30   40  100 60  9   90  60  300  9   20   100 1   9   90

a) 197 198 199 200 201 202 203   206 207  209   212  214  216 217 218
b) 30  600 40  10  1   9   30    9   90   40    10   90   30  1   90

a) 220 221 222  224 225 226 227 228 229 230 231 232 233 234 235 236
b) 9   90  70   9   80  1   90  30  60  40  1   20  20  1   80  200

a) 237 238 239  241 242 243 244 245 246 247 248 249 250 251 252  254
b) 90  1   9    30  1   90  1   70  60  100 60  200 70  60  40   80

a) 255 256 257 258 259 260 261 262  264 265 266 267   270 271 272 273
b) 60  200 60  100 9   90  60  200  90  100 9   40    1   90  9   20

a) 275 276 277 278 279 281 282 283 284 285 286 287 288 289 290 292 293
b) 9   1   10  1   9   4   200 40  1   30  9   90  10  1   9   4   60

a) 294 295 297 298 299 300 301 302 303 304 305 306 307 308 309 310 312
b) 50  1   9   90  100 60  200 90  1   9   600 40  1   90  1   30  40

a) Position.            b) Letter value.

Total of the letters: 19866 = 2 x 3 x 7 x 11 x 43.

A.3.6Sixteen times we can find the middle N letters adding to a total divisible by 7.

300 298 288 280 276 250 208 182 178 170 144 114 74 72 56 50

Total of N: 2940 = 22 x 3 x 5 x 72. SF: 26 = 2 x 13.
The largest number of middle N letters is 300. The smallest just happens to be 50. The largest and smallest together: 350 = 2 x 52 x 7.

A.3.7When the letters are added up one by one, six times the cumulative total is divisible by 91 (7 x 13).

Letter position:  84   93   115  134   306   308
Letter value:     40   9    5    5     40    90
Cumulative total: 6643 7644 9191 10101 20020 20111

Sum of the positions: 1040 = 24 x 5 x 13. SF: 26 = 2 x 13.
Sum of the letters: 189 = 33 x 7.
Sum of the cumulative totals: 73710 = 2 x 34 x 5 x 7 x 13. SF: 39 = 3 x 13.

A.3.8Gather the letters into groups of 3, 39, 52 and calculate their totals. Add all groups together that have odd valued totals. Add all groups together that have even valued totals.

A.3.8.1.1Odd valued groups of 3:

30 7 100      600 7 2       30 5 80       90 7 30       100 9 40
60 5 40       1 90 60       1 9 1         9 90 70       90 9 20
100 60 9      40 7 8        300 5 90      1 90 30       5 9 1
80 1 40       7 100 600     40 100 1      60 40 1       7 4 200
60 9 90       30 1 90       60 300 5      20 20 1       40 1 30
1 3 9         90 5 40       30 1 100      1 9 7         9 90 10
1 90 8        1 40 600      90 10 1       30 1 90       1 9 7
7 100 600     1 80 100      9 90 60       1 70 60       1 5 9
1 90 60       60 40 7       20 5 100      7 80 60       200 90 1
200 5 20      9 60 40       7 30 600      9 90 60       9 600 40
8 5 100       40 90 7       40 10 1       200 5 90      30 7 40

Total of the odd valued groups: 10335 = 3 x 5 x 13 x 53.

A.3.8.1.2Even valued groups of 3:

7 80 7         3 7 90         5 9 90         70 60 40
30 600 40      100 60 40      1 300 9        200 60 100
90 60 200      30 600 40      5 30 5         7 2 1
100 60 60      100 60 40      40 100 60      10 1 9
40 60 30       5 70 9         300 5 9        4 60 50
1 90 9         60 200 90      1 9 90         90 100 60
20 5 9         4 60 90        9 30 7         1 90 1
200 3 5        7 30 9         5 9 90
100 60 8       60 40 10       5 40 5
5 20 7         7 30 9         3 10 7
60 200 600     9 20 7         1 90 5
60 200 80      1 7 30         5 9 80
10 1 9         600 40 600     80 200 90
5 70 9         9 7 30         100 60 200

Total of the even valued groups: 9854 = 2 x 13 x 379.

A.3.8.2.1Odd valued groups of 39:

60 200 90 9 60 40 4 60 90 7 30 9 40 90 7 30 5 80 60 40 10 1 9 1 300
5 90 7 30 9 40 100 1 60 300 5 9 20 7

7 30 600 40 10 1 9 30 7 5 9 90 5 40 5 3 10 7 90 7 30 1 90 5 9 90 70
5 9 80 1 90 30 60 40 1 20 20 1

5 9 1 10 1 9 7 4 200 40 1 30 9 90 10 1 9 7 4 60 50 1 5 9 90 100 60
200 90 1 9 600 40 1 90 1 30 7 40

Total: 5603 = 13 x 431.

A.3.8.2.2Even valued groups of 39:

30 7 100 7 80 7 30 600 40 60 5 40 100 60 9 90 60 200 80 1 40 60 9
90 1 3 9 1 90 8 7 100 600 100 60 60 40 60 30

1 90 60 200 5 20 8 5 100 600 7 2 1 90 9 20 5 9 1 90 60 200 3 5 40
7 8 7 100 600 100 60 8 5 20 7 30 1 90

60 200 600 90 5 40 60 200 80 1 40 600 10 1 9 5 70 9 3 7 90 100 60
40 1 80 100 60 40 7 30 600 40 100 60 40 5 70 9

30 1 100 1 7 30 600 40 600 90 10 1 9 7 30 5 9 90 1 300 9 5 30 5 40
100 60 9 90 60 300 5 9 20 5 100 1 9 90

80 200 90 1 9 7 30 1 90 1 70 60 100 60 200 70 60 40 7 80 60 200 60
100 9 90 60 200 5 90 100 9 40 7 2 1 90 9 20

Total: 14586 = 2 x 3 x 11 x 13 x 17.

A.3.8.3.1Odd valued groups of 52:

30 7 100 7 80 7 30 600 40 60 5 40 100 60 9 90 60 200 80 1 40 60 9 90
1 3 9 1 90 8 7 100 600 100 60 60 40 60 30 1 90 60 200 5 20 8 5 100
600 7 2 1

30 1 100 1 7 30 600 40 600 90 10 1 9 7 30 5 9 90 1 300 9 5 30 5 40
100 60 9 90 60 300 5 9 20 5 100 1 9 90 7 30 600 40 10 1 9 30 7 5 9
90 5

40 5 3 10 7 90 7 30 1 90 5 9 90 70 5 9 80 1 90 30 60 40 1 20 20 1 80
200 90 1 9 7 30 1 90 1 70 60 100 60 200 70 60 40 7 80 60 200 60 100
9 90

Total: 10413 = 32 x 13 x 89.

A.3.8.3.2Even valued groups of 52:

90 9 20 5 9 1 90 60 200 3 5 40 7 8 7 100 600 100 60 8 5 20 7 30 1 90
60 200 600 90 5 40 60 200 80 1 40 600 10 1 9 5 70 9 3 7 90 100 60 40
1 80

100 60 40 7 30 600 40 100 60 40 5 70 9 60 200 90 9 60 40 4 60 90 7
30 9 40 90 7 30 5 80 60 40 10 1 9 1 300 5 90 7 30 9 40 100 1 60 300
5 9 20 7

60 200 5 90 100 9 40 7 2 1 90 9 20 5 9 1 10 1 9 7 4 200 40 1 30 9 90
10 1 9 7 4 60 50 1 5 9 90 100 60 200 90 1 9 600 40 1 90 1 30 7 40

Total: 9776 = 24 x 13 x 47.

A.3.8.3.3The difference between A.3.8.3.1 and A.3.8.3.2 is 637 (72 x 13). Results divisible by 13 lead to a result divisible by 49.

The Words

Turning to the words...

A.3.1The very first word: 224 = 25 x 7.

A.3.2The very last word: 78 = 2 x 3 x 13. (Unfortunately, in this case first and last do not work together.)

A.4Every other word (odd positioned) comes to a total divisible by 7:

a) 1   3  5   7   9   11  13  15  17 19  21  23 25  27  29  31 33 35
b) 224 60 259 819 191 738 137 770 71 690 981 84 200 677 543 86 20 86

a) 37  39  41  43  45  47 49  51  53  55  57  59  61 63 65  67 69
b) 533 690 141 259 677 37 128 385 380 131 517 350 7  20 374 7  104

a) 71   (Word position.)
b) 741  (Word value.)

Total: 12117 = 3 x 7 x 577. (There is no equivalent feature for the even positioned words, though there is a feature hidden in the sum of the factors: 8072 = 2 x 2 x 2 x 1009. SF: 1015 = 5 x 7 x 29.)

A.4.1From the list in A.4, take every other word (even positioned):

60 819 738 770 690 84 677 86 86 690 259 37 385 131 350 20 7
741

Total: 6630 = 2 x 3 x 5 x 13 x 17.

A.4.1.1From the list in A.4.1, find all those where the first digit is odd:

738 770 37 385 131 350 7 741

Total: 3159 = 35 x 13. SF: 28 = 22 x 7.

A.4.1.2From the list in A.4.1, find all those where the first digit is even:

60 819 690 84 677 86 86 690 259 20

Total: 3471 = 3 x 13 x 89. SF: 105 = 3 x 5 x 7.

A.5Exactly 13 paired groups of words, symmetrically positioned (Nth and Nth last) can be found that are together and individually divisible by 7.

a) 1     2    2    3     9    10   10   11   16   17   17   21   22
b) 26    13   14   32    27   20   22   23   18   29   30   22   31
c) 13608 6209 6909 15946 9632 6111 7539 7357 1589 7497 7910 1428 5208

a) First group starts Nth from the beginning. Second group starts Nth
   from the end.
b) First group ends Nth from the beginning. Second group ends Nth
   from the end.
c) Total of both groups.

Sum of the start and end positions (a + b): 448 = 26 x 7.

A.6Seventeen words are divisible by 7.

Position:   1   5   7   10  12 14  15  18  23 30  43  51  52 59  61 64 67
Word value: 224 259 819 350 7  350 770 350 84 154 259 385 42 350 7  7  7

Total of the positions: 532 = 22 x 7 x 19.
Total of the words: 4424 = 23 x 7 x 79.

A.7Highest valued word plus lowest valued word: 981 + 7 = 988
(22 x 13 x 19).

A.8There are precisely 49 unique word values.

A.8.1Thirteen unique word values appeared an even number of times, but there is no matching feature with word values that appeared an odd number of times. (This feature could have been stated differently as thirteen unique word values that appeared more than once as opposed to words that appeared only once.)

Appearances: 2   2   2   2   2   2  2   2   2  4 4   4   6
Word value:  200 137 104 690 259 45 160 128 86 7 350 677 20

Total of the unique word values: 2863 = 7 x 409. SF: 416 = 25 x 13.

A.9.1Twenty-seven words have the digit 0 in their values:

3  6   8   10  14  15  16  18  19  22 24  25  28  33 36  39  40
60 540 160 350 350 770 160 350 690 20 100 200 200 20 101 690 20

42  46 50  53  56  59  63 66 69  70
390 20 104 380 360 350 20 20 104 450

Total: 6979 = 7 x 997.

A.9.2Eighteen words have the digit 3:

10  11  13  14  18  29  32  34  37  42  47 51  53  55  56  59  62  65
350 738 137 350 350 543 312 396 533 390 37 385 380 131 360 350 137 374

Total of these words: 6253 = 132 x 37. SF: 63 = 32 x 7. SF: 13.

A.9.3Only three words have digits 13.

13  55  62
137 131 137

Total of their positions: 130 = 2 x 5 x 13.

A.9.4Only the seventh word is divisible by 7 and 13: 819 = 32 x 7 x 13. SF: 26 = 2 x 13.

A.9.4.1In this case, the seventh word is a unique position. All the positions before this point add up to 21 (3 x 7). All the positions after this point add up to 2600 (23 x 52 x 13).

A.9.4.2Since the total of the passage and the seventh word are both multiples of 13, this means subtracting the seventh word would still leave a number divisible by 13. It's factors are the surprise with extra levels of 13: 19370 = 2 x 5 x 13 x 149. SF: 169 = 132. SF: 26 = 2 x 13.

A.10The letter values of God’s name in Hebrew can be used 13 times to count through the word values.

a) 10  5   6   5   10  5   6  5  10  5  6   5   10  5   6   5   10  5
b) 10  15  21  26  36  41  47 52 62  67 73  6   16  21  27  32  42  47
c) 10  15  21  26  36  41  47 52 62  67 1   6   16  21  27  32  42  47
d) 350 770 981 281 101 141 37 42 137 7  224 540 160 981 677 312 390 37

a) 6   5   10  5   6   5  10 5   6  5   10  5   6   5  10  5   6   5
b) 53  58  68  73  7   12 22 27  33 38  48  53  59  64 74  7   13  18
c) 53  58  68  1   7   12 22 27  33 38  48  53  59  64 2   7   13  18
d) 380 169 115 224 819 7  20 677 20 677 264 380 350 7  677 819 137 350

a) 10  5  6   5   10  5   6   5   10  5   6   5   10  5   6   5
b) 28  33 39  44  54  59  65  70  80  13  19  24  34  39  45  50
c) 28  33 39  44  54  59  65  70  8   13  19  24  34  39  45  50
d) 200 20 690 599 128 350 374 450 160 137 690 100 396 690 677 104

a) Letter from The Name.
b) Count.
c) Count adjusted for 72 words.
d) Word found.

Total: 18025 = 52 x 7 x 103.

A.10.1Note that the very first word found is divisible by 7, and the very last word found is divisible by 13.

A.10.2The list of words found divides perfectly into those that are odd valued.

981 281 101 141 37 137 7 981 677 37 169 115 819 7 677 677 7 677 819 
137 599 137 677

Total: 8897 = 7 x 31 x 41.

A.10.3They also divide perfectly into those that are even valued.

350 770 42 224 540 160 312 390 380 224 20 20 264 380 350 350 200 20 
690 128 350 374 450 160 690 100 396 690 104

Total: 9128 = 23 x 7 x 163.

A.10.4The difference between the odd valued words and even valued words: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.

A.10.5From the list in A.10.3, extract every other (odd positioned):

350 42 540 312 380 20 264 350 200 690 350 450 690 396 104

Total: 5138 = 2 x 7 x 367.

A.10.6From the list in A.10.3, extract the even positioned:

770 224 160 390 224 20 380 350 20 128 374 160 100 690

Total: 3990 = 2 x 3 x 5 x 7 x 19.

A.10.7If the odd positioned were again extracted from A.10.6's results, the result is a multiple of 13.

770 160 224 380 20 374 100

Total: 2028 = 22 x 3 x 132.

Support For God As Mother

Is there any other support God can also be our Mother? Since the text of The Lord's Prayer in the GNS has a feature hidden in the sum of the factors, which is a level removed, perhaps this is a clue for seeking support one language removed from the Greek. The only ancient language that was contemporary with Koine Greek, still in use today and extant beyond its own borders is Chinese. And providentially, the Chinese Union Version (CUV) 4 of the Bible has numeric features when this experiment is applied to it.

(For the conversion of Chinese characters to numbers, see this.)

Matthew 6:9-13
我們在天上的父、願人都尊你的名為聖。
願你的國降臨。願你的旨意行在地上、如同行在天上。
我們日用的飲食、今日賜給我們。
免我們的債、如同我們免了人的債。
不叫我們遇見試探.救我們脫離兇惡。〔或作脫離惡者〕因為國度、權柄、榮耀、
全是你的直到永遠、阿們

〔Bracketed text is an alternate reading which is
 removed before numeric conversion.〕

Like the Greek of the GNS, the Chinese translation has no numeric features as it stands: 219137 = 419 x 523.

Father 父 Replaced With 母 Mother
Ourin heaven aboveMotherlet peoplerevereyour nameas holylet your Kindom
comeletyour willbe done on earthas withas in heavenOurdaily
usefoodtodaygive foruscancelour debtsaswecanceled
people's debtsnotcallusto meettry out temptationbeg askuscut off leaveevilbecause
耀
forKingdomauthoritygloryall isyoursstraight througheternityAmen.
Characters Converted To Numbers
9232445547146241659385819393940410977016595362161
517381937701659324324177484819377016596234879679547546
24561529679547146249232445170399165947332426118
1706568447492324457809232445165947425615299232445780
79165947421003089232445538711245270344534729232445
耀
37517864444413254221613243194485032081566682924472064770
165916621197388600817252445

BNumeric total: 219338 = 2 x 7 x 15667.

B.1Odd positioned characters:

923 547 24 385 9 4109 1659 2161 8193 1659 2417 8193 1659 4879 547 24
529 547 24 2445 399 4733 118 6568 923 780 2445 4742 529 2445 7 1659
100 923 5387 5270 3472 2445 7864 4132 2161 1944 2081 8292 2064 1659
1197 6008 2445

Total: 123725 = 52 x 72 x 101. (Taking every other character produces a total that is divisible by 7 twice. This is rare.)

B.2Even positioned characters:

2445 146 1659 8193 3940 770 536 5173 770 3243 7484 770 623 679 546
561 679 146 923 170 1659 2426 170 4474 2445 923 1659 561 923 780 9
4742 308 2445 1124 3445 923 3751 444 542 3243 8503 5666 447 770 1662
388 1725

Total: 95613 = 3 x 7 x 29 x 157. SF: 196 = 22 x 72.

B.3The difference between the odd and even positioned characters: 123725 − 95613 = 28112 = 24 x 7 x 251. SF: 266 = 2 x 7 x 19. SF: 28 = 22 x 7. SF: 11. There are three levels of factors! Everything ends with the number 11, a number emphasizing the one God who is Alpha and Omega.

B.4Characters divisible by 7:

a) 6    7   11   12  13   16   18  19   24  25   26  27   28  30  34
b) 1659 385 4109 770 1659 5173 770 1659 770 1659 623 4879 679 546 679

a) 41  42   54   61 63   66  73   90  91   93    (Character position.)
b) 399 1659 1659 7  1659 308 3472 770 1659 1197  (Character value.)

Total of these characters: 38808 = 23 x 32 x 72 x 11. (Extra feature of 7.)

B.5Characters divisible by 13:

Position: 1   30  38  49  51  52  58  60  67  72   74
Value:    923 546 923 923 780 923 923 780 923 3445 923

Total of these characters: 12012 = 22 x 3 x 7 x 11 x 13. (Extra feature of 7.)

B.6The sum of the middle N characters are divisible by 7 when N is one of the following. Curiously there are only seven values for N where this is true.

87 79 71 65 51 45 5

Total of N: 403 = 13 x 31. (The factors are a neat reversal of the digits one and three.)

B.7When the characters are added one by one, the only time the cumulative total is divisible by both 7 and 13, is at the 25th character 的, a character indicating the possessive. It has a value of 1659 (3 x 7 x 79). At this point, the cumulative total is 67067 = 7 x 11 x 13 x 67. SF: 98 = 2 x 72.

B.7.1Everything before this character comes to a total of 65408 (27 x 7 x 73).

B.7.2Everything after this character comes to a total of 152271 (32 x 7 x 2417).

B.7.3Thus everything besides the 25th character is 217679 (7 x 112 x 257.
SF: 286 = 2 x 11 x 13. SF: 26 = 2 x 13).

B.7.4.1Curiously, the character before the 25th has a value of 770.

B.7.4.2The character after the 25th has a value of 623 = 7 x 89.

B.7.4.3The difference between the characters before and after the 25th:
147 =3 x 72.

One could go on searching for more numeric features, but this is a translation and not the original. These features are sufficient to show 母 (Mother in Chinese) produces some features just like μήτηρ (Mother in Greek).

Retaining The Original Text: God As Father

No one should change the original text of the Bible even though there is a difference between the GNT and GNS (Revelation 22:18-19). What is presented here is only an experiment showing that God can also be our Mother. It is no reason to amend the original text, especially when there is supporting evidence for retaining God as our Father.

Various Parental Forms
FormalInformalChild's Term
FatherPapaDaddy
MotherMamaMommy
父 (Fu)爸爸 (Baba)爹 (De) or 爹爹 (Dede)
母 (Mou)媽媽 (Mama)娘 (Leung)

Providentially, 父 (Father) in the CUV's version of The Lord's Prayer can be replaced by other words besides 母 (Mother).

Replacing 父 with the informal term 爸爸 (Baba) produces a total of 222235 (5 x 132 x 263. SF: 294 = 2 x 3 x 72). Two factors of 13 tie this in with God’s name in Hebrew. Two factors of 7 show perfection.

Substituting 父 with the child's term 爹 (De) produces a total of 221788 = 22 x 7 x 892. SF: 189 = 33 x 7. The odd positioned characters: 126175 = 52 x 72 x 103. The even positioned characters: 95613 = 3 x 7 x 29 x 157. SF: 196 = 22 x 72. The difference between these totals: 30562 = 2 x 7 x 37 x 59. SF: 105 = 3 x 5 x 7.

The child's term 爹爹 (Dede) also works: 224623 = 7 x 32089.

Curiously, not one of the other Chinese terms for Mother produces anything. The Greek word μήτηρ (Mother) worked so well one would think more than one (媽, 媽媽, 娘) would work. But they don't. Could it be God knew women would be slighted in patriarchal societies and decided to balance it out by having the formal (more respected) term 母 succeed while the others do not?

One thing is certain, more Chinese terms for Father succeed than those for Mother. Thus the numbers appear to favour God as Father more than God as Mother. This is why the original Greek text should not be changed. But it isn't just God as Father, but God as Baba (informal), and God as De (child's term) and Dede (Daddy). God is not a formal, stern, strict Father standing aloof, but the close comforting Baba and Daddy who is as close as a Mother is to her child.

Conclusion

Jesus taught his disciples to know God as their Father. The numeric features for The Lord's Prayer in the GNT, even though it ends abruptly, show God wants to be known as our Father. This is supported by the complete verses of Matthew 6:9-13 in the GNS. A simple expansion of our understanding of God as Father and Mother reveals astonishing numeric features in the specific part of The Lord's Prayer in the GNS. Finally, in the Chinese, we see God much more intimately, as a Father watching over His young children.5 This is very comforting in these dark times.

Notes

  1. The Greek texts in this study are from Bibleworks 3.0 by Hermeneutika, Michael S. Bushell, 1995, translated into HTML entities. Vowels and punctuation have been removed. The GNT is The Nestle-Aland 27th Edition of the Greek New Testament, Copyright © 1966, 1968, 1975, 1993-1994 United Bible Societies.
    The GNS is the F.H.A. Scrivener 1881 Theodore Beza 1598 Textus Receptus Greek New Testament, ASCII edition Copyright 1992 by Dr. Kirk D. DiVietro, Grace Baptist Church.
  2. English interlinear is from The New Testament in the Original Greek revised by Brooke Foss Westcott D.D., and Fenton John Anthony Hort D.D., 1948 reprint.
  3. Unless otherwise indicated all scripture quotations are from the Revised Standard Version, Thomas Nelson, 1972, New York.
  4. For this experiment, text from the Chinese Union Version of the Bible is used because there are editions of this Bible with the proper Chinese term for the one supreme God: 上帝. Most translators avoid it in favour of 神 because 上帝 is uniquely singular and clashes with the theory of the Trinity. Unfortunately, 神 is a term for interior deities, and is never used for the one supreme God. The Catholic Chinese Bible predates the CUV, but also avoids 上帝 and uses 天主.

    The text of the CUV was obtained from Wordproject®, a registered name of the International Biblical Association, a non-profit organization registered in Macau, China. (Accessed: May 8, 2022.)
  5. Even if the Gospel writer Matthew thought about God as Mother there was no way for him to write Father/Mother or Father and Mother without giving the wrong impression of God as two beings. He would have to make a choice of one or the other, or spend much more parchment and ink explaining the concept.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




These pages have been uploaded so you don't have to do anything like this.