Bible Numbers 2.0

Jesus: The King Of Righteousness

There are six number studies proving Jesus is the fulfillment of Old Testament prophecy. Each prophecy covers a different aspect of Jesus, as King, Messiah, Suffering Servant, and the Hope of Israel.

This study links Psalm 110:1-4 with Hebrews 5:4-5, with Jesus as the priest after the order of Melchizedek. Melchizedek means King of Righteousness or perhaps Righteous King.

The Christian understanding is that righteousness comes from faith, not works (Genesis 15:6), that as the priest of the ancient order of Melchizedek, Jesus took the covenant back to what it was during Abraham's time, and that the book of Hebrews laid out the failure of the sacrificial system under Aaron. But is this understanding sound? Is there something else other than the logic presented in the book of Hebrews that confirms this? The numbers confirm it.

1 [A Psalm of David.] The LORD says to my lord: "Sit at my right hand, till I make your enemies your footstool."

2 The LORD sends forth from Zion your mighty scepter. Rule in the midst of your foes!

3 Your people will offer themselves freely on the day you lead your host upon the holy mountains. From the womb of the morning like dew your youth will come to you.

4 The LORD has sworn and will not change his mind, "You are a priest for ever after the order of Melchizedek." (Psalm 110:1-4)1

In the first verse of Psalm 110, God says Sit at my right hand. Whoever God is speaking to takes a seat to God’s right. According to Christians, this is Jesus. Then in verse 5 God says, The Lord is at your right hand, meaning a third person further to the right. This provides a break in the psalm. The verses concerning Melchizedek are from 1 to 4, and the remaining verses actually refer to the third person.

While Psalm 110:1-4 has 42 words, and 161 letters, both of which are divisible by 7, the numeric total is 8444 having no factors of 7 or 13. Without a total that is a multiple of 7 and or 13, there won't be many complementary opposites following Revelation 1:8.

(Note: Taking the whole of Psalm 110 doesn't improve the situation. The total is 13030 and still not divisible by 7 or 13.)

Psalm 110:1-42
4321
269129344
16151413121110987654321
565104015020064074046430
יהוהנאםמזמורלדוד
8765
7415030295
313029282726252423222120191817
470105010401030230010504130
עדלימינישבלאדני
11109
4943711
434241403938373635343332
404520102101400103001
הדםאיביךאשית
15141312
3489754293
59585756555453525150494847464544
83030010207705940201030320030
ישלחעזךמטהלרגליך
19181716
30420919626
75747372717069686766656463626160
220010025420050610904056510
בקרברדהמציוןיהוה
23222120
5845613043
91908988878685848382818079787776
406102400245020407020102101
ביוםנדבתעמךאיביך
27262524
28840422168
1071061051041031021011009998979695949392
408200403004100102004522030108
מרחםקדשבהדריחילך
31302928
4743950548
121120119118117116115114113112111110109108
2010400430103092030200830040
ילדתיךטללךמשחר
35343332
1083726422
136135134133132131130129128127126125124123122
408501013065651070230050
ינחםולאיהוהנשבע
39383736
10017675406
149148147146145144143142141140139138137
30704030670305052054001
עללעולםכהןאתה
424140
194100616
161160159158157156155154153152151150
100490102030401040020024
צדקמלכידברתי

Psalm 110:1-4 ties in with Hebrews 5:4-5.

4 And one does not take the honor upon himself, but he is called by God, just as Aaron was.

5 So also Christ did not exalt himself to be made a high priest, but was appointed by him who said to him, Thou art my Son, today I have begotten thee. (Hebrews 5:4-5)3

Verse 4 of Hebrews emphasizes God’s sovereignty in the fourth verse of Psalm 110. God appoints Jesus to the order of Melchizedek. Verse 5 of Hebrews tells us God considers this high priest His son. This ties in with Jesus being high priest, Melchizedek, and as God’s son (Matthew 3:17) faithful in all God’s house just like Moses (Hebrews 3:2-5).

Hebrews 5:4-53
1234
20660906199
1234567891011121314
10196020040051200100600100990
καιουχεαυτωτις
567
108147186
15161718192021222324252627282930
20130214059100740100930740
λαμβανειτηντιμην
89
42516
3132333435363738394041424344
1202011012060200305406090
αλλακαλουμενος
101112
330360273
45464748495051525354
2007060100602008560200
υποτουθεου
131415
86420722
55565758596061626364656667686970
101860090705801019118060040
καθωσπερκαιααρων
16171819
10502060829
71727374757677787980818283848586
6020010060090101960400809901006090
ουτωςκαιοχριστος
2021
660406
878889909192939495
60200400512001006040
ουχεαυτον
22
255
96979899100101102103
546050190540
εδοξασεν
23
120
104105106107108109110111112
35407874019
γενηθηναι
242526
5814160
113114115116117118119120121122123124
1804009580511202060
αρχιερεααλλο
272829
229300401
125126127128129130131132133134135136137138139140
201207901907080609012001006040
λαλησαςπροςαυτον
3031323334
35929014290608
141142143144145146147148149150151152153154
200960903060200599020053600
υιοςμουεισυεγω
3536
312114
155156157158159160161162163164165166167168169170
907305806040353540407101
σημερονγεγεννηκα
37
95
171172
905
σε

Hebrews 5:4-5 has 37 words, 172 letters, and a numeric total of 12447. Not one of these numbers is a multiple of 7 or 13.

Random chance suggests there is a one in 7 chance of putting these two passages together and having a total divisible by 7. It would also be a one in 13 chance of coming together with a total that is a multiple of 13. This would be almost twice as rare as something divisible by 7 because 13 is almost twice the size of 7.

If these two passages don't go together, then there should be very few numeric features of 7 and or 13. If this was random chance, orderly numeric features following the pattern of Revelation 1:8 in complementary opposites should not occur. However, if these two passages were meant to fit together, then there should be many numeric features of 7 and or 13 paired as complementary opposites.

We put the two totals together (20891 = 13 x 1607), and the factor associated with God’s name in Hebrew immediately appears.

A skeptic would still say this is just a fluke. And it would be a fluke if there were no other cases like this. But there are four other combined passages like this concerning Jesus. (See list at the top). With each discovery, the idea of this being some sort of freak accident is extremely unlikely.

Primary Features

(Derived from Revelation 1:8 and grouped for easy reference.)

A.1Numeric total: 20891 = 13 x 1607. (See total.)

B.3Every other word (odd): 10387 = 13 x 17 x 47. SF: 77 = 7 x 11. (See feature 1.3.1.)

B.3.2Every other word (even): 10504 = 23 x 13 x 101. (See feature 1.3.2.)

B.4Every other letter (odd): 12129 = 3 x 13 x 311. (See feature 3.4.1.)

B.4.2Every other letter (even): 8762 = 2 x 13 x 337. (See feature 3.4.2.)

C.3.2First and last letter of each word: 10049 = 13 x 773. (See feature 2.1.)

C.4First and last letters: 35 = 5 x 7. (See feature 3.)

D.3.3First letter of each word: 3666 = 2 x 3 x 13 x 47. SF: 65 = 5 x 13. (See feature 2.1.2.)

E.3.3Last letter of each word: 6383 = 13 x 491. SF: 504 = 23 x 32 x 7. (See feature 2.2.)

The Words

The combined passage has 79 words (a prime number).

List of words:
44 293 91 26 95 302 150 74 711 43 49 293 54 97 348 26 196 209 304 43
130 456 58 68 221 404 288 548 50 39 474 422 26 37 108 406 75 176 100
616 100 194 20 660 906 199 108 147 186 42 516 330 360 273 864 20 722
1050 20 60 829 660 406 255 120 581 41 60 229 300 401 359 290 14 290
608 312 114 95

1.1Seventy-nine words means the fortieth word is the word in the middle: 616 (23 x 7 x 11). Not only is it divisible by 7, but there is also a factor of 11, which visually presents God as two digits of one side by side. The same one God is beginning and end (Revelation 1:8).

1.2As the fortieth word word, this means there are exactly 39 words before it, and exactly 39 words after it. The middle word and its value is perfectly positioned.4

The 40th word is the third word from the end of Psalm 110:4, דברתי (dib-raw': cause, manner, reason). Jesus is in the manner of Melchizedek. The middle word is appropriate in number, and meaning.

1.3.1The odd positioned words:

44 91 95 150 711 49 54 348 196 304 130 58 221 288 50 474 26 108 75
100 100 20 906 108 186 516 360 864 722 20 829 406 120 41 229 401 290
290 312 95

Total: 10387 = 13 x 17 x 47. SF: 77 = 7 x 11

1.3.2The even positioned words:

293 26 302 74 43 293 97 26 209 43 456 68 404 548 39 422 37 406 176
616 194 660 199 147 42 330 273 20 1050 60 660 255 581 60 300 359 14
608 114

Total: 10504 = 23 x 13 x 101.

(Thirteen being almost twice the value of 7, this perfect breakdown of the odd and even positioned words is much rarer than if the totals were multiples of 7.)

1.3.3When the words are divided into odd and even valued words, there is half a feature. Odd valued words:

293 91 95 711 43 49 293 97 209 43 221 39 37 75 199 147 273 829 255 
581 41 229 401 359 95

Total: 5705 = 5 x 7 x 163. SF: 175 = 52 x 7. (Since the passage's total is a multiple of 13, there is no equivalent feature with the even valued words.)

1.3.3.1Although the total for the even valued words yielded nothing, there still is another half feature.

a) 1  4  6   7   8  13 15  16 17  19  21  22  23 24 26  27  28  29 31
b) 44 26 302 150 74 54 348 26 196 304 130 456 58 68 404 288 548 50 474

a) 32  33 35  36  38  39  40  41  42  43 44  45  47  49  50 51  52  53
b) 422 26 108 406 176 100 616 100 194 20 660 906 108 186 42 516 330 360

a) 55  56 57  58   59 60 62  63  65  68 70  73  74 75  76  77  78
b) 864 20 722 1050 20 60 660 406 120 60 300 290 14 290 608 312 114

a) Word position.
b) Word value.

Total of the positions of these words (a): 2233 = 7 x 11 x 29.

1.4The letter values of God’s name in Hebrew (10-5-6-5) count through the words. Since the total of the Name is 26, and there are 79 words in the combined passage, the Name can be used three times and will cover everything except the very last word. To cover this very last word, the Name is used four times.

a) 10 5   6   5   10  5   6   5   10  5  6   5   10  5  6  5
b) 10 15  21  26  36  41  47  52  62  67 73  78  88  14 20 25
c) 10 15  21  26  36  41  47  52  62  67 73  78  9   14 20 25
d) 43 348 130 404 406 100 108 330 660 41 290 114 711 97 43 221

a) Letter value from the Name.
b) Count.
c) Count adjusted to 79.
d) Word found in the combined passage.

Total of words found (d): 4046 = 2 x 7 x 172.

1.5As seen in feature 1.3.2, every other word produced a total divisible by 13. Taking every other word is selecting every second word. The same can also be done by taking every fifth word.

Word position: 5  10 15  20 25  30 35  40  45  50 55  60 65  70  75
Word value:    95 43 348 43 221 39 108 616 906 42 864 60 120 300 290

Total of words found: 4095 = 32 x 5 x 7 x 13.

1.5.1Providentially, selecting every Nth word to obtain a total divisible by 13 only works with 2 and 5. No other value works. And of course, 2 + 5 = 7.

1.6Twelve words have values that are divisible by 7:

Word position: 3  11 17  36  40  48  50 54  58   63  66  74
Word value:    91 49 196 406 616 147 42 273 1050 406 581 14

Total of their positions: 520 = 23 x 5 x 13.

Total of the words: 3871 = 72 x 79. (There is an extra factor of 7.)

1.7In feature 1.1, the middle word stood out. Rather than taking just the one middle word, groups of words can be selected from the middle. When N is one of the following values, the group total is a multiple of 13.

75 73 35 33 15

Providentially, the total of N is a multiple of 7: 231 = 3 x 7 x 11.

1.8When the words are added up one by one, there are times when the accumulated total will be a prime number, and there will be times when it is not. (Prime numbers, and non-prime numbers are complementary opposites following Alpha and Omega in Revelation 1:8.)

a) b)   c)      a) b)   c)      a) b)   c)      a) b)   c)
1  44   44      21 130  3578    41 100  8250    61 829  15756
2  293  337     22 456  4034    42 194  8444    62 660  16416
3  91   428     23 58   4092    43 20   8464    63 406  16822
4  26   454     24 68   4160    44 660  9124    64 255  17077
5  95   549     25 221  4381    45 906  10030   65 120  17197
6  302  851     26 404  4785    46 199  10229   66 581  17778
7  150  1001    27 288  5073    47 108  10337   67 41   17819
8  74   1075    28 548  5621    48 147  10484   68 60   17879
9  711  1786    29 50   5671    49 186  10670   69 229  18108
10 43   1829    30 39   5710    50 42   10712   70 300  18408
11 49   1878    31 474  6184    51 516  11228   71 401  18809
12 293  2171    32 422  6606    52 330  11558   72 359  19168
13 54   2225    33 26   6632    53 360  11918   73 290  19458
14 97   2322    34 37   6669    54 273  12191   74 14   19472
15 348  2670    35 108  6777    55 864  13055   75 290  19762
16 26   2696    36 406  7183    56 20   13075   76 608  20370
17 196  2892    37 75   7258    57 722  13797   77 312  20682
18 209  3101    38 176  7434    58 1050 14847   78 114  20796
19 304  3405    39 100  7534    59 20   14867   79 95   20891
20 43   3448    40 616  8150    60 60   14927

a) Word position.     b) Word value.     c) Accumulated total.

Total of the words where the accumulated total is a prime number: 676 = 22 x 132.
Total of the words where the accumulated total is not a prime number: 20215 = 5 x 13 x 311.

1.9There are precisely 65 unique word values (5 x 13).

1.9.1The highest and lowest words together: 1064 = 23 x 7 x 19.

1.9.1.1The lowest word value: 14 (2 x 7).

1.9.1.2The highest word value: 1050 (2 x 3 x 52 x 7).

1.9.2The word with value 44 appeared only once at the beginning of the passage. As a result, the total of its position is the lowest of all the words with a value 1. Opposite of this is the word with value 290, which occurred twice later in the passage. As a result, the total of its positions is the highest of all the words with a value of 148. These three words together (44 + 290 + 290): 624 = 24 x 3 x 13.

The First And Last Letters Of Each Word

2.1The first and last letters of each word: 10049 = 13 x 773. This separates perfectly into the first letter and the last letter of each word.

2.1.2The first letter of each word:

30 40 50 10 30 300 30 70 1 1 5 30 40 70 10 10 40 200 2 1 70 50 2 8 2 100
40 40 30 9 10 50 10 6 10 1 20 30 70 4 40 90 10 60 5 100 20 100 100 1 10 200
100 8 10 10 1 60 10 60 400 60 5 5 3 1 1 60 20 70 1 200 30 5 90 5 90 3 90

Total: 3666 = 2 x 3 x 13 x 47. SF: 65 = 5 x 13.

2.1.2.1From the list of the first letter of each word, take every other (even positioned):

40 10 300 70 1 30 70 10 200 1 50 8 100 40 9 50 6 1 30 4 90 60 100 100
1 200 8 10 60 60 60 5 1 60 70 200 5 5 3

Total: 2128 = 24 x 7 x 19.

2.1.2.1.1From 2.1.2.1, take the odd positioned:

40 300 1 70 200 50 100 9 6 30 90 100 1 8 60 60 1 70 5 3

Total: 1204 = 22 x 7 x 43.

2.1.2.1.1.1From 2.1.2.1.1 take the odd positioned again:

40 1 200 100 6 90 1 60 1 5

Total: 504 = 23 x 32 x 7.

2.1.2.1.1.2From 2.1.2.1.1 take the even positioned again:

300 70 50 9 30 100 8 60 70 3

Total: 700 = 22 x 52 x 7. SF: 21 = 3 x 7.

2.1.2.1.2From 2.1.2.1, take the even positioned:

10 70 30 10 1 8 40 50 1 4 60 100 200 10 60 5 60 200 5

Total: 924 = 22 x 3 x 7 x 11.

2.2The last letter of each word:

4 200 40 5 10 2 10 4 400 20 40 20 5 20 8 5 50 5 2 20 20 400 40 20 
10 300 40 200 20 30 20 70 5 1 40 5 50 40 30 10 10 100 9 400 600 90 9 40 
40 1 90 60 200 200 80 9 40 90 9 60 90 400 40 40 9 1 20 60 90 90 40 90 
200 9 200 600 40 1 5

Total: 6383 = 13 x 491. SF: 504 = 23 x 32 x 7.

2.2.1Odd positioned from the list of the last letter of each word:

4 40 10 10 400 40 5 8 50 2 20 40 10 40 20 20 5 40 50 30 10 9 600 9 40 
90 200 80 40 9 90 40 9 20 90 40 200 200 40 5

Total: 2665 = 5 x 13 x 41.

2.2.2Even positioned from the list of the last letter of each word:

200 5 2 4 20 20 20 5 5 20 400 20 300 200 30 70 1 5 40 10 100 400 90 
40 1 60 200 9 90 60 400 40 1 60 90 90 9 600 1

Total: 3718 = 2 x 11 x 132. SF: 39 = 3 x 13.

The first and last letters of each word appear very orderly in how they form smaller groups of opposites.

2.3.1Letters that are first or last in a word can be classified as one group. Its complementary opposite would be letters that are not first or last in a word.

4 6 7 40 6 1 5 6 1 4 50 10 40 10 50 300 10 10 2 10 4 200 3 30 10 9 7
300 30 5 6 90 10 6 4 100 200 10 2 10 40 4 2 10 6 10 30 5 4 200 4 200
8 300 8 30 4 400 10 300 2 5 6 30 50 8 400 5 70 6 30 2 200 400 30 20
4 1 200 1 200 100 9 1 30 2 1 40 5 7 9 30 7 20 20 1 20 60 200 30 5 40
60 70 60 5 60 1 8 600 90 70 5 1 1 80 600 200 100 600 1 80 9 90 100
60 200 1 200 100 60 4 60 50 1 90 5 5 40 7 8 7 40 1 80 400 9 5 80 5
20 1 20 7 90 1 80 60 200 100 60 9 60 60 3 7 30 5 80 60 5 3 5 40 40 7
10

Total: 10962 = 2 x 33 x 7 x 29.

2.3.2The letters that are not first or last in a word can form alternating groups of 52 and 7 letters.

2.3.2.1Add up the groups of 52:

4 6 7 40 6 1 5 6 1 4 50 10 40 10 50 300 10 10 2 10 4 200 3 30 10 9 7
300 30 5 6 90 10 6 4 100 200 10 2 10 40 4 2 10 6 10 30 5 4 200 4 200

300 2 5 6 30 50 8 400 5 70 6 30 2 200 400 30 20 4 1 200 1 200 100 9
1 30 2 1 40 5 7 9 30 7 20 20 1 20 60 200 30 5 40 60 70 60 5 60 1 8
600 90

100 600 1 80 9 90 100 60 200 1 200 100 60 4 60 50 1 90 5 5 40 7 8 7
40 1 80 400 9 5 80 5 20 1 20 7 90 1 80 60 200 100 60 9 60 60 3 7 30
5 80 60

Total of the groups of 52: 9135 = 32 x 5 x 7 x 29.

2.3.2.2Add up the groups of 7:

8 300 8 30 4 400 10
70 5 1 1 80 600 200
5 3 5 40 40 7 10

Total of the groups of 7: 1827 = 32 x 7 x 29. SF: 42 = 2 x 3 x 7.

2.3.3The letters that are not first or last in a word can form alternating groups of 7 and 78 letters.

2.3.3.1Add up the groups of 7:

4 6 7 40 6 1 5
2 1 40 5 7 9 30
5 3 5 40 40 7 10

Total: 273 = 3 x 7 x 13.

2.3.3.2Add up the groups of 78:

6 1 4 50 10 40 10 50 300 10 10 2 10 4 200 3 30 10 9 7 300 30 5 6 90
10 6 4 100 200 10 2 10 40 4 2 10 6 10 30 5 4 200 4 200 8 300 8 30 4
400 10 300 2 5 6 30 50 8 400 5 70 6 30 2 200 400 30 20 4 1 200 1 200
100 9 1 30

7 20 20 1 20 60 200 30 5 40 60 70 60 5 60 1 8 600 90 70 5 1 1 80 600
200 100 600 1 80 9 90 100 60 200 1 200 100 60 4 60 50 1 90 5 5 40 7
8 7 40 1 80 400 9 5 80 5 20 1 20 7 90 1 80 60 200 100 60 9 60 60 3 7
30 5 80 60

Total: 10689 = 3 x 7 x 509.

2.3.4The 177 letters that are not first or last in a word can be arranged as a 59 x 3 rectangle.

2.3.4.1The perimeter, or outside of this rectangle: 6944 = 25 x 7 x 31.

2.3.4.2The inside of this rectangle: 4018 = 2 x 72 x 41.

2.3.4.3The difference between the inside and the outside: 2926 = 2 x 7 x 11 x 19. SF: 39 = 3 x 13.

2.3.4.4The first and last columns: 624 = 24 x 3 x 13.

The Letters

The first and last letters of each word cover more than half of all the letters, but still leave out a considerable part of the combined passage. Now we look at all 333 letters.

List of letters:
30 4 6 4 40 7 40 6 200 50 1 40 10 5 6 5 30 1 4 50 10 300 2 30 10 40
10 50 10 70 4 1 300 10 400 1 10 2 10 20 5 4 40 30 200 3 30 10 20 40
9 5 70 7 20 10 300 30 8 10 5 6 5 40 90 10 6 50 200 4 5 2 100 200 2 1
10 2 10 20 70 40 20 50 4 2 400 2 10 6 40 8 10 30 20 2 5 4 200 10 100
4 300 40 200 8 40 40 300 8 200 30 20 9 30 10 30 4 400 10 20 50 300 2
70 10 5 6 5 6 30 1 10 50 8 40 1 400 5 20 5 50 30 70 6 30 40 70 30 4
2 200 400 10 40 30 20 10 90 4 100 10 1 9 60 200 400 5 1 200 100 600
100 9 90 20 1 30 2 1 40 5 9 100 7 40 100 9 30 7 40 1 20 20 1 10 1 20
60 200 30 5 40 60 90 200 70 60 100 60 200 8 5 60 200 10 1 8 600 90
70 5 80 10 1 9 1 1 80 600 40 60 200 100 600 90 10 1 9 60 400 80 9 90
100 60 90 60 200 400 5 1 200 100 60 40 5 4 60 50 1 90 5 40 3 5 40 7
8 7 40 1 9 1 80 400 9 5 80 5 1 1 20 20 60 20 1 20 7 90 1 90 70 80 60
90 1 200 100 60 40 200 9 60 90 30 60 200 5 9 90 200 5 3 600 90 7 30
5 80 60 40 3 5 3 5 40 40 7 10 1 90 5

3The first and last letters: 35 (5 x 7).

In the last section, the first and last letters of each word had numeric features. Looking at all the letters requires adjusting the principle of first and last. Instead of first and last being determined by the word, it is now determined by the position in the passage. Can letters be found that are Nth from the beginning, and Nth from the end?

The chance of the Nth and Nth last letters having the same value is less than one in twenty. This is very rare, and most likely would produce nothing. Since practically all the numeric features are about multiples of 7 and 13, this is applied to the sum of the Nth and Nth last letters.

3.1Precisely seven pairs of letters can be found positioned Nth and Nth last that together are divisible by 13.

a) Nth letter: 18  24  30  31  146 150 160
b) Value:      1   30  70  4   30  4   4
c) Nth last:   316 310 304 303 188 184 174
d) Value:      90  9   60  9   9   100 9
e) Sum:        91  39  130 13  39  104 13

(The 18th letter from the end is the 316th
 from the beginning.)

Sum of the positions (a + c): 2338 = 2 x 7 x 167.

3.2The previous feature searched for pairs of letters. 261 paired groups of letters, positioned Nth and Nth last are together and individually divisible by 7.

a) 1    1    2    2     3   3    3     4    4     5    5    5     5
b) 29   57   25   137   16  54   163   37   152   58   72   134   156
c) 2814 5845 2289 16912 749 5292 19887 4144 18172 6125 6902 16667 18711

a) 6     6     7     7     7     8    8     9    9    10   11  11   11
b) 140   145   111   118   155   79   107   46   73   56   18  84   87
c) 17206 17465 13293 14210 18557 7273 12565 4767 6818 4998 413 7910 8666

a) 11   11    11    12   12    13  13   13   13    13    13    14   14
b) 97   146   149   27   108   17  51   86   113   133   136   28   33
c) 9618 17108 17395 2037 12341 238 4655 8092 12985 15890 16268 1967 2751

a) 14    14    15   15   15   15   15   15    15    15    16   16
b) 103   158   36   40   43   70   82   112   154   161   83   116
c) 11172 18165 3437 3710 3920 6118 7196 12740 17927 18473 7210 13566

a) 16    16    17   17    18   18   18    18    18    19   19   19
b) 139   157   54   163   51   86   113   133   136   84   87   97
c) 16520 18039 4543 19138 4417 7854 12747 15652 16030 7497 8253 9205

a) 19    19    20   20    21   21   21   22    23   23    23    25
b) 146   149   90   142   30   38   41   129   95   104   130   85
c) 16695 16982 7917 15869 1281 2709 2954 14707 8015 10381 14273 6398

a) 26    27   27   27   27    28    29  29   29    30   31   31   32
b) 137   71   77   89   160   108   33  103  158   57   38   41   80
c) 14623 4396 4921 6867 16541 10304 784 9205 16198 3031 1428 1673 4760

a) 32    33   33    34   34    35   35    36   36   36    37  37  37
b) 122   102  128   103  158   67   147   66   93   151   40  43  70
c) 12250 8421 13132 8421 15414 3080 14273 2534 6006 14035 273 483 2681

a) 37   37   37    37    38    39  40   40    41  41   41   41   41
b) 82   112  154   161   152   41  62   138   43  70   82   112  154
c) 3759 9303 14490 15036 14028 245 1953 12915 210 2408 3486 9030 14217

a) 41    43  43   43   44   44   44   44    44    45   45   46   46
b) 161   44  81   91   70   82   112  154   161   81   91   68   74
c) 14763 161 3276 4865 2198 3276 8820 14007 14553 3115 4704 1624 2324

a) 46   47   48    50   50   50    50    50    51 51   51    52   52
b) 119  73   153   63   101  126   143   144   52 60   150   86   113
c) 9975 2051 13615 1197 6272 10766 12306 12383 35 1071 12789 3437 8330

a) 52    52    53   53    54   54    55    56   56    56    59  59
b) 133   136   60   150   64   127   163   65   124   141   72  134
c) 11235 11613 1036 12754 1078 10675 14595 1064 10248 11907 777 10542

a) 59    60   61    62   62   62   63    64   64   64    64    65   66
b) 156   94   150   88   96   120  138   101  126  143   144   127  124
c) 12586 3801 11718 2933 3808 8736 10962 5075 9569 11109 11186 9597 9184

a) 66    67   67    68    69  69   70   71   71   71    71    72  72
b) 141   93   151   147   74  119  92   82   112  154   161   77  89
c) 10843 3472 11501 11193 700 8351 2758 1078 6622 11809 12355 525 2471

a) 72    73   73    75   76   76    77   78   78    79   79    80   81
b) 160   134  156   119  99   159   131  89   160   109  166   107  122
c) 12145 9765 11809 7651 3640 11627 9051 1946 11620 5712 12964 5292 7490

a) 82   83   83    83    84   84   84    85  85   85   85   87   87
b) 91   112  154   161   116  139  157   87  97   146  149  113  133
c) 1589 5544 10731 11277 6356 9310 10829 756 1708 9198 9485 4893 7798

a) 87   88  88   88   89  89   90   91   94   96   96   97   98   98
b) 136  97  146  149  96  120  160  142  151  104  130  120  146  149
c) 8176 952 8442 8729 875 5803 9674 7952 8029 2366 6258 4928 7490 7777

a) 99  99   100  101  102  102  102  103  104  105  107  110  111 111
b) 100 105  159  105  126  143  144  128  158  130  148  166  114 117
c) 910 2534 7987 1624 4494 6034 6111 4711 6993 3892 5103 7252 504 1183

a) 111  112 112  113  113  114  114  115 115  117  117  118  119  122
b) 123  118 155  154  161  133  136  117 123  139  157  123  155  135
c) 2450 917 5264 5187 5733 2905 3283 679 1946 2954 4473 1267 4347 1736

a) 125  126 126  126  127  127  133  133  134 135  140  141 147 155 163
b) 141  132 162  165  143  144  162  165  136 156  157  145 149 161 165
c) 1659 588 3976 4347 1540 1617 3388 3759 378 2044 1519 259 287 546 371

a) Starting position of the group.
b) Ending position of the group.
c) Total of both groups.

[The starting position of the first group (a) is Nth from the beginning.
The starting position of the second group (a) is Nth from the end.
The ending position of the first group (b) is Nth from the beginning.
The ending position of the second group (b) is Nth from the end.]

Total of the starting positions (a): 14392 = 23 x 7 x 257.
Total of the ending positions (b): 29263 = 13 x 2251.
Total of all the positions (a + b): 43655 = 5 x 8731. This is not a multiple of 7 or 13, but the sum of the factors combines both: 8736 = 25 x 3 x 7 x 13.

3.3Exactly 77 groups of letters positioned Nth and Nth last can be found where the two groups together is a multiple of 13, and where the individual groups are also multiples of 13.

a) 3     5    6    7     8    9    9     11   11   11    14   14   14
b) 143   65   48   110   50   25   122   24   91   146   31   72   165
c) 17420 6435 4966 13013 4979 1989 14872 1716 8983 17108 2210 6305 19539

a) 15   17    20    23    24   24   24    24    25   25    26    27
b) 54   114   118   142   57   68   141   145   91   146   122   123
c) 4589 12883 12844 15301 3575 4433 15158 15392 7267 15392 12883 13143

a) 28    31   31   32   32    35    38   39   39    40  41   43   43
b) 137   46   59   72   165   130   99   111  152   45  79   63   92
c) 14313 2158 3419 4095 17329 12883 6825 9165 13936 637 3055 1729 4953

a) 43   45   47   48   50    53   58  58    58    61   61   62  64
b) 109  77   59   90   132   70   68  141   145   96   106  71  92
c) 8528 2613 1261 4394 11284 1612 858 11583 11817 3822 6474 572 3224

a) 64   65   68   69    69    73    79    84   84   88   88   90   92
b) 109  88   81   141   145   165   154   89   107  108  127  107  146
c) 6799 2834 1339 10725 10959 13234 11232 1378 4836 3679 6825 3458 8125

a) 93   97   99   101 105  106  106  109  112  121  136  139  140  142
b) 109  106  150  102 125  139  159  127  152  129  148  153  159  145
c) 3575 2652 7787 364 3380 4524 6253 3146 4771 1261 1066 1391 1729 234

a) Starting position of the group.
b) Ending position of the group.
c) Total of both groups.

[The starting position of the first group (a) is Nth from the beginning.
The starting position of the second group (a) is Nth from the end.
The ending position of the first group (b) is Nth from the beginning.
The ending position of the second group (b) is Nth from the end.]

In this case, the totals of line a) and b) yield nothing.
Total of line a): 4195 = 5 x 839.
Total of line b): 8389.
The total of all the positions is something else: 12584 = 23 x 112 x 13.

3.4.1The total of every other word in feature 1.3.1 was a multiple of 13. The same principle holds for the letters. These are the odd positioned letters:

a) 1  3 5  7  9   11 13 15 17 19 21 23 25 27 29 31 33  35  37 39 41 43
b) 30 6 40 40 200 1  10 6  30 4  10 2  10 10 10 4  300 400 10 10 5  40

a) 45  47 49 51 53 55 57  59 61 63 65 67 69  71 73  75 77 79 81 83 85
b) 200 30 20 9  70 20 300 8  5  5  90 6  200 5  100 2  10 10 70 20 4

a) 87  89 91 93 95 97 99  101 103 105 107 109 111 113 115 117 119 121
b) 400 10 40 10 20 5  200 100 300 200 40  300 200 20  30  30  400 20

a) 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155
b) 300 70  5   5   30  10  8   1   5   5   30  6   40  30  2   400 40

a) 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189
b) 20  90  100 1   60  400 1   100 100 90  1   2   40  9   7   100 30

a) 191 193 195 197 199 201 203 205 207 209 211 213 215 217 219 221 223
b) 40  20  1   1   60  30  40  90  70  100 200 5   200 1   600 70  80

a) 225 227 229 231 233 235 237 239 241 243 245 247 249 251 253 255 257
b) 1   1   80  40  200 600 10  9   400 9   100 90  200 5   200 60  5

a) 259 261 263 265 267 269 271 273 275 277 279 281 283 285 287 289 291
b) 60  1   5   3   40  8   40  9   80  9   80  1   20  60  1   7   1

a) 293 295 297 299 301 303 305 307 309 311 313 315 317 319 321 323 325
b) 70  60  1   100 40  9   90  60  5   90  5   600 7   5   60  3   3

a) 327 329 331 333    (Letter position.)
b) 40  7   1   5      (Letter value.)

Total: 12129 = 3 x 13 x 311.

3.4.2These are the even positioned letters:

2 4 6 8 10 12 14 16 18 20 22  24 26 28 30 32 34 36 38 40 42 44 46
4 4 7 6 50 40 5  5  1  50 300 30 40 50 70 1  10 1  2  20 4  30 3

48 50 52 54 56 58 60 62 64 66 68 70 72 74  76 78 80 82 84 86 88 90
10 40 5  7  10 30 10 6  40 10 50 4  2  200 1  2  20 40 50 2  2  6

92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126
8  30 2  4  10  4   40  8   40  8   30  9   10  4   10  50  2   10

128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160
6   6   1   50  40  400 20  50  70  30  70  4   200 10  30  10  4

162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194
10  9   200 5   200 600 9   20  30  1   5   100 40  9   7   1   20

196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228
10  20  200 5   60  200 60  60  8   60  10  8   90  5   10  9   1

230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262
600 60  100 90  1   60  80  90  60  60  400 1   100 40  4   50  90

264 266 268 270 272 274 276 278 280 282 284 286 288 290 292 294 296
40  5   7   7   1   1   400 5   5   1   20  20  20  90  90  80  90

298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330
200 60  200 60  30  200 9   200 3   90  30  80  40  5   5   40  10

332   (Letter position.)
90    (Letter value.)

Total of the letters: 8762 = 2 x 13 x 337.

3.4.3The difference between the odd and even positioned letters produces an extra factor of 7: 3367 = 7 x 13 x 37.

3.4.4The list of even positioned letters can again be further subdivided as odd and even.

3.4.4.1Odd positioned letters from the list in 3.4.2:

4 7 50 5 1 300 40 70 10 2 4 3 40 7 30 6 10 4 200 2 40 2 6 30 4 4 8 8 
9 4 50 10 6 50 400 50 30 4 10 10 10 200 200 9 30 5 40 7 20 20 5 200 
60 60 8 5 9 600 100 1 80 60 400 100 4 90 5 7 1 5 1 20 90 80 200 200 
30 9 3 30 40 5 10

Total: 4589 = 13 x 353.

3.4.4.2Even positioned letters from the list in 3.4.2:

4 6 40 5 50 30 50 1 1 20 30 10 5 10 10 40 50 2 1 20 50 2 8 2 10 40 40 
30 10 10 2 6 1 40 20 70 70 200 30 4 9 5 600 20 1 100 9 1 10 200 60 60 
8 10 90 10 1 60 90 60 90 60 1 40 50 40 7 1 400 5 20 20 90 90 60 60 
200 200 90 80 5 40 90

Total: 4173 = 3 x 13 x 107.

3.5Odd/even positioned letters is selecting every other letter. One could take every Nth letter.

3.5.1Beginning with the first letter, and taking every Nth letter after, the following values of N would select letters with a total divisible by 13.

2 9 15 47 71 74 116 139 152 159

Amazingly, the sum of all the N values is a multiple of 7 twice: 784 = 24 x 72.

3.5.2One could also take every 7th letter:

a) 7  14 21 28 35  42 49 56 63 70 77 84 91 98 105 112 119 126 133 140
b) 40 5  10 50 400 4  20 10 5  4  10 50 40 4  200 30  400 10  10  20

a) 147 154 161 168 175 182 189 196 203 210 217 224 231 238 245 252 259
b) 40  10  100 5   90  5   30  10  40  60  1   10  40  1   100 1   60

a) 266 273 280 287 294 301 308 315 322 329   (Letter position.)
b) 5   9   5   1   80  40  200 600 40  7     (Letter value.

Total: 2912 = 25 x 7 x 13.

3.6Fifty-four letters are prime numbers.

a) b)  a) b)  a)  b)  a)  b)  a)  b)  a)  b)
6  7   61 5   97  5   182 5   265 3   314 3
14 5   63 5   124 2   185 7   266 5   317 7
16 5   71 5   127 5   190 7   268 7   319 5
23 2   72 2   129 5   202 5   270 7   323 3
38 2   75 2   139 5   213 5   278 5   324 5
41 5   78 2   141 5   222 5   280 5   325 3
46 3   86 2   151 2   251 5   289 7   326 5
52 5   88 2   168 5   257 5   309 5   329 7
54 7   96 2   179 2   263 5   313 5   333 5

a) Letter position.   b) Letter value.

Total of these letters: 245 = 5 x 72. Since the result is divisible by 7, there is no corresponding feature with letters that are not prime numbers.

3.7So far, selecting every Nth letter has been keeping N as a fixed number. The size of N can progressively increase.

a) 1  2 4 7  11 16 22  29 37 46 56 67 79 92 106 121 137 154 172 191
b) 1  2 3 4  5  6  7   8  9  10 11 12 13 14 15  16  17  18  19  20
c) 30 4 4 40 1  5  300 10 10 3  10 6  10 8  8   20  1   10  600 40

a) 211 232 254 277 301 326     (Letter count.)
b) 21  22  23  24  25  26      (Increasing value of N.)
c) 200 60  100 9   40  5       (Letter found.)

Total of the letters found: 1534 = 2 x 13 x 59. (The maximum value of N stops at 26 because it is related to God’s name. It also stops here because adding 27 will overshoot the 333 letters.)

3.8When the letters are added one by one, 49 times (7 x 7) the accumulated total will be divisible by 7. Twenty-eight times (22 x 7) it will be divisible by 13.

3.8.1Twenty-four of the accumulated totals will be odd valued, with an odd valued letter in an odd position of the combined passage.

a)    b)    c)        a)    b)    c)
61    5     2685      263   5     17037
71    5     3101      273   9     17197
97    5     4167      277   9     17687
127   5     6621      289   7     17927
139   5     7183      297   1     18409
163   1     8455      309   5     19463
183   9     10337     313   5     19767
197   1     10723     317   7     20467
213   5     11931     323   3     20685
239   9     14867     325   3     20693
251   5     16421     329   7     20785
257   5     16827     333   5     20891

a) Letter position.    b) Letter value.
c) Accumulated total.

Total of the letters (b): 126 = 2 x 32 x 7.

3.8.2Seventy-six times the letter position will be even, the letter value will be even, and the accumulated total will also be even.

a)     b)     c)        a)     b)     c)        a)     b)     c)        a)     b)     c)
2      4      34        90     6      4052      156    30     8220      248    60     15816
4      4      44        92     8      4100      158    10     8250      250    400    16416
12     40     428       94     30     4140      160    4      8344      254    100    16722
34     10     1386      96     2      4162      162    10     8454      256    40     16822
42     4      1838      116    10     5720      166    200    8724      262    90     17032
44     30     1908      118    4      5754      170    200    9330      276    400    17678
56     10     2332      120    10     6164      172    600    10030     288    20     17920
58     30     2662      122    50     6234      178    30     10280     292    90     18108
60     10     2680      124    2      6536      186    40     10484     294    80     18258
64     40     2736      126    10     6616      196    10     10722     296    90     18408
66     10     2836      130    6      6638      204    60     11138     304    60     19078
68     50     2892      138    400    7178      206    200    11428     306    30     19198
70     4      3096      142    50     7258      208    60     11558     308    200    19458
78     2      3418      144    70     7358      210    60     11718     312    200    19762
80     20     3448      146    30     7394      212    8      11926     316    90     20460
82     40     3558      148    70     7504      218    8      12210     320    80     20582
84     50     3628      150    4      7538      220    90     12900     322    40     20682
86     2      3634      152    200    7740      244    90     15506     328    40     20778
88     2      4036      154    10     8150      246    60     15666     332    90     20886

a) Letter position.     b) Letter value.     c) Accumulated total.

Total of the letters (b): 5304 = 23 x 3 x 13 x 17. SF: 39 = 3 x 13.

3.8.3This means there are exactly 100 letters that are purely odd or purely even. 100 is not divisible by 7 or 13, but 100 is a very nice round number, and the factors are 22 x 52. The sum of the factors is 14 (2 x 7).

3.9.1The lowest valued letter is 1, and it appeared 29 times for a total of 29. The highest valued letter is 600, and it appeared 5 times for a total of 3000. Thus the total of the lowest letter plus the total of the highest letter is 3029 (13 x 233).

3.9.2Three letters, 40, 80 and 200, each appeared a multiple of 7 times in the passage. The total of their positions: 10114 = 2 x 13 x 389.

3.9.3Two letters appeared thirteen times in the passage. Providentially, the two letters are 4 and 9, which together also total 13. The total of their positions in the passage: 3884 = 22 x 971. This is not a multiple of 13, but the sum of the factors is: 975 = 3 x 52 x 13. And as if to make up for the total not working at first, there is a second level of factors: 26 = 2 x 13.

3.10The Nth and Nth last occurrences of twelve letters successfully divide the passage's letters into a) what is between them, and b) what is not between them, with each category a multiple of 13.

In Between & Not Between
Letter Occurrence Total of letters not in between Total of letters between the Nth & Nth last
NthNth last
200335174 = 2 x 13 x 199.15717 = 3 x 132 x 31.
200558840 = 23 x 5 x 13 x 17.12051 = 32 x 13 x 103.
2008816640 = 28 x 5 x 13.4251 = 3 x 13 x 109.
200101018993 = 3 x 13 x 487.1898 = 2 x 13 x 73.
502214222 = 2 x 13 x 547.6669 = 33 x 13 x 19.
1121218486 = 2 x 32 x 13 x 79.2405 = 5 x 13 x 37.
105511180 = 22 x 5 x 13 x 43. SF: 65 = 5 x 13.9711 = 32 x 13 x 83.
108814560 = 25 x 5 x 7 x 13. SF: 35 = 5 x 7.6331 = 13 x 487.
5887371 = 34 x 7 x 13.13520 = 24 x 5 x 132. SF: 39 = 3 x 13.
5101010491 = 3 x 13 x 269.10400 = 25 x 52 x 13.
95515821 = 13 x 1217.5070 = 2 x 3 x 5 x 132.
903311648 = 27 x 7 x 13.9243 = 32 x 13 x 79. SF: 98 = 2 x 72.
333 Letters (Click table to dismiss.)
304644074062005014010565301
4501030023010401050107041300104001
102102054403020033010204095707
201030030810565409010650200452
10020021102102070402050424002106
4081030202542001010043004020084040
300820030209301030440010205030027010
5656301105084014005205503070
63040703042200400104030201090410010
1960200400512001006001009902013021
405910074010093074012020110120
60200305406090200706010060200856020010
186009070580101911806004060200100
600901019604008099010060906020040051
20010060405460501905403540787
4019180400958051120206020120
79019070806090120010060402009609030
6020059902005360090730580604035
3540407101905

3.10.1The total of the twelve letters: 980 = 22 x 5 x 72.

3.10.2If we looked only at unique letter values, there are exactly 7.

3.10.3Letter 200 is unique in that it appears four times in the list. Its Nth or Nth last numbers would total 26 (2 x 13).

3.10.4These seven letters appeared many times in the passage.

a) Letter value:           1  5   9   10  50  90   200
b) Number of occurrences:  29 29  13  29  9   16   21
c) Total value in passage: 29 145 117 290 450 1440 4200

Total of all the seven letters together (c): 6671 = 7 x 953.

3.11Like the words in feature 2.3.4, the letters can also be placed into a 111 x 3 rectangle.

3.11.1The perimeter, or outside of the rectangle: 13572 = 22 x 32 x 13 x 29. SF: 52 = 22 x 13.

3.11.2The inside of the rectangle: 7319 = 13 x 563.

3.11.3The difference between the inside and outside: 6253 = 132 x 37. SF: 63 = 32 x 7. SF: 13.

3.11.4The first and last columns: 350 = 2 x 52 x 7.

3.11.5The four corners: 315 = 32 x 5 x 7.

3.11.6The odd positioned columns: 11151 = 33 x 7 x 59. (Since the total of the passage is a multiple of 13, this means there is no correlating feature with the even positioned columns.)

3.11.7Twenty-eight squares: 15281 = 7 x 37 x 59.

3.11.8A series of columns can be selected from the table with multiples of 7 and or 13.

The numeric features in 3.11.8 could be coincidence since the sum of all the values for the Nth column is not divisible by 7 or 13. Even the number of results is below the expected odds. Since God is omniscient, and can work with coincidence, these results are presented as one feature.

Conclusion

Numeric features with complementary opposites following Revelation 1:8 demonstrate Psalm 110:1-4 and Hebrews 5:4-5 fit together very well. The meaning of these two passages also support and explain each other. Jesus is the fulfillment of prophecy, the King of Righteousness, Melchizedek, and God’s son.

Notes

  1. English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.
  2. Hebrew text is from, The Biblia Hebraica Stuttgartensia (BHS), edited by K. Elliger and W. Rudolph of the Deutsche Biblegesselchaft (German Bible Society) 1983.
  3. The Greek text is from The Nestle-Aland 27th Edition of the Greek New Testament (GNT), Copyright © 1966, 1968, 1975, 1993-1994 United Bible Societies, found within Bibleworks 3.0 by Hermeneutika, Michael S. Bushell, 1995. Vowel marks and punctuation have been removed.
  4. Curiously, if the digits of the middle word, 616, were broken apart into two numbers of 61 and 6, the first 39 words plus 61 would yield a total of 7595 (5 x 72 x 31), and the last 39 words plus 6 would produce a total of 12747 (3 x 7 x 607).

    The middle word has five letters (4-2-200-400-10), which means the letters can't be evenly distributed to the first and last 39 words. However, if the first two letters went with the first 39 words, the total would be 7540 (22 x 5 x 13 x 29). The remaining letters, added to the last 39 words would produce a total of 13351. (132 x 79. SF: 105 = 3 x 5 x 7.) Once again the middle word seems perfectly positioned in the passage.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




The foolishness of God is greater than anything we can imagine (1 Corinthians 1:25). On the off chance the numbers are a form of foolishness, do not spend too much time on them.