Jesus: The King Of Righteousness
There are six number studies proving Jesus is the fulfillment of Old Testament prophecy. Each prophecy covers a different aspect of Jesus, as King, Messiah, Suffering Servant, and the Hope of Israel.
This study links Psalm 110:1-4 with Hebrews 5:4-5, with Jesus as the priest after the order of Melchizedek. Melchizedek means King of Righteousness
or perhaps Righteous King
.
The Christian understanding is that righteousness comes from faith, not works (Genesis 15:6), that as the priest of the ancient order of Melchizedek, Jesus took the covenant back to what it was during Abraham's time, and that the book of Hebrews laid out the failure of the sacrificial system under Aaron. But is this understanding sound? Is there something else other than the logic presented in the book of Hebrews that confirms this? The numbers confirm it.
1 [A Psalm of David.] The LORD says to my lord: "Sit at my right hand, till I make your enemies your footstool."
2 The LORD sends forth from Zion your mighty scepter. Rule in the midst of your foes!
3 Your people will offer themselves freely on the day you lead your host upon the holy mountains. From the womb of the morning like dew your youth will come to you.
4 The LORD has sworn and will not change his mind, "You are a priest for ever after the order of Melchizedek." (Psalm 110:1-4)1
In the first verse of Psalm 110, God says Sit at my right hand.
Whoever God is speaking to takes a seat to God’s right. According to Christians, this is Jesus. Then in verse 5 God says, The Lord is at your right hand
, meaning a third person further to the right. This provides a break in the psalm. The verses concerning Melchizedek are from 1 to 4, and the remaining verses actually refer to the third person.
While Psalm 110:1-4 has 42 words, and 161 letters, both of which are divisible by 7, the numeric total is 8444 having no factors of 7 or 13. Without a total that is a multiple of 7 and or 13, there won't be many complementary opposites following Revelation 1:8.
(Note: Taking the whole of Psalm 110 doesn't improve the situation. The total is 13030 and still not divisible by 7 or 13.)
4 | 3 | 2 | 1 | ||||||||||||
26 | 91 | 293 | 44 | ||||||||||||
16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
5 | 6 | 5 | 10 | 40 | 1 | 50 | 200 | 6 | 40 | 7 | 40 | 4 | 6 | 4 | 30 |
יהוה | נאם | מזמור | לדוד | ||||||||||||
8 | 7 | 6 | 5 | ||||||||||||
74 | 150 | 302 | 95 | ||||||||||||
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | |
4 | 70 | 10 | 50 | 10 | 40 | 10 | 30 | 2 | 300 | 10 | 50 | 4 | 1 | 30 | |
עד | לימיני | שב | לאדני | ||||||||||||
11 | 10 | 9 | |||||||||||||
49 | 43 | 711 | |||||||||||||
43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | ||||
40 | 4 | 5 | 20 | 10 | 2 | 10 | 1 | 400 | 10 | 300 | 1 | ||||
הדם | איביך | אשית | |||||||||||||
15 | 14 | 13 | 12 | ||||||||||||
348 | 97 | 54 | 293 | ||||||||||||
59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 |
8 | 30 | 300 | 10 | 20 | 7 | 70 | 5 | 9 | 40 | 20 | 10 | 30 | 3 | 200 | 30 |
ישלח | עזך | מטה | לרגליך | ||||||||||||
19 | 18 | 17 | 16 | ||||||||||||
304 | 209 | 196 | 26 | ||||||||||||
75 | 74 | 73 | 72 | 71 | 70 | 69 | 68 | 67 | 66 | 65 | 64 | 63 | 62 | 61 | 60 |
2 | 200 | 100 | 2 | 5 | 4 | 200 | 50 | 6 | 10 | 90 | 40 | 5 | 6 | 5 | 10 |
בקרב | רדה | מציון | יהוה | ||||||||||||
23 | 22 | 21 | 20 | ||||||||||||
58 | 456 | 130 | 43 | ||||||||||||
91 | 90 | 89 | 88 | 87 | 86 | 85 | 84 | 83 | 82 | 81 | 80 | 79 | 78 | 77 | 76 |
40 | 6 | 10 | 2 | 400 | 2 | 4 | 50 | 20 | 40 | 70 | 20 | 10 | 2 | 10 | 1 |
ביום | נדבת | עמך | איביך | ||||||||||||
27 | 26 | 25 | 24 | ||||||||||||
288 | 404 | 221 | 68 | ||||||||||||
107 | 106 | 105 | 104 | 103 | 102 | 101 | 100 | 99 | 98 | 97 | 96 | 95 | 94 | 93 | 92 |
40 | 8 | 200 | 40 | 300 | 4 | 100 | 10 | 200 | 4 | 5 | 2 | 20 | 30 | 10 | 8 |
מרחם | קדש | בהדרי | חילך | ||||||||||||
31 | 30 | 29 | 28 | ||||||||||||
474 | 39 | 50 | 548 | ||||||||||||
121 | 120 | 119 | 118 | 117 | 116 | 115 | 114 | 113 | 112 | 111 | 110 | 109 | 108 | ||
20 | 10 | 400 | 4 | 30 | 10 | 30 | 9 | 20 | 30 | 200 | 8 | 300 | 40 | ||
ילדתיך | טל | לך | משחר | ||||||||||||
35 | 34 | 33 | 32 | ||||||||||||
108 | 37 | 26 | 422 | ||||||||||||
136 | 135 | 134 | 133 | 132 | 131 | 130 | 129 | 128 | 127 | 126 | 125 | 124 | 123 | 122 | |
40 | 8 | 50 | 10 | 1 | 30 | 6 | 5 | 6 | 5 | 10 | 70 | 2 | 300 | 50 | |
ינחם | ולא | יהוה | נשבע | ||||||||||||
39 | 38 | 37 | 36 | ||||||||||||
100 | 176 | 75 | 406 | ||||||||||||
149 | 148 | 147 | 146 | 145 | 144 | 143 | 142 | 141 | 140 | 139 | 138 | 137 | |||
30 | 70 | 40 | 30 | 6 | 70 | 30 | 50 | 5 | 20 | 5 | 400 | 1 | |||
על | לעולם | כהן | אתה | ||||||||||||
42 | 41 | 40 | |||||||||||||
194 | 100 | 616 | |||||||||||||
161 | 160 | 159 | 158 | 157 | 156 | 155 | 154 | 153 | 152 | 151 | 150 | ||||
100 | 4 | 90 | 10 | 20 | 30 | 40 | 10 | 400 | 200 | 2 | 4 | ||||
צדק | מלכי | דברתי |
Psalm 110:1-4 ties in with Hebrews 5:4-5.
4 And one does not take the honor upon himself, but he is called by God, just as Aaron was.
5 So also Christ did not exalt himself to be made a high priest, but was appointed by him who said to him,Thou art my Son, today I have begotten thee.(Hebrews 5:4-5)3
Verse 4 of Hebrews emphasizes God’s sovereignty in the fourth verse of Psalm 110. God appoints Jesus to the order of Melchizedek. Verse 5 of Hebrews tells us God considers this high priest His son. This ties in with Jesus being high priest, Melchizedek, and as God’s son (Matthew 3:17) faithful in all God’s house just like Moses (Hebrews 3:2-5).
1 | 2 | 3 | 4 | ||||||||||||
20 | 660 | 906 | 199 | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ||
10 | 1 | 9 | 60 | 200 | 400 | 5 | 1 | 200 | 100 | 600 | 100 | 9 | 90 | ||
και | ουχ | εαυτω | τις | ||||||||||||
5 | 6 | 7 | |||||||||||||
108 | 147 | 186 | |||||||||||||
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
20 | 1 | 30 | 2 | 1 | 40 | 5 | 9 | 100 | 7 | 40 | 100 | 9 | 30 | 7 | 40 |
λαμβανει | την | τιμην | |||||||||||||
8 | 9 | ||||||||||||||
42 | 516 | ||||||||||||||
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | ||
1 | 20 | 20 | 1 | 10 | 1 | 20 | 60 | 200 | 30 | 5 | 40 | 60 | 90 | ||
αλλα | καλουμενος | ||||||||||||||
10 | 11 | 12 | |||||||||||||
330 | 360 | 273 | |||||||||||||
45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | ||||||
200 | 70 | 60 | 100 | 60 | 200 | 8 | 5 | 60 | 200 | ||||||
υπο | του | θεου | |||||||||||||
13 | 14 | 15 | |||||||||||||
864 | 20 | 722 | |||||||||||||
55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
10 | 1 | 8 | 600 | 90 | 70 | 5 | 80 | 10 | 1 | 9 | 1 | 1 | 80 | 600 | 40 |
καθωσπερ | και | ααρων | |||||||||||||
16 | 17 | 18 | 19 | ||||||||||||
1050 | 20 | 60 | 829 | ||||||||||||
71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 |
60 | 200 | 100 | 600 | 90 | 10 | 1 | 9 | 60 | 400 | 80 | 9 | 90 | 100 | 60 | 90 |
ουτως | και | ο | χριστος | ||||||||||||
20 | 21 | ||||||||||||||
660 | 406 | ||||||||||||||
87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | |||||||
60 | 200 | 400 | 5 | 1 | 200 | 100 | 60 | 40 | |||||||
ουχ | εαυτον | ||||||||||||||
22 | |||||||||||||||
255 | |||||||||||||||
96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | ||||||||
5 | 4 | 60 | 50 | 1 | 90 | 5 | 40 | ||||||||
εδοξασεν | |||||||||||||||
23 | |||||||||||||||
120 | |||||||||||||||
104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | |||||||
3 | 5 | 40 | 7 | 8 | 7 | 40 | 1 | 9 | |||||||
γενηθηναι | |||||||||||||||
24 | 25 | 26 | |||||||||||||
581 | 41 | 60 | |||||||||||||
113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | ||||
1 | 80 | 400 | 9 | 5 | 80 | 5 | 1 | 1 | 20 | 20 | 60 | ||||
αρχιερεα | αλλ | ο | |||||||||||||
27 | 28 | 29 | |||||||||||||
229 | 300 | 401 | |||||||||||||
125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
20 | 1 | 20 | 7 | 90 | 1 | 90 | 70 | 80 | 60 | 90 | 1 | 200 | 100 | 60 | 40 |
λαλησας | προς | αυτον | |||||||||||||
30 | 31 | 32 | 33 | 34 | |||||||||||
359 | 290 | 14 | 290 | 608 | |||||||||||
141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | ||
200 | 9 | 60 | 90 | 30 | 60 | 200 | 5 | 9 | 90 | 200 | 5 | 3 | 600 | ||
υιος | μου | ει | συ | εγω | |||||||||||
35 | 36 | ||||||||||||||
312 | 114 | ||||||||||||||
155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 |
90 | 7 | 30 | 5 | 80 | 60 | 40 | 3 | 5 | 3 | 5 | 40 | 40 | 7 | 10 | 1 |
σημερον | γεγεννηκα | ||||||||||||||
37 | |||||||||||||||
95 | |||||||||||||||
171 | 172 | ||||||||||||||
90 | 5 | ||||||||||||||
σε |
Hebrews 5:4-5 has 37 words, 172 letters, and a numeric total of 12447. Not one of these numbers is a multiple of 7 or 13.
Random chance suggests there is a one in 7 chance of putting these two passages together and having a total divisible by 7. It would also be a one in 13 chance of coming together with a total that is a multiple of 13. This would be almost twice as rare as something divisible by 7 because 13 is almost twice the size of 7.
If these two passages don't go together, then there should be very few numeric features of 7 and or 13. If this was random chance, orderly numeric features following the pattern of Revelation 1:8 in complementary opposites should not occur. However, if these two passages were meant to fit together, then there should be many numeric features of 7 and or 13 paired as complementary opposites.
We put the two totals together (20891 = 13 x 1607), and the factor associated with God’s name in Hebrew immediately appears.
A skeptic would still say this is just a fluke. And it would be a fluke if there were no other cases like this. But there are four other combined passages like this concerning Jesus. (See list at the top). With each discovery, the idea of this being some sort of freak accident is extremely unlikely.
Primary Features
(Derived from Revelation 1:8 and grouped for easy reference.)
A.1Numeric total: 20891 = 13 x 1607. (See total.)
B.3Every other word (odd): 10387 = 13 x 17 x 47. SF: 77 = 7 x 11. (See feature 1.3.1.)
B.3.2Every other word (even): 10504 = 23 x 13 x 101. (See feature 1.3.2.)
B.4Every other letter (odd): 12129 = 3 x 13 x 311. (See feature 3.4.1.)
B.4.2Every other letter (even): 8762 = 2 x 13 x 337. (See feature 3.4.2.)
C.3.2First and last letter of each word: 10049 = 13 x 773. (See feature 2.1.)
C.4First and last letters: 35 = 5 x 7. (See feature 3.)
D.3.3First letter of each word: 3666 = 2 x 3 x 13 x 47. SF: 65 = 5 x 13. (See feature 2.1.2.)
E.3.3Last letter of each word: 6383 = 13 x 491. SF: 504 = 23 x 32 x 7. (See feature 2.2.)
The Words
The combined passage has 79 words (a prime number).
List of words: 44 293 91 26 95 302 150 74 711 43 49 293 54 97 348 26 196 209 304 43 130 456 58 68 221 404 288 548 50 39 474 422 26 37 108 406 75 176 100 616 100 194 20 660 906 199 108 147 186 42 516 330 360 273 864 20 722 1050 20 60 829 660 406 255 120 581 41 60 229 300 401 359 290 14 290 608 312 114 95
1.1Seventy-nine words means the fortieth word is the word in the middle: 616 (23 x 7 x 11). Not only is it divisible by 7, but there is also a factor of 11, which visually presents God as two digits of one side by side. The same one God is beginning and end (Revelation 1:8).
1.2As the fortieth word word, this means there are exactly 39 words before it, and exactly 39 words after it. The middle word and its value is perfectly positioned.4
The 40th word is the third word from the end of Psalm 110:4, דברתי (dib-raw': cause, manner, reason). Jesus is in the manner of Melchizedek. The middle word is appropriate in number, and meaning.
1.3.1The odd positioned words:
44 91 95 150 711 49 54 348 196 304 130 58 221 288 50 474 26 108 75 100 100 20 906 108 186 516 360 864 722 20 829 406 120 41 229 401 290 290 312 95
Total: 10387 = 13 x 17 x 47. SF: 77 = 7 x 11
1.3.2The even positioned words:
293 26 302 74 43 293 97 26 209 43 456 68 404 548 39 422 37 406 176 616 194 660 199 147 42 330 273 20 1050 60 660 255 581 60 300 359 14 608 114
Total: 10504 = 23 x 13 x 101.
(Thirteen being almost twice the value of 7, this perfect breakdown of the odd and even positioned words is much rarer than if the totals were multiples of 7.)
1.3.3When the words are divided into odd and even valued words, there is half a feature. Odd valued words:
293 91 95 711 43 49 293 97 209 43 221 39 37 75 199 147 273 829 255 581 41 229 401 359 95
Total: 5705 = 5 x 7 x 163. SF: 175 = 52 x 7. (Since the passage's total is a multiple of 13, there is no equivalent feature with the even valued words.)
1.3.3.1Although the total for the even valued words yielded nothing, there still is another half feature.
a) 1 4 6 7 8 13 15 16 17 19 21 22 23 24 26 27 28 29 31 b) 44 26 302 150 74 54 348 26 196 304 130 456 58 68 404 288 548 50 474 a) 32 33 35 36 38 39 40 41 42 43 44 45 47 49 50 51 52 53 b) 422 26 108 406 176 100 616 100 194 20 660 906 108 186 42 516 330 360 a) 55 56 57 58 59 60 62 63 65 68 70 73 74 75 76 77 78 b) 864 20 722 1050 20 60 660 406 120 60 300 290 14 290 608 312 114 a) Word position. b) Word value.
Total of the positions of these words (a): 2233 = 7 x 11 x 29.
1.4The letter values of God’s name in Hebrew (10-5-6-5) count through the words. Since the total of the Name is 26, and there are 79 words in the combined passage, the Name can be used three times and will cover everything except the very last word. To cover this very last word, the Name is used four times.
a) 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 b) 10 15 21 26 36 41 47 52 62 67 73 78 88 14 20 25 c) 10 15 21 26 36 41 47 52 62 67 73 78 9 14 20 25 d) 43 348 130 404 406 100 108 330 660 41 290 114 711 97 43 221 a) Letter value from the Name. b) Count. c) Count adjusted to 79. d) Word found in the combined passage.
Total of words found (d): 4046 = 2 x 7 x 172.
1.5As seen in feature 1.3.2, every other word produced a total divisible by 13. Taking every other word is selecting every second word. The same can also be done by taking every fifth word.
Word position: 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 Word value: 95 43 348 43 221 39 108 616 906 42 864 60 120 300 290
Total of words found: 4095 = 32 x 5 x 7 x 13.
1.5.1Providentially, selecting every Nth word to obtain a total divisible by 13 only works with 2 and 5. No other value works. And of course, 2 + 5 = 7.
1.6Twelve words have values that are divisible by 7:
Word position: 3 11 17 36 40 48 50 54 58 63 66 74 Word value: 91 49 196 406 616 147 42 273 1050 406 581 14
Total of their positions: 520 = 23 x 5 x 13.
Total of the words: 3871 = 72 x 79. (There is an extra factor of 7.)
1.7In feature 1.1, the middle word stood out. Rather than taking just the one middle word, groups of words can be selected from the middle. When N is one of the following values, the group total is a multiple of 13.
75 73 35 33 15
Providentially, the total of N is a multiple of 7: 231 = 3 x 7 x 11.
1.8When the words are added up one by one, there are times when the accumulated total will be a prime number, and there will be times when it is not. (Prime numbers, and non-prime numbers are complementary opposites following Alpha and Omega in Revelation 1:8.)
a) b) c) a) b) c) a) b) c) a) b) c) 1 44 44 21 130 3578 41 100 8250 61 829 15756 2 293 337 22 456 4034 42 194 8444 62 660 16416 3 91 428 23 58 4092 43 20 8464 63 406 16822 4 26 454 24 68 4160 44 660 9124 64 255 17077 5 95 549 25 221 4381 45 906 10030 65 120 17197 6 302 851 26 404 4785 46 199 10229 66 581 17778 7 150 1001 27 288 5073 47 108 10337 67 41 17819 8 74 1075 28 548 5621 48 147 10484 68 60 17879 9 711 1786 29 50 5671 49 186 10670 69 229 18108 10 43 1829 30 39 5710 50 42 10712 70 300 18408 11 49 1878 31 474 6184 51 516 11228 71 401 18809 12 293 2171 32 422 6606 52 330 11558 72 359 19168 13 54 2225 33 26 6632 53 360 11918 73 290 19458 14 97 2322 34 37 6669 54 273 12191 74 14 19472 15 348 2670 35 108 6777 55 864 13055 75 290 19762 16 26 2696 36 406 7183 56 20 13075 76 608 20370 17 196 2892 37 75 7258 57 722 13797 77 312 20682 18 209 3101 38 176 7434 58 1050 14847 78 114 20796 19 304 3405 39 100 7534 59 20 14867 79 95 20891 20 43 3448 40 616 8150 60 60 14927 a) Word position. b) Word value. c) Accumulated total.
Total of the words where the accumulated total is a prime number: 676 = 22 x 132.
Total of the words where the accumulated total is not a prime number: 20215 = 5 x 13 x 311.
1.9There are precisely 65 unique word values (5 x 13).
1.9.1The highest and lowest words together: 1064 = 23 x 7 x 19.
1.9.1.1The lowest word value: 14 (2 x 7).
1.9.1.2The highest word value: 1050 (2 x 3 x 52 x 7).
1.9.2The word with value 44 appeared only once at the beginning of the passage. As a result, the total of its position is the lowest of all the words with a value 1. Opposite of this is the word with value 290, which occurred twice later in the passage. As a result, the total of its positions is the highest of all the words with a value of 148. These three words together (44 + 290 + 290): 624 = 24 x 3 x 13.
The First And Last Letters Of Each Word
2.1The first and last letters of each word: 10049 = 13 x 773. This separates perfectly into the first letter and the last letter of each word.
2.1.2The first letter of each word:
30 40 50 10 30 300 30 70 1 1 5 30 40 70 10 10 40 200 2 1 70 50 2 8 2 100 40 40 30 9 10 50 10 6 10 1 20 30 70 4 40 90 10 60 5 100 20 100 100 1 10 200 100 8 10 10 1 60 10 60 400 60 5 5 3 1 1 60 20 70 1 200 30 5 90 5 90 3 90
Total: 3666 = 2 x 3 x 13 x 47. SF: 65 = 5 x 13.
2.1.2.1From the list of the first letter of each word, take every other (even positioned):
40 10 300 70 1 30 70 10 200 1 50 8 100 40 9 50 6 1 30 4 90 60 100 100 1 200 8 10 60 60 60 5 1 60 70 200 5 5 3
Total: 2128 = 24 x 7 x 19.
2.1.2.1.1From 2.1.2.1, take the odd positioned:
40 300 1 70 200 50 100 9 6 30 90 100 1 8 60 60 1 70 5 3
Total: 1204 = 22 x 7 x 43.
2.1.2.1.1.1From 2.1.2.1.1 take the odd positioned again:
40 1 200 100 6 90 1 60 1 5
Total: 504 = 23 x 32 x 7.
2.1.2.1.1.2From 2.1.2.1.1 take the even positioned again:
300 70 50 9 30 100 8 60 70 3
Total: 700 = 22 x 52 x 7. SF: 21 = 3 x 7.
2.1.2.1.2From 2.1.2.1, take the even positioned:
10 70 30 10 1 8 40 50 1 4 60 100 200 10 60 5 60 200 5
Total: 924 = 22 x 3 x 7 x 11.
2.2The last letter of each word:
4 200 40 5 10 2 10 4 400 20 40 20 5 20 8 5 50 5 2 20 20 400 40 20 10 300 40 200 20 30 20 70 5 1 40 5 50 40 30 10 10 100 9 400 600 90 9 40 40 1 90 60 200 200 80 9 40 90 9 60 90 400 40 40 9 1 20 60 90 90 40 90 200 9 200 600 40 1 5
Total: 6383 = 13 x 491. SF: 504 = 23 x 32 x 7.
2.2.1Odd positioned from the list of the last letter of each word:
4 40 10 10 400 40 5 8 50 2 20 40 10 40 20 20 5 40 50 30 10 9 600 9 40 90 200 80 40 9 90 40 9 20 90 40 200 200 40 5
Total: 2665 = 5 x 13 x 41.
2.2.2Even positioned from the list of the last letter of each word:
200 5 2 4 20 20 20 5 5 20 400 20 300 200 30 70 1 5 40 10 100 400 90 40 1 60 200 9 90 60 400 40 1 60 90 90 9 600 1
Total: 3718 = 2 x 11 x 132. SF: 39 = 3 x 13.
The first and last letters of each word appear very orderly in how they form smaller groups of opposites.
2.3.1Letters that are first or last in a word can be classified as one group. Its complementary opposite would be letters that are not first or last in a word.
4 6 7 40 6 1 5 6 1 4 50 10 40 10 50 300 10 10 2 10 4 200 3 30 10 9 7 300 30 5 6 90 10 6 4 100 200 10 2 10 40 4 2 10 6 10 30 5 4 200 4 200 8 300 8 30 4 400 10 300 2 5 6 30 50 8 400 5 70 6 30 2 200 400 30 20 4 1 200 1 200 100 9 1 30 2 1 40 5 7 9 30 7 20 20 1 20 60 200 30 5 40 60 70 60 5 60 1 8 600 90 70 5 1 1 80 600 200 100 600 1 80 9 90 100 60 200 1 200 100 60 4 60 50 1 90 5 5 40 7 8 7 40 1 80 400 9 5 80 5 20 1 20 7 90 1 80 60 200 100 60 9 60 60 3 7 30 5 80 60 5 3 5 40 40 7 10
Total: 10962 = 2 x 33 x 7 x 29.
2.3.2The letters that are not first or last in a word can form alternating groups of 52 and 7 letters.
2.3.2.1Add up the groups of 52:
4 6 7 40 6 1 5 6 1 4 50 10 40 10 50 300 10 10 2 10 4 200 3 30 10 9 7 300 30 5 6 90 10 6 4 100 200 10 2 10 40 4 2 10 6 10 30 5 4 200 4 200 300 2 5 6 30 50 8 400 5 70 6 30 2 200 400 30 20 4 1 200 1 200 100 9 1 30 2 1 40 5 7 9 30 7 20 20 1 20 60 200 30 5 40 60 70 60 5 60 1 8 600 90 100 600 1 80 9 90 100 60 200 1 200 100 60 4 60 50 1 90 5 5 40 7 8 7 40 1 80 400 9 5 80 5 20 1 20 7 90 1 80 60 200 100 60 9 60 60 3 7 30 5 80 60
Total of the groups of 52: 9135 = 32 x 5 x 7 x 29.
2.3.2.2Add up the groups of 7:
8 300 8 30 4 400 10 70 5 1 1 80 600 200 5 3 5 40 40 7 10
Total of the groups of 7: 1827 = 32 x 7 x 29. SF: 42 = 2 x 3 x 7.
2.3.3The letters that are not first or last in a word can form alternating groups of 7 and 78 letters.
2.3.3.1Add up the groups of 7:
4 6 7 40 6 1 5 2 1 40 5 7 9 30 5 3 5 40 40 7 10
Total: 273 = 3 x 7 x 13.
2.3.3.2Add up the groups of 78:
6 1 4 50 10 40 10 50 300 10 10 2 10 4 200 3 30 10 9 7 300 30 5 6 90 10 6 4 100 200 10 2 10 40 4 2 10 6 10 30 5 4 200 4 200 8 300 8 30 4 400 10 300 2 5 6 30 50 8 400 5 70 6 30 2 200 400 30 20 4 1 200 1 200 100 9 1 30 7 20 20 1 20 60 200 30 5 40 60 70 60 5 60 1 8 600 90 70 5 1 1 80 600 200 100 600 1 80 9 90 100 60 200 1 200 100 60 4 60 50 1 90 5 5 40 7 8 7 40 1 80 400 9 5 80 5 20 1 20 7 90 1 80 60 200 100 60 9 60 60 3 7 30 5 80 60
Total: 10689 = 3 x 7 x 509.
2.3.4The 177 letters that are not first or last in a word can be arranged as a 59 x 3 rectangle.
2.3.4.1The perimeter, or outside of this rectangle: 6944 = 25 x 7 x 31.
2.3.4.2The inside of this rectangle: 4018 = 2 x 72 x 41.
2.3.4.3The difference between the inside and the outside: 2926 = 2 x 7 x 11 x 19. SF: 39 = 3 x 13.
2.3.4.4The first and last columns: 624 = 24 x 3 x 13.
The Letters
The first and last letters of each word cover more than half of all the letters, but still leave out a considerable part of the combined passage. Now we look at all 333 letters.
List of letters: 30 4 6 4 40 7 40 6 200 50 1 40 10 5 6 5 30 1 4 50 10 300 2 30 10 40 10 50 10 70 4 1 300 10 400 1 10 2 10 20 5 4 40 30 200 3 30 10 20 40 9 5 70 7 20 10 300 30 8 10 5 6 5 40 90 10 6 50 200 4 5 2 100 200 2 1 10 2 10 20 70 40 20 50 4 2 400 2 10 6 40 8 10 30 20 2 5 4 200 10 100 4 300 40 200 8 40 40 300 8 200 30 20 9 30 10 30 4 400 10 20 50 300 2 70 10 5 6 5 6 30 1 10 50 8 40 1 400 5 20 5 50 30 70 6 30 40 70 30 4 2 200 400 10 40 30 20 10 90 4 100 10 1 9 60 200 400 5 1 200 100 600 100 9 90 20 1 30 2 1 40 5 9 100 7 40 100 9 30 7 40 1 20 20 1 10 1 20 60 200 30 5 40 60 90 200 70 60 100 60 200 8 5 60 200 10 1 8 600 90 70 5 80 10 1 9 1 1 80 600 40 60 200 100 600 90 10 1 9 60 400 80 9 90 100 60 90 60 200 400 5 1 200 100 60 40 5 4 60 50 1 90 5 40 3 5 40 7 8 7 40 1 9 1 80 400 9 5 80 5 1 1 20 20 60 20 1 20 7 90 1 90 70 80 60 90 1 200 100 60 40 200 9 60 90 30 60 200 5 9 90 200 5 3 600 90 7 30 5 80 60 40 3 5 3 5 40 40 7 10 1 90 5
3The first and last letters: 35 (5 x 7).
In the last section, the first and last letters of each word had numeric features. Looking at all the letters requires adjusting the principle of first and last. Instead of first and last being determined by the word, it is now determined by the position in the passage. Can letters be found that are Nth from the beginning, and Nth from the end?
The chance of the Nth and Nth last letters having the same value is less than one in twenty. This is very rare, and most likely would produce nothing. Since practically all the numeric features are about multiples of 7 and 13, this is applied to the sum of the Nth and Nth last letters.
3.1Precisely seven pairs of letters can be found positioned Nth and Nth last that together are divisible by 13.
a) Nth letter: 18 24 30 31 146 150 160 b) Value: 1 30 70 4 30 4 4 c) Nth last: 316 310 304 303 188 184 174 d) Value: 90 9 60 9 9 100 9 e) Sum: 91 39 130 13 39 104 13 (The 18th letter from the end is the 316th from the beginning.)
Sum of the positions (a + c): 2338 = 2 x 7 x 167.
3.2The previous feature searched for pairs of letters. 261 paired groups of letters, positioned Nth and Nth last are together and individually divisible by 7.
a) 1 1 2 2 3 3 3 4 4 5 5 5 5 b) 29 57 25 137 16 54 163 37 152 58 72 134 156 c) 2814 5845 2289 16912 749 5292 19887 4144 18172 6125 6902 16667 18711 a) 6 6 7 7 7 8 8 9 9 10 11 11 11 b) 140 145 111 118 155 79 107 46 73 56 18 84 87 c) 17206 17465 13293 14210 18557 7273 12565 4767 6818 4998 413 7910 8666 a) 11 11 11 12 12 13 13 13 13 13 13 14 14 b) 97 146 149 27 108 17 51 86 113 133 136 28 33 c) 9618 17108 17395 2037 12341 238 4655 8092 12985 15890 16268 1967 2751 a) 14 14 15 15 15 15 15 15 15 15 16 16 b) 103 158 36 40 43 70 82 112 154 161 83 116 c) 11172 18165 3437 3710 3920 6118 7196 12740 17927 18473 7210 13566 a) 16 16 17 17 18 18 18 18 18 19 19 19 b) 139 157 54 163 51 86 113 133 136 84 87 97 c) 16520 18039 4543 19138 4417 7854 12747 15652 16030 7497 8253 9205 a) 19 19 20 20 21 21 21 22 23 23 23 25 b) 146 149 90 142 30 38 41 129 95 104 130 85 c) 16695 16982 7917 15869 1281 2709 2954 14707 8015 10381 14273 6398 a) 26 27 27 27 27 28 29 29 29 30 31 31 32 b) 137 71 77 89 160 108 33 103 158 57 38 41 80 c) 14623 4396 4921 6867 16541 10304 784 9205 16198 3031 1428 1673 4760 a) 32 33 33 34 34 35 35 36 36 36 37 37 37 b) 122 102 128 103 158 67 147 66 93 151 40 43 70 c) 12250 8421 13132 8421 15414 3080 14273 2534 6006 14035 273 483 2681 a) 37 37 37 37 38 39 40 40 41 41 41 41 41 b) 82 112 154 161 152 41 62 138 43 70 82 112 154 c) 3759 9303 14490 15036 14028 245 1953 12915 210 2408 3486 9030 14217 a) 41 43 43 43 44 44 44 44 44 45 45 46 46 b) 161 44 81 91 70 82 112 154 161 81 91 68 74 c) 14763 161 3276 4865 2198 3276 8820 14007 14553 3115 4704 1624 2324 a) 46 47 48 50 50 50 50 50 51 51 51 52 52 b) 119 73 153 63 101 126 143 144 52 60 150 86 113 c) 9975 2051 13615 1197 6272 10766 12306 12383 35 1071 12789 3437 8330 a) 52 52 53 53 54 54 55 56 56 56 59 59 b) 133 136 60 150 64 127 163 65 124 141 72 134 c) 11235 11613 1036 12754 1078 10675 14595 1064 10248 11907 777 10542 a) 59 60 61 62 62 62 63 64 64 64 64 65 66 b) 156 94 150 88 96 120 138 101 126 143 144 127 124 c) 12586 3801 11718 2933 3808 8736 10962 5075 9569 11109 11186 9597 9184 a) 66 67 67 68 69 69 70 71 71 71 71 72 72 b) 141 93 151 147 74 119 92 82 112 154 161 77 89 c) 10843 3472 11501 11193 700 8351 2758 1078 6622 11809 12355 525 2471 a) 72 73 73 75 76 76 77 78 78 79 79 80 81 b) 160 134 156 119 99 159 131 89 160 109 166 107 122 c) 12145 9765 11809 7651 3640 11627 9051 1946 11620 5712 12964 5292 7490 a) 82 83 83 83 84 84 84 85 85 85 85 87 87 b) 91 112 154 161 116 139 157 87 97 146 149 113 133 c) 1589 5544 10731 11277 6356 9310 10829 756 1708 9198 9485 4893 7798 a) 87 88 88 88 89 89 90 91 94 96 96 97 98 98 b) 136 97 146 149 96 120 160 142 151 104 130 120 146 149 c) 8176 952 8442 8729 875 5803 9674 7952 8029 2366 6258 4928 7490 7777 a) 99 99 100 101 102 102 102 103 104 105 107 110 111 111 b) 100 105 159 105 126 143 144 128 158 130 148 166 114 117 c) 910 2534 7987 1624 4494 6034 6111 4711 6993 3892 5103 7252 504 1183 a) 111 112 112 113 113 114 114 115 115 117 117 118 119 122 b) 123 118 155 154 161 133 136 117 123 139 157 123 155 135 c) 2450 917 5264 5187 5733 2905 3283 679 1946 2954 4473 1267 4347 1736 a) 125 126 126 126 127 127 133 133 134 135 140 141 147 155 163 b) 141 132 162 165 143 144 162 165 136 156 157 145 149 161 165 c) 1659 588 3976 4347 1540 1617 3388 3759 378 2044 1519 259 287 546 371 a) Starting position of the group. b) Ending position of the group. c) Total of both groups. [The starting position of the first group (a) is Nth from the beginning. The starting position of the second group (a) is Nth from the end. The ending position of the first group (b) is Nth from the beginning. The ending position of the second group (b) is Nth from the end.]
Total of the starting positions (a): 14392 = 23 x 7 x 257.
Total of the ending positions (b): 29263 = 13 x 2251.
Total of all the positions (a + b): 43655 = 5 x 8731. This is not a multiple of 7 or 13, but the sum of the factors combines both: 8736 = 25 x 3 x 7 x 13.
3.3Exactly 77 groups of letters positioned Nth and Nth last can be found where the two groups together is a multiple of 13, and where the individual groups are also multiples of 13.
a) 3 5 6 7 8 9 9 11 11 11 14 14 14 b) 143 65 48 110 50 25 122 24 91 146 31 72 165 c) 17420 6435 4966 13013 4979 1989 14872 1716 8983 17108 2210 6305 19539 a) 15 17 20 23 24 24 24 24 25 25 26 27 b) 54 114 118 142 57 68 141 145 91 146 122 123 c) 4589 12883 12844 15301 3575 4433 15158 15392 7267 15392 12883 13143 a) 28 31 31 32 32 35 38 39 39 40 41 43 43 b) 137 46 59 72 165 130 99 111 152 45 79 63 92 c) 14313 2158 3419 4095 17329 12883 6825 9165 13936 637 3055 1729 4953 a) 43 45 47 48 50 53 58 58 58 61 61 62 64 b) 109 77 59 90 132 70 68 141 145 96 106 71 92 c) 8528 2613 1261 4394 11284 1612 858 11583 11817 3822 6474 572 3224 a) 64 65 68 69 69 73 79 84 84 88 88 90 92 b) 109 88 81 141 145 165 154 89 107 108 127 107 146 c) 6799 2834 1339 10725 10959 13234 11232 1378 4836 3679 6825 3458 8125 a) 93 97 99 101 105 106 106 109 112 121 136 139 140 142 b) 109 106 150 102 125 139 159 127 152 129 148 153 159 145 c) 3575 2652 7787 364 3380 4524 6253 3146 4771 1261 1066 1391 1729 234 a) Starting position of the group. b) Ending position of the group. c) Total of both groups. [The starting position of the first group (a) is Nth from the beginning. The starting position of the second group (a) is Nth from the end. The ending position of the first group (b) is Nth from the beginning. The ending position of the second group (b) is Nth from the end.]
In this case, the totals of line a) and b) yield nothing.
Total of line a): 4195 = 5 x 839.
Total of line b): 8389.
The total of all the positions is something else: 12584 = 23 x 112 x 13.
3.4.1The total of every other word in feature 1.3.1 was a multiple of 13. The same principle holds for the letters. These are the odd positioned letters:
a) 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 b) 30 6 40 40 200 1 10 6 30 4 10 2 10 10 10 4 300 400 10 10 5 40 a) 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 b) 200 30 20 9 70 20 300 8 5 5 90 6 200 5 100 2 10 10 70 20 4 a) 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 b) 400 10 40 10 20 5 200 100 300 200 40 300 200 20 30 30 400 20 a) 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 b) 300 70 5 5 30 10 8 1 5 5 30 6 40 30 2 400 40 a) 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 b) 20 90 100 1 60 400 1 100 100 90 1 2 40 9 7 100 30 a) 191 193 195 197 199 201 203 205 207 209 211 213 215 217 219 221 223 b) 40 20 1 1 60 30 40 90 70 100 200 5 200 1 600 70 80 a) 225 227 229 231 233 235 237 239 241 243 245 247 249 251 253 255 257 b) 1 1 80 40 200 600 10 9 400 9 100 90 200 5 200 60 5 a) 259 261 263 265 267 269 271 273 275 277 279 281 283 285 287 289 291 b) 60 1 5 3 40 8 40 9 80 9 80 1 20 60 1 7 1 a) 293 295 297 299 301 303 305 307 309 311 313 315 317 319 321 323 325 b) 70 60 1 100 40 9 90 60 5 90 5 600 7 5 60 3 3 a) 327 329 331 333 (Letter position.) b) 40 7 1 5 (Letter value.)
Total: 12129 = 3 x 13 x 311.
3.4.2These are the even positioned letters:
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 4 4 7 6 50 40 5 5 1 50 300 30 40 50 70 1 10 1 2 20 4 30 3 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 10 40 5 7 10 30 10 6 40 10 50 4 2 200 1 2 20 40 50 2 2 6 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 8 30 2 4 10 4 40 8 40 8 30 9 10 4 10 50 2 10 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 6 6 1 50 40 400 20 50 70 30 70 4 200 10 30 10 4 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 10 9 200 5 200 600 9 20 30 1 5 100 40 9 7 1 20 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 10 20 200 5 60 200 60 60 8 60 10 8 90 5 10 9 1 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 600 60 100 90 1 60 80 90 60 60 400 1 100 40 4 50 90 264 266 268 270 272 274 276 278 280 282 284 286 288 290 292 294 296 40 5 7 7 1 1 400 5 5 1 20 20 20 90 90 80 90 298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330 200 60 200 60 30 200 9 200 3 90 30 80 40 5 5 40 10 332 (Letter position.) 90 (Letter value.)
Total of the letters: 8762 = 2 x 13 x 337.
3.4.3The difference between the odd and even positioned letters produces an extra factor of 7: 3367 = 7 x 13 x 37.
3.4.4The list of even positioned letters can again be further subdivided as odd and even.
3.4.4.1Odd positioned letters from the list in 3.4.2:
4 7 50 5 1 300 40 70 10 2 4 3 40 7 30 6 10 4 200 2 40 2 6 30 4 4 8 8 9 4 50 10 6 50 400 50 30 4 10 10 10 200 200 9 30 5 40 7 20 20 5 200 60 60 8 5 9 600 100 1 80 60 400 100 4 90 5 7 1 5 1 20 90 80 200 200 30 9 3 30 40 5 10
Total: 4589 = 13 x 353.
3.4.4.2Even positioned letters from the list in 3.4.2:
4 6 40 5 50 30 50 1 1 20 30 10 5 10 10 40 50 2 1 20 50 2 8 2 10 40 40 30 10 10 2 6 1 40 20 70 70 200 30 4 9 5 600 20 1 100 9 1 10 200 60 60 8 10 90 10 1 60 90 60 90 60 1 40 50 40 7 1 400 5 20 20 90 90 60 60 200 200 90 80 5 40 90
Total: 4173 = 3 x 13 x 107.
3.5Odd/even positioned letters is selecting every other letter. One could take every Nth letter.
3.5.1Beginning with the first letter, and taking every Nth letter after, the following values of N would select letters with a total divisible by 13.
2 9 15 47 71 74 116 139 152 159
Amazingly, the sum of all the N values is a multiple of 7 twice: 784 = 24 x 72.
3.5.2One could also take every 7th letter:
a) 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140 b) 40 5 10 50 400 4 20 10 5 4 10 50 40 4 200 30 400 10 10 20 a) 147 154 161 168 175 182 189 196 203 210 217 224 231 238 245 252 259 b) 40 10 100 5 90 5 30 10 40 60 1 10 40 1 100 1 60 a) 266 273 280 287 294 301 308 315 322 329 (Letter position.) b) 5 9 5 1 80 40 200 600 40 7 (Letter value.
Total: 2912 = 25 x 7 x 13.
3.6Fifty-four letters are prime numbers.
a) b) a) b) a) b) a) b) a) b) a) b) 6 7 61 5 97 5 182 5 265 3 314 3 14 5 63 5 124 2 185 7 266 5 317 7 16 5 71 5 127 5 190 7 268 7 319 5 23 2 72 2 129 5 202 5 270 7 323 3 38 2 75 2 139 5 213 5 278 5 324 5 41 5 78 2 141 5 222 5 280 5 325 3 46 3 86 2 151 2 251 5 289 7 326 5 52 5 88 2 168 5 257 5 309 5 329 7 54 7 96 2 179 2 263 5 313 5 333 5 a) Letter position. b) Letter value.
Total of these letters: 245 = 5 x 72. Since the result is divisible by 7, there is no corresponding feature with letters that are not prime numbers.
3.7So far, selecting every Nth letter has been keeping N as a fixed number. The size of N can progressively increase.
a) 1 2 4 7 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172 191 b) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 c) 30 4 4 40 1 5 300 10 10 3 10 6 10 8 8 20 1 10 600 40 a) 211 232 254 277 301 326 (Letter count.) b) 21 22 23 24 25 26 (Increasing value of N.) c) 200 60 100 9 40 5 (Letter found.)
Total of the letters found: 1534 = 2 x 13 x 59. (The maximum value of N stops at 26 because it is related to God’s name. It also stops here because adding 27 will overshoot the 333 letters.)
3.8When the letters are added one by one, 49 times (7 x 7) the accumulated total will be divisible by 7. Twenty-eight times (22 x 7) it will be divisible by 13.
3.8.1Twenty-four of the accumulated totals will be odd valued, with an odd valued letter in an odd position of the combined passage.
a) b) c) a) b) c) 61 5 2685 263 5 17037 71 5 3101 273 9 17197 97 5 4167 277 9 17687 127 5 6621 289 7 17927 139 5 7183 297 1 18409 163 1 8455 309 5 19463 183 9 10337 313 5 19767 197 1 10723 317 7 20467 213 5 11931 323 3 20685 239 9 14867 325 3 20693 251 5 16421 329 7 20785 257 5 16827 333 5 20891 a) Letter position. b) Letter value. c) Accumulated total.
Total of the letters (b): 126 = 2 x 32 x 7.
3.8.2Seventy-six times the letter position will be even, the letter value will be even, and the accumulated total will also be even.
a) b) c) a) b) c) a) b) c) a) b) c) 2 4 34 90 6 4052 156 30 8220 248 60 15816 4 4 44 92 8 4100 158 10 8250 250 400 16416 12 40 428 94 30 4140 160 4 8344 254 100 16722 34 10 1386 96 2 4162 162 10 8454 256 40 16822 42 4 1838 116 10 5720 166 200 8724 262 90 17032 44 30 1908 118 4 5754 170 200 9330 276 400 17678 56 10 2332 120 10 6164 172 600 10030 288 20 17920 58 30 2662 122 50 6234 178 30 10280 292 90 18108 60 10 2680 124 2 6536 186 40 10484 294 80 18258 64 40 2736 126 10 6616 196 10 10722 296 90 18408 66 10 2836 130 6 6638 204 60 11138 304 60 19078 68 50 2892 138 400 7178 206 200 11428 306 30 19198 70 4 3096 142 50 7258 208 60 11558 308 200 19458 78 2 3418 144 70 7358 210 60 11718 312 200 19762 80 20 3448 146 30 7394 212 8 11926 316 90 20460 82 40 3558 148 70 7504 218 8 12210 320 80 20582 84 50 3628 150 4 7538 220 90 12900 322 40 20682 86 2 3634 152 200 7740 244 90 15506 328 40 20778 88 2 4036 154 10 8150 246 60 15666 332 90 20886 a) Letter position. b) Letter value. c) Accumulated total.
Total of the letters (b): 5304 = 23 x 3 x 13 x 17. SF: 39 = 3 x 13.
3.8.3This means there are exactly 100 letters that are purely odd or purely even. 100 is not divisible by 7 or 13, but 100 is a very nice round number, and the factors are 22 x 52. The sum of the factors is 14 (2 x 7).
3.9.1The lowest valued letter is 1, and it appeared 29 times for a total of 29. The highest valued letter is 600, and it appeared 5 times for a total of 3000. Thus the total of the lowest letter plus the total of the highest letter is 3029 (13 x 233).
3.9.2Three letters, 40, 80 and 200, each appeared a multiple of 7 times in the passage. The total of their positions: 10114 = 2 x 13 x 389.
3.9.3Two letters appeared thirteen times in the passage. Providentially, the two letters are 4 and 9, which together also total 13. The total of their positions in the passage: 3884 = 22 x 971. This is not a multiple of 13, but the sum of the factors is: 975 = 3 x 52 x 13. And as if to make up for the total not working at first, there is a second level of factors: 26 = 2 x 13.
3.10The Nth and Nth last occurrences of twelve letters successfully divide the passage's letters into a) what is between them, and b) what is not between them, with each category a multiple of 13.
Letter | Occurrence | Total of letters not in between | Total of letters between the Nth & Nth last | |||
---|---|---|---|---|---|---|
Nth | Nth last | |||||
200 | 3 | 3 | 5174 = 2 x 13 x 199. | 15717 = 3 x 132 x 31. | ||
200 | 5 | 5 | 8840 = 23 x 5 x 13 x 17. | 12051 = 32 x 13 x 103. | ||
200 | 8 | 8 | 16640 = 28 x 5 x 13. | 4251 = 3 x 13 x 109. | ||
200 | 10 | 10 | 18993 = 3 x 13 x 487. | 1898 = 2 x 13 x 73. | ||
50 | 2 | 2 | 14222 = 2 x 13 x 547. | 6669 = 33 x 13 x 19. | ||
1 | 12 | 12 | 18486 = 2 x 32 x 13 x 79. | 2405 = 5 x 13 x 37. | ||
10 | 5 | 5 | 11180 = 22 x 5 x 13 x 43. SF: 65 = 5 x 13. | 9711 = 32 x 13 x 83. | ||
10 | 8 | 8 | 14560 = 25 x 5 x 7 x 13. SF: 35 = 5 x 7. | 6331 = 13 x 487. | ||
5 | 8 | 8 | 7371 = 34 x 7 x 13. | 13520 = 24 x 5 x 132. SF: 39 = 3 x 13. | ||
5 | 10 | 10 | 10491 = 3 x 13 x 269. | 10400 = 25 x 52 x 13. | ||
9 | 5 | 5 | 15821 = 13 x 1217. | 5070 = 2 x 3 x 5 x 132. | ||
90 | 3 | 3 | 11648 = 27 x 7 x 13. | 9243 = 32 x 13 x 79. SF: 98 = 2 x 72. |
30 | 4 | 6 | 4 | 40 | 7 | 40 | 6 | 200 | 50 | 1 | 40 | 10 | 5 | 6 | 5 | 30 | 1 |
4 | 50 | 10 | 300 | 2 | 30 | 10 | 40 | 10 | 50 | 10 | 70 | 4 | 1 | 300 | 10 | 400 | 1 |
10 | 2 | 10 | 20 | 5 | 4 | 40 | 30 | 200 | 3 | 30 | 10 | 20 | 40 | 9 | 5 | 70 | 7 |
20 | 10 | 300 | 30 | 8 | 10 | 5 | 6 | 5 | 40 | 90 | 10 | 6 | 50 | 200 | 4 | 5 | 2 |
100 | 200 | 2 | 1 | 10 | 2 | 10 | 20 | 70 | 40 | 20 | 50 | 4 | 2 | 400 | 2 | 10 | 6 |
40 | 8 | 10 | 30 | 20 | 2 | 5 | 4 | 200 | 10 | 100 | 4 | 300 | 40 | 200 | 8 | 40 | 40 |
300 | 8 | 200 | 30 | 20 | 9 | 30 | 10 | 30 | 4 | 400 | 10 | 20 | 50 | 300 | 2 | 70 | 10 |
5 | 6 | 5 | 6 | 30 | 1 | 10 | 50 | 8 | 40 | 1 | 400 | 5 | 20 | 5 | 50 | 30 | 70 |
6 | 30 | 40 | 70 | 30 | 4 | 2 | 200 | 400 | 10 | 40 | 30 | 20 | 10 | 90 | 4 | 100 | 10 |
1 | 9 | 60 | 200 | 400 | 5 | 1 | 200 | 100 | 600 | 100 | 9 | 90 | 20 | 1 | 30 | 2 | 1 |
40 | 5 | 9 | 100 | 7 | 40 | 100 | 9 | 30 | 7 | 40 | 1 | 20 | 20 | 1 | 10 | 1 | 20 |
60 | 200 | 30 | 5 | 40 | 60 | 90 | 200 | 70 | 60 | 100 | 60 | 200 | 8 | 5 | 60 | 200 | 10 |
1 | 8 | 600 | 90 | 70 | 5 | 80 | 10 | 1 | 9 | 1 | 1 | 80 | 600 | 40 | 60 | 200 | 100 |
600 | 90 | 10 | 1 | 9 | 60 | 400 | 80 | 9 | 90 | 100 | 60 | 90 | 60 | 200 | 400 | 5 | 1 |
200 | 100 | 60 | 40 | 5 | 4 | 60 | 50 | 1 | 90 | 5 | 40 | 3 | 5 | 40 | 7 | 8 | 7 |
40 | 1 | 9 | 1 | 80 | 400 | 9 | 5 | 80 | 5 | 1 | 1 | 20 | 20 | 60 | 20 | 1 | 20 |
7 | 90 | 1 | 90 | 70 | 80 | 60 | 90 | 1 | 200 | 100 | 60 | 40 | 200 | 9 | 60 | 90 | 30 |
60 | 200 | 5 | 9 | 90 | 200 | 5 | 3 | 600 | 90 | 7 | 30 | 5 | 80 | 60 | 40 | 3 | 5 |
3 | 5 | 40 | 40 | 7 | 10 | 1 | 90 | 5 |
3.10.1The total of the twelve letters: 980 = 22 x 5 x 72.
3.10.2If we looked only at unique letter values, there are exactly 7.
3.10.3Letter 200 is unique in that it appears four times in the list. Its Nth or Nth last numbers would total 26 (2 x 13).
3.10.4These seven letters appeared many times in the passage.
a) Letter value: 1 5 9 10 50 90 200 b) Number of occurrences: 29 29 13 29 9 16 21 c) Total value in passage: 29 145 117 290 450 1440 4200
Total of all the seven letters together (c): 6671 = 7 x 953.
3.11Like the words in feature 2.3.4, the letters can also be placed into a 111 x 3 rectangle.
3.11.1The perimeter, or outside of the rectangle: 13572 = 22 x 32 x 13 x 29. SF: 52 = 22 x 13.
3.11.2The inside of the rectangle: 7319 = 13 x 563.
3.11.3The difference between the inside and outside: 6253 = 132 x 37. SF: 63 = 32 x 7. SF: 13.
3.11.4The first and last columns: 350 = 2 x 52 x 7.
3.11.5The four corners: 315 = 32 x 5 x 7.
3.11.6The odd positioned columns: 11151 = 33 x 7 x 59. (Since the total of the passage is a multiple of 13, this means there is no correlating feature with the even positioned columns.)
3.11.7Twenty-eight squares: 15281 = 7 x 37 x 59.
3.11.8A series of columns can be selected from the table with multiples of 7 and or 13.
The numeric features in 3.11.8 could be coincidence since the sum of all the values for the Nth column is not divisible by 7 or 13. Even the number of results is below the expected odds. Since God is omniscient, and can work with coincidence, these results are presented as one feature.
Conclusion
Numeric features with complementary opposites following Revelation 1:8 demonstrate Psalm 110:1-4 and Hebrews 5:4-5 fit together very well. The meaning of these two passages also support and explain each other. Jesus is the fulfillment of prophecy, the King of Righteousness, Melchizedek, and God’s son.
Notes
- English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.
- Hebrew text is from, The Biblia Hebraica Stuttgartensia (BHS), edited by K. Elliger and W. Rudolph of the Deutsche Biblegesselchaft (German Bible Society) 1983.
- The Greek text is from The Nestle-Aland 27th Edition of the Greek New Testament (GNT), Copyright © 1966, 1968, 1975, 1993-1994 United Bible Societies, found within Bibleworks 3.0 by Hermeneutika, Michael S. Bushell, 1995. Vowel marks and punctuation have been removed.
- Curiously, if the digits of the middle word, 616, were broken apart into two numbers of 61 and 6, the first 39 words plus 61 would yield a total of 7595 (5 x 72 x 31), and the last 39 words plus 6 would produce a total of 12747 (3 x 7 x 607).
The middle word has five letters (4-2-200-400-10), which means the letters can't be evenly distributed to the first and last 39 words. However, if the first two letters went with the first 39 words, the total would be 7540 (22 x 5 x 13 x 29). The remaining letters, added to the last 39 words would produce a total of 13351. (132 x 79. SF: 105 = 3 x 5 x 7.) Once again the middle word seems perfectly positioned in the passage.