Bible Numbers 2.0

Jesus: Coming With Clouds

Here is numeric proof Jesus will return and be given the eternal rulership of the world. The proof rests in the unique prophecy given by two angels. (Acts 1:9-11) No other prophecy in the Bible was given by two angels. The prophecy still awaits fulfillment, but this fulfillment was also seen in Daniel's vision and prophecy. (Daniel 7:9-18) This leads to the first case of having a New Testament prophecy with an Old Testament fulfillment. Numeric features following the pattern of The Proclamation illuminate the two passages when they are put together. This is a small down payment assuring believers the prophecy is true and will come to pass.

9 And when he had said this, as they were looking on, he was lifted up, and a cloud took him out of their sight. 10 And while they were gazing into heaven as he went, behold, two men stood by them in white robes, 11 and said, Men of Galilee, why do you stand looking into heaven? This Jesus, who was taken up from you into heaven, will come in the same way as you saw him go into heaven. (Acts 1:9-11)1

There are two angels because the law requires a minimum of two witnesses. (Deuteronomy 17:6) The Greek word ειπαν in Acts 1:11, translated as said in the RSV, is third person plural. This would imply the two angels spoke in unison to emphasize agreement.

What the angels said is very important for believers to remember. Jesus will return the same way he went. He will return from the sky. It will be visible for all the see. He will come with clouds. It is imperative to remember this, for many anti-Christ will come claiming to be Jesus. (Matthew 24:26; Luke 17:23, 21:8) None of them will come from the sky with clouds.2

Acts 1:9-113
A:123
B:20402724
C:12345678910111213
D:101910012001001597060040
E:καιταυταειπων
A:45
B:937941
C:1415161718192021222324252627
D:220570604010060040120010060040
E:βλεποντωναυτων
A:678
B:17720377
C:282930313233343536373839404142
D:5707808710194053005207
E:επηρθηκαινεφελη
A:91011
B:343401131
C:43444546474849505152535455565758
D:20070520125401200100604017060
E:υπελαβεναυτοναπο
A:121314
B:7401059941
C:59606162636465666768697071727374
D:100600406030081203060040120010060040
E:τωνοφθαλμωναυτων
A:151617
B:20690456
C:75767778798081828384858687888990
D:1019600901100540966040100590
E:καιωςατενιζοντες
A:181920
B:138104200
C:919293949596979899100
D:79014059901006040
E:ησανειςτον
A:21
B:481
C:101102103104105106107
D:60200801406040
E:ουρανον
A:2223
B:810561
C:108109110111112113114115116117118119120121122123
D:7060805200603054060200120010060200
E:πορευομενουαυτου
A:24252627
B:20273220264
C:124125126127128129130131132133134135136137138139
D:10199460200140480590420060
E:καιιδουανδρεςδυο
A:28
B:517
C:140141142143144145146147148149150151152153
D:7018059901007105990140
E:παρειστηκεισαν
A:293031
B:46045219
C:154155156157158159160161162163164165166167
D:120010060990540590871009
E:αυτοιςενεσθητι
A:32333435
B:2426920184
C:168169170171172173174175176177178179180181182
D:205200107609101959706040
E:λευκηοικαιειπον
A:3637
B:220132
C:183184185186187188189190191192193194195196197
D:140480590312092019609
E:ανδρεςγαλιλαιοι
A:3839
B:109318
C:198199200201202203204205206207
D:100959010071011005
E:τιεστηκατε
A:4041
B:427104
C:208209210211212213214215216217218219220221
D:53022057060401005905990
E:εμβλεποντεςεις
A:42434445
B:20048151060
C:222223224225226227228229230231232233234235236237
D:10060406020080140604060200100609060
E:τονουρανονουτοςο
A:4647
B:45660
C:238239240241242243244
D:9790602009060
E:ιησουςο
A:484950
B:481301870
C:245246247248249250251252253254255256257258259260
D:14012073008599013002003060040
E:αναληφθειςαφυμων
A:515253
B:104200481
C:261262263264265266267268269270271272273
D:5990100604060200801406040
E:ειςτονουρανον
A:545556
B:1050435100
C:274275276277278279280281282283284285286287288289
D:60200100600905205200905100196040
E:ουτωςελευσεταιον
A:5758
B:410213
C:290291292293294295296297298299300301302303304
D:100806070604058519019085
E:τροπονεθεασασθε
A:5960
B:401650
C:305306307308309310311312313314315316317318319320
D:12001006040706080520060305406040
E:αυτονπορευομενον
A:616263
B:104200481
C:321322323324325326327328329330331332333
D:5990100604060200801406040
E:ειςτονουρανον

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Greek.

There are 63 words. (32 x 7. SF: 13.) There are 333 letters. (nf) The numeric total: 22764 = 22 x 3 x 7 x 271.

The fulfillment of Jesus returning from the sky with clouds is seen in Daniel 7:9-18.

9 As I looked, thrones were placed and one that was ancient of days took his seat; his raiment was white as snow, and the hair of his head like pure wool; his throne was fiery flames, its wheels were burning fire. 10 A stream of fire issued and came forth from before him; a thousand thousands served him, and ten thousand times ten thousand stood before him; the court sat in judgment, and the books were opened. 11 I looked then because of the sound of the great words which the horn was speaking. And as I looked, the beast was slain, and its body destroyed and given over to be burned with fire. 12 As for the rest of the beasts, their dominion was taken away, but their lives were prolonged for a season and a time. 13 I saw in the night visions, and behold, with the clouds of heaven there came one like a son of man, and he came to the Ancient of Days and was presented before him. 14 And to him was given dominion and glory and kingdom, that all peoples, nations, and languages should serve him; his dominion is an everlasting dominion, which shall not pass away, and his kingdom one that shall not be destroyed. 15 As for me, Daniel, my spirit within me was anxious and the visions of my head alarmed me. 16 I approached one of those who stood there and asked him the truth concerning all this. So he told me, and made known to me the interpretation of the things. 17 "These four great beasts are four kings who shall arise out of the earth. 18 But the saints of the Most High shall receive the kingdom, and possess the kingdom for ever, for ever and ever." (Daniel 7:9-18)

Daniel describes a scene of ultimate majesty. There isn't just one throne, but many. None of those seated on the thrones compare with the Ancient of Days who presides over all. His clothing and hair are pure white. His throne is of blazing fire. It would appear a pavement of fire extends from His throne like a royal carpet. He has a million servants. A hundred million stand before Him. This is the final court with full evidence of all deeds recorded in books.

The four beasts, representing the empires of Babylon, Persia, Greece and Rome, are nothing compared with the Ancient of Days. Rome is destroyed. Its body given over to be burned. The other three empires remain for a while, but no longer have power.

Jesus comes with clouds of heaven and is presented to the Ancient of Days. He is given rulership over all. His dominion is forever and will never be destroyed.

Daniel 7:9-184
54321:A
336147442120:B
16151413121110987654321:C
50660200201044704001065578:D
כרסוןדיעדהויתחזה:E
876:A
116586256:B
3029282726252423222120191817:C
5010406101001040070661040200:D
יומיןועתיקרמיו:E
1211109:A
214453343412:B
454443424140393837363534333231:C
200683304002053006230240010:D
חורכתלגלבושהיתב:E
16151413:A
151330506576:B
605958575655545352515049484746:C
11005020040702053001200200703006:D
נקאכעמרראשהושער:E
20191817:A
25614374295:B
76757473727170696867666564636261:C
200650104501021023005106020020:D
נורדישביביןכרסיה:E
24232221:A
25513425687:B
92919089888786858483828180797877:C
2005501003042006501056303303:D
נהרדלקנורגלגלוהי:E
2928272625:A
902365725614:B
10610510410310210110099989796959493:C
5040100805064350200650104:D
מןונפקנגדנורדי:E
323130:A
171111165:B
120119118117116115114113112111110109108107:C
501080301803011056404100:D
אלפיןאלףקדמוהי:E
353433:A
254214711:B
135134133132131130129128127126125124123122121:C
502220062200655063004030010:D
רבבןורבוישמשונה:E
383736:A
65212165:B
151150149148147146145144143142141140139138137136:C
150104506406100101056404100:D
דינאיקומוןקדמוהי:E
414039:A
504406412:B
165164163162161160159158157156155154153152:C
681040080501020080606240010:D
פתיחווספריןיתב:E
4645444342:A
130906742120:B
181180179178177176175174173172171170169168167166:C
30100504050104124001065578:D
קלמןבאדיןהויתחזה:E
50494847:A
3511480581:B
197196195194193192191190189188187186185184183182:C
1502001001041400220022001103040:D
קרנאדירברבתאמליא:E
5554535251:A
147442120145:B
213212211210209208207206205204203202201200199198:C
1044704001065578530304040:D
דיעדהויתחזהממללה:E
585756:A
23425549:B
228227226225224223222221220219218217216215214:C
426561400610840030109100:D
והובדחיותאקטילת:E
616059:A
544433348:B
243242241240239238237236235234233232231230229:C
4004100103040021051065403003:D
ליקדתויהיבתגשמה:E
646362:A
425507302:B
255254253252251250249248247246245244:C
140061082001300613001:D
חיותאושאראשא:E
6665:A
45095:B
267266265264263262261260259258257256:C
5065509303006104705:D
שלטנהוןהעדיו:E
696867:A
42780232:B
282281280279278277276275274273272271270269268:C
4002105105010108252020016:D
יהיבתבחייןוארכה:E
7473727170:A
20130977491:B
298297296295294293292291290289288287286285284283:C
57850470650407470506530:D
חזהועדןזמןעדלהון:E
777675:A
8133421:B
312311310309308307306305304303302301300299:C
1103010301067824001065:D
ליליאבחזויהוית:E
81807978:A
351180110213:B
326325324323322321320319318317316315314313:C
11040300105050704070620016:D
שמיאענניעםוארו:E
8685848382:A
8016406351222:B
341340339338337336335334333332331330329328327:C
470656554001300501200220:D
ועדהוהאתהאנשכבר:E
898887:A
5467580:B
353352351350349348347346345344343342:C
5940110406101001040070:D
מטהיומיאעתיק:E
9190:A
328171:B
367366365364363362361360359358357356355354:C
10562200100510564041006:D
הקרבוהיוקדמוהי:E
95949392:A
3163892741:B
382381380379378377376375374373372371370369368:C
200100106509303002105105306:D
ויקרשלטןיהיבולה:E
989796:A
16156102:B
395394393392391390389388387386385384383:C
1104040703020662030406:D
עממיאוכלומלכו:E
10110099:A
3539752:B
407406405404403402401400399398397396:C
53011050300306110401:D
להולשניאאמיא:E
104103102:A
389394184:B
422421420419418417416415414413412411410409408:C
509303005509303005068308010:D
שלטןשלטנהיפלחון:E
108107106105:A
893114140:B
433432431430429428427426425424423:C
547010130104403070:D
יעדהלאדיעלם:E
112111110109:A
8403114507:B
449448447446445444443442441440439438437436435434:C
3028400400130104540062030406:D
תתחבללאדיומלכותה:E
115114113:A
562241031:B
462461460459458457456455454453452451450:C
5501108620040010200204001:D
אנהרוחיאתכרית:E
118117116:A
1091295:B
475474473472471470469468467466465464463:C
550450163230110504:D
נדנהבגואדניאל:E
121120119:A
15751137:B
491490489488487486485484483482481480479478477476:C
105050305210103001200106786:D
יבהלנניראשיוחזוי:E
126125124123122:A
1529012100702:B
506505504503502501500499498497496495494493492:C
11040110050404830704002200100:D
קאמיאמןחדעלקרבת:E
130129128127:A
1009574119:B
521520519518517516515514513512511510509508507:C
30705504017021121090106:D
עלמנהאבעאויציבא:E
135134133132131:A
586402475950:B
536535534533532531530529528527526525524523522:C
2003008061030200401655043020:D
ופשרליואמרדנהכל:E
138137136:A
9120581:B
552551550549548547546545544543542541540539538537:C
501030110505070465101103040:D
אליןיהודעננימליא:E
141140139:A
14805425:B
565564563562561560559558557556555554553:C
10414002200220014006108:D
דירברבתאחיותא:E
144143142:A
278273111:B
578577576575574573572571570569568567566:C
5702200170220015010501:D
ארבעהארבעאנין:E
147146145:A
90212150:B
591590589588587586585584583582581580579:C
5040506406100105010203040:D
מןיקומוןמלכין:E
149148:A
204272:B
602601600599598597596595594593592:C
5063021001061702001:D
ויקבלוןארעא:E
151150:A
424497:B
613612611610609608607606605604603:C
1030010410014006203040:D
קדישימלכותא:E
153152:A
190226:B
627626625624623622621620619618617616615614:C
506506081065010506103070:D
ויחסנוןעליונין:E
157156155154:A
8014174497:B
642641640639638637636635634633632631630629628:C
4706140307047014006203040:D
ועדעלמאעדמלכותא:E
159158:A
151140:B
650649648647646645644643:C
110403070403070:D
עלמיאעלם:E

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Hebrew.

(Note: Some ancient manuscripts have different spellings for the ninth and twelfth words of Daniel 7:10. For this exercise, the ninth word is spelt אלפין, and the twelfth word is רבבן .)

There are 159 words. (159 = 3 x 53. SF: 56 = 23 x 7. SF: 13.) There are 650 letters. (650 = 2 x 52 x 13.) The numeric total for this section: 36589 = 7 x 5227.

Although Acts 1:9-11 is the prophecy, and Daniel 7:9-18 is the fulfillment, the Old Testament data is still placed first because it was written first. The data for Acts 1:9-11 is added to the end of Daniel 7:9-18 and not the other way around.

Primary Features

(Derived from Revelation 1:8 and grouped for easy reference.)

I Am (Present tense - living through it) Add up everything.

A.1Numeric total: 59353 = 7 x 61 x 139. (See feature 1.)

Is, Was, Is To Come (Second present tense - skipping sequentially through it) Add up every other occurrance.

B.1Every other passage (odd): 22764 = 22 x 3 x 7 x 271. (See feature 1.2.)

B.1.2Every other passage (even): 36589 (= 7 x 5227. (See feature 1.2.2.)

B.3Every other word (odd): 30954 = 2 x 3 x 7 x 11 x 67. (See feature 3.3.1.)

B.3.2Every other word (even): 28399 = 7 x 4057. (See feature 3.3.2.)

B.4Every other letter (odd): 27510 = 2 x 3 x 5 x 7 x 131. (See feature 8.3.1.)

B.4.2Every other letter (even): 31843 = 7 x 4549. (See feature 8.3.2.)

Alpha & Omega (The first and last) Add up the first item with the last item.

C.1.3First and last word of each passage: 672 = 25 x 3 x 7. (See feature 1.7.)

C.3.2First and last letter of each word: 22988 = 22 x 7 x 821. (See feature 4.1.)

Alpha (The first) Add up the first item.

D.3.3First letter of each word: 10087 = 7 x 11 x 131. (See feature 5.)

Omega (The last) Add up the last item.

E.3.3Last letter of each word: 12901 = 7 x 19 x 97. (See feature 6.)

The Passages

1Total of the combined passages: 59353 = 7 x 61 x 139.

1.2Providentially, the total for the prophecy (Acts 1:9-11) is 22764 (22 x 3 x 7 x 271).

1.2.2And also providentially, the total of the fulfillment (Daniel 7:9-18), is 36589 (7 x 5227).

Although there are only two passages, their totals display more than one principle of complementary opposites from Revelation 1:8. One is first, and one is last. One is beginning, and the other is end. One is even valued. The other is odd valued. One is odd positioned, and the other is even positioned.

1.3The difference between prophecy and fulfillment is naturally a multiple of 7: 13825 = 52 x 7 x 79. SF: 96 = 25 x 3. SF: 13. The sum of the factors providentially ends at 13 pointing to God’s name.

1.4There are ten digits in these two numbers.

2 2 7 6 4 3 6 5 8 9

The total of these digits is once again providentially divisible by 13: 52 = 22 x 13.

1.5Since both numbers are divisible by 7, they naturally form a large number that is also divisible by 7: 3658922764 = 22 x 7 x 197 x 439 x 1511. This is not really anything special, until one considers the sum of the factors. SF: 2158 = 2 x 13 x 83. SF: 98 = 2 x 72.

1.6The first verse from the the fulfillment, and the last verse from the prophecy: 16055 = 5 x 132 x 19. (Unfortunately, there is no feature with the first and last verses of both sections. There is only the first and last verse of the fulfillment: 8848. (8848 = 24 x 7 x 79. SF: 94 = 2 x 47. SF: 49 = 72. SF: 14 = 2 x 7.)

1.7The first and last words from prophecy and the first and last words from the fulfillment: 672 = 25 x 3 x 7.

The Verses

2Together, there are 13 verses.

List of verses:
6224 4298 5277 2608 3684 4209 2232 2712 2721 2624 7213 5720 9831

2.1The first seven verses:

6224 4298 5277 2608 3684 4209 2232

Total: 28532 = 22 x 7 x 1019.

2.2The last six verses:

2712 2721 2624 7213 5720 9831

Total: 30821 = 72 x 17 x 37. (Every factor has a digit of 7.)

2.3Only the second verse is divisible by 7. Only the second last verse is divisible by 13. The second last verse is the twelfth verse. Thus the verse positions of these two together is 14 (2 x 7).

2.4The middle 7 verses together are a multiple of 7.

2608 3684 4209 2232 2712 2721 2624

Total of the verses: 20790 = 2 x 33 x 5 x 7 x 11.

2.5The positions of the odd valued verses total 42 (2 x 3 x 7).

2.5.2The positions of the even valued verses total 49 (72. SF: 14 = 2 x 7).

2.6Nine verses are purely odd, or purely even (i.e. odd in position and value, or even in position and value).

Odd position & odd valued:    Even position & even valued:
3    9    11   13             2    4    8    10   12
5277 2721 7213 9831           4298 2608 2712 2624 5720
Total: 25042 (nf)             Total: 17962 = 2 x 7 x 1283.

Total of the nine pure verses: 43004 = 22 x 13 x 827.

2.7One can count through the verses, taking every Nth verse but with N increasing by one each time.

Count:        1    2    4    7    11
Increasing N: 1    2    3    4    5
Verse found:  6224 4298 2608 2232 7213

Total of the verses found: 22575 = 3 x 52 x 7 x 43. SF: 63 = 32 x 7. SF: 13.

2.8When the 13 verses are added one by one, four times the running total will be a multiple of 7.

Verse position: 3     7     10    13
Verse total:    5277  2232  2624  9831
Running total:  15799 28532 36589 59353

Total of the verses: 19964 = 22 x 7 x 23 x 31. SF: 65 = 5 x 13.

2.9Search through the verses for a repeating high low pattern, and considering the first verse a high number.

Verse position: 1    2    3    4    5    7    8    10   11   12   13
Verse total:    6224 4298 5277 2608 3684 2232 2712 2624 7213 5720 9831

Total of the verses: 52423 = 7 x 7489.

2.10Search through the verses for a repeating even odd pattern.

Verse position: 1    3    4    6    7    9    10   11   12   13   
Verse total:    6224 5277 2608 4209 2232 2721 2624 7213 5720 9831 

Total of the verses: 48659 = 13 x 19 x 197.

The Words

3The number of words: 222 (2 x 3 x 37). While this is not a multiple of 7 or 13, the sum of the factors is divisible by 7: 42 = 2 x 3 x 7. 222 is also 2 x 111. The repeating ones is a visual numeric representation of the one God who is, was and is to come. (Revelation 1:8) The number 2 is explained by John 1:1, where the Word was with the God, and the Word was a god.

3.1Exactly 7 pairs of words, positioned Nth and Nth last, together are a multiple of 13.

a) Nth word:   48   92  95  96  97  106 111
b) Value:      805  41  316 102 56  14  31
c) Nth last:   175  131 128 127 126 117 112
d) Value:      690  50  74  119 152 12  840
e) Sum:        1495 91  390 221 208 26  871

Sum of positions (a + c): 1561 = 7 x 223.

3.2128 paired groups of words, positioned Nth and Nth last, together and individually are divisible by 7.

a) 1     1     1     1     1     2     2     2     2     3     4
b) 20    37    66    79    101   29    34    61    98    22    24
c) 13314 20713 40411 45675 54488 16373 18340 37338 52689 13216 13958

a) 5    5     5     6     6     7     9    9     10    11    12   12
b) 12   58    93    45    51    104   18   30    57    57    17   28
c) 6006 31948 49672 22666 27496 52990 8092 12677 28483 27090 4088 9044

a) 13    13    14   14    14    14    15   15   15    15    16    17
b) 58    93    16   77    81    97    23   26   67    71    95    77
c) 25942 43666 2639 36274 37940 44289 4550 5929 30758 32417 41853 33635

a) 17    17    18   19   21   21    21    21    24   24    24    26
b) 81    97    28   30   37   66    79    101   26   67    71    107
c) 35301 41650 4956 4585 7399 27097 32361 41174 1379 26208 27867 40971

a) 27    27    30   30    30    32   32    32    32    32    33    34
b) 67    71    34   61    98    38   59    87    99    102   80    78
c) 24829 26488 1967 20965 36316 3759 17962 32627 36015 37590 28476 26705

a) 35    35    36   36   38    38    38    39    39    39    39    40
b) 61    98    39   41   66    79    101   59    87    99    102   41
c) 18998 34349 2128 3619 19698 24962 33775 14203 28868 32256 33831 1491

a) 41    41    43    43    44    46   47   47   47    49    50    50
b) 60    105   62    90    111   51   54   55   106   92    65    84
c) 14462 34300 14539 27027 34447 4830 6349 6706 30800 23842 12180 21112

a) 50    53   54   54    54    54    55    56    57   57    57    59
b) 109   63   68   69    73    75    106   106   70   82    89    93
c) 29736 8113 9429 10353 12082 12999 24451 24094 8876 13559 17346 17724

a) 60    60    60    61    62    63    65    66   66    67   67    68
b) 87    99    102   105   98    90    94    84   109   79   101   71
c) 14665 18053 19628 19838 15351 12488 12474 8932 17556 5264 14077 1659

a) 69   69   70   70   71   71   73    74  75   77    78   78   80
b) 73   75   73   75   82   89   100   75  86   108   81   97   101
c) 2653 3570 1729 2646 4683 8470 10787 917 5390 12075 1666 8015 8813

a) 82   83   84    85   88   88   89   100
b) 97   89   110   109  99   102  96   102
c) 6349 3787 10500 8624 3388 4963 2212 1575

a) Start position of group 1 is from the beginning, and of group 2 is
      from the end.
b) End position of group 1 is from the beginning, and of group 2 is from
      the end.
c) Total of both groups.

Total of the start and end positions (a + b): 14430 = 2 x 3 x 5 x 13 x 37.

3.3Take every other word.

3.3.1The odd positioned words:

a) 1  3  5   7   9   11  13  15  17  19 21 23  25 27 29 31  33  35  37
b) 20 74 336 586 412 453 576 330 295 14 87 134 14 57 90 111 711 254 212

a) 39  41  43  45 47 49 51  53  55 57  59  61  63  65 67  69  71 73
b) 412 504 421 90 81 14 145 421 14 425 348 544 507 95 232 427 74 130

a) 75  77 79  81  83  85 87  89 91  93 95  97 99 101 103 105 107 109
b) 421 81 110 351 351 16 580 54 328 27 316 56 52 35  394 140 31  507

a) 111 113  115 117 119 121 123 125 127 129 131 133 135 137 139 141 143
b) 31  1031 56  12  37  157 100 90  119 95  50  247 586 205 425 14  273

a) 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177
b) 150 90  204 424 190 74  80  151 402 937 177 377 401 740 941 690 138

a) 179 181 183 185 187 189 191 193 195 197 199 201 203 205 207 209 211
b) 200 810 20  220 517 45  242 20  220 109 427 200 510 456 481 870 200

a) 213  215 217 219 221  (Word position.)
b) 1050 100 213 650 200  (Word value.)

Total of the words (b): 30954 = 2 x 3 x 7 x 11 x 67.

3.3.2The even positioned words:

a) 2   4  6   8   10  12  14  16  18  20  22  24  26  28  30  32  34
b) 421 14 256 116 343 214 506 151 374 256 256 255 256 236 165 171 214

a) 36  38 40  42 44 46  48  50  52 54 56  58 60  62  64  66  68 70 72
b) 165 65 406 20 67 130 805 351 20 74 549 23 433 302 425 450 80 91 97

a) 74 76 78  80  82  84  86 88 90  92 94  96  98  100 102 104 106 108
b) 20 33 213 180 222 406 80 67 171 41 389 102 161 397 184 389 14  89

a) 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142
b) 14  840 224 95  109 511 702 12  152 74  100 59  40  81  91  805 111

a) 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172  174 176
b) 278 212 272 497 226 497 141 140 20  724 941 20  343 131 1059 20  456

a) 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210
b) 104 481 561 273 264 460 219 69  184 132 318 104 481 60  60  301 104

a) 212 214 216 218 220 222  (Word position.)
b) 481 435 410 401 104 481  (Word value.)

Total of the words (b): 28399 = 7 x 4057.

3.4Taking every other word is taking every Nth word. One can begin with the first word and take every Nth after, or just take every Nth word.

3.4.1Beginning with the first word and taking every Nth after, the following values of N produce multiples of 7:

2 3 38 44 62 70 78 85 87 95 101

Providentially, the sum of the N values is also a multiple of 7: 665 = 5 x 7 x 19.

3.4.2Taking every Nth word, the following values of N produce multiples of 7:

2 11 15 24 26 28 32 59 76 83 84 85 91

Providentially, the sum of the N values is still divisible by 7: 616 = 23 x 7 x 11.

3.5Beginning with the first word and taking every Nth after, only two values of N produce multiples of 7 and 13.

38 95

Total of the N values: 133 = 7 x 19. SF: 26 = 2 x 13.

3.6Divide the words into two groups: odd valued and even valued.

3.6.197 words are odd valued:

a) 2   10  11  16  17  21 24  27 30  31  32  33  36  38 43  44 47 48
b) 421 343 453 151 295 87 255 57 165 111 171 711 165 65 421 67 81 805

a) 50  51  53  56  57  58 60  63  64  65 69  70 72 75  76 77 78  81
b) 351 145 421 549 425 23 433 507 425 95 427 91 97 421 33 81 213 351

a) 83  88 90  92 93 94  98  100 101 104 107 108 109 111 113  116 118
b) 351 67 171 41 27 389 161 397 35  389 31  89  507 31  1031 95  109

a) 119 120 121 127 129 132 133 136 137 138 139 140 142 143 150 154 156
b) 37  511 157 119 95  59  247 81  205 91  425 805 111 273 497 497 141

a) 159 163 164 165 167 168 169 170 172  173 180 182 184 187 189 190 192
b) 151 937 941 177 377 343 401 131 1059 941 481 561 273 517 45  219 69

a) 197 199 202 207 208 212 214 217 218 222  (Word position.)
b) 109 427 481 481 301 481 435 213 401 481  (Word value.)

Total of the odd valued words (b): 29617 = 7 x 4231. SF: 4238 = 2 x 13 x 163.

3.6.2125 words are even valued.

a) 1  3  4  5   6   7   8   9   12  13  14  15  18  19 20  22  23  25
b) 20 74 14 336 256 586 116 412 214 576 506 330 374 14 256 256 134 14

a) 26  28  29 34  35  37  39  40  41  42 45 46  49 52 54 55 59  61  62
b) 256 236 90 214 254 212 412 406 504 20 90 130 14 20 74 14 348 544 302

a) 66  67  68 71 73  74 79  80  82  84  85 86 87  89 91  95  96  97 99
b) 450 232 80 74 130 20 110 180 222 406 16 80 580 54 328 316 102 56 52

a) 102 103 105 106 110 112 114 115 117 122 123 124 125 126 128 130 131
b) 184 394 140 14  14  840 224 56  12  702 100 12  90  152 74  100 50

a) 134 135 141 144 145 146 147 148 149 151 152 153 155 157 158 160 161
b) 40  586 14  278 150 212 90  272 204 424 226 190 74  80  140 20  402

a) 162 166 171 174 175 176 177 178 179 181 183 185 186 188 191 193 194
b) 724 20  740 20  690 456 138 104 200 810 20  220 264 460 242 20  184

a) 195 196 198 200 201 203 204 205 206 209 210 211 213  215 216 219 220
b) 220 132 318 104 200 510 60  456 60  870 104 200 1050 100 410 650 104

a) 221  (Word position.)
b) 200  (Word value.)

Total of the even valued words (b): 29736 = 23 x 32 x 7 x 59. SF: 78 = 2 x 3 x 13.
Not only do the words divide perfectly according to their positions, but also according to their values.

3.7Precisely 26 words are divisible by 13, but there is no other feature.

a) 38 46  50  63  70 73  81  83  99 109 122 133 138 143 167 178 180 184
b) 65 130 351 507 91 130 351 351 52 507 702 247 91  273 377 104 481 273

a) 200 202 207 210 212 219 220 222
b) 104 481 481 104 481 650 104 481

Total of these words: 7969 = 13 x 613.

3.7.1Take every other from the list in 3.7 (odd positioned):

65 351 91 351 52 702 91 377 481 104 481 481 104

The total is now also divisible by 7: 3731 = 7 x 13 x 41.

3.817 words are in positions divisible by 13:

576 256 412 20 95 213 328 389 12 100 273 141 401 561 220 301 200

Total of the words: 4498 = 2 x 13 x 173.

3.9The middle N-number of words add up to a multiple of 7 when N is one of the following:

206 204 202 186 182 162 150 148 136 108 90 64 46 30 20 16

Total of the N values: 1950 = 2 x 3 x 52 x 13. SF: 28 = 22 x 7.

3.10There are 141 unique word values. The highest and lowest valued words: 1071 = 32 x 7 x 17.

3.11Add up the positions for each of the 141 unique word values. Divide the words into two groups by the odd or even value of the total of their positions.

3.11.169 unique word values have their positions adding to an odd number.

a) 12  14  16 20   27 35  37  45  50  52 54 57 74  80  87 109 110 111
b) 2   8   1  9    1  1   1   1   1   1  1  1  5   3   1  2   1   2
c) 24  112 16 180  27 35  37  45  50  52 54 57 370 240 87 218 110 222
d) 241 509 85 1045 93 101 119 189 131 99 89 27 411 311 21 315 79  173

a) 119 130 134 138 140 145 150 151 157 177 190 204 205 212 213 232 242
b) 1   2   1   1   2   1   1   2   1   1   1   1   1   2   2   1   1
c) 119 260 134 138 280 145 150 302 157 177 190 204 205 424 426 232 242
d) 127 119 23  177 263 51  145 175 121 165 153 149 137 183 295 67  191

a) 247 254 273 295 316 328 330 336 348 377 394 401 402 421  424 453 456
b) 1   1   2   1   1   1   1   1   1   1   1   2   1   4    1   1   2
c) 247 254 546 295 316 328 330 336 348 377 394 802 402 1684 424 453 912
d) 133 35  327 17  95  91  15  5   59  167 103 387 161 173  151 11  381

a) 481  504 510 517 544 576 580 650 690 711 740 810 870 937 941  1031 1050
b) 5    1   1   1   1   1   1   1   1   1   1   1   1   1   2    1    1
c) 2405 504 510 517 544 576 580 650 690 711 740 810 870 937 1882 1031 1050
d) 1023 41  203 187 61  13  87  219 175 33  171 181 209 163 337  113  213

a) Unique word value.
b) Number of occurrences.
c) Total value in passage (a x b).
d) Total of the positions of specific word.

Total of the words (c): 29176 = 23 x 7 x 521.

3.11.2The remaining unique word values have their positions adding to an even number.

a) 23 31  33 40  41 56  59  60  65 67  69  81  89  90  91  95  97 100
b) 1  2   1  1   1  2   1   2   1  2   1   3   1   4   2   3   1  3
c) 23 62  33 40  41 112 59  120 65 134 69  243 89  360 182 285 97 300
d) 58 218 76 134 92 212 132 410 38 132 192 260 108 346 208 310 72 468

a) 102 104 116 131 132 141 152 161 165 171 180 184 200 214 219 220 222
b) 1   4   1   1   1   1   1   1   2   2   1   2   4   2   1   2   1
c) 102 416 116 131 132 141 152 161 330 342 180 368 800 428 219 440 222
d) 96  808 8   170 196 156 126 98  66  122 80  296 812 46  190 380 82

a) 224 226 236 255 256  264 272 278 301 302 318 343 351  374 389 397
b) 1   1   1   1   4    1   1   1   1   1   1   2   3    1   2   1
c) 224 226 236 255 1024 264 272 278 301 302 318 686 1053 374 778 397
d) 114 152 28  24  74   186 148 144 208 62  198 178 214  18  198 100

a) 406 410 412 425  427 433 435 450 460 497 506 507  511 549 561 586
b) 2   1   2   3    2   1   1   1   1   2   1   2    1   1   1   2
c) 812 410 824 1275 854 433 435 450 460 994 506 1014 511 549 561 1172
d) 124 216 48  260  268 60  214 66  188 304 14  172  120 56  182 142

a) 702 724 805  840 1059 (Unique word value.)
b) 1   1   2    1   1    (Number of occurrences.)
c) 702 724 1610 840 1059 (Total value. a x b)
d) 122 162 188  112 172  (Total of the positions.)

Total of the words (c): 30177 = 32 x 7 x 479.

3.12Ultimately, all prophecy comes from God. Since this is a prophecy of Jesus inheriting the kingdom, both numbers 7 and 13 can apply at the same time. The words can be divided into alternating groups of M and N-number of words where M and N are multiples of 7 and 13.

3.12.1Alternating groups of 7 and 104.

3.12.1.1Groups of 7: 4074 = 2 x 3 x 7 x 97.

3.12.1.2Groups of 104: 55279 = 7 x 53 x 149.

3.12.2Alternating groups of 13 and 98.

3.12.2.1Groups of 13: 7707 = 3 x 7 x 367. SF: 377 = 13 x 29. SF: 42 = 2 x 3 x 7.

3.12.2.2Groups of 98: 51646 = 2 x 72 x 17 x 31.

3.13Arrange the 222 words in a three dimension object with coordinates of 2, 3, and 37. Twelve words will have a coordinate in the third dimension that is divisible by 13.

Word position: 73  74 75  76 77 78  151 152 153 154 155 156
Word value:    130 20 421 33 81 213 424 226 190 497 74  141
Coordinate 1:  1   2  1   2  1  2   1   2   1   2   1   2
Coordinate 2:  1   1  2   2  3  3   1   1   2   2   3   3
Coordinate 3:  13  13 13  13 13 13  26  26  26  26  26  26

Total of the words: 2450 = 2 x 52 x 72. SF: 26 = 2 x 13.

3.14Arrange the words in a 3 x 74 rectangle.

3.14.1The perimeter, or outside of the block: 39788 = 22 x 73 x 29.

3.14.2The inside of the block: 19565 = 5 x 7 x 13 x 43.

3.14.3The first and last rows of this block: 1300 = 22 x 52 x 13.

3.14.4Four corners define the block: 679 = 7 x 97. SF: 104 = 23 x 13.

3.15The first word is an even number. Search for the next word that is an odd number. Repeat the search, even and odd, until all words have been considered. This will select 116 words.

20 421 74 343 214 151 374 87 256 255 14 57 236 165 214 165 212 65 412 421 90 81 14 351 20 421 74 549 348 433 544 507 450 427 74 97 130 421 110 351 222 351 406 67 54 171 328 41 316 161 52 397 184 389 140 31 14 31 840 1031 224 95 12 109 702 119 74 95 100 59 40 81 14 111 278 497 424 497 74 141 80 151 20 937 20 377 740 1059 20 481 810 561 20 273 220 517 460 45 242 69 20 109 318 427 104 481 510 481 870 481 1050 435 100 213 650 481

Their total: 32452 = 22 x 7 x 19 x 61. SF: 91 = 7 x 13.

First And Last

4In Revelation 1:8, God said He is the Alpha and the Omega. The first and last letters of each word are added together.

4.1Total of the first and last letters: 22988 = 22 x 7 x 821. SF: 832 = 26 x 13.

4.2When the letter values of God’s name in Hebrew (10-5-6-5) are applied 26 times, the result is is a multiple of 26.

a) 10 5   6  5   10  5  6  5  10 5  6  5  10 5  6  5   10  5   6   5
b) 10 15  21 26  36  41 47 52 62 67 73 78 88 93 99 104 114 119 125 130
c) 10 15  21 26  36  41 47 52 62 67 73 78 88 93 99 104 114 119 125 130
d) 35 220 13 250 110 86 41 13 2  11 56 12 11 12 2  350 210 16  90  100

a) 10  5   6   5   10  5   6   5   10  5   6   5   10  5   6   5   10
b) 140 145 151 156 166 171 177 182 192 197 203 208 218 223 229 234 244
c) 140 145 151 156 166 171 177 182 192 197 203 208 218 1   7   12  22
d) 201 90  110 71  19  140 47  201 69  109 150 301 41  13  106 208 250

a) 5   6   5   10  5   6   5   10  5   6   5   10  5   6   5   10  5
b) 249 255 260 270 275 281 286 296 301 307 312 322 327 333 338 348 353
c) 27  33  38  48  53  59  64  74  79  85  90  100 105 111 116 126 131
d) 54  15  5   201 405 8   9   13  110 10  16  7   110 31  34  101 50

a) 6   5   10  5   6   5   10  5   6   5   10  5   6   5   10  5   6
b) 359 364 374 379 385 390 400 405 411 416 426 431 437 442 452 457 463
c) 137 142 152 157 163 168 178 183 189 194 204 209 215 220 8   13  19
d) 20  51  120 10  42  240 95  19  45  45  120 240 100 95  60  206 14

a) 5   10  5   6   5   10  5   6   5   10  5   6   5   10  5   6   5
b) 468 478 483 489 494 504 509 515 520 530 535 541 546 556 561 567 572
c) 24  34  39  45  50  60  65  71  76  86  91  97  102 112 117 123 128
d) 250 12  12  90  101 406 11  74  12  10  15  36  60  430 3   100 2

a) 10  5   6   5   10  5   6   5   10  5   6   5   10  5   6   5
b) 582 587 593 598 608 613 619 624 634 639 645 650 660 665 671 676
c) 138 143 149 154 164 169 175 180 190 195 201 206 216 221 5   10
d) 51  71  56  41  41  41  690 100 14  91  140 120 140 140 70  35

a) Value from the Name.
b) Count.
c) Count adjusted to 222.
d) First/last total found.

Sum of the totals found (d): 9932 = 22 x 13 x 191. SF: 208 = 24 x 13. SF: 21 = 3 x 7. (Providentially, the very first sum found is 35, and the very last sum found is also 35.)
[Note: There is no repeating pattern in line (d).]

4.2.1Fortuitously, the odd valued from line (d) have their own feature:

35 13 41 13 11 11 201 71 19 47 201 69 109 301 41 13 15 5 201 405 9 13 7 31 101 51 95 19 45 45 95 101 11 15 3 51 71 41 41 41 91 35

Total: 2834 = 2 x 13 x 109. = 124 = 22 x 31

4.2.1.1Take the odd positioned from the list in 4.2.1:

35 41 11 201 19 201 109 41 15 201 9 7 101 95 45 95 11 3 71 41 91

Total: 1443 = 3 x 13 x 37.

4.2.1.2Take the even positioned from the list in 4.2.1:

13 13 11 71 47 69 301 13 5 405 13 31 51 19 45 101 15 51 41 41 35

Total: 1391 = 13 x 107.

4.2.2This means the even valued from line (d) also have a feature:

220 250 110 86 2 56 12 12 2 350 210 16 90 100 90 110 140 150 106 208 250 54 8 110 10 16 110 34 50 20 120 10 42 240 120 240 100 60 206 14 250 12 12 90 406 74 12 10 36 60 430 100 2 56 690 100 14 140 120 140 140 70

Total: 7098 = 2 x 3 x 7 x 132.

4.3Since 26 is the total of God’s name in Hebrew, apply 26 to the totals of the first and last letters. 26 is applied 28 times.

a) 26  26 26 26  26  26  26  26  26  26  26  26  26  26  26  26  26
b) 26  52 78 104 130 156 182 208 234 260 286 312 338 364 390 416 442
c) 26  52 78 104 130 156 182 208 12  38  64  90  116 142 168 194 220
d) 250 13 12 350 100 71  201 301 208 5   9   16  34  51  240 45  95

a) 26  26  26  26  26  26  26  26  26  26  26
b) 468 494 520 546 572 598 624 650 676 702 728
c) 24  50  76  102 128 154 180 206 10  36  62
d) 250 101 12  60  2   41  100 120 35  110 2

a) Value from the Name.
b) Count.
c) Count adjusted to 222.
d) First/last total found.

Sum of the first/last totals found (d): 2834 = 2 x 13 x 109.

4.4Divide the list in feature 4 into four groups by using Revelation 1:8's principle of complementary opposites on their positions and values: a) odd positioned and odd valued, b) odd positioned and even valued, c) even positioned and odd valued, and d) even positioned and even valued.

a) Odd position & odd valued (pure):
1  11 17 21 31 33 43  47 51 53  57 65 67 75  77 81  83  89 91 101 103
13 23 25 13 81 15 405 41 45 405 9  11 11 405 31 301 301 45 15 35  305

107 109 111 113 117 127 129 139 143 159 161 167 169 173 177 183 185
31  11  31  401 3   7   45  9   71  71  101 47  41  41  47  19  91

189 191 193 195 197 199 205 207
45  27  19  91  109 95  99  91     Total: 4178 (nf).


b) Odd position & even valued (mixed):
3  5  7   9  13  15  19 23  25 27 29 35  37 39 41 45 49 55 59 61  63
74 70 106 12 206 220 14 104 14 54 90 250 60 12 86 90 14 14 8  430 206

69  71 73 79  85 87  93 95  97 99 105 115 119 121 123 125 131 133 135
410 74 56 110 10 170 12 206 36 2  110 6   16  20  100 90  50  206 206

137 141 145 147 149 151 153 155 157 163 165 171 175 179 181 187 201
20  14  90  90  56  110 56  74  10  42  12  140 690 140 270 110 140

203 209 211 213 215 217 219 221
150 240 140 150 100 10  110 140     Total: 7128 (nf).


c) Even position & odd valued (mixed):
2   10 14  16 32 38 42 48  50  52 64 72 74 88 92 98 100 108 118 126
405 35 205 51 51 5  13 201 101 13 9  57 13 11 11 71 7   15  55  101

132 136 138 140 142 150 154 156 160 162 164 166 170 174 176 178 182
9   41  51  201 51  41  41  71  19  45  41  19  61  19  91  95  201

184 188 192 194 200 208 210 218 220
209 91  69  45  95  301 95  41  95     Total: 3568 (nf).


d) Even position & even valued (pure):
4  6   8  12  18  20  22  24  26  28  30  34 36  40 44 46  54 56  58
14 206 60 208 350 250 250 250 250 106 110 12 110 56 52 130 74 500 10

60  62 66  68 70 76 78 80 82  84 86 90 94  96 102 104 106 110 112 114
406 2  350 52 80 12 12 80 220 6  10 16 350 12 60  350 14  14  430 210

116 120 122 124 128 130 134 144 146 148 152 158 168 172 180 186 190
34  210 500 12  2   100 40  6   60  2   120 110 240 100 100 64  14

196 198 202 204 206 212 214 216 222
12  10  100 120 120 100 14  140 100     Total: 8114 (nf).

4.4.1From the pure groups (a + d): 4178 + 8114 = 12292 (22 x 7 x 439).

4.4.2From the mixed groups (b + c): 7128 + 3568 = 10696 (23 x 7 x 191).

4.4.3From the mixed groups (b + c), the total of their positions: 7079 + 5738 = 12817 (7 x 1831).

What originally did not appear to have any pattern now seems quite organized.

4.5Divide the list in feature into two groups: prime numbers and not prime numbers.

4.5.1Forty-seven (a prime number) of the totals in feature 4 are prime numbers.

a) 1  11 21 38 42 47 50  52 62 65 67 74 77 88 92 98 99 100 107 109 111
b) 13 23 13 5  13 41 101 13 2  11 11 13 31 11 11 71 2  7   31  11  31

a) 113 117 126 127 128 136 143 148 150 154 156 159 160 161 164 166 167
b) 401 3   101 7   2   41  71  2   41  41  71  71  19  101 41  19  47

a) 169 170 173 174 177 183 193 197 218 (Word position.)
b) 41  61  41  19  47  19  19  109 41  (First/last total.)

While the total of the positions, and the total of these primes are not multiples of 7 or 13, the totals hide the number 13 in the sum of their factors. Total of the positions (a): 5540 = 22 x 5 x 277. SF: 286 = 2 x 11 x 13. SF: 26 = 2 x 13. Total of the primes (b): 1941 = 3 x 647. SF: 650 = 2 x 52 x 13.

4.5.2175 of the first/last totals are not prime numbers. (175 = 52 x 7.)

a) 2   3  4  5  6   7   8  9  10  12  13  14  15  16 17 18  19 20
b) 405 74 14 70 206 106 60 12 35  208 206 205 220 51 25 350 14 250

a) 22  23  24  25 26  27 28  29 30  31 32 33 34 35  36  37  39 40 41
b) 250 104 250 14 250 54 106 90 110 81 51 15 12 250 110 60  12 56 86

a) 43  44 45 46   48  49  51  53  54 55 56  57 58 59 60  61   63  64
b) 405 52 90 130  201 14  45  405 74 14 500 9  10 8  406 430  206 9

a) 66   68 69  70 71 72 73  75  76  78 79  80 81  82  83  84 85 86 87
b) 350  52 410 80 74 57 56  405 12  12 110 80 301 220 301 6  10 10 170

a) 89 90 91  93 94  95  96 97    101 102 103 104 105 106  108  110
b) 45 16 15  12 350 206 12 36    35  60  305 350 110 14   15   14

a) 112  114 115 116  118 119 120 121 122 123 124 125    129 130 131 132
b) 430  210 6   34   55  16  210 20  500 100 12  90     45  100 50  9

a) 133 134 135  137 138 139 140 141 142  144 145 146 147  149  151 152
b) 206 40  206  20  51  9   201 14  51   6   90  60  90   56   110 120

a) 153  155  157 158    162 163  165   168   171 172   175 176  178 179
b) 56   74   10  110    45  42   12    240   140 100   690 91   95  140

a) 180 181 182  184 185 186 187 188 189 190 191 192  194 195 196  198
b) 100 270 201  209 91  64  110 91  45  14  27  69   45  91  12   10

a) 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
b) 95  95  140 100 150 120 99  120 91  301 240 95  140 100 150 14  100

a) 216 217  219 220 221 222  (Word position.)
b) 140 10   110 95  140 100  (First/last total.)

In this case, the total of the positions (a) is a prime number: 19213. The total on line (b) is a multiple of 13: 21047 = 13 x 1619.

4.615 of the totals are multiples of 13.

a) Word position:    1  12  21 23  42 44 46  52 68 74 176 185 188 195 207
b) First/last total: 13 208 13 104 13 52 130 13 52 13 91  91  91  91  91

Their total (b) leads to two additional levels of factors: 1066 = 2 x 13 x 41. SF: 56 = 23 x 7. SF: 13.

4.7Every 7th number from the list in feature 4 adds up to a multiple of 13.

106 205 13 106 250 13 14 500 206 80 31 6 15 71 110 430 16 101 206 201 90 41 101 240 690 201 45 12 150 95 10

Total: 4355 = 5 x 13 x 67.

4.8Divide the list in feature 4 into groups of N-numbers and add up each group. Separate the groups according to their group totals: odd valued and even valued. Only two values of N succeed.

4.8.1Odd valued groups of 2:

12  35    9   10    36  71    20  51    110 91
23  208   206 9     2   7     14  51    45  14
206 205   11  350   35  60    71  6     91  12
220 51    11  52    305 350   56  41    109 10
25  350   74  57    11  14    56  41    99  120
13  250   56  13    31  430   74  71    240 95
15  12    405 12    401 210   42  41    10  41
60  5     31  12    90  101   12  19    110 95
86  13    301 220   7   2     47  240
405 52    301 6     45  100   690 91
14  101   170 11    50  9     270 201
405 74    45  16    206 41    91  64

Total of the odd valued groups: 11494 = 2 x 7 x 821.

4.8.2Even valued groups of 2:

13  405   90  130   110 14    10  110   140 100
74  14    41  201   31  15    71  19    150 120
70  206   45  13    6   34    101 45    91  301
106 60    14  500   3   55    41  61    140 100
14  250   8   406   16  210   140 100   150 14
104 250   430 2     20  500   41  19    100 140
14  250   410 80    100 12    47  95    140 100
54  106   110 80    206 40    140 100
90  110   10  10    9   201   19  209
81  51    15  11    90  60    27  69
250 110   12  350   90  2     19  45
12  56    206 12    110 120   95  95

Total of the even valued groups: 11494 = 2 x 7 x 821.

4.8.3Odd valued groups of 37:

13 405 74 14 70 206 106 60 12 35 23 208 206 205 220 51 25 350 14 250 13 250 104 250 14 250 54 106 90 110 81 51 15 12 250 110 60
5 12 56 86 13 405 52 90 130 41 201 14 101 45 13 405 74 14 500 9 10 8 406 430 2 206 9 11 350 11 52 410 80 74 57 56 13
430 401 210 6 34 3 55 16 210 20 500 100 12 90 101 7 2 45 100 50 9 206 40 206 41 20 51 9 201 14 51 71 6 90 60 90 2
56 41 110 120 56 41 74 71 10 110 71 19 101 45 42 41 12 19 47 240 41 61 140 100 41 19 690 91 47 95 140 100 270 201 19 209 91

Total of these groups: 16058 = 2 x 7 x 31 x 37. SF: 77 = 7 x 11.

4.8.4Even valued groups of 37:

405 12 31 12 110 80 301 220 301 6 10 10 170 11 45 16 15 11 12 350 206 12 36 71 2 7 35 60 305 350 110 14 31 15 11 14 31
64 110 91 45 14 27 69 19 45 91 12 109 10 95 95 140 100 150 120 99 120 91 301 240 95 140 100 150 14 100 140 10 41 110 95 140 100

Total of these groups: 6930 = 2 x 32 x 5 x 7 x 11.

4.8.5Providentially, 2 and 37 add up to 39 (3 x 13).

4.9Similar to feature 3.12, alternating groups of M and N-number of totals (where M and N are multiples of 7 and 13) can be extracted from the list in feature 4.

4.9.1Alternating groups of 104 and 14.

4.9.1.1Groups of 104: 21623 = 7 x 3089.

4.9.1.2Groups of 14: 1365 = 3 x 5 x 7 x 13. SF: 28 = 22 x 7.

4.9.2Alternating groups of 98 and 26.

4.9.2.1Groups of 98: 20006 = 2 x 7 x 1429.

4.9.2.2Groups of 26: 2982 = 2 x 3 x 7 x 71.

4.10.1Search through the list in feature 4 for a high and low pattern with the first number being considered a high number.

13 12 35 23 208 206 220 51 350 14 250 13 250 104 250 14 250 54 106 90 110 81 250 110 405 52 90 41 201 14 101 45 405 74 500 9 10 8 406 2 206 9 11 6 10 2 7 6 34 3 55 16 210 20 500 100 101 7 45 9 206 40 206 41 51 9 201 14 51 6 90 60 90 2 56 41 110 56 74 71 110 71 101 45 47 41 61 41 690 91 95 19 209 91 110 91 109 10 95 91 301 240

Total: 11018 = 2 x 7 x 787.

4.10.1.1Odd positioned from the results in 4.10.1:

13 35 208 220 350 250 250 250 250 106 110 250 405 90 201 101 405 500 10 406 206 11 10 7 34 55 210 500 101 45 206 206 51 201 51 90 90 56 110 74 110 101 47 61 690 95 209 110 109 95 301

Total: 8652 = 2 x 2 x 3 x 7 x 103. SF: 117 = 3 x 3 x 13.

4.10.1.2Even positioned from the results in 4.10.1:

12 23 206 51 14 13 104 14 54 90 81 110 52 41 14 45 74 9 8 2 9 6 2 6 3 16 20 100 7 9 40 41 9 14 6 60 2 41 56 71 71 45 41 41 91 19 91 91 10 91 240

Total: 2366 = 2 x 7 x 13 x 13. SF: 35 = 5 x 7.

4.10.2Search through the list in feature 4 for a low and high pattern with the first number being considered a low number.

13 405 74 206 106 208 206 220 51 350 14 250 13 250 104 250 14 250 54 106 90 110 81 250 110 405 52 90 41 201 14 101 45 405 74 500 9 10 8 406 2 206 9 11 6 10 2 7 6 34 3 55 16 210 20 500 100 101 7 45 9 206 40 206 41 51 9 201 14 51 6 90 60 90 2 56 41 110 56 74 71 110 71 101 45 47 41 61 41 690 91 95 19 209 91 110 91 109 10 95 91 301 240

Total: 11739 = 3 x 7 x 13 x 43.

4.11When the 222 first/last totals are arranged in an object with dimensions 2 x 3 x 37, twelve of the totals will have a coordinate divisible by 13 in the third dimension.

Word position:    73 74 75  76 77 78 151 152 153 154 155 156  
First/last total: 56 13 405 12 31 12 110 120 56  41  74  71   
Coordinate 1:     1  2  1   2  1  2  1   2   1   2   1   2    
Coordinate 2:     1  1  2   2  3  3  1   1   2   2   3   3    
Coordinate 3:     13 13 13  13 13 13 26  26  26  26  26  26   

Sum of the first/last totals: 1001 = 7 x 11 x 13.

Alpha: The First Letter Of Each Word

5God being the Alpha and the Omega, the first and last letters of each word also stand separately.

Total of the first letter of each word: 10087 = 7 x 11 x 131.

5.1God’s name in Hebrew is applied 13 times to count through the first letters.

a) 10 5  6  5  10  5  6  5  10 5  6  5  10 5  6  5   10  5   6   5
b) 10 15 21 26 36  41 47 52 62 67 73 78 88 93 99 104 114 119 125 130
c) 10 15 21 26 36  41 47 52 62 67 73 78 88 93 99 104 114 119 125 130
d) 30 20 3  50 100 80 40 8  1  6  6  6  10 10 1  300 200 6   40  70

a) 10  5   6   5   10  5   6   5   10  5   6   5   10  5   6 5  10 5
b) 140 145 151 156 166 171 177 182 192 197 203 208 218 223 7 12 22 27
c) 140 145 151 156 166 171 177 182 192 197 203 208 218 1   7 12 22 27
d) 200 40  100 70  10  100 7   1   60  100 60  1   1   8   6 8  50 50

a) 6  5  10  5  6  5  10 5  6  5  10  5   6   5   (Value from the Name.)
b) 33 38 48  53 59 64 74 79 85 90 100 105 111 116 (Count.)
c) 33 38 48  53 59 64 74 79 85 90 100 105 111 116 (Count adjusted to 222.)
d) 10 4  200 5  3  8  8  70 5  6  6   70  30  4   (First letter found.)

Total: 2288 = 24 x 11 x 13.

5.2The prophecy is of Jesus, as the son of God, and as the Christ inheriting the kingdom. This identity can be put in a single phrase: Jesus Christ Son of God. It is found in Mark 1:1. (Ιησου Χριστου υιου Θεου) These Greek letters translate into the following numbers: 9 7 90 60 200 400 80 9 90 100 60 200 200 9 60 200 8 5 60 200. Apply this list 13 times to count through the list of first letters.

a) 9  7  90  60  200 400 80  9   90  100  60   200  200  9    60   200
b) 9  16 106 166 366 766 846 855 945 1045 1105 1305 1505 1514 1574 1774
c) 9  16 106 166 144 100 180 189 57  157  217  195  173  182  20   220
d) 10 50 4   10  1   6   60  5   8   6    5    1    1    1    50   5

a) 8    5    60   200  9    7    90   60   200  400  80   9    90   100
b) 1782 1787 1847 2047 2056 2063 2153 2213 2413 2813 2893 2902 2992 3092
c) 6    11   71   49   58   65   155  215  193  149  7    16   106  206
d) 200  20   70   4    6    5    70   60   10   6    6    50   4    60

a) 60   200  200  9    60   200  8    5    60   200  9    7    90   60
b) 3152 3352 3552 3561 3621 3821 3829 3834 3894 4094 4103 4110 4200 4260
c) 44   22   222  9    69   47   55   60   120  98   107  114  204  42
d) 2    50   60   10   10   40   4    6    200  70   30   200  60   8

a) 200  400  80   9    90   100  60   200  200  9    60   200  8    5
b) 4460 4860 4940 4949 5039 5139 5199 5399 5599 5608 5668 5868 5876 5881
c) 20   198  56   65   155  33   93   71   49   58   118  96   104  109
d) 50   5    100  5    70   10   10   70   4    6    50   6    300  6

a) 60   200  9    7    90   60   200  400  80   9    90   100  60   200
b) 5941 6141 6150 6157 6247 6307 6507 6907 6987 6996 7086 7186 7246 7446
c) 169  147  156  163  31   91   69   25   105  114  204  82   142  120
d) 1    40   70   2    1    5    10   4    70   200  60   20   1    200

a) 200  9    60   200  8    5    60   200  9    7    90   60   200  400
b) 7646 7655 7715 7915 7923 7928 7988 8188 8197 8204 8294 8354 8554 8954
c) 98   107  167  145  153  158  218  196  205  212  80   140  118  74
d) 70   30   40   40   6    70   1    3    9    60   70   200  50   8

a) 80   9    90   100  60   200  200  9    60   200  8    5    60
b) 9034 9043 9133 9233 9293 9493 9693 9702 9762 9962 9970 9975 10035
c) 154  163  31   131  191  169  147  156  216  194  202  207  45
d) 40   2    1    20   20   1    40   70   100  5    60   1    40

a) 200   9     7     90    60    200   400   80    9     90    100
b) 10235 10244 10251 10341 10401 10601 11001 11081 11090 11180 11280
c) 23    32    39    129   189   167   123   203   212   80    180
d) 4     1     10    40    5     40    70    60    60    70    60

a) 60    200   200   9     60    200   8     5     60    200   9
b) 11340 11540 11740 11749 11809 12009 12017 12022 12082 12282 12291
c) 18    218   196   205   43    21    29    34    94    72    81
d) 300   1     3     9     5     3     40    6     300   7     300

a) 7     90    60    200   400   80    9     90    100   60    200
b) 12298 12388 12448 12648 13048 13128 13137 13227 13327 13387 13587
c) 88    178   16    216   172   30    39    129   7     67    45
d) 10    5     50    100   60    100   10    40    6     6     40

a) 200   9     60    200   8     5     60    200   9     7     90
b) 13787 13796 13856 14056 14064 14069 14129 14329 14338 14345 14435
c) 23    32    92    70    78    83    143   121   130   137   5
d) 4     1     6     30    6     1     1     10    70    10    20

a) 60    200   400   80    9     90    100   60    200   200   9
b) 14495 14695 15095 15175 15184 15274 15374 15434 15634 15834 15843
c) 65    43    221   79    88    178   56    116   94    72    81
d) 5     5     100   70    10    5     100   4     300   7     300

a) 60    200   8     5     60    200   9     7     90    60    200
b) 15903 16103 16111 16116 16176 16376 16385 16392 16482 16542 16742
c) 141   119   127   132   192   170   179   186   54    114   92
d) 4     6     6     4     60    1     100   4     70    200   6

a) 400   80    9     90    100   60    200   200   9     60    200
b) 17142 17222 17231 17321 17421 17481 17681 17881 17890 17950 18150
c) 48    128   137   5     105   165   143   121   130   190   168
d) 200   1     10    20    70    5     1     10    70    5     200

a) 8     5     60    200   9     7     90    60    200   400   80
b) 18158 18163 18223 18423 18432 18439 18529 18589 18789 19189 19269
c) 176   181   19    219   6     13    103   163   141   97    177
d) 1     70    4     70    200   6     300   2     4     6     7

a) 9     90    100   60    200   200   9     60    200   8     5
b) 19278 19368 19468 19528 19728 19928 19937 19997 20197 20205 20210
c) 186   54    154   214   192   170   179   17    217   3     8
d) 4     70    40    5     60    1     100   20    5     70    10

a) 60    200   9     7     90    60    200   400   80    9     90
b) 20270 20470 20479 20486 20576 20636 20836 21236 21316 21325 21415
c) 68    46    55    62    152   212   190   146   4     13    103
d) 2     100   4     1     70    60    5     10    4     6     300

a) 100   60    200   200   9     60    200   8     5     60    200
b) 21515 21575 21775 21975 21984 22044 22244 22252 22257 22317 22517
c) 203   41    19    219   6     66    44    52    57    117   95
d) 60    80    4     70    200   300   2     8     8     2     6

a) 9     7     90    60    200   400   80    9     90    100   60
b) 22526 22533 22623 22683 22883 23283 23363 23372 23462 23562 23622
c) 104   111   201   39    17    195   53    62    152   30    90
d) 300   30    100   10    20    1     5     1     70    100   6

a) 200   200   9     60    200   8     5     60    200   9     7
b) 23822 24022 24031 24091 24291 24299 24304 24364 24564 24573 24580
c) 68    46    55    115   93    101   106   166   144   153   160
d) 2     100   4     1     10    30    4     10    1     6     10

a) 90    60    200   400   80    9     90    100   60    200   200
b) 24670 24730 24930 25330 25410 25419 25509 25609 25669 25869 26069
c) 28    88    66    22    102   111   201   79    139   117   95
d) 6     10    300   50    10    30    100   70    8     2     6

a) 9     60    200   8     5     60    200   (Number from the phrase.)
b) 26078 26138 26338 26346 26351 26411 26611 (Count.)
c) 104   164   142   150   155   215   193   (Count adjusted to 222.)
d) 300   1     1     40    70    60    10    (First letter found.)

Total of the first letters (d): 12168 = 23 x 32 x 132.

5.3One can start with the first of the first letters and take every Nth after, or just take every Nth. Only four values of N produce multiples of 7 both ways.

34 77 82 93

Total of the N values: 286 = 2 x 11 x 13. SF: 26 = 2 x 13.

5.4A situation similar to the previous feature holds for multiples of 13. The difference is that there is only one N value that works both ways. The N value is 13.

5.4.1Beginning with the first of the first letters, and taking every 13th after produces this result:

a) 1 14  27 40 53 66  79 92 105 118 131 144 157 170 183 196 209 222
b) 8 200 50 6  5  300 70 6  70  50  20  1   6   1   10  3   200 60

a) Word position.
b) First letter of word.

Total of the first letters (b): 1066 = 2 x 13 x 41. SF: 56 = 23 x 7. SF: 13.

5.4.2Taking every 13th after produces this result:

a) 13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221
b) 6  50 10 8  5  6  5  300 2   70  1   70  1   1   1   1   100

a) Word position.
b) First letter of word.

Total of the first letters (b): 637 = 72 x 13.

5.5.1Beginning with the first of the first letters and taking every Nth after, the following values of N produce totals divisible by 13:

3 11 13 15 29 34 39 40 70 101 107

Total of the N values: 462 = 2 x 3 x 7 x 11.

5.5.2Taking every Nth of the first letters, the following values of N also produce totals divisible by 13:

13 27 28 33 35 49 62

Total of the N values: 247 = 13 x 19.

5.5.3Beginning with the first of the first letters and taking every Nth after, the following values of N produce totals divisible by 91 (7 x 13):

34 70

Total of the N values: 104 = 23 x 13.

5.6Not only can one take every Nth, one can take alternating groups of N-number of first letters.

5.6.1Odd positioned groups of 74 from 5.6:

8 5 70 4 20 200 6 10 10 30 20 8 6 200 20 50 20 300 4 50 3 50 4 50 4 50 50 6 40 100 1 1 10 6 200 100 10 4 10 6 80 8 5 2 40 100 40 200 4 100 40 8 5 70 4 100 8 6 3 6 30 1 6 8 5 300 6 2 10 30 70 7 6 8 6 40 100 70 6 40 70 70 6 70 70 10 100 5 2 1 5 10 40 200 1 1 100 60 1 10 600 1 7 5 100 60 70 1 10 9 1 4 70 1 5 5 20 60 10 5 1 3 100 5 5 5 100 60 60 60 9 60 1 1 200 5 100 60 60 5 60 100 5 1 70 5 100 60

Total: 6503 = 7 x 929. SF: 936 = 23 x 32 x 13.

5.6.1.1Even positioned groups of 74 from 5.6:

5 2 30 6 70 70 300 20 1 1 5 6 70 10 40 6 5 6 10 300 6 6 6 70 1 6 30 10 300 300 70 4 30 10 6 4 30 400 1 200 1 4 2 50 6 200 10 100 70 8 40 100 6 1 40 70 20 4 6 30 6 40 10 1 8 200 4 1 1 1 40 10 40 1

Total: 3584 = 29 x 7.

5.6.1.2Odd positioned groups of 4 from 5.6.1:

8 5 70 4 10 30 20 8 20 300 4 50 4 50 50 6 10 6 200 100 80 8 5 2 4 100 40 8 8 6 3 6 5 300 6 2 6 8 6 40 70 70 6 70 2 1 5 10 100 60 1 10 100 60 70 1 70 1 5 5 1 3 100 5 60 60 9 60 100 60 60 5 70 5 100 60

Total: 3073 = 7 x 439.

5.6.1.2.1Even positioned groups of 4 from 5.6.1:

20 200 6 10 6 200 20 50 3 50 4 50 40 100 1 1 10 4 10 6 40 100 40 200 5 70 4 100 30 1 6 8 10 30 70 7 100 70 6 40 70 10 100 5 40 200 1 1 600 1 7 5 10 9 1 4 20 60 10 5 5 5 100 60 1 1 200 5 60 100 5 1

Total: 3430 = 2 x 5 x 73. SF: 28 = 22 x 7.

5.6.1.2.2Odd positioned groups of 2 from 5.6.2:

5 2 70 70 1 1 70 10 5 6 6 6 1 6 300 300 30 10 30 400 1 4 6 200 70 8 6 1 20 4 6 40 8 200 1 1 40 1

Total: 1946 = 2 x 7 x 139.

5.6.1.2.2.1Even positioned groups of 2 from 5.6.2:

30 6 300 20 5 6 40 6 10 300 6 70 30 10 70 4 6 4 1 200 2 50 10 100 40 100 40 70 6 30 10 1 4 1 40 10

Total: 1638 = 2 x 32 x 7 x 13. SF: 28 = 22 x 7.

5.6.1.2.2.2Last half of 36 from 5.6.1.2:

20 200 6 10 6 200 20 50 3 50 4 50 40 100 1 1 10 4 10 6 40 100 40 200 5 70 4 100 30 1 6 8 10 30 70 7

Total: 1512 = 23 x 33 x 7.

5.6.1.2.2.2.1First half of 36 from 5.6.1.2:

100 70 6 40 70 10 100 5 40 200 1 1 600 1 7 5 10 9 1 4 20 60 10 5 5 5 100 60 1 1 200 5 60 100 5 1

Total: 1918 = 2 x 7 x 137.

5.6.1.2.2.2.2Odd positioned groups of 1 from 5.6.2.2:

30 300 5 40 10 6 30 70 6 1 2 10 40 40 6 10 4 40

Total: 650 = 2 x 52 x 13.

5.6.2Even positioned groups of 1 from 5.6.2.2:

6 20 6 6 300 70 10 4 4 200 50 100 100 70 30 1 1 10

Total: 988 = 22 x 13 x 19.

5.6.2.1Odd positioned groups of 6 from 5.6.2.2:

40 6 10 300 6 70 1 200 2 50 10 100 10 1 4 1 40 10

Total: 861 = 3 x 7 x 41.

5.6.2.2Even positioned groups of 6 from 5.6.2.2:

30 6 300 20 5 6 30 10 70 4 6 4 40 100 40 70 6 30

Total: 777 = 3 x 7 x 37.

5.6.2.2.1Odd positioned groups of 9 from 5.6.2.2:

300 6 70 30 10 70 4 6 4 70 6 30 10 1 4 1 40 10

Total: 672 = 25 x 3 x 7.

5.6.2.2.2Even positioned groups of 9 from 5.6.2.2:

30 6 300 20 5 6 40 6 10 1 200 2 50 10 100 40 100 40

Total: 966 = 2 x 3 x 7 x 23. SF: 35 = 5 x 7.

5.6.2.2.2.1Last half of 18 from 5.6.2.2:

30 6 300 20 5 6 40 6 10 300 6 70 30 10 70 4 6 4

Total: 923 = 13 x 71. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

5.6.2.2.2.2First half of 18 from 5.6.2.2:

1 200 2 50 10 100 40 100 40 70 6 30 10 1 4 1 40 10

Total: 715 = 5 x 11 x 13.

5.6.2.2.3Odd positioned groups of 9 from 5.6.1.2.2:

200 1 1 600 1 7 5 10 9 60 1 1 200 5 60 100 5 1

Total: 1267 = 7 x 181.

5.6.2.2.4Even positioned groups of 9 from 5.6.1.2.2:

100 70 6 40 70 10 100 5 40 1 4 20 60 10 5 5 5 100

Total: 651 = 3 x 7 x 31.

5.6.2.2.5Odd positioned groups of 1 from 5.6.2.2.2:

6 6 300 10 4 50 100 30 1

Total: 507 = 3 x 132.

5.6.2.2.5.1Even positioned groups of 1 from 5.6.2.2.2:

20 6 70 4 200 100 70 1 10

Total: 481 = 13 x 37.

5.6.2.2.5.1.1Odd positioned groups of 1 from 5.6.2.2.5:

300 70 10 4 4 6 10 4 40

Total: 448 = 26 x 7.

5.6.2.2.5.1.2Even positioned groups of 1 from 5.6.2.2.5:

6 30 70 6 70 30 1 1 10

Total: 224 = 25 x 7.

5.6.2.2.5.1.3Odd positioned groups of 6 from 5.6.2.2.6:

40 6 10 1 200 2

Total: 259 = 7 x 37.

5.6.2.2.5.1.4Even positioned groups of 6 from 5.6.2.2.6:

30 6 300 20 5 6 50 10 100 40 100 40

Total: 707 = 7 x 101.

5.6.2.2.5.2Odd positioned groups of 6 from 5.6.2.2.8:

40 100 40 70 6 30

Total: 286 = 2 x 11 x 13. SF: 26 = 2 x 13.

5.6.2.2.6Even positioned groups of 6 from 5.6.2.2.8:

1 200 2 50 10 100 10 1 4 1 40 10

Total: 429 = 3 x 11 x 13.

5.6.2.2.6.1Last half of 9 from 5.6.1.2.2.2:

100 70 6 40 70 10 100 5 40

Total: 441 = 32 x 72.

5.6.2.2.6.1.1First half of 9 from 5.6.1.2.2.2:

1 4 20 60 10 5 5 5 100

Total: 210 = 2 x 3 x 5 x 7.

5.6.2.2.6.1.2Odd positioned groups of 1 from 5.6.2.2.5.1:

300 10 4 10 40

Total: 364 = 22 x 7 x 13.

5.6.2.2.6.2Even positioned groups of 1 from 5.6.2.2.5.1:

70 4 6 4

Total: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

5.6.2.2.7Odd positioned groups of 3 from 5.6.2.2.5.1:

4 4 6

Total: 14 = 2 x 7.

5.6.2.2.8Even positioned groups of 3 from 5.6.2.2.5.1:

300 70 10 10 4 40

Total: 434 = 2 x 7 x 31.

5.6.2.2.8.1Last half of 3 from 5.6.2.2.6.1:

1 200 2

Total: 203 = 7 x 29.

5.6.2.2.8.2First half of 3 from 5.6.2.2.6.1:

40 6 10

Total: 56 = 23 x 7. SF: 13.

5.7169 of the first letters are even valued. (169 = 132. SF: 26 = 2 x 13.}

a) 1 3  4 5  6   7 8  9  10 11 12 13 14  15 16 17 18  19 20 22 23 24
b) 8 70 4 20 200 6 10 10 30 20 8  6  200 20 50 20 300 4  50 50 4  50

a) 25 26 27 28 29 30  33 34 35  36  37 38 39 40 41 42 44 45 46  47 48
b) 4  50 50 6  40 100 10 6  200 100 10 4  10 6  80 8  2  40 100 40 200

a) 49 50  51 52 54 55 56  57 58 60 61 63 64 66  67 68 69 70 71 73 74
b) 4  100 40 8  70 4  100 8  6  6  30 6  8  300 6  2  10 30 70 6  8

a) 76 77 78 79 80 81  82 86 87 88 89 90 92 93 94  95 96 97 98 100 101
b) 2  30 6  70 70 300 20 6  70 10 40 6  6  10 300 6  6  6  70 6   30

a) 102 103 104 105 106 107 108 109 110 111 112 114 116 117 118 119 120
b) 10  300 300 70  4   30  10  6   4   30  400 200 4   2   50  6   200

a) 121 122 123 124 125 126 127 129 130 131 132 133 134 135 136 137 139
b) 10  100 70  8   40  100 6   40  70  20  4   6   30  6   40  10  8

a) 140 141 145 146 147 149 150 151 152 153 154 155 156 157 158 159 160
b) 200 4   40  10  40  6   40  100 70  6   40  70  70  6   70  70  10

a) 161 163 166 167 168 171 172 174 175 179 180 181 183 186 187 191 192
b) 100 2   10  40  200 100 60  10  600 100 60  70  10  4   70  20  60

a) 193 197 201 202 203 204 206 209 211 212 213 215 216 219 221 222
b) 10  100 100 60  60  60  60  200 100 60  60  60  100 70  100 60

a) Word position.
b) First letter of word.

Total of the positions (a): 17192 = 23 x 7 x 307. (There is no equivalent feature with the odd valued first letters because Jesus is not God.)

5.8Divide the first letters into two groups: prime numbers and non-prime numbers.

5.8.1Thirty of the first letters are prime numbers:

a) 2 21 43 44 53 59 65 68 72 75 76 85 91 117 162 163 165 177 178 189 190
b) 5 3  5  2  5  3  5  2  7  5  2  5  5  2   5   2   5   7   5   5   5

a) 194 196 198 199 200 210 214 217 220 (Word position.)
b) 5   3   5   5   5   5   5   5   5   (First letter of word.)

Total of the letters (b): 133 = 7 x 19. SF: 26 = 2 x 13.

5.8.2The remaining 192 of the first letters are not prime numbers:

a) 1  3  4 5  6   7 8  9  10 11 12 13 14  15 16 17 18  19 20  22 23 24
b) 8  70 4 20 200 6 10 10 30 20 8  6  200 20 50 20 300 4  50  50 4  50

a) 25 26 27 28 29 30  31 32 33 34 35  36  37 38 39 40 41 42   45 46
b) 4  50 50 6  40 100 1  1  10 6  200 100 10 4  10 6  80 8    40 100

a) 47 48  49 50  51 52  54 55 56  57 58  60 61 62 63 64  66  67  69 70
b) 40 200 4  100 40 8   70 4  100 8  6   6  30 1  6  8   300 6   10 30

a) 71  73 74   77 78 79 80 81  82 83 84  86 87 88 89 90  92 93 94  95
b) 70  6  8    30 6  70 70 300 20 1  1   6  70 10 40 6   6  10 300 6

a) 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
b) 6  6  70 1  6   30  10  300 300 70  4   30  10  6   4   30  400 1

a) 114 115 116  118 119 120 121 122 123 124 125 126 127 128 129 130 131
b) 200 1   4    50  6   200 10  100 70  8   40  100 6   1   40  70  20

a) 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
b) 4   6   30  6   40  10  1   8   200 4   1   1   1   40  10  40  1

a) 149 150 151 152 153 154 155 156 157 158 159 160 161   164  166 167
b) 6   40  100 70  6   40  70  70  6   70  70  10  100   1    10  40

a) 168 169 170 171 172 173 174 175 176   179 180 181 182 183 184 185
b) 200 1   1   100 60  1   10  600 1     100 60  70  1   10  9   1

a) 186 187 188   191 192 193  195  197    201 202 203 204 205 206 207
b) 4   70  1     20  60  10   1    100    100 60  60  60  9   60  1

a) 208 209  211 212 213  215 216  218 219  221 222
b) 1   200  100 60  60   60  100  1   70   100 60

Total of the letters (b): 9954 = 2 x 32 x 7 x 79.

5.8.3The difference between 5.8.1 and 5.8.2: 9821 = 7 x 23 x 61. SF: 91 = 7 x 13.

5.9Twenty of the first letters are multiples of 7.

a) 3  54 71 72 79 80 87 98 105 123 130 152 155 156 158 159 177 181 187 219
b) 70 70 70 7  70 70 70 70 70  70  70  70  70  70  70  70  7   70  70  70

a) Word position.
b) First letter of word.

Total of these letters: 1274 = 2 x 72 x 13.

5.10The middle N-number of first letters is a multiple of 7 when N is one of the following values:

214 212 194 192 184 170 164 128 120 92 84 76 74 50 46 44 40 20 14 10

Total of the N values: 2128 = 24 x 7 x 19.

5.10.1Notice that the largest N value is 214, and the smallest is 10. 214 + 10 = 224 = 25 x 7.

5.10.2Odd positioned from 5.10:

214 194 184 164 120 84 74 46 40 14

Total: 1134 = 2 x 34 x 7. SF: 21 = 3 x 7.

5.10.3Even positioned from 5.10:

212 192 170 128 92 76 50 44 20 10

Total: 994 = 2 x 7 x 71.

5.11Divide the first letters into alternating groups of M and N-number of letters. (M and N are multiples of 7 and 13.)

5.11.1Alternating groups of 13 and 98 are possible.

5.11.1.1Groups of 13:

8 5 70 4 20 200 6 10 10 30 20 8 6
400 1 200 1 4 2 50 6 200 10 100 70 8

Total: 1449 = 32 x 7 x 23.

5.11.1.1.1The results in 5.11.1.1 sub-divide in two ways.

5.11.1.1.1.1Odd valued:

5 1 1

Total: 7.

5.11.1.1.1.2Even valued:

8 70 4 20 200 6 10 10 30 20 8 6 400 200 4 2 50 6 200 10 100 70 8

Total: 1442 = 2 x 7 x 103. SF: 112 = 24 x 7.

5.11.1.1.2.1First digit odd:

5 70 10 10 30 1 1 50 10 100 70

Total: 357 = 3 x 7 x 17.

5.11.1.1.2.2First digit even:

8 4 20 200 6 20 8 6 400 200 4 2 6 200 8

Total: 1092 = 22 x 3 x 7 x 13.

5.11.1.2Groups of 98:

200 20 50 20 300 4 50 3 50 4 50 4 50 50 6 40 100 1 1 10 6 200 100 10 4 10 6 80 8 5 2 40 100 40 200 4 100 40 8 5 70 4 100 8 6 3 6 30 1 6 8 5 300 6 2 10 30 70 7 6 8 5 2 30 6 70 70 300 20 1 1 5 6 70 10 40 6 5 6 10 300 6 6 6 70 1 6 30 10 300 300 70 4 30 10 6 4 30 40 100 6 1 40 70 20 4 6 30 6 40 10 1 8 200 4 1 1 1 40 10 40 1 6 40 100 70 6 40 70 70 6 70 70 10 100 5 2 1 5 10 40 200 1 1 100 60 1 10 600 1 7 5 100 60 70 1 10 9 1 4 70 1 5 5 20 60 10 5 1 3 100 5 5 5 100 60 60 60 9 60 1 1 200 5 100 60 60 5 60 100 5 1 70 5 100 60

Total: 8638 = 2 x 7 x 617.

5.11.2Alternating groups of 104 and 14 are also possible.

5.11.2.1Groups of 104:

8 5 70 4 20 200 6 10 10 30 20 8 6 200 20 50 20 300 4 50 3 50 4 50 4 50 50 6 40 100 1 1 10 6 200 100 10 4 10 6 80 8 5 2 40 100 40 200 4 100 40 8 5 70 4 100 8 6 3 6 30 1 6 8 5 300 6 2 10 30 70 7 6 8 5 2 30 6 70 70 300 20 1 1 5 6 70 10 40 6 5 6 10 300 6 6 6 70 1 6 30 10 300 300 6 200 10 100 70 8 40 100 6 1 40 70 20 4 6 30 6 40 10 1 8 200 4 1 1 1 40 10 40 1 6 40 100 70 6 40 70 70 6 70 70 10 100 5 2 1 5 10 40 200 1 1 100 60 1 10 600 1 7 5 100 60 70 1 10 9 1 4 70 1 5 5 20 60 10 5 1 3 100 5 5 5 100 60 60 60 9 60 1 1 200 5 100 60 60 5 60 100 5 1 70 5 100 60

Total: 9275 = 52 x 7 x 53. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

5.11.2.2Groups of 14:

70 4 30 10 6 4 30 400 1 200 1 4 2 50

Total: 812 = 22 x 7 x 29.

5.11.2.2.1Odd positioned:

70 30 6 30 1 1 2

Total: 140 = 22 x 5 x 7.

5.11.2.2.2Even positioned:

4 10 4 400 200 4 50

Total: 672 = 25 x 3 x 7.

5.12Exactly 13 fo the first letters divide the rest of the list into two groups: what is between their Nth and Nth last occurrences, and what is not between.

Between & Not Between The First Letter Of A Word
First Letter Nth/Nth Last Occurrence Total Between Total Not Between Position Of Nth Occurrence Position of Nth Last
555831 = 73 x 17.4256 = 25 x 7 x 19.75200
581470 = 2 x 3 x 5 x 72.8617 = 7 x 1231.162194
418519 = 7 x 1217.1568 = 25 x 72.4186
635390 = 2 x 5 x 72 x 11.4697 = 7 x 11 x 61.28149
663542 = 2 x 7 x 11 x 23.6545 = 5 x 7 x 11 x 17.58127
1028253 = 32 x 7 x 131.1834 = 2 x 7 x 131. SF: 140 = 22 x 5 x 7.9183
1045593 = 7 x 17 x 47.4494 = 2 x 3 x 7 x 107. SF: 119 = 7 x 17.37166
1063654 = 2 x 32 x 7 x 29.6433 = 7 x 919.69146
502161 = 7 x 23.9926 = 2 x 7 x 709.2027
4044242 = 2 x 3 x 7 x 101.5845 = 5 x 7 x 167.51147
10046580 = 22 x 5 x 7 x 47. SF: 63 = 32 x 7. SF: 13.3507 = 3 x 7 x 167.50201
10071463 = 7 x 11 x 19.8624 = 24 x 72 x 11.126171
6012296 = 23 x 7 x 41.7791 = 3 x 72 x 53. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.172222

5.12.1From the table above, the first letters from the first column:

5 5 4 6 6 10 10 10 50 40 100 100 60

Total of the letters: 406 = 2 x 7 x 29.

5.12.2The positions of the Nth occurrences of these letters (7th column):

75 162 4 28 58 9 37 69 20 51 50 126 172

Total of the positions: 861 = 3 x 7 x 41.

5.12.3The positions of the Nth last occurrences of these letters (8th column):

200 194 186 149 127 183 166 146 27 147 201 171 222

Total of the positions: 2119 = 13 x 163.

5.12.4Five of the letters are odd valued.

5 4 6 100 60

Total of these letters: 175 = 52 x 7.

5.12.5Eight of the letters are even valued.

5 6 10 10 10 50 40 100

Total of these letters: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.

5.12.6Five of the letters have both positions (column 7 and 8) as odd or even. They are not mixed.

Column 1: 10  40  5   4   60
Column 2: 2   4   8   1   1
Column 7: 9   51  162 4   172
Column 8: 183 147 194 186 222

Total of these letters (column 1): 119 = 7 x 17.

5.12.7This leaves the remaining letters with mixed (odd/even) values in columns 7 and 8.

Column 1: 5   10  10  6   6   50 100 100
Column 2: 5   4   6   3   6   2  4   7
Column 7: 75  37  69  28  58  20 50  126
Column 8: 200 166 146 149 127 27 201 171

Total of these letters (column 1): 287 = 7 x 41.

5.13Place the 222 first letters into a three dimension object (2 x 3 x 37). Thirty letters will have a third dimension coordinate that is divisible by 7.

a) 10 4 10 6 80 8 70 70 300 20 1  1  10 100 70 8  40 100 2  1  5  10 40
b) 1  2 1  2 1  2 1  2  1   2  1  2  1  2   1  2  1  2   1  2  1  2  1
c) 1  1 2  2 3  3 1  1  2   2  3  3  1  1   2  2  3  3   1  1  2  2  3
d) 7  7 7  7 7  7 14 14 14  14 14 14 21 21  21 21 21 21  28 28 28 28 28

a) 200 9  60 1  1  200 5  (First letter.)
b) 2   1  2  1  2  1   2  (Coordinate 1.)
c) 3   1  1  2  2  3   3  (Coordinate 2.)
d) 28  35 35 35 35 35  35 (Coordinate 3.)

Total of the letters (a): 1442 = 2 x 7 x 103. SF: 112 = 24 x 7.

5.13.2Twelve letters will have a third dimension coordinate divisible by 13.

a) 6  8  5  2  30 6  100 70 6  40 70 70   (First letter.)
b) 1  2  1  2  1  2  1   2  1  2  1  2    (Coordinate 1.)
c) 1  1  2  2  3  3  1   1  2  2  3  3    (Coordinate 2.)
d) 13 13 13 13 13 13 26  26 26 26 26 26   (Coordinate 3.)

Total of the letters (a): 413 = 7 x 59.

5.13.338 letters reside in dimension coordinates that are all odd valued.

a) 6  6  100 1  1  70 1  10 100 9  200 5  100   (First letter.)
b) 1  1  1   1  1  1  1  1  1   1  1   1  1     (Coordinate 1.)
c) 3  1  3   1  3  1  3  1  3   1  3   1  3     (Coordinate 2.)
d) 25 27 27  29 29 31 31 33 33  35 35  37 37    (Coordinate 3.)

Total of these letters (a): 1071 = 32 x 7 x 17. (There is no similar feature for letters residing in dimension coordinates that are all even valued because Jesus is not God.)

Omega: The Last Letter Of Each Word

6Total of the last letters: 12901 = 7 x 19 x 97.

6.1The letter values of God’s name in Hebrew (10-5-6-5) are applied 9 times to just count through the list of last letters.

a) 10 5   6  5   10 5  6  5  10 5  6  5  10 5  6  5   10  5   6   5
b) 10 15  21 26  36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130
c) 10 15  21 26  36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130
d) 5  200 10 200 10 6  1  5  1  5  50 6  1  2  1  50  10  10  50  30

a) 10  5   6   5   10  5   6   5   10  5   6   5   10  5   6   5
b) 140 145 151 156 166 171 177 182 192 197 203 208 218 223 7   12
c) 140 145 151 156 166 171 177 182 192 197 203 208 218 1   7   12
d) 1   50  10  1   9   40  40  200 9   9   90  300 40  5   100 200

a) Value from the Name.
b) Count.
c) Count adjusted to 222.
d) Last letter found.

Total of the last letters (d): 1757 = 7 x 251.

6.2The letter values of God’s name are applied 13 times.

a) 10 5   6  5   10 5  6  5  10 5  6  5  10 5  6  5   10  5   6   5
b) 10 15  21 26  36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130
c) 10 15  21 26  36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130
d) 5  200 10 200 10 6  1  5  1  5  50 6  1  2  1  50  10  10  50  30

a) 10  5   6   5   10  5   6   5   10  5   6   5   10  5   6   5   10
b) 140 145 151 156 166 171 177 182 192 197 203 208 218 223 7   12  22
c) 140 145 151 156 166 171 177 182 192 197 203 208 218 1   7   12  22
d) 1   50  10  1   9   40  40  200 9   9   90  300 40  5   100 200 200

a) 5  6  5  10 5   6  5  10 5  6  5  10  5   6   5
b) 27 33 38 48 53  59 64 74 79 85 90 100 105 111 116
c) 27 33 38 48 53  59 64 74 79 85 90 100 105 111 116
d) 4  5  1  1  400 5  1  5  40 5  10 1   40  1   30

a) Value from the Name.
b) Count.
c) Count adjusted to 222.
d) Last letter found.

Total of the last letters (d): 2506 = 2 x 7 x 179.

6.3Almost 90 sub-features reside in alternating groups extracted from the last letters.

6.4Divide the last letters into two groups: odd and even.

6.4.169 last letters are odd valued:

a) 1 10 11 14 16 17 33 38 42 47 48 50 51 52 57 59 62 64 67 74 77 81 84
b) 5 5  3  5  1  5  5  1  5  1  1  1  5  5  1  5  1  1  5  5  1  1  5

a) 85 88 89 92 98 99 100 101 103 107 108 109 111 115 117 118 126 127
b) 5  1  5  5  1  1  1   5   5   1   5   5   1   5   1   5   1   1

a) 128 129 132 136 139 140 144 148 150 154 156 159 160 161 165 166 167
b) 1   5   5   1   1   1   5   1   1   1   1   1   9   1   7   9   7

a) 174 183 190 191 192 193 196 197 198 214 217 (Word position.)
b) 9   9   9   7   9   9   9   9   5   9   5   (Last letter of word.)

Total of the letters (b): 273 = 3 x 7 x 13.

6.4.1.1From the list of odd valued last letters, take every other (odd positioned):

5 3 1 5 5 1 5 1 1 5 1 5 1 5 1 5 1 5 5 5 1 5 1 1 1 1 1 1 9 9 9 9 9 5 5

Total: 133 = 7 x 19. SF: 26 = 2 x 13.

6.4.1.2From the list of odd valued last letters, take every other (even positioned):

5 5 5 1 1 1 5 5 1 5 1 5 5 1 1 5 5 1 1 1 1 5 1 5 1 1 9 7 7 9 7 9 9 9

Total: 140 = 22 x 5 x 7.

6.4.2153 of the last letters are even valued.

a) 2   3 4  5  6 7   8  9 12  13  15  18 19 20  21 22  23  24  25 26
b) 400 4 10 50 6 100 50 2 200 200 200 50 10 200 10 200 100 200 10 200

a) 27 28  29 30 31 32 34 35 36 37 39 40 41 43  44 45 46 49 53  54 55
b) 4  100 50 10 80 50 6  50 10 50 2  50 6  400 50 50 30 10 400 4  10

a) 56  58 60  61  63  65 66 68 69  70 71 72 73 75  76 78 79 80 82  83
b) 400 4  400 400 200 6  50 50 400 50 4  50 50 400 10 6  40 10 200 300

a) 86 87  90 91 93 94 95  96 97 102 104 105 106 110 112 113 114 116 119
b) 4  100 10 10 2  50 200 6  30 50  50  40  10  10  30  400 10  30  10

a) 120 121 122 123 124 125 130 131 133 134 135 137 138 141 142 143 145
b) 10  10  400 30  4   50  30  30  200 10  200 10  50  10  50  70  50

a) 146 147 149 151 152 153 155 157 158 162 163 164 168 169 170 171 172
b) 50  50  50  10  50  50  4   4   40  40  40  40  40  40  60  40  40

a) 173 175 176 177 178 179 180 181 182 184 185 186 187 188 189 194 195
b) 40  90  90  40  90  40  40  200 200 200 90  60  40  90  40  40  90

a) 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 215 216
b) 90  90  40  40  90  60  90  60  90  300 40  90  40  40  90  40  40

a) 218 219 220 221 222 (Word position.)
b) 40  40  90  40  40  (Last letter of word.)

Total of the last letters (b): 12628 = 22 x 7 x 11 x 41. SF: 63 = 32 x 7. SF: 13.

6.4.2.1From the list of positions (a) in feature 6.4.2, take every other (odd positioned):

2 4 6 8 12 15 19 21 23 25 27 29 31 34 36 39 41 44 46 53 55 58 61 65 68 70 72 75 78 80 83 87 91 94 96 102 105 110 113 116 120 122 124 130 133 135 138 142 145 147 151 153 157 162 164 169 171 173 176 178 180 182 185 187 189 195 200 202 204 206 208 210 212 215 218 220 222

Total: 8619 = 3 x 132 x 17. (There is no matching feature with the even positioned.)

6.5Only four of the last letters are multiples of 7.

Word position: 143 165 167 191
Last letter:   70  7   7   7

Providentially, these four letters produce a total that is also divisible by 13: 91 = 7 x 13.

6.6The middle N-number of letters from feature 6 add up to a multiple of 7 when N is one of the following:

192 190 160 124 110 106 82 64 32 30 14 10 4

Total of the N values: 1118 = 2 x 13 x 43.

6.6.1The largest and smallest N values: 196 = 22 x 72.

6.7Rather than taking every other letter, one can take every Nth letter, where N increases by 1 each time.

a) Count: 1 2   4  7   11 16 22  29 37 46 56  67 79 92 106 121 137
b) N:     1 2   3  4   5  6  7   8  9  10 11  12 13 14 15  16  17
c) Found: 5 400 10 100 3  1  200 50 50 30 400 5  40 5  10  10  10

a) 154 172 191 211
b) 18  19  20  21
c) 1   40  7   40

Total of the letters found: 1417 = 13 x 109.

6.8When the last letters are added one by one, 18 times the result will be a multiple of 13.

a) 14   22   31   48   59   63   82   101  107  123  138  149  156
b) 5    200  80   1    5    200  200  5    1    30   50   50   1
c) 1040 1716 2470 3237 4082 5083 6422 7163 7319 8281 8879 9217 9334

a) 165  170  193   195   212   (Word position.)
b) 7    60   9     90    40    (Last letter.)
c) 9516 9672 11154 11284 12467 (Running total.)

Total of the positions where this occurs (a): 2028 = 22 x 3 x 132.

6.9The 222 last letters can be divided into alternating groups of 104 and 14.

6.9.1Groups of 104:

5 400 4 10 50 6 100 50 2 5 3 200 200 5 200 1 5 50 10 200 10 200 100 200 10 200 4 100 50 10 80 50 5 6 50 10 50 1 2 50 6 5 400 50 50 30 1 1 10 1 5 5 400 4 10 400 1 4 5 400 400 1 200 1 6 50 5 50 400 50 4 50 50 5 400 10 1 6 40 10 1 200 300 5 5 4 100 1 5 10 10 5 2 50 200 6 30 1 1 1 5 50 5 50 10 10 10 400 30 4 50 1 1 1 5 30 30 5 200 10 200 1 10 50 1 1 10 50 70 5 50 50 50 1 50 1 10 50 50 1 4 1 4 40 1 9 1 40 40 40 7 9 7 40 40 60 40 40 40 9 90 90 40 90 40 40 200 200 9 200 90 60 40 90 40 9 7 9 9 40 90 9 9 5 90 90 40 40 90 60 90 60 90 300 40 90 40 40 90 9 40 40 5 40 40 90 40 40

Total: 12348 = 22 x 32 x 73.

6.9.1.1From feature 6.9.1, gather all numbers where the first digit is odd:

5 10 50 100 50 5 3 5 1 5 50 10 10 100 10 100 50 10 50 5 50 10 50 1 50 5 50 50 30 1 1 10 1 5 5 10 1 5 1 1 50 5 50 50 50 50 5 10 1 10 1 300 5 5 100 1 5 10 10 5 50 30 1 1 1 5 50 5 50 10 10 10 30 50 1 1 1 5 30 30 5 10 1 10 50 1 1 10 50 70 5 50 50 50 1 50 1 10 50 50 1 1 1 9 1 7 9 7 9 90 90 90 9 90 90 9 7 9 9 90 9 9 5 90 90 90 90 90 300 90 90 9 5 90

Total: 4270 = 2 x 5 x 7 x 61

6.9.1.2From feature 6.9.1, gather all numbers where the first digit is even:

400 4 6 2 200 200 200 200 200 200 200 4 80 6 2 6 400 400 4 400 4 400 400 200 6 400 4 400 6 40 200 4 2 200 6 400 4 200 200 4 4 40 40 40 40 40 40 60 40 40 40 40 40 40 200 200 200 60 40 40 40 40 40 60 60 40 40 40 40 40 40 40 40 40

Total: 8078 = 2 x 7 x 577.

6.9.2Group of 14:

40 10 1 5 5 10 1 30 400 10 5 30 1 5

Total: 553 = 7 x 79.

6.10Precisely 21 of the last letters divide the rest of the list into what is between and what is not between their Nth and Nth last occurrences.

Between & Not Between The Last Letter Of A Word
Last Letter Nth/Nth Last Occurrence Total Between Total Not Between Position Of Nth Occurrence Position of Nth Last
513105 = 3 x 5 x 7.12796 = 22 x 7 x 457. SF: 468 = 22 x 32 x 13.8589
40050 =12901 = 7 x 19 x 97.6061
418925 = 3 x 52 x 7 x 17.3976 = 23 x 7 x 71. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.3157
1018799 = 3 x 7 x 419. SF: 429 = 3 x 11 x 13.4102 = 2 x 7 x 293.4151
10110 =12901 = 7 x 19 x 97.9091
5028603 = 7 x 1229.4298 = 2 x 7 x 307.8152
50112023 = 7 x 172.10878 = 2 x 3 x 72 x 37. SF: 56 = 23 x 7. SF: 13.66102
20019765 = 32 x 5 x 7 x 31. SF: 49 = 72. SF: 14 = 2 x 7.3136 = 26 x 72. SF: 26 = 2 x 13.12184
20047112 = 23 x 7 x 127. SF: 140 = 22 x 5 x 7.5789 = 7 x 827.20135
20056692 = 22 x 7 x 239.6209 = 7 x 887.22133
136097 = 7 x 13 x 67.6804 = 22 x 35 x 7. SF: 26 = 2 x 13.47156
173997 = 7 x 571.8904 = 23 x 3 x 7 x 53.62140
192653 = 7 x 379.10248 = 23 x 3 x 7 x 61. SF: 77 = 7 x 11.77136
113658 = 2 x 7 x 47. SF: 56 = 23 x 7. SF: 13.12243 = 3 x 7 x 11 x 53.99117
3015138 = 2 x 7 x 367.7763 = 7 x 1109.46131
4016650 = 2 x 52 x 7 x 19.6251 = 7 x 19 x 47.79222
957 = 7. SF: 7.12894 = 2 x 3 x 7 x 307.190192
6012135 = 5 x 7 x 61.10766 = 2 x 7 x 769.170206
602707 = 7 x 101.12194 = 2 x 7 x 13 x 67.186204
905637 = 72 x 13.12264 = 23 x 3 x 7 x 73.188205
9070 =12901 = 7 x 19 x 97.199200

6.10.1Total of the last letters (column 1): 1512 = 23 x 33 x 7.

6.10.2Only two letters have Nth/Nth last occurrences divisible by 7. Providentially, the letters are 1 and 90, which together total 91 (7 x 13).

6.11Arrange the last letters into a three dimension block (2 x 3 x 37).

6.11.1114 letters will have an odd valued third dimension coordinate.

a) 5 400 4 10 50 6 200 5 200 1 5 50 10 200 4 100 50 10 50 1 2 50 6 5 10
b) 1 2   1 2  1  2 1   2 1   2 1 2  1  2   1 2   1  2  1  2 1 2  1 2 1
c) 1 1   2 2  3  3 1   1 2   2 3 3  1  1   2 2   3  3  1  1 2 2  3 3 1
d) 1 1   1 1  1  1 3   3 3   3 3 3  5  5   5 5   5  5  7  7 7 7  7 7 9

a) 1 5 5 400 4 400 1  200 1  6  50 50 5  400 10 1  6  5  4  100 1  5  10
b) 2 1 2 1   2 1   2  1   2  1  2  1  2  1   2  1  2  1  2  1   2  1  2
c) 1 2 2 3   3 1   1  2   2  3  3  1  1  2   2  3  3  1  1  2   2  3  3
d) 9 9 9 9   9 11  11 11  11 11 11 13 13 13  13 13 13 15 15 15  15 15 15

a) 30 1  1  1  5  50 5  10 1  30 400 10 10 400 30 4  50 1  200 10 200 1
b) 1  2  1  2  1  2  1  2  1  2  1   2  1  2   1  2  1  2  1   2  1   2
c) 1  1  2  2  3  3  1  1  2  2  3   3  1  1   2  2  3  3  1   1  2   2
d) 17 17 17 17 17 17 19 19 19 19 19  19 21 21  21 21 21 21 23  23 23  23

a) 10 50 50 50 50 1  50 1  4  40 1  9  1  40 40 60 40 40 40 9  200 200 9
b) 1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1   2   1
c) 3  3  1  1  2  2  3  3  1  1  2  2  3  3  1  1  2  2  3  3  1   1   2
d) 23 23 25 25 25 25 25 25 27 27 27 27 27 27 29 29 29 29 29 29 31  31  31

a) 200 90 60 9  40 90 9  9  5  90 60 90 300 40 90 5  40 40 90 40 40
b) 2   1  2  1  2  1  2  1  2  1  2  1  2   1  2  1  2  1  2  1  2
c) 2   3  3  1  1  2  2  3  3  1  1  2  2   3  3  1  1  2  2  3  3
d) 31  31 31 33 33 33 33 33 33 35 35 35 35  35 35 37 37 37 37 37 37

a) Last letter.
b) Coordinate 1.
c) Coordinate 2.
d) Coordinate 3.

Total of the letters (a): 6986 = 2 x 7 x 499.

6.11.2108 letters will have an even valued third dimension coordinate.

a) 100 50 2 5 3 200 10 200 10 200 100 200 80 50 5 6 50 10 400 50 50 30 1
b) 1   2  1 2 1 2   1  2   1  2   1   2   1  2  1 2 1  2  1   2  1  2  1
c) 1   1  2 2 3 3   1  1   2  2   3   3   1  1  2 2 3  3  1   1  2  2  3
d) 2   2  2 2 2 2   4  4   4  4   4   4   6  6  6 6 6  6  8   8  8  8  8

a) 1 10 400 1  4  5  400 5  50 400 50 4  50 40 10 1  200 300 5  10 5  2
b) 2 1  2   1  2  1  2   1  2  1   2  1  2  1  2  1  2   1   2  1  2  1
c) 3 1  1   2  2  3  3   1  1  2   2  3  3  1  1  2  2   3   3  1  1  2
d) 8 10 10  10 10 10 10  12 12 12  12 12 12 14 14 14 14  14  14 16 16 16

a) 50 200 6  5  50 40 10 1  5  5  30 1  5  10 10 1  1  5  30 30 5  1  1
b) 2  1   2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
c) 2  3   3  1  1  2  2  3  3  1  1  2  2  3  3  1  1  2  2  3  3  1  1
d) 16 16  16 18 18 18 18 18 18 20 20 20 20 20 20 22 22 22 22 22 22 24 24

a) 10 50 70 5  10 50 50 1  4  1  40 40 7  9  7  40 90 90 40 90 40 40 40
b) 1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1
c) 2  2  3  3  1  1  2  2  3  3  1  1  2  2  3  3  1  1  2  2  3  3  1
d) 24 24 24 24 26 26 26 26 26 26 28 28 28 28 28 28 30 30 30 30 30 30 32

a) 90 40 9  7  9  90 90 40 40 90 60 40 40 90 9  40 40
b) 2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
c) 1  2  2  3  3  1  1  2  2  3  3  1  1  2  2  3  3
d) 32 32 32 32 32 34 34 34 34 34 34 36 36 36 36 36 36

a) Last letter.
b) Coordinate 1.
c) Coordinate 2.
d) Coordinate 3.

Total of the letters (a): 5915 = 5 x 7 x 132.

6.11.3Twelve letters have a third dimension coordinate divisible by 13.

Last letter:  50 5  400 10 1  6  10 50 50 1  4  1
Coordinate 1: 1  2  1   2  1  2  1  2  1  2  1  2
Coordinate 2: 1  1  2   2  3  3  1  1  2  2  3  3
Coordinate 3: 13 13 13  13 13 13 26 26 26 26 26 26

Total of the letters (a): 588 = 2 x 2 x 3 x 7 x 7. SF: 21 = 3 x 7.

6.11.4Eighteen letters will have all even valued coordinates.

Last letter:  5 200 6 30 4  50 200 50 10 5  30 50 1  9  90 9  40 9
Coordinate 1: 2 2   2 2  2  2  2   2  2  2  2  2  2  2  2  2  2  2
Coordinate 2: 2 2   2 2  2  2  2   2  2  2  2  2  2  2  2  2  2  2
Coordinate 3: 2 4   6 8  10 12 14  16 18 20 22 24 26 28 30 32 34 36

Total of the letters (a): 798 = 2 x 3 x 7 x 19.

Letters Not First Or Last

6Defining letters that are first or last in a word automatically creates an opposite category: letters that are not first or last in a word. 541 letters fit these conditions.

7 6 10 200 60 6 40 10 70 400 10 6 40 10 400 2 6 300 400 30 6 300 70 1 300 70 40 100 200 60 10 2 10 2 10 6 30 3 30 6 5 6 30 5 6 3 50 80 4 40 6 5 30 30 80 10 300 40 300 6 50 200 2 2 2 4 40 6 5 100 6 40 6 10 50 400 60 80 200 10 400 10 8 7 6 10 1 4 10 30 10 2 200 2 400 200 50 40 30 30 7 6 10 9 10 30 10 6 400 5 6 2 300 40 10 5 10 2 10 100 4 300 300 1 10 6 400 70 4 10 30 9 50 5 6 1 200 20 8 10 10 5 10 2 5 6 40 70 4 7 6 10 8 7 6 10 30 10 1 200 50 50 40 10 2 50 400 6 70 400 10 6 40 10 9 100 4 40 6 5 100 200 2 6 5 30 5 10 30 9 10 100 40 30 20 20 40 40 10 40 10 30 300 50 10 80 30 8 6 30 9 50 30 9 30 70 4 40 30 20 6 400 400 8 2 400 20 200 10 6 8 50 50 10 1 3 6 4 50 8 7 6 1 300 2 5 30 50 50 200 2 1 40 10 10 90 10 2 2 70 50 50 1 40 80 300 30 10 5 6 4 70 50 50 30 10 10 6 400 2 200 2 400 50 10 200 2 200 2 70 30 20 10 100 6 40 6 200 70 10 100 2 30 6 30 20 6 400 4 10 300 30 10 6 50 10 10 8 60 50 6 30 20 6 400 30 40 70 30 30 40 10 1 1 200 100 9 70 600 20 5 70 60 40 100 600 200 100 600 70 7 80 8 1 5 300 5 20 70 5 20 1 2 5 200 100 60 70 600 300 8 1 20 30 600 200 100 600 1 100 5 40 9 6 60 40 100 5 90 1 9 60 200 80 1 40 60 60 80 5 200 60 30 5 40 60 200 100 60 1 4 60 40 4 80 5 200 1 80 5 9 90 100 7 10 5 9 90 1 200 100 60 9 90 8 7 100 5 200 10 1 9 70 60 40 4 80 5 1 20 9 20 1 9 60 90 100 7 10 1 100 30 2 20 5 70 60 40 100 5 9 60 200 80 1 40 60 200 100 60 7 90 60 200 40 1 20 7 300 8 5 9 30 600 9 60 200 80 1 40 60 200 100 600 20 5 200 90 5 100 1 80 60 70 60 8 5 1 90 1 90 8 200 100 60 60 80 5 200 60 30 5 40 60 9 60 200 80 1 40 60

7The total of these letters has no feature: 36485 (nf).

7.1The letter values of God’s name in Hebrew are applied 7 times to count through a portion of these letters.

a) 10  5   6  5  10 5  6  5  10  5  6  5  10 5   6  5   10  5   6   5
b) 10  15  21 26 36 41 47 52 62  67 73 78 88 93  99 104 114 119 125 130
c) 400 400 6  70 6  5  50 5  200 40 6  80 4  200 30 9   40  10  10  10

a) 10  5   6   5   10  5   6   5   (Value from the Name.)
b) 140 145 151 156 166 171 177 182 (Count.)
c) 10  5   6   10  50  10  4   200 (Letter found.)

Total of the letters found (c): 1876 = 22 x 7 x 67. SF: 78 = 2 x 3 x 13.

7.2The letter values of Jesus Christ in Greek (Ιησου Χριστου: 9 7 90 60 200 400 80 9 90 100 60 200), are applied twice to count through the letters that are not first or last in a word.

a) 9  7  90  60  200 400 80  9   90  100  60   200  9    7    90   60
b) 9  16 106 166 366 766 846 855 945 1045 1105 1305 1314 1321 1411 1471
c) 9  16 106 166 366 225 305 314 404 504  23   223  232  239  329  389
d) 70 2  30  50  100 2   30  6   5   600  70   400  50   50   30   90

a) 200  400  80   9    90   100  60   200  (Value from the Greek.)
b) 1671 2071 2151 2160 2250 2350 2410 2610 (Count.)
c) 48   448  528  537  86   186  246  446  (Adjusted to 541.)
d) 80   5    5    200  10   30   5    4    (Letter found.

The total of the letters found (d) point to God: 1924 = 22 x 13 x 37.

7.3Starting with the first letter in feature 7 and taking every Nth after, the following values of N produce totals divisible by 7:

4 6 8 10 11 20 22 30 39 42 43 44 46 51 60 62 78 84 90 95 101 106 116 124 138 151 153 156 160 167 198 200 204 205 206 220 226 233 240 253 255 256 258 260 264 266 269

Total of the N values: 6230 = 2 x 5 x 7 x 89.

7.3.1The smallest possible N was 4, and the largest was 269. The two form a complementary pair: 273 = 3 x 7 x 13.

7.3.219 of the N values have an odd valued first digit:

10 11 30 39 51 78 90 95 101 106 116 124 138 151 153 156 160 167 198

Total: 1974 = 2 x 3 x 7 x 47.

7.3.328 of the N values have an even valued first digit:

4 6 8 20 22 42 43 44 46 60 62 84 200 204 205 206 220 226 233 240 253 255 256 258 260 264 266 269

Total: 4256 = 25 x 7 x 19.

7.4Taking every Nth letter from the list, only three possibilities exist for the total to be divisible by 7 and 13:

15 85 108

Total of the N values: 208 = 24 x 13. SF: 21 = 3 x 7.

7.5440 of these letters are even valued. Their total: 36010 = 2 x 5 x 13 x 277.

7.6286 of these letters have a first digit that is odd valued. Their total: 12635 = 5 x 7 x 192.

7.7465 of these letters are not prime numbers. Their total: 36162 = 2 x 32 x 72 x 41. SF: 63 = 32 x 7. SF: 13.

7.841 of these letters in the list have positions that are multiples of 13.

40 70 30 5 2 80 10 9 10 10 10 10 70 200 20 8 6 10 30 70 50 200 70 30 400 70 7 5 100 1 30 5 1 9 60 40 7 600 200 1 40

Total of these letters: 2626 = 2 x 13 x 101.

7.9.1When these letters are added one by one, 74 times the total will be a multiple of 7. This happens with these letters.

a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)
1   7   7          101 7   7035       226 400 14014      335 200 20216      465 5   30429
7   40  329        105 10  7070       232 50  14308      348 100 22190      466 70  30499
11  10  819        118 2   7896       237 6   14378      356 300 23261      476 40  31094
14  10  875        123 300 8610       245 2   14756      376 200 25578      480 60  31514
27  40  2800       134 5   9205       247 30  14791      378 600 26278      481 7   31521
40  6   3269       136 1   9212       253 40  15134      384 6   26439      484 200 31871
47  50  3374       140 10  9450       262 50  15428      396 40  27125      493 30  32291
49  4   3458       152 10  9625       271 4   15904      419 80  28560      495 9   32900
60  6   4305       155 6   9646       272 70  15974      421 9   28574      501 60  33341
63  2   4557       161 50  9947       276 10  16114      432 60  29246      529 200 35840
81  400 5978       179 6   11200      289 2   17598      445 40  29855
87  1   6020       181 100 11305      290 70  17668      447 80  29939
89  10  6034       195 20  11802      304 6   18298      451 9   29974
92  2   6076       203 300 12292      307 6   18354      453 1   29995
95  400 6678       206 80  12432      311 300 19068      457 100 30254
100 30  7028       212 50  12565      330 30  19964      458 7   30261
a) Position in list.   b) Letter not first/last.   c) Running total.

Total of the letters (b): 5564 = 22 x 13 x 107.

7.9.2When these letters are added one by one, 42 times the total will be a multiple of 13. This happens with these letters.

a)  b)  c)         a)  b)  c)         a)  b)  c)
2   6   13         171 10  10985      374 30  24778
11  10  819        175 9   11050      404 5   27625
32  2   3172       177 4   11154      421 9   28574
39  30  3263       182 200 11505      427 9   28795
44  5   3315       185 5   11518      429 1   28886
49  4   3458       193 40  11752      447 80  29939
61  50  4355       210 30  12506      450 20  29965
86  10  6019       226 400 14014      454 9   30004
98  40  6968       237 6   14378      499 1   33241
111 6   7527       251 2   15093      526 60  35555
137 200 9412       283 400 17134
144 2   9477       286 200 17394
153 8   9633       339 600 20995
155 6   9646       344 40  21190
162 50  9997       351 7   22867
165 2   10049      360 5   23361
a) Position in list.   b) Letter not first/last.   c) Running total.

Total of the letters (b): 2613 = 3 x 13 x 67.

7.10.1Search through the letters in feature 7 using a pattern of high and low, and taking the first letter as a high number. Total of these letters: 18193 = 7 x 23 x 113. SF: 143 = 11 x 13.

7.10.2Search through the letters in feature 7 using a pattern of low and high, and taking the first letter as a low number. Total of these letters: 18187 = 13 x 1399.

All The Letters

Having looked at different groups of letters, now all 983 letters are considered together.

8The letter values of Jesus Christ in Greek (Ιησου Χριστου: 9 7 90 60 200 400 80 9 90 100 60 200) are applied 679 (7 x 97) times to count through all the letters. The total of the letters found: 493290 = 2 x 35 x 5 x 7 x 29. Not only is the result divisible by 7, but it is exactly 378 times the numeric total of Ιησου Χριστου. (378 = 2 x 33 x 7.) In other words, by using Ιησου Χριστου to count through the letters, one confirms the prophecy is about Ιησου Χριστου (Jesus).

(One might suspect the result is divisible by 7 because the number of times the Greek letters were applied is a multiple of 7, but this is not the case because the sequence of letters found does not repeat.)

8.2719 paired groups of letters can be found, positioned Nth and Nth last, that together and individually are multiples of 13. The total of the start and end positions of all the groups: 358183 = 7 x 51169.

8.3Take every other letter.

8.3.1Total of the odd positioned letters: 27510 = 2 x 3 x 5 x 7 x 131.

8.3.2Total of the even positioned letters: 31843 = 7 x 4549.

8.4Rather than taking every other letter after the first letter, one can also take every Nth letter. The following values of N produce totals divisible by 7:

2 10 14 19 20 26 30 33 41 44 45 55 59 73 77 81 92 109 113 117 120 123 127 141 152 159 167 173 182 188 189 190 191 195 204 206 211 225 231 236 243 245 247 250 267 273 287 290 293 294 308 314 319 328 329 349 350 353 371 375 377 389 415 428 430 442 454 460 463 465 474 481 487

Total of the N values: 16520 = 23 x 5 x 7 x 59. SF: 77 = 7 x 11.

8.4.1Odd valued from the results in feature 8.4:

19 33 41 45 55 59 73 77 81 109 113 117 123 127 141 159 167 173 189 191 195 211 225 231 243 245 247 267 273 287 293 319 329 349 353 371 375 377 389 415 463 465 481 487

Total: 9982 = 2 x 7 x 23 x 31. SF: 63 = 32 x 7. SF: 13.

8.4.2Even valued from the results in feature 8.4:

2 10 14 20 26 30 44 92 120 152 182 188 190 204 206 236 250 290 294 308 314 328 350 428 430 442 454 460 474

Total: 6538 = 2 x 7 x 467. SF: 476 = 22 x 7 x 17. SF: 28 = 22 x 7.

8.5Whether one begins with the first letter and takes every Nth letter after, or just takes every Nth letter, only 15 values of N work both ways to find totals divisible by 7.

2 41 120 152 190 206 211 225 245 250 287 294 319 481 487

Total of the N values: 3510 = 2 x 33 x 5 x 13.

8.6Rather than taking every Nth letter, alternating groups of letters can also be found. Over 400 sub-features are revealed.

8.7Divide the letters into two groups: odd valued or even valued.

8.7.1223 letters are odd valued. Though their total yields no numeric feature, their positions shows something else. It is as if they had been uniquely positioned. The total of their positions: 125320 = 23 x 5 x 13 x 241.

8.7.2760 letters are even valued. The total of their positions: 358316 = 22 x 7 x 67 x 191.

8.8Divide the letters into two groups: prime numbers and not prime numbers.

8.8.1139 letters are prime numbers. The total of the primes: 616 = 23 x 7 x 11.

8.8.2844 letters are not prime numbers. The total of these letters: 58737 = 3 x 7 x 2797. SF: 2807 = 7 x 401. The total of the positions of these letters: 417183 = 3 x 13 x 19 x 563. SF: 598 = 2 x 13 x 23.

8.9Precisely 56 letters are multiples of 7. (56 = 23 x 7. SF: 13.)

8.10The lowest valued letter is 1, and it appeared 86 times for a total value of 86. The highest letter value is 600, and it appeared 9 times for a total value of 5400. Thus the lowest and highest together have a total value of 5486 (2 x 13 x 211).

8.11Divide the letters into alternating groups of M and N-number of letters where M and N are multiples of 7 or 13. There is only one way that works, alternating groups of 63 and 52 letters.

8.11.1Groups of 63 letters: 32375 = 53 x 7 x 37.

8.11.1.1Extract the odd valued from the groups of 63. Total: 525 = 3 x 52 x 7.

8.11.1.2Pull the even valued from the groups of 63. Total: 31850 = 2 x 52 x 72 x 13.

8.11.2Groups of 52 letters: 26978 = 2 x 7 x 41 x 47.

8.12Exactly 65 (5 x 13) letters divide the rest of the letters into what is between their Nth and Nth last occurrences, and what is not between.

Between & Not Between The Nth/Nth Last Occurrence Of A Letter
Letter Nth/Nth Last Occurrence Total Between Total Not Between Position Of Nth Occurrence Position of Nth Last
8438626 = 2 x 7 x 31 x 89.20727 = 32 x 72 x 47.166814
5158548 = 22 x 3 x 7 x 17 x 41.805 = 5 x 7 x 23. SF: 35 = 5 x 7.3971
5750400 = 25 x 32 x 52 x 7.8953 = 7 x 1279.91934
5948069 = 32 x 72 x 109.11284 = 22 x 7 x 13 x 31.127929
51142707 = 7 x 6101.16646 = 2 x 7 x 29 x 41.168902
53417703 = 32 x 7 x 281. SF: 294 = 2 x 3 x 72.41650 = 2 x 52 x 72 x 17.372688
53515946 = 2 x 7 x 17 x 67.43407 = 32 x 7 x 13 x 53.407678
53712103 = 72 x 13 x 19.47250 = 2 x 33 x 53 x 7.433659
6334475 = 52 x 7 x 197.24878 = 2 x 7 x 1777.20631
6533593 = 7 x 4799.25760 = 25 x 5 x 7 x 23.27621
62115386 = 2 x 72 x 157.43967 = 7 x 11 x 571.155438
6288022 = 2 x 3 x 7 x 191. SF: 203 = 7 x 29.51331 = 7 x 7333.233379
6296286 = 2 x 7 x 449.53067 = 3 x 72 x 192.247368
6305740 = 22 x 5 x 7 x 41.53613 = 32 x 7 x 23 x 37.253365
63791 = 7 x 13.59262 = 2 x 3 x 7 x 17 x 83. SF: 112 = 24 x 7.306313
101625802 = 2 x 7 x 19 x 97.33551 = 7 x 4793.121584
102420048 = 24 x 7 x 179.39305 = 5 x 7 x 1123.176539
103411221 = 72 x 229.48132 = 22 x 32 x 7 x 191. SF: 208 = 24 x 13. SF: 21 = 3 x 7.252459
103510101 = 3 x 7 x 13 x 37.49252 = 22 x 7 x 1759.259454
10405173 = 7 x 739.54180 = 22 x 32 x 5 x 7 x 43. SF: 65 = 5 x 13.301404
10452317 = 7 x 331. SF: 338 = 2 x 132. SF: 28 = 22 x 7.57036 = 22 x 3 x 72 x 97.325371
400135161 = 7 x 5023.24192 = 27 x 33 x 7.7632
70157407 = 7 x 59 x 139.1946 = 2 x 7 x 139.8960
70255937 = 7 x 61 x 131.3416 = 23 x 7 x 61.22943
70629085 = 3 x 5 x 7 x 277.30268 = 22 x 7 x 23 x 47.257758
701215477 = 3 x 7 x 11 x 67.43876 = 22 x 7 x 1567.342646
70166699 = 3 x 7 x 11 x 29.52654 = 2 x 7 x 3761. SF: 3770 = 2 x 5 x 13 x 29. SF: 49 = 72. SF: 14 = 2 x 7.496634
70183948 = 22 x 3 x 7 x 47.55405 = 5 x 7 x 1583.520594
4629267 = 7 x 37 x 113.30086 = 2 x 72 x 307.100635
20250316 = 22 x 3 x 7 x 599.9037 = 7 x 1291.39898
20445220 = 22 x 5 x 7 x 17 x 19. SF: 52 = 22 x 13.14133 = 3 x 7 x 673.61843
2001240061 = 7 x 59 x 97.19292 = 22 x 7 x 13 x 53. SF: 77 = 7 x 11.129805
200264900 = 22 x 52 x 72. SF: 28 = 22 x 7.54453 = 3 x 7 x 2593.481575
60912341 = 7 x 41 x 43. SF: 91 = 7 x 13.47012 = 22 x 7 x 23 x 73.736942
601011424 = 25 x 3 x 7 x 17.47929 = 7 x 41 x 167.749938
50429729 = 7 x 31 x 137. SF: 175 = 52 x 7.29624 = 23 x 7 x 232.71618
50727279 = 32 x 7 x 433.32074 = 2 x 7 x 29 x 79. SF: 117 = 32 x 13.90589
501025718 = 2 x 7 x 11 x 167.33635 = 5 x 7 x 312.102567
502015218 = 2 x 7 x 1087.44135 = 5 x 7 x 13 x 97.196472
40847775 = 3 x 52 x 72 x 13.11578 = 2 x 7 x 827.145939
401532361 = 3 x 7 x 23 x 67.26992 = 24 x 7 x 241.318879
401729239 = 7 x 4177.30114 = 2 x 32 x 7 x 239.348865
402323177 = 72 x 11 x 43.36176 = 24 x 7 x 17 x 19.397766
402421077 = 7 x 3011.38276 = 22 x 7 x 1367. SF: 1378 = 2 x 13 x 53.425757
402520797 = 7 x 2971.38556 = 22 x 34 x 7 x 17.435755
100938556 = 22 x 34 x 7 x 17.20797 = 7 x 2971.194866
1001618270 = 2 x 32 x 5 x 7 x 29. SF: 49 = 72. SF: 14 = 2 x 7.41083 = 7 x 5869. SF: 5876 = 22 x 13 x 113. SF: 130 = 2 x 5 x 13.492771
2624185 = 5 x 7 x 691.35168 = 25 x 7 x 157.133572
21214217 = 3 x 7 x 677.45136 = 24 x 7 x 13 x 31.227486
21313153 = 7 x 1879.46200 = 23 x 3 x 52 x 7 x 11.237468
301318298 = 2 x 7 x 1307. SF: 1316 = 22 x 7 x 47.41055 = 3 x 5 x 7 x 17 x 23.239580
30187819 = 7 x 1117.51534 = 2 x 32 x 7 x 409.369521
300112394 = 2 x 32 x 7 x 19.56959 = 7 x 79 x 103. SF: 189 = 33 x 7.323375
3146984 = 23 x 7 x 839.12369 = 3 x 7 x 19 x 31.42839
12814630 = 2 x 5 x 7 x 11 x 19.44723 = 7 x 6389. SF: 6396 = 22 x 3 x 13 x 41.450706
13112082 = 2 x 7 x 863.47271 = 3 x 7 x 2251. SF: 2261 = 7 x 17 x 19.471685
1393626 = 2 x 72 x 37.55727 = 7 x 19 x 419.540608
9239620 = 22 x 5 x 7 x 283. SF: 299 = 13 x 23.19733 = 7 x 2819.263937
9332942 = 2 x 7 x 13 x 181. SF: 203 = 7 x 29.26411 = 74 x 11. SF: 39 = 3 x 13.352912
9114949 = 72 x 101.54404 = 22 x 7 x 29 x 67.734829
90312355 = 5 x 7 x 353.46998 = 2 x 32 x 7 x 373.740950
9084207 = 7 x 601.55146 = 2 x 3 x 7 x 13 x 101. SF: 126 = 2 x 32 x 7.801893
9012560 = 24 x 5 x 7.58793 = 7 x 37 x 227.851868
60034249 = 7 x 607.55104 = 26 x 3 x 7 x 41. SF: 63 = 32 x 7. SF: 13.676728
60041400 = 23 x 52 x 7.57953 = 7 x 17 x 487. SF: 511 = 7 x 73.710723

8.12.1The positions for the Nth occurrences (column 7):

166 3 91 127 168 372 407 433 20 27 155 233 247 253 306 121 176 252 259 301 325 7 8 22 257 342 496 520 100 39 61 129 481 736 749 71 90 102 196 145 318 348 397 425 435 194 492 133 227 237 239 369 323 42 450 471 540 263 352 734 740 801 851 676 710

Position total: 19760 = 24 x 5 x 13 x 19.

8.12.1.1The lowest Nth occurrence is 3, and the highest is 851. This forms a complementary pair of low and high: 854 = 2 x 7 x 61. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

8.12.2The positions for the Nth last occurrences (column 8):

814 971 934 929 902 688 678 659 631 621 438 379 368 365 313 584 539 459 454 404 371 632 960 943 758 646 634 594 635 898 843 805 575 942 938 618 589 567 472 939 879 865 766 757 755 866 771 572 486 468 580 521 375 839 706 685 608 937 912 829 950 893 868 728 723

Position total: 44828 = 22 x 7 x 1601. SF: 1612 = 22 x 13 x 31.

8.12.2.1Taking every other (odd positioned) from the list in 6.12.2:

814 934 902 678 631 438 368 313 539 454 371 960 758 634 635 843 575 938 589 472 879 766 755 771 486 580 375 706 608 912 950 868 723

Total: 22225 = 52 x 7 x 127.

8.12.2.2Taking every other (even positioned) from the list in 6.12.2:

971 929 688 659 621 379 365 584 459 404 632 943 646 594 898 805 942 618 567 939 865 757 866 572 468 521 839 685 937 829 893 728

Total: 22603 = 7 x 3229.

Conclusion

It has almost been 2000 years since the Apostle John closed the book of Revelation with the words:

He who testifies to these things says, "Surely I am coming soon." Amen. Come, Lord Jesus! (Revelation 22:20)

Many have assumed these words were spoken by Jesus, but the vision in Revelation is not clear. The speaker is more likely the angel sent by Jesus and God. (Revelation 1:1, 22:6) Nevertheless, whether the above words were spoken by Jesus or by his angel, the question remains, Where is the promise of his coming? (2 Peter 3:4) If Jesus wasn't coming soon, what about the angel's coming?

The numeric features that appear when the prophecy in Acts 1:9-11 is joined with the fulfillment in Daniel 7:9-18 show the promise of Jesus' coming. The prophecy is true. Jesus' ultimate return will be with clouds of heaven. That is the time he will receive the eternal rulership of the world. But that doesn't mean he won't return before that time. The warnings to the seven churches make it clear. Jesus returns to visit believers any time to check on their progress! (Revelation 2:5, 2:16, 3:3, 3:11, 3:20) That is why Jesus gave parables about faithful service. (Matthew 24:45, 25:21)

Notes

  1. English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.
  2. The angels addressed their words to the Men of Galilee since most of the Apostles were from Jesus' area. The prophecy in Isaiah 9:1-2 gives a second meaning to the word Galilee. The angels were addressing their words to nations in the far future.
  3. The F.H.A Scrivener 1881 - Theodore Beza 1598 Textus Receptus Greek New Testament (GNS), ASCII edition copyright 1992 by Dr. Kirk D. DiVietro, Grace Baptist Church.
  4. Hebrew text is from, The Biblia Hebraica Stuttgartensia (BHS), edited by K. Elliger and W. Rudolph of the Deutsche Biblegesselchaft (German Bible Society) 1983.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




The foolishness of God is greater than anything we can imagine (1 Corinthians 1:25). On the off chance the numbers are a form of foolishness, do not spend too much time on them.