Bible Numbers 2.0

God Signs The Covenant
(Part 2)

On the previous page, Revelation 1:8 (GNT) was appended to a large section of Exodus chapter 34 as a signature and this produced numeric features following the pattern of The Proclamation itself. On this page, the GNS version of Revelation 1:8 is applied as a signature with similar numeric results.

Since the GNS version includes the beginning and the end as a parallel to Isaiah's I am the first and I am the last (Isaiah 41:4, 44:5, & 48:12), the link between the GNS version to the Old Testament and the covenant under Moses is stronger than the GNT's link. Because of this, the GNS ties in with a smaller section of Exodus 34. This is because the covenant under Moses came after the covenant of faith given Abraham (Genesis 15:6). It was not the complete covenant and had to be fulfilled by Jesus. This is why the GNT version of Revelation 1:8, which does not have the beginning and the end ties in with a larger section of the covenant in Exodus 34.

When the GNS1 version of Revelation 1:8 is applied, Exodus 34's verses run from verse 1 to 10. The covenant section begins with God telling Moses to prepare two new tablets of stone before going up Mount Sinai in the morning. The covenant section ends with God saying,

Behold, I make a covenant. Before all your people I will do marvels, such as have not been wrought in all the earth or in any nation; and all the people among whom you are shall see the work of the LORD; for it is a terrible thing that I will do with you. (Exodus 34:102; highlight added)

Here we see reference to Moses' covenant. There is mention of your people i.e. Israel, and marvels such as no other nation would ever see. Israel would see the work of the LORD. And most importantly is the word terrible. The original Hebrew word includes the sense of awe, and dread, but it could also be something terrible. What God would do with Israel is awesome, and dreadful. To be a people with God’s covenant is an awesome and dreadful responsibility. There are miraculous blessings when the covenant is kept. There are dreadful consequences when it is broken as can be seen even today.

(For the GNT version of Revelation 1:8, see God Signs The Covenant (Part 1).)

1 The LORD said to Moses, "Cut two tables of stone like the first; and I will write upon the tables the words that were on the first tables, which you broke. 2 Be ready in the morning, and come up in the morning to Mount Sinai, and present yourself there to me on the top of the mountain. 3 No man shall come up with you, and let no man be seen throughout all the mountain; let no flocks or herds feed before that mountain." 4 So Moses cut two tables of stone like the first; and he rose early in the morning and went up on Mount Sinai, as the LORD had commanded him, and took in his hand two tables of stone. 5 And the LORD descended in the cloud and stood with him there, and proclaimed the name of the LORD. 6 The LORD passed before him, and proclaimed, "The LORD, the LORD, a God merciful and gracious, slow to anger, and abounding in steadfast love and faithfulness, 7 keeping steadfast love for thousands, forgiving iniquity and transgression and sin, but who will by no means clear the guilty, visiting the iniquity of the fathers upon the children and the children's children, to the third and the fourth generation." 8 And Moses made haste to bow his head toward the earth, and worshiped. 9 And he said, "If now I have found favor in thy sight, O Lord, let the Lord, I pray thee, go in the midst of us, although it is a stiff-necked people; and pardon our iniquity and our sin, and take us for thy inheritance." 10 And he said, "Behold, I make a covenant. Before all your people I will do marvels, such as have not been wrought in all the earth or in any nation; and all the people among whom you are shall see the work of the LORD; for it is a terrible thing that I will do with you. (Exodus 34:1-10)

This covenant begins with a reminder that it had already been broken by Israel. It is much shorter than the version with the GNT.

Exodus 34:1-103
4321:A
3453126257:B
1413121110987654321:C
53004030156510200401106:D
משהאליהוהויאמר:E
98765:A
10343836050170:B
30292827262524232221201918171615:C
4010502140083010503002030306080:D
אבניםלחתשנילךפסל:E
121110:A
100838621:B
454443424140393837363534333231:C
3070104002400206401050300120020:D
עלוכתבתיכראשנים:E
16151413:A
501261401443:B
605958575655545352515049484746:C
2003001401020024540014008305:D
אשרהדבריםאתהלחת:E
20191817:A
60644310021:B
76757473727170696867666564636261:C
40105030012005400830530706105:D
הראשניםהלחתעלהיו:E
24232221:A
12626902501:B
919089888786858483828180797877:C
50620505105640020023002003001:D
נכוןוהיהשברתאשר:E
28272625:A
31304516332:B
1061051041031021011009998979695949392:C
301200100224001030706200100230:D
אלבבקרועליתלבקר:E
3332313029:A
34040548130205:B
121120119118117116115114113112111110109108107:C
403001030400290506105010602005:D
שםליונצבתסיניהר:E
3837363534:A
31317210501100:B
135134133132131130129128127126125124123122:C
13030010162005530012003070:D
לאואישההרראשעל:E
4342414039:A
3131149130115:B
150149148147146145144143142141140139138137136:C
30130010140362040705307010:D
אלאישוגםעמךיעלה:E
4847464544:A
1464321052211:B
165164163162161160159158157156155154153152151:C
5019054032005530202120010:D
הצאןגםההרבכלירא:E
5352515049:A
763128631313:B
181180179178177176175174173172171170169168167166:C
3064030167020010301200100256:D
מולאלירעואלוהבקר:E
57565554:A
36018617210:B
196195194193192191190189188187186185184183182:C
1050300306080106165520055:D
שניויפסלההואההר:E
605958:A
621103438:B
211210209208207206205204203202201200199198197:C
40105030012002040105021400830:D
כראשניםאבניםלחת:E
64636261:A
116304345376:B
227226225224223222221220219218217216215214213212:C
3070106200100225300404020300106:D
ויעלבבקרמשהוישכם:E
6968676665:A
10152113020531:B
242241240239238237236235234233232231230229228:C
5690200300120105010602005301:D
צוהכאשרסיניהראל:E
73727170:A
2212440726:B
257256255254253252251250249248247246245244243:C
6410281001066400156510:D
בידוויקחאתויהוה:E
77767574:A
220103438360:B
272271270269268267266265264263262261260259258:C
4200106401050214008301050300:D
וירדאבניםלחתשני:E
807978:A
51817226:B
286285284283282281280279278277276275274273:C
29010400106505070256510:D
ויתיצבבענןיהוה:E
84838281:A
342317340116:B
299298297296295294293292291290289288287:C
40300212001001064030064070:D
בשםויקראשםעמו:E
88878685:A
1002628826:B
314313312311310309308307306305304303302301300:C
30705651020027010656510:D
עליהוהויעבריהוה:E
919089:A
26317146:B
327326325324323322321320319318317316315:C
5651012001001066105080:D
יהוהויקראפניו:E
95949392:A
1202543126:B
342341340339338337336335334333332331330329328:C
5065086406820030156510:D
וחנוןרחוםאליהוה:E
99989796:A
72208131221:B
355354353352351350349348347346345344343:C
4608220064010801202001:D
חסדורבאפיםארך:E
103102101100:A
19172340447:B
371370369368367366365364363362361360359358357356:C
40108030130460820090504004016:D
לאלפיםחסדנצרואמת:E
107106105104:A
29456126351:B
386385384383382381380379378377376375374373372:C
519867030080650670130050:D
וחטאהופשעעוןנשא:E
112111110109108:A
12618416531161:B
402401400399398397396395394393392391390389388387:C
50670410080510050101305100506:D
עוןפקדינקהלאונקה:E
117116115114113:A
62106102100409:B
418417416415414413412411410409408407406405404403:C
105023070640105023070400621:D
בניועלבניםעלאבות:E
121120119118:A
106680100102:B
432431430429428427426425424423422421420419:C
3070640103003030030704010502:D
ועלשלשיםעלבנים:E
124123122:A
345261322:B
445444443442441440439438437436435434433:C
5300402005401064010702200:D
משהוימהררבעים:E
127126125:A
730296120:B
459458457456455454453452451450449448447446:C
6840030010659020014100106:D
וישתחוארצהויקד:E
132131130129128:A
585415141257:B
475474473472471470469468467466465464463462461460:C
5081040019040150401200401106:D
חןמצאתינאאםויאמר:E
136135134133:A
516065162:B
490489488487486485484483482481480479478477476:C
15020301010504120105010702:D
נאילךאדניבעיניך:E
140139138137:A
1103036065:B
504503502501500499498497496495494493492491:C
4070102065022001002105041:D
עםכיבקרבנואדני:E
144143142141:A
50412350405:B
518517516515514513512511510509508507506505:C
40083060616580200705300100:D
וסלחתהואערףקשה:E
146145:A
510212:B
532531530529528527526525524523522521520519:C
6504001983066505067030:D
ולחטאתנולעוננו:E
149148147:A
60257550:B
547546545544543542541540539538537536535534533:C
5505200401106650400308506:D
הנהויאמרונחלתנו:E
154153152151150:A
505761262081:B
563562561560559558557556555554553552551550549548:C
30204350400102002400200201020501:D
כלנגדבריתכרתאנכי:E
158157156155:A
501561376130:B
578577576575574573572571570569568567566565564:C
200300140013080505300701204070:D
אשרנפלאתאעשהעמך:E
162161160159:A
2965225931:B
592591590589588587586585584583582581580579:C
90200153020261200250130:D
הארץבכלנבראולא:E
166165164163:A
502126458:B
607606605604603602601600599598597596595594593:C
30205120064010635302026:D
כלוראההגויםובכל:E
171170169168167:A
401310406501115:B
623622621620619618617616615614613612611610609608:C
400162200100254001200300140705:D
אתבקרבואתהאשרהעם:E
175174173172:A
2573026415:B
637636635634633632631630629628627626625624:C
120065010205651053007040:D
נוראכייהוהמעשה:E
180179178177176:A
1303756150112:B
652651650649648647646645644643642641640639638:C
204070530070105012003001165:D
עמךעשהאניאשרהוא:E

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Hebrew.

This section has 180 words, 652 letters, and a numeric total of 41678 (2 x 7 x 13 x 229). The numeric total is a one in ninety-one chance.

Now the GNS version of Revelation 1:8 is added.

I am Alpha and Omega, the beginning and the ending, saith the Lord, which is, and which was, and which is to come, the Almighty. (Revelation 1:8 KJV)
Revelation 1:8 (GNS)
A:1234567
B:60853160120160600
C:12345678910111213141516
D:5360059309100601101910060600
E:εγωειμιτοακαιτοω
A:8910
B:48820275
C:171819202122232425262728
D:180400710191005206090
E:αρχηκαιτελος
A:1112131415
B:426944960640
C:29303132333435363738394041424344
D:2053596091020080960906060040
E:λεγειοικυριοςοων
A:1617181920
B:2060472060
C:45464748495051525354
D:101960740101960
E:καιοηνκαιο
A:2122
B:77060
C:55565758596061626364
D:5804006030540609060
E:ερχομενοςο
A:23
B:1142
C:6566676869707172737475
D:70140100601080110060080
E:παντοκρατωρ

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Greek.

The GNS version of Revelation 1:8 has 23 words, 75 letters and a numeric total of 5824 (26 x 7 x 13). Once again the numeric total is a one in ninety-one chance.

The 11 verses together have 203 words, 727 letters and a total of 47502.

Primary Features

(Derived from Revelation 1:8 and grouped for easy reference.)

I Am (Present tense - living through it) Add up everything.

A.1Numeric total: 47502 = 2 x 32 x 7 x 13 x 29. (See feature 1.)

A.4Number of words: 203 = 7 x 29. (See feature 2.)

Is, Was, Is To Come (Second present tense - skipping sequentially through it) Add up every other occurrance.

B.3Every other word (odd): 23920 = 24 x 5 x 13 x 23. (See feature 2.5.1.)

B.3.2Every other word (even): 23582 = 2 x 13 x 907. (See feature 2.5.2.)

Alpha & Omega (The first and last) Add up the first item with the last item.

C.2First and last verses: 13342 = 2 x 7 x 953. (See feature 1.1.)

C.3.2First and last letter of each word: 24332 = 22 x 7 x 11 x 79. (See feature 3.)

Alpha (The first) Add up the first item.

D.2First verse: 7518 = 2 x 3 x 7 x 179. (See feature 1.2.1.)

D.3.3First letter of each word: 7959 = 3 x 7 x 379. (See feature 4.)

Omega (The last) Add up the last item.

E.2Last verse: 5824 = 26 x 7 x 13. (See feature 1.2.2.)

E.3.3Last letter of each word: 16373 = 7 x 2339. (See feature 5.)

The Verses

List of verses:
7518 3409 2610 5317 2077 2413 4321 1752 4394 7867 5824

1The numeric total of the eleven verses together: 47502 = 2 x 32 x 7 x 13 x 29.

1.1First and last verses: 13342 = 2 x 7 x 953. SF: 962 = 2 x 13 x 37. SF: 52 = 22 x 13.

1.2.1First verse: 7518 = 2 x 3 x 7 x 179.

1.2.2Last verse: 5824 = 26 x 7 x 13.

1.3The letters of God’s name in Hebrew (10-5-6-5) point out four of the eleven verses.

Verse position: 10   5    6    5
Verse total:    7867 2077 2413 2077

Total of the verses: 14434 = 2 x 7 x 1031. SF: 1040 = 24 x 5 x 13. SF: 26 = 2 x 13.

1.4Only the total of the 10th verse is a prime number. This sets the last verse apart in being divisible by 7 and 13. Providentially, everything before the 10th verse is also a prime number: 33811. Also providentially, everything up to and including the 10th verse is a multiple of 7 and 13. And finally, the 10th verse and 11th verses are also a prime number: 13691.

1.5Three verses are multiples of 7. They just so happen to be the 1st, 2nd and 11th verses. 1 + 2 + 11 = 14 (2 x 7).

The Words

2There are 203 words (7 x 29).

2.1Exactly 13 pairs of words positioned Nth and Nth last together are multiples of 13.

Nth word:  11   12  14  18  32  33  57  67  68  70  72  81  86
Value:     838  100 401 100 40  340 360 130 521 26  124 116 288
Nth last:  193  192 190 186 172 171 147 137 136 134 132 123 118
Value:     449  69  275 160 415 401 550 65  51  65  58  261 102
Sum:       1287 169 676 260 455 741 910 195 572 91  182 377 390

Sum of the word positions: 2652 = 22 x 3 x 13 x 17.

2.2Precisely 21 pairs of word groups positioned Nth and Nth last together and individually are multiples of 13.

a) 1     1     1     2    2     6     7     10    19    20   25   25
b) 24    28    32    5    83    83    46    41    74    29   28   32
c) 13624 15756 17407 1482 39429 37947 20293 16718 26052 5707 2132 3783

a) 27   29   39    40    43    48    54   72    97
b) 49   32   76    89    101   88    65   98    100
c) 9932 1651 16250 21892 25506 18785 6188 10959 1820

a) Starting position of first group is from the beginning.
      Starting position of second group is from the end.
b) Ending position of first group is from the beginning. 
      Ending position of second group is from the end.
c) Total of both groups.

Total of the starting and ending positions (a + b): 1771 = 7 x 11 x 23. This is a marvellous symmetrical number where the outside 1001 is a multiple of 7 and 13, and where the inside 77 is clearly identifiable as divisible by 7. (Curious coincidence: The 1771st Chinese character in Big-5 is ?, which means (it) hurts; sore; to love dearly, and seems appropriate to the covenant.)

2.3Beginning with the first word and taking every Nth after, the following values of N pull sequences whose total is a multiple of 7:

28 30 41 58 62 75 77 83 92

Total of the N values: 546 = 2 x 3 x 7 x 13.

2.4Taking every Nth word, the following values of N produce totals divisible by 13:

2 16 21 26 32 45 61 64 68 76 100

Total of the N values: 511 = 7 x 73.

2.4.1Whether one begins with the first word or simply takes every Nth word, only two values of N produce totals divisible by 13:

16 26

The total of these two N values: 42 = 2 x 3 x 7.

2.5.1Odd positioned words from 2:

257 31 170 360 103 838 443 261 21 443 501 26 332 304 205 548 340 501 317 115 49 31 52 43 313 286 76 17 360 103 376 304 31 130 101 407 22 438 220 172 116 317 26 26 146 26 31 120 131 72 340 191 126 29 31 184 409 102 62 100 106 261 120 730 41 541 162 60 65 30 405 12 212 550 60 620 57 130 561 31 52 58 212 115 406 401 26 257 501 375 608 160 20 600 20 42 449 640 60 20 770 1142

Total: 23920 = 24 x 5 x 13 x 23. SF: 49 = 72 SF: 14 = 2 x 7.

2.5.1.1Odd positioned groups of 3 from 2.5.1:

360 103 838 443 501 26 548 340 501 31 52 43 17 360 103 130 101 407 172 116 317 26 31 120 191 126 29 102 62 100 730 41 541 30 405 12 620 57 130 58 212 115 257 501 375 600 20 42 20 770 1142

Total: 12974 = 2 x 13 x 499.

2.5.1.2Even positioned groups of 3 from 2.5.1:

257 31 170 443 261 21 332 304 205 317 115 49 313 286 76 376 304 31 22 438 220 26 26 146 131 72 340 31 184 409 106 261 120 162 60 65 212 550 60 561 31 52 406 401 26 608 160 20 449 640 60

Total: 10946 = 2 x 13 x 421.

2.5.1.3Last half of 51 from 2.5.1:

191 126 29 31 184 409 102 62 100 106 261 120 730 41 541 162 60 65 30 405 12 212 550 60 620 57 130 561 31 52 58 212 115 406 401 26 257 501 375 608 160 20 600 20 42 449 640 60 20 770 1142

Total: 12922 = 2 x 7 x 13 x 71.

2.5.1.4First half of 51 from 2.5.1:

257 31 170 360 103 838 443 261 21 443 501 26 332 304 205 548 340 501 317 115 49 31 52 43 313 286 76 17 360 103 376 304 31 130 101 407 22 438 220 172 116 317 26 26 146 26 31 120 131 72 340

Total: 10998 = 2 x 32 x 13 x 47.

2.5.2Even positioned words from 2:

26 345 50 438 621 100 401 501 100 606 902 126 516 31 130 40 100 210 31 130 311 211 210 146 31 31 210 186 438 621 345 116 205 521 26 124 360 103 26 518 340 342 288 100 317 26 254 221 208 447 72 351 456 161 165 126 100 106 102 680 322 345 296 257 51 58 65 51 360 110 350 504 510 257 81 612 50 376 501 259 296 64 50 501 310 415 30 12 61 130 53 1 160 488 275 69 60 20 47 60 60

Total: 23582 = 2 x 13 x 907.

2.5.3Odd positioned groups of 29 from 2.5:

257 26 31 345 170 50 360 438 103 621 838 100 443 401 261 501 21 100 443 606 501 902 26 126 332 516 304 31 205 103 621 376 345 304 116 31 205 130 521 101 26 407 124 22 360 438 103 220 26 172 518 116 340 317 342 26 288 26 62 102 100 680 106 322 261 345 120 296 730 257 41 51 541 58 162 65 60 51 65 360 30 110 405 350 12 504 212 257 12 501 61 375 130 608 53 160 1 20 160 600 488 20 275 42 69 449 60 640 20 60 47 20 60 770 60 1142

Total: 29400 = 23 x 3 x 52 x 72.

2.5.4Even positioned groups of 29 from 2.5:

130 548 40 340 100 501 210 317 31 115 130 49 311 31 211 52 210 43 146 313 31 286 31 76 210 17 186 360 438 100 146 317 26 26 31 254 120 221 131 208 72 447 340 72 191 351 126 456 29 161 31 165 184 126 409 100 102 106 510 550 257 60 81 620 612 57 50 130 376 561 501 31 259 52 296 58 64 212 50 115 501 406 310 401 415 26 30

Total: 18102 = 2 x 3 x 7 x 431.

2.5.4.1Odd positioned groups of 3 from 2.5.4:

340 100 501 115 130 49 52 210 43 286 31 76 360 438 100 26 31 254 208 72 447 351 126 456 165 184 126 106 510 550 620 612 57 561 501 31 58 64 212 406 310 401

Total: 10276 = 22 x 7 x 367. SF: 378 = 2 x 33 x 7.

2.5.4.1.1Odd positioned words from 2.5:.4.1:

340 501 130 52 43 31 360 100 31 208 447 126 165 126 510 620 57 501 58 212 310

Total: 4928 = 26 x 7 x 11.

2.5.4.1.2Even positioned words from 2.5:.4.1:

100 115 49 210 286 76 438 26 254 72 351 456 184 106 550 612 561 31 64 406 401

Total: 5348 = 22 x 7 x 191.

2.5.4.1.2.1Odd positioned groups of 7 from 2.5.4.1.2:

100 115 49 210 286 76 438 550 612 561 31 64 406 401

Total: 3899 = 7 x 557.

2.5.4.1.2.1.1Last half of 7 from 2.5.4.1.2.1:

550 612 561 31 64 406 401

Total: 2625 = 3 x 53 x 7.

2.5.4.1.2.1.2First half of 7 from 2.5.4.1.2.1:

100 115 49 210 286 76 438

Total: 1274 = 2 x 72 x 13.

2.5.4.1.2.2Even positioned groups of 7 from 2.5.4.1.2:

26 254 72 351 456 184 106

Total: 1449 = 32 x 7 x 23.

2.5.4.2Even positioned groups of 3 from 2.5.4:

130 548 40 210 317 31 311 31 211 146 313 31 210 17 186 146 317 26 120 221 131 340 72 191 29 161 31 409 100 102 257 60 81 50 130 376 259 52 296 50 115 501 415 26 30

Total: 7826 = 2 x 7 x 13 x 43. SF: 65 = 5 x 13.

2.6Divide the words into four categories depending on the odd/even value of the word, and the odd/even value of their positions.

2.6.1Words that are both odd in position and value, or even in position and value together form a larger group. Their total: 23814 = 2 x 35 x 72. This breaks down perfectly into their separate groups.

2.6.1.1Words that are in odd positions and having odd values:

a) 1   3  9   13  15  17 19  21  29  35  37  39  41 43 47 49  55 59
b) 257 31 103 443 261 21 443 501 205 501 317 115 49 31 43 313 17 103

a) 65 69  71  83  93 97  103 107 109 113 123 129 131 137 141 153 157
b) 31 101 407 317 31 131 191 29  31  409 261 41  541 65  405 57  561

a) 159 167 171 175 177 179 193 (Word position.)
b) 31  115 401 257 501 375 449 (Word value.)

Total of the words (b): 9492 = 22 x 3 x 7 x 113.

2.6.1.2Words that are in even positions and having even values:

a) 2  6  8   12  18  20  22  24  26  30  32 34  36  40  46  48  54
b) 26 50 438 100 100 606 902 126 516 130 40 100 210 130 210 146 210

a) 56  58  64  70 72  74  78 80  82  84  86  88  92 94  98  102 106
b) 186 438 116 26 124 360 26 518 340 342 288 100 26 254 208 72  456

a) 112 114 116 118 120 122 126 132 138 140 142 144 146 152 154 156
b) 126 100 106 102 680 322 296 58  360 110 350 504 510 612 50  376

a) 162 164 166 170 174 176 180 186 188 194 196 200 202
b) 296 64  50  310 30  12  130 160 488 60  20  60  60

Total: 14322 = 2 x 3 x 7 x 11 x 31.

2.6.2Words that are of mixed value in position and value form their own group: 23688 = 23 x 32 x 7 x 47. This group does not break down perfectly since it is mixed and not pure.

2.741 (a prime number) words are prime numbers, but there is no other feature.

2.7.1The remaining 162 words are not prime numbers. The total of their positions: 17238 = 2 x 3 x 132 x 17.

2.817 words are multiples of 7. Their sum produces an extra factor of 7.

a) 17 24  36  41 46  54  80  105 108 112 122 142 144 160 169 191 201
b) 21 126 210 49 210 210 518 126 161 126 322 350 504 259 406 42  770

a) Word position.
b) Word value.

Total of the words (b): 4410 = 2 x 32 x 5 x 72.

2.922 of the words are multiples of 13. Once gain their sum produces an extra factor of 7.

a) 2  23 30  40  45 51  67  70 78 85 87 91 92 96  98  104 134 137 155
b) 26 26 130 130 52 286 130 26 26 26 26 26 26 221 208 351 65  65  130

a) 161 173 180  (Word position.)
b) 52  26  130  (Word value.)

Total of the words (b): 2184 = 23 x 3 x 7 x 13.

2.10When the words are added one by one, 22 times the accumulated total will be a multiple of 7.

a) 7     10    12    19    22    29    35    36    69    87    97
b) 360   621   100   443   902   205   501   210   101   26    131
c) 1239  2401  3339  5509  7518  9058  10717 10927 17374 21245 22617

a) 99    103   115   117   120   129   133   150   152   180   203
b) 72    191   102   62    680   41    162   81    612   130   1142
c) 22897 23947 26187 26355 27237 29715 30527 34209 35441 41678 47502

a) Word position.
b) Word value.
c) Accumulated total at that point.

Total of the positions (a): 1924 = 22 x 13 x 37.

2.11When the words are added one by one, 16 times the accumulated total will be a multiple of 13.

a) Word position:     8     17    24    28    32    52    54    58
b) Word value:        438   21    126   31    40    31    210   438
c) Accumulated total: 1677  4966  7670  8853  9776  13234 13520 14521

a) 73    144   171   175   179   180   192   203
b) 22    504   401   257   375   130   69    1142
c) 17953 32539 39871 40599 41548 41678 44174 47502

Total of the words (b): 4235 = 5 x 7 x 112

2.12.1When the words are added one by one, almost half the time the result will be an odd valued number. The total of the positions where this occurs: 9597 = 3 x 7 x 457.

2.12.2When the words are added one by one, almost half the time the result will be an even valued number. The total of the positions where this occurs: 11109 = 3 x 7 x 232 SF: 56 = 23 x 7. SF: 13.

2.13There are exactly 119 (7 x 17) unique word values.

2.13.132 of the unique word values appeared N number of times in the passage, where N is a prime number.

a) 12  30  50  51  52  58  65  72  102 103  106  115 116 120  126 130
b) 2   2   3   2   2   2   2   2   2   3    2    2   2   2    3   5
c) 24  60  150 102 104 116 130 144 204 309  212  230 232 240  378 650

a) 146 160 205 210 212 261 296 304 317 340  345  376 401 438  443 621
b) 2   2   2   3   2   2   2   2   3   3    3    2   2   3    2   2
c) 292 320 410 630 424 522 592 608 951 1020 1035 752 802 1314 886 1242

a) Unique word value.
b) Number of occurrences that is a prime number.
c) Total value in passage (a x b).

Total of the words (c): 15085 = 5 x 7 x 431.

2.13.2The remaining unique word values have a number of occurrences that is not a prime number.

a) 1   17  20  21  22  26   29  31  40  41   42  43   47  49  53
b) 1   1   4   1   1   9    1   10  1   1    1   1    1   1   1
c) 1   17  80  21  22  234  29  310 40  41   42  43   47  49  53

a) 57  60  61  62  64  69   76  81  100 101  110 124  131 161 162
b) 1   6   1   1   1   1    1   1   6   1    1   1    1   1   1
c) 57  360 61  62  64  69   76  81  600 101  110 124  131 161 162

a) 165 170 172 184 186 191  208 211 220 221  254 257  259 275 286
b) 1   1   1   1   1   1    1   1   1   1    1   4    1   1   1
c) 165 170 172 184 186 191  208 211 220 221  254 1028 259 275 286

a) 288 310 311 313 322 332  342 350 351 360  375 405  406 407 409
b) 1   1   1   1   1   1    1   1   1   4    1   1    1   1   1
c) 288 310 311 313 322 332  342 350 351 1440 375 405  406 407 409

a) 415 447 449 456 488 501  504 510 516 518  521 541  548 550 561
b) 1   1   1   1   1   6    1   1   1   1    1   1    1   1   1
c) 415 447 449 456 488 3006 504 510 516 518  521 541  548 550 561

a) 600 606 608 612 620 640  680 730 770 838  902 1142
b) 1   1   1   1   1   1    1   1   1   1    1   1
c) 600 606 608 612 620 640  680 730 770 838  902 1142

a) Unique word value.
b) Number of occurrences that is not a prime number.
c) Total value in passage (a x b).

Total of the words (c): 32417 = 7 x 11 x 421.

2.13.3The total of their positions in the passage is a prime number for 29 unique word values.

a) 20  21  22  26  29  30  42  43  49  65  76  102 126 131 146
b) 769 17  73  701 107 313 191 47  41  271 53  233 241 97  137

a) 170 172 191 375 407 409 449 541 548 561 608 620 730 838
b) 5   79  103 179 71  113 193 131 31  157 181 151 127 11

a) Unique word value.
b) Position total of that word value.

Sum of the positions (b): 4823 = 7 x 13 x 53.

2.13.4The remaining unique word values have position totals that are not prime numbers.

a) 1   12  17  31  40  41  47  50  51  52  53  57  58  60   61   
b) 184 319 55  640 32  129 198 326 266 206 182 153 295 1077 178  

a) 62  64  69  72  81  100 101 103 106 110 115 116 120 124  130  
b) 117 164 192 201 150 385 69  144 237 140 206 145 220 72   472  

a) 160 161 162 165 184 186 205 208 210 211 212 220 221 254  257  
b) 369 108 133 110 111 56  95  98  136 44  310 77  96  94   452  

a) 259 261 275 286 288 296 304 310 311 313 317 322 332 340  342  
b) 160 138 190 51  86  288 90  170 42  49  210 122 25  216  84   

a) 345 350 351 360 376 401 405 406 415 438 443 447 456 488  501  
b) 190 142 104 276 217 185 141 169 172 141 32  100 106 188  575  

a) 504 510 516 518 521 550 600 606 612 621 640 680 770 902  1142 
b) 144 146 26  80  68  147 187 20  152 70  195 120 201 22   203  

a) Unique word value.
b) Position total of that word value.

Total of the positions (b): 15883 = 7 x 2269.

2.14The 203 words can be grouped into alternating groups of M and N number of words where M and N are multiples of 7.

2.14.1Alternating groups of 14 and 7.

2.14.1.1Groups of 14: 30511 = 13 x 2347.

2.14.1.2Groups of 7: 16991 = 13 x 1307.

2.14.2Alternating groups of 98 and 7.

2.14.2.1Groups of 98: 45903 = 3 x 11 x 13 x 107.

2.14.2.2Groups of 7: 1599 = 3 x 13 x 41.

2.15Nine words have the unique ability of dividing the rest of the words into what is between their Nth and Nth last occurrences and what is not between them.

Between & Not Between The Nth & Nth Last Words
Word ValueNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
25724137 = 3 x 7 x 197.43365 = 3 x 5 x 72 x 59.
2642119 = 13 x 163.45383 = 13 x 3491.
315286 = 2 x 11 x 13. SF: 26 = 2 x 13.47216 = 24 x 13 x 227.
401135287 = 7 x 71212215 = 5 x 7 x 349.
126117780 = 22 x 5 x 7 x 127. SF: 143 = 11 x 13.29722 = 2 x 7 x 11 x 193.
12016006 = 2 x 3 x 7 x 11 x 13.41496 = 23 x 3 x 7 x 13 x 19.
1021168 = 23 x 3 x 7.47334 = 2 x 3 x 73 x 23. SF: 49 = 72 SF: 14 = 2 x 7.
29618771 = 72 x 179.38731 = 7 x 11 x 503.
160121 = 3 x 7.47481 = 3 x 72 x 17 x 19.

2.15.1The sum of the 9 words (column 1):

257 26 31 401 126 120 102 296 160

Total: 1519 = 72 x 31.

2.15.2From the list in 2.15.1, take the odd positioned:

257 31 126 102 160

Total: 676 = 22 x 132.

2.15.3.1From the list in 2.15.1, find all those where the first digit is odd:

31 126 120 102 160

Total: 539 = 72 x 11.

2.15.3.2From the list in 2.15.1, find all those where the first digit is even:

257 26 401 296

Total: 980 = 22 x 5 x 72.

2.15.4The chart below lists the positions where a word appeared as its Nth or Nth last occurrence.

a) Word value:        257 26 31 401 126 120 102 296 160 
b) Nth/Nth last:      2   4  5  1   1   1   1   1   1   
c) Nth position:      128 78 50 14  24  95  115 126 183 
d) Nth last position: 148 87 52 171 112 125 118 162 186 

Total of the Nth and Nth last positions (c + d): 1974 = 2 x 3 x 7 x 47.

2.16Load the words into a 7 column by 29 row rectangle.

2.16.1Outside (perimeter): 16583 = 7 x 23 x 103. SF: 133 = 7 x 19. SF: 26 = 2 x 13.

2.16.2Inside: 30919 = 72 x 631.

2.16.3Middle column: 7385 = 5 x 7 x 211.

2.16.4Middle row: 1599 = 3 x 13 x 41.

2.16.5Rectangle divided into quarters: 24892 = 22 x 72 x 127.

2.16.6Reverse of previous: 22610 = 2 x 5 x 7 x 17 x 19.

2.16.7First column: 7709 = 13 x 593.

2.16.8First row: 1239 = 3 x 7 x 59.

2.16.9Total of columns that are prime numbers: 25767 = 32 x 7 x 409.

2.16.10Total of columns that are not prime numbers: 21735 = 33 x 5 x 7 x 23.

2.16.11God’s name in Hebrew has a value of 26. The number 26 appears in exactly 7 rows of the rectangle. The sum of these rows: 9968 = 24 x 7 x 89. SF: 104 = 23 x 13.

2.16.12The last appearance of the number 26 is in the 25th row. The total of the first 25 rows: 40599 = 32 x 13 x 347.

2.16.13The total of the remaining rows after the last 26: 6903 = 32 x 13 x 59.

First And Last

3The first and last letters of all 203 words: 24332 = 22 x 7 x 11 x 79. The sum of the factors is a symmetrical 101 showing one God at the beginning and end of the covenant.

3.1The letters of God’s name in Hebrew (10-5-6-5) are applied 13 times to count through the 203 totals of the first and last letters.

a) 10 5  6   5   10  5  6  5  10 5  6  5  10  5  6  5   10  5   6   5
b) 10 15 21  26  36  41 47 52 62 67 73 78 88  93 99 104 114 119 125 130
c) 10 15 21  26  36  41 47 52 62 67 73 78 88  93 99 104 114 119 125 130
d) 60 45 201 406 205 46 43 31 45 70 8  15 100 31 12 51  100 100 10  51

a) 10  5   6   5   10  5   6   5   10  5   6   5   10 5  6   5   10 5
b) 140 145 151 156 166 171 177 182 192 197 203 208 15 20 26  31  41 46
c) 140 145 151 156 166 171 177 182 192 197 203 5   15 20 26  31  41 46
d) 110 36  420 6   50  401 201 14  69  120 150 110 45 45 406 406 46 205

a) 6  5   10 5  6  5  10 5  6   5   10  5   6   5
b) 52 57  67 72 78 83 93 98 104 109 119 124 130 135
c) 52 57  67 72 78 83 93 98 104 109 119 124 130 135
d) 31 310 70 14 15 7  31 8  51  31  100 45  51  30

a) Letter from the Name.
b) Count.
c) Count adjusted to 203.
d) First/last total found.

Sum of the first/last totals (d): 5264 = 24 x 7 x 47.

3.2Just like the words, the totals of the first/last letters can be paired Nth and Nth last to find sums divisible by 13. There are exactly 13 of them.

a) Nth total:   12  18  27  33  37  39  58  61  62  70  76  91  97
b) Value:      100 100 202 340 306 15  430 46  45  15  41  15  41
c) Nth last:   192 186 177 171 167 165 146 143 142 134 128 113 107
d) Value:      69  160 201 401 45  11  12  6   150 11  206 401 11
e) Sum:        169 260 403 741 351 26  442 52  195 26  247 416 52

Sum of the positions (a + c): 2652 = 22 x 3 x 13 x 17.

3.3Precisely 28 pairs of word groups, symmetrically positioned Nth and Nth last are together and individually multiples of 13.

a) 2    3     8    8     15    22   24   25    28   28    33    38
b) 10   44    23   38    82    29   38   94    66   79    95    96
c) 2392 12649 6526 10933 16991 2938 4407 15002 9009 10855 13065 10985

a) 40  41   43    47   47   48   49   49   51   52   55   56   61  61
b) 43  59   101   51   61   86   54   69   74   61   69   76   62  87
c) 676 4316 11310 1001 3757 7735 1586 4602 4771 2756 3016 4264 247 4550

a) 63   67   (Nth start position of first group. Nth last of next group.)
b) 87   79   (Nth end position of first group. Nth last of next group.)
c) 4303 1846 (Total of both groups.)

Total of the start and end positions (a + b): 2877 = 3 x 7 x 137. SF: 147 = 3 x 72. Total of the starting positions (a): 1064 = 23 x 7 x 19. Total of the ending positions (b): 1813 = 72 x 37.

3.4.1Beginning with the first total in feature 3 and taking every 7th after, the total is 4081 (7 x 11 x 53).

3.4.2Taking every 7th, the total is 3304 (23 x 7 x 59).

3.4.3The difference is 777 (3 x 7 x 37).

3.5Beginning with the first total in feature 3 and taking every Nth after, the following values of N produce multiples of 13.

13 56 59 68 98

Total of the N values: 294 = 2 x 3 x 72.

3.6Divide the 203 totals from feature 3 into groups of 29.

3.6.1Odd positioned groups of 29: 14665 = 5 x 7 x 419.

3.6.2Even positioned groups of 29: 9667 = 7 x 1381.

3.6.3The difference between the groups of 29: 4998 = 2 x 3 x 72 x 17.

3.7.182 of the totals in feature 3 are odd valued. The total of their positions in the list: 8034 = 2 x 3 x 13 x 103.

3.7.2The remaining 121 (112) totals are even valued. The total of their positions in the list: 12672 = 27 x 32 x 11. This is not divisible by 7 or 13, but it is curiously coincidental that the factor 11 shows up three times.

3.842 of the totals in feature 3 are purely odd (in position and value). 61 are purely even. The sum of the totals that are pure: 12220 = 22 x 5 x 13 x 47.

3.9Divide the list in feature 3 into numbers that are prime numbers and those that are not.

3.9.1Exactly 39 are prime numbers.

a) 3  9  14  17 23 28 38 43 44 47 50 52 59 65 71 76 83 90 93 97 107
b) 31 41 401 11 11 31 31 31 11 43 31 31 41 31 7  41 7  7  31 41 11

a) 108 109 113 129 134 137 150 159 165 171 178 184 185 189 191 196
b) 11  31  401 41  11  11  11  31  11  401 11  2   19  19  29  19

a) 198 199 (Word position.)
b) 47  19  (First/last total.)

Total of the positions in the list (a): 4004 = 22 x 7 x 11 x 13. SF: 35 = 5 x 7.

3.9.2The remaining 164 are not prime numbers. The total of their positions: 16702 = 2 x 7 x 1193.

3.1029 of the first/last totals in feature 3 are in positions that are multiples of 7.

310 401 201 31 500 301 206 36 202 15 10 42 15 8 120 120 100 6 22 110 12 50 32 201 51 14 19 19 150

Total: 3304 = 23 x 7 x 59.

3.11When the numbers in feature 3 are added one by one, 29 times the total will be divisible by 7.

a) 3   8    12   19   24   34   39   45   55   66   67    69    75
b) 31  430  100  405  100  100  15   32   6    205  70    95    430
c) 252 1197 1414 2982 4039 6069 7126 7637 8505 9947 10017 10332 11116

a) 80    86    92    112   125   128   142   145   153   155   164
b) 8     206   15    120   10    206   150   36    54    90    45
c) 11242 11928 12166 13832 15442 15666 16394 16842 17969 18109 19061

a) 174   180   194   198   203   (Word position.)
b) 30    90    120   47    150   (First/last total.)
c) 19873 20307 23002 23828 24332 (Accumulated total.)

Total of the positions (a): 2847 = 3 x 13 x 73.

3.12There are 72 unique totals in feature 3.

3.12.1The odd valued unique totals in feature 3: 2877 = 3 x 7 x 137. SF: 147 = 3 x 72.

3.12.2The even valued unique totals in feature 3: 9334 = 2 x 13 x 359.

3.12.3The unique values in feature 3 that appeared an odd number of times total 14756 (22 x 7 x 17 x 31) in the entire passage.

3.12.4The unique values in feature 3 that appeared an even number of times total 9576 (23 x 32 x 7 x 19) in the entire passage.

3.12.5Total of the positions in feature 3 of the unique values whose sum in the entire passage is an odd number: 3430 = 2 x 5 x 73 SF: 28 = 22 x 7

3.12.6Total of the positions in feature 3 of the unique values whose sum in the entire passage is an even number: 17276 = 22 x 7 x 617.

3.12.7Sum of the unique values in feature 3 whose total positions is odd: 14196 = 22 x 3 x 7 x 132.

3.12.8Sum of the unique values in feature 3 whose total positions is even: 10136 = 23 x 7 x 181.

3.13Divide the 203 numbers in feature 3 into alternating groups of 7 and 91.

3.13.1Groups of 7: 2359 = 7 x 337.

3.13.2Groups of 91: 21973 = 7 x 43 x 73.

The First Letter Of Each Word

4Total of the first letter of each word: 7959 = 3 x 7 x 379.

4.1The letter values of God’s name in Hebrew (10-5-6-5) are applied 13 times to count through the list of first letters.

a) 10 5  6  5  10 5  6  5  10 5  6  5  10 5  6  5   10  5   6   5   10
b) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130 140
c) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130 140
d) 20 5  1  6  5  6  3  1  40 60 2  10 70 1  8  50  70  70  6   50  70

a) 5   6   5   10  5   6   5   10  5   6   5   10 5  6  5  10 5  6  5
b) 145 151 156 166 171 177 182 192 197 203 208 15 20 26 31 41 46 52 57
c) 145 151 156 166 171 177 182 192 197 203 5   15 20 26 31 41 46 52 57
d) 30  20  1   20  1   1   5   60  60  70  80  5  5  6  6  6  5  1  300

a) 10 5  6  5  10 5  6   5   10  5   6   5   (Letter from the Name.)
b) 67 72 78 83 93 98 104 109 119 124 130 135 (Count.)
c) 67 72 78 83 93 98 104 109 119 124 130 135 (Count adjusted to 203.)
d) 60 6  10 6  1  6  50  30  70  40  50  10  (First letter found.)

Total of the letters (d): 1575 = 32 x 52 x 7.

4.2.1Beginning with the first letter in feature 4 and taking every Nth after, the following values of N produce totals divisible by 13:

6 13 21 25 29 31 44 50 57 66 73 80 81 83 85 86 93

Total of the N values: 923 = 13 x 71. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

4.2.2Taking every Nth value from feature 4, the following values of N produce multiples of 13:

12 24 52 60 63 77 83

Total of the N values: 371 = 7 x 53.

4.3Divide the first letters in feature 4 into two groups: odd and even.

4.3.1There are 55 odd valued first letters:

a) 3 9 13 14 15 16 17 19 20 21 28 29 36 42 43 46 47 48 50 52 54 55 59
b) 1 1 5  1  5  1  5  5  5  1  1  5  5  1  1  5  3  5  1  1  5  5  1

a) 65 66 71 76 93 96 97 113 126 129 134 137 143 149 150 156 158 162 164
b) 1  5  1  1  1  1  1  1   1   1   1   1   5   5   1   1   1   5   5

a) 167 168 169 171 176 177 178 181 182 184 188 198 201
b) 5   1   1   1   5   1   1   5   5   1   1   7   5

Total of the odd valued first letters: 147 = 3 x 72.

4.3.2This means the remaining 148 first letters are even valued. Their total: 7812 = 22 x 32 x 7 x 31.

4.3.3The difference in the total of the positions of the odd and even valued first letters: 9984 = 28 x 3 x 13.

4.4Divide the first letters into four groups.

  1. Total of the first letters that are odd valued and odd positioned: 73.
  2. Total of the first letters that are odd valued and even positioned: 4140.
  3. Total of the first letters that are even valued and odd positioned: 74.
  4. Total of the first letters that are even valued and even positioned: 3672.

4.4.1Groups A and D are purely odd or purely even and go together: 3745 = 5 x 7 x 107. SF: 119 = 7 x 17.

4.4.2Groups B and C are mixed and go together: 4214 = 2 x 72 x 43.

4.5.137 of the first letters are prime numbers.

a) 13 15 17 19 20 27 29 36 45 46 47 48 54 55 63 66 73 79 84 115 117
b) 5  5  5  5  5  2  5  5  2  5  3  5  5  5  2  5  2  2  2  2   2

a) 118 133 138 143 149 152 161 162 164 167 170 176 181 182 198 201
b) 2   2   2   5   5   2   2   5   5   5   2   5   5   5   7   5

a) Word position.
b) First letter of word.

Total of the prime numbers: 143 = 11 x 13.

4.5.2The remaining 166 first letters are not prime numbers. Their total has no feature, but the total of their positions does: 17043 = 3 x 13 x 19 x 23.

4.6.146 of the first letters are in positions that are prime numbers.

a) 2  3 5  7   11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79
b) 10 1 80 300 6  5  5  5  6  5  6  6  6  1  3  40 1  6  60 1  2  2

a) 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173
b) 6  80 1  50  30  6   30  1   6   40  1   20  5   20  50  6   5   10

a) 179 181 191 193 197 199 (Prime number word position.)
b) 70  5   20  10  60  10  (First letter of word.)

Total of the first letters: 1099 = 7 x 157.

4.6.2This means the remaining 157 first letters not in positions that are prime numbers is also a multiple of 7. Not only is it a multiple of 7, it is a multiple of 7 three times: 6860 = 22 x 5 x 73.

4.717 of the first letters are multiples of 7.

a) 12 18 34 40 81 88 105 112 114 119 140 142 155 179 180 198 203
b) 70 70 70 70 70 70 70  70  70  70  70  70  70  70  70  7   70

a) Word position.
b) First letter of word.

The total of these letters yields an extra factor of 7: 1127 = 72 x 23.

4.8When the first letters are added one by one, 31 times the total will be divisible by 7.

a) 8   10  19  25   29   38   44   46   49   59   67   78   82   92
b) 30  20  5   30   5    30   10   5    6    1    60   10   300  10
c) 497 518 686 1078 1092 1799 1897 1904 1918 2317 2457 2933 3311 3521

a) 102  108  118  119  133  139  140  143  146  157  165  172  186
b) 8    6    2    70   2    20   70   5    6    50   6    40   100
c) 3808 3976 4249 4319 4991 5075 5145 5320 5362 5593 5698 5768 6216

a) 192  194  202  203   (Word position.)
b) 60   60   60   70    (First letter of word.)
c) 7007 7077 7889 7959  (Accumulated total at that point.)

Total of the letters: 1157 = 13 x 89.

4.9The chart below quantifies certain aspects of each letter in feature 4.

a) 1    2    3  5    6    7   8   10   20   30  40  50   60   70   80  90 100 200 300  600
b) 32   14   1  21   35   1   3   18   9    11  6   9    7    16   3   1  4   3   7    2
c) 32   28   3  105  210  7   24  180  180  330 240 450  420  1120 240 90 400 600 2100 1200
d) 3173 1475 47 1943 3155 198 333 2019 1113 758 546 1140 1082 1722 205 69 700 251 395  382

a) Letter value.
b) Number of occurrences in feature 4.
c) Total value (a x b).
d) Total of the positions in feature 4.

4.9.1Total of the positions of letters that appeared an odd number of times: 10689 = 3 x 7 x 509.

4.9.2Total of the positions of letters that appeared an even number of times: 10017 = 33 x 7 x 53.

4.9.3Total of the number of appearances of letters whose positions was an odd number: 147 = 3 x 72.

4.9.4

Total of the number of appearances of letters whose positions was an even number: 56 = 23 x 7. SF: 13.

4.9.5Total value of all letters in feature 4 where the number of occurrences was a prime number: 4914 = 2 x 33 x 7 x 13.

4.9.6Total value of all letters in feature 4 where the number of occurrences was not a prime number: 3045 = 3 x 5 x 7 x 29.

4.9.7Total of the positions of all letters where their total value was a prime number: 245 = 5 x 72.

4.9.8Total of the positions of all letters where their total value was not a prime number: 20461 = 7 x 37 x 79.

4.10The first letters can be arranged as alternating groups of 35 and 21 letters.

4.10.1Groups of 35: 6720 = 26 x 3 x 5 x 7.

4.10.2Groups of 21: 1239 = 3 x 7 x 59.

4.11Ten of the first letters divide the rest of the list in feature 4 into what is between and what is not between their Nth and Nth last occurrences.

Between & Not Between The Nth & Nth Last First Letter
First LetterNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
1035110 = 2 x 5 x 7 x 73.2849 = 7 x 11 x 37.
1062835 = 34 x 5 x 7.5124 = 22 x 3 x 7 x 61.
1090 =7959 = 3 x 7 x 379.
125607 = 32 x 7 x 89.2352 = 24 x 3 x 72
1141960 = 23 x 5 x 725999 = 7 x 857.
115644 = 22 x 7 x 23.7315 = 5 x 7 x 11 x 19. SF: 42 = 2 x 3 x 7.
1160 =7959 = 3 x 7 x 379.
3032898 = 2 x 32 x 7 x 23.5061 = 3 x 7 x 241.
573913 = 7 x 13 x 43. SF: 63 = 32 x 7. SF: 13.4046 = 2 x 7 x 172
10011582 = 2 x 7 x 113.6377 = 7 x 911.

4.11.1Total of the letters where this is true (column 1): 169 = 132. SF: 26 = 2 x 13.

a) Letter from column 1:            10  10  10 1   1   1   1  30  5   100
b) Nth/Nth last occurrence:         3   6   9  2   14  15  16 3   7   1
c) Nth position in feature 4:       44  78  91 9   76  93  96 25  36  141
d) Nth last position in feature 4:  193 173 92 184 126 113 97 109 162 190

4.11.2Sum of the Nth positions (c): 689 = 13 x 53.

4.11.3.1Total of letters where the Nth occurrence was an odd number: 156 = 22 x 3 x 13.

4.11.3.2Total of letters where the Nth occurrence was an even number: 13.

4.11.4.1Total of letters where the Nth last position was an odd number: 52 = 22 x 13.

4.11.4.2Total of letters where the Nth last position was an odd number: 117 = 32 x 13.

The Last Letter Of Each Word

5Total of the last letter of each word: 16373 = 7 x 2339.

5.1The letter values of God’s name in Hebrew (10-5-6-5) are applied 8 times to just count through the list in feature 5.

a) 10 5  6   5   10  5  6  5  10 5  6  5  10 5  6  5   10  5   6   5
b) 10 15 21  26  36  41 47 52 62 67 73 78 88 93 99 104 114 119 125 130
c) 10 15 21  26  36  41 47 52 62 67 73 78 88 93 99 104 114 119 125 130
d) 40 40 200 400 200 40 40 30 5  10 6  5  30 30 4  1   30  30  4   1

a) 10  5   6   5   10  5   6   5   10  5   6   5   (Name letter.)
b) 140 145 151 156 166 171 177 182 192 197 203 208 (Count.)
c) 140 145 151 156 166 171 177 182 192 197 203 5   (Adjusted to 203.)
d) 40  6   400 5   30  400 200 9   9   60  80  30  (Last letter found.)

Total (d): 2415 = 3 x 5 x 7 x 23.

5.1.1The odd valued letters from the result in feature 5.1:

5 5 1 1 5 9 9

Total of these letters: 35 = 5 x 7.

5.1.2The even valued letters from the result in feature 5.1:

40 40 200 400 200 40 40 30 10 6 30 30 4 30 30 4 40 6 400 30 400 200 60 80 30

Total: 2380 = 22 x 5 x 7 x 17.

5.1.2.1Odd positioned letters from the result in feature 5.1.2:

40 200 200 40 10 30 4 30 40 400 400 60 30

Total: 1484 = 22 x 7 x 53.

5.1.2.2Even positioned letters from the result in feature 5.1.2:

40 400 40 30 6 30 30 4 6 30 200 80

Total: 896 = 27 x 7. SF: 21 = 3 x 7.

5.2The letter values of God’s name are applied 7 times.

a) 10  5   6   5   10  5   6   5   (Letter from the Name.)
b) 140 145 151 156 166 171 177 182 (Count.)
c) 40  6   400 5   30  400 200 9   (Last letter found.)

Total (d): 2236 = 22 x 13 x 43.

5.2.1Extract the odd valued letters from the result in feature 5.2:

5 5 1 1 5 9

Total: 26 = 2 x 13.

5.2.2Extract the even valued letters from the result in feature 5.2:

40 40 200 400 200 40 40 30 10 6 30 30 4 30 30 4 40 6 400 30 400 200

Total: 2210 = 2 x 5 x 13 x 17.

5.3The letter values of the Name are applied 13 times.

a) 10 5  6   5   10  5  6  5  10 5  6  5  10 5  6  5   10  5   6   5
b) 10 15 21  26  36  41 47 52 62 67 73 78 88 93 99 104 114 119 125 130
c) 10 15 21  26  36  41 47 52 62 67 73 78 88 93 99 104 114 119 125 130
d) 40 40 200 400 200 40 40 30 5  10 6  5  30 30 4  1   30  30  4   1

a) 10  5   6   5   10  5   6   5   10  5   6   5   10 5  6   5   10 5
b) 140 145 151 156 166 171 177 182 192 197 203 208 15 20 26  31  41 46
c) 140 145 151 156 166 171 177 182 192 197 203 5   15 20 26  31  41 46
d) 40  6   400 5   30  400 200 9   9   60  80  30  40 40 400 400 40 200

a) 6  5  10 5  6  5  10 5  6   5   10  5   6   5   (Name letter.)
b) 52 57 67 72 78 83 93 98 104 109 119 124 130 135 (Count.)
c) 52 57 67 72 78 83 93 98 104 109 119 124 130 135 (Adjusted to 203.)
d) 30 10 10 8  5  1  30 2  1   1   30  5   1   20  (Last letter found.)

Total (d): 3689 = 7 x 17 x 31.

5.3.1Extract the odd valued letters (d) from the result in feature 5.3:

5 5 1 1 5 9 9 5 1 1 1 5 1

Total: 49 = 72. SF: 14 = 2 x 7.

5.3.1Extract the even valued letters (d) from the result in feature 5.3:

40 40 200 400 200 40 40 30 10 6 30 30 4 30 30 4 40 6 400 30 400 200 60 80 30 40 40 400 400 40 200 30 10 10 8 30 2 30 20

Total: 3640 = 23 x 5 x 7 x 13.

5.4Exactly 7 pairs from the list of last letters, Nth and Nth last, together are multiples of 7.

a) Nth letter: 2   4   5   12  21  42  71
b) Value:      5   5   30  30  200 300 6
c) Nth last:   202 200 199 192 183 162 133
d) Value:      60  60  9   9   60  90  20
e) Sum:        65  65  39  39  260 390 26

Sum of positions (a + c): 1428 = 22 x 3 x 7 x 17.

5.598 pairs of word groups, positioned Nth and Nth last, together and individually are divisible by 7.

a) 9     10    10    11    12   12   12   12   13   13    15   16   16
b) 92    59    77    75    18   36   38   51   48   95    40   41   76
c) 14294 10710 12859 12509 1890 6552 6923 8736 8407 14105 6055 6076 11662

a) 17   17    17    19   19   19   23   23   23    25   25   26   27
b) 37   64    97    36   38   51   53   78   89    43   84   80   31
c) 5698 10157 13020 4662 5033 6846 6587 9660 10514 3829 9443 8841 1057

a) 27   28   28   28   29   30   31   31   32   33  33   33   34   35
b) 96   68   88   90   71   82   62   73   96   34  44   60   61   44
c) 9870 7119 8778 8855 7154 8085 6125 7007 8813 476 2149 5579 5180 1673

a) 35   36   36   36   36   37  37   38   38   39   42   43  44   45
b) 60   46   69   74   93   38  51   64   97   51   76   47  84   60
c) 5103 1799 5691 5817 7896 371 2184 4459 7322 1813 5586 938 5614 3430

a) 47   47   47   49   50   51   54   54   55  55   57   59   60   63
b) 69   74   93   95   81   67   78   89   58  98   63   98   77   73
c) 3892 4018 6097 5698 4270 2891 3073 3927 658 4480 1239 3822 2149 882

a) 65   66   66   69   69   70  70   71 71   73   75   79  80  80   86
b) 97   85   94   88   90   74  93   72 92   92   93   89  86  99   94
c) 2863 1771 2702 1659 1736 126 2205 84 2156 2072 2079 854 679 1617 931

a) 87  89 92
b) 99  90 101
c) 938 77 1022

a) Start of first group (Nth from the beginning).
     Start of the second group (Nth from the end).
b) End of first group (Nth from the beginning).
     End of the second group (Nth from the end).
c) Total of both groups.

Total of the positions (a + b): 10304 = 26 x 7 x 23. SF: 42 = 2 x 3 x 7.

5.641 pairs of word groups, positioned Nth and Nth last, together and individually are divisible by 13.

a) 3     4   4   4    5    6   7     8   8    9   9    9    9     11
b) 63    7   12  21   36   11  93    12  21   13  22   47   59    39
c) 12324 234 962 3523 7410 819 14807 728 3289 728 3289 8671 10790 7033

a) 13   14   14   14    15   17   19    21   23   23   24    26   28
b) 21   22   47   59    32   30   97    33   47   59   95    53   85
c) 2561 2561 7943 10062 4433 3757 12324 3471 5382 7501 10530 5707 8463

a) 32   32   36   44   44   47   48   49   51   52   58   59   87  88
b) 51   76   82   86   98   72   59   88   65   76   74   96   98  94
c) 3380 7293 6864 5889 6773 3991 2119 5031 2665 3913 1911 3705 884 676

a) Start of first group (Nth from the beginning).
     Start of the second group (Nth from the end).
b) End of first group (Nth from the beginning). 
     End of the second group (Nth from the end).
c) Total of both groups.

Total of the positions (a + b): 3325 = 52 x 7 x 19.

5.7.1The odd positioned letters from the list in feature 5: 8701 = 7 x 11 x 113.

5.7.2The even positioned letters from the list in feature 5: 7672 = 23 x 7 x 137.

5.7.3The difference between the odd and even positioned letters: 1029 = 3 x 73.

5.8Take every Nth letter from the list in feature 5. The following values of N produce totals divisible by 7:

2 4 8 24 28 49 51 56 59 61 62 74 90 91 95

Total of the N values: 754 = 2 x 13 x 29.

5.8.1Whether one begins with the first letter in feature 5 and takes every Nth after, or simply takes every Nth, the result is a multiple of 7 when N is one of the following values:

24 59 61 90

Total of the N values: 234 = 2 x 32 x 13. SF: 21 = 3 x 7.

5.9Taking every Nth letter from feature 5, the following values of N produce totals divisible by 13:

25 31 39 101

Total of the N values: 196 = 22 x 72.

5.10Just over 20 sub-features are possible when alternating groups letters are taken from the list in feature 5, and the process repeated on the results.

5.10.1Odd positioned letters from feature 5 (duplicate of 5.7.1):

200 30 30 10 40 10 400 40 6 400 200 5 200 200 200 400 40 300 300 5 40 30 30 40 200 6 30 1 10 40 40 200 30 10 5 6 6 400 4 50 6 1 5 5 6 5 30 50 40 4 200 40 50 5 1 4 400 40 10 30 30 200 4 6 40 10 20 20 10 10 5 1 6 6 5 400 4 20 400 1 30 30 5 40 5 400 5 1 200 5 600 60 9 600 9 9 90 40 60 9 90 80

Total: 8701 = 7 x 11 x 113.

5.10.2Even positioned letters from feature 5 (duplicate of 5.7.2):

5 5 20 400 40 30 400 200 30 40 400 50 400 30 10 10 30 200 1 20 300 1 200 50 30 30 200 30 400 40 5 30 200 200 5 8 10 40 5 2 40 40 200 30 1 5 40 20 2 400 4 1 70 5 5 50 30 30 40 40 40 5 5 200 1 50 10 1 6 40 80 400 6 200 10 400 30 5 200 6 90 40 30 200 6 5 10 1 10 20 9 1 60 7 90 9 60 9 40 60 60

Total: 7672 = 23 x 7 x 137.

5.10.2.1Odd positioned letters from feature 5:.2:

5 20 40 400 30 400 400 10 30 1 300 200 30 200 400 5 200 5 10 5 40 200 1 40 2 4 70 5 30 40 40 5 1 10 6 80 6 10 30 200 90 30 6 10 10 9 60 90 60 40 60

Total: 3976 = 23 x 7 x 71. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

5.10.2.2Even positioned letters from feature 5:.2:

5 400 30 200 40 50 30 10 200 20 1 50 30 30 40 30 200 8 40 2 40 30 5 20 400 1 5 50 30 40 5 200 50 1 40 400 200 400 5 6 40 200 5 1 20 1 7 9 9 60

Total: 3696 = 24 x 3 x 7 x 11.

5.10.2.2.1Odd positioned letters from feature 5:.2.2:

5 30 40 30 200 1 30 40 200 40 40 5 400 5 30 5 50 40 200 5 40 5 20 7 9

Total: 1477 = 7 x 211.

5.10.2.2.2Even positioned letters from feature 5:.2.2:

400 200 50 10 20 50 30 30 8 2 30 20 1 50 40 200 1 400 400 6 200 1 1 9 60

Total: 2219 = 7 x 317.

5.10.2.2.2.1Odd positioned groups of 5 from 5.10.2.2.2:

50 30 30 8 2 200 1 400 400 6

Total: 1127 = 72 x 23.

5.10.2.2.2.1.1     Odd positioned letters from feature 5:.2.2.2.1:

50 30 2 1 400

Total: 483 = 3 x 7 x 23.

5.10.2.2.2.1.2     Even positioned letters from feature 5:.2.2.2.1:

30 8 200 400 6

Total: 644 = 22 x 7 x 23.

5.10.2.2.2.2Even positioned groups of 5 from 5.10.2.2.2:

400 200 50 10 20 30 20 1 50 40 200 1 1 9 60

Total: 1092 = 22 x 3 x 7 x 13.

5.10.2.2.2.2.1     Odd positioned groups of 3 from 5.10.2.2.2.2:

10 20 30 40 200 1

Total: 301 = 7 x 43.

5.10.2.2.2.2.1.1       Odd positioned groups of 2 from 5.10.2.2.2.2.1:

10 20 200 1

Total: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.

5.10.2.2.2.2.1.1.1         Odd positioned letters from feature 5:.2.2.2.2.1.1:

10 200

Total: 210 = 2 x 3 x 5 x 7.

5.10.2.2.2.2.1.1.2         Even positioned letters from feature 5:.2.2.2.2.1.1:

20 1

Total: 21 = 3 x 7.

5.10.2.2.2.2.1.2         Even positioned groups of 2 from 5.10.2.2.2.2.1:

30 40

Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

5.10.2.2.2.2.2         Even positioned groups of 3 from 5.10.2.2.2.2:

400 200 50 20 1 50 1 9 60

Total: 791 = 7 x 113.

5.10.2.2.3Odd positioned groups of 5 from 5.10.2.2:

50 30 10 200 20 30 200 8 40 2 1 5 50 30 40 400 200 400 5 6 1 7 9 9 60

Total: 1813 = 72 x 37.

5.10.2.2.3.1Odd positioned letters from feature 5:.2.2.3:

50 10 20 200 40 1 50 40 200 5 1 9 60

Total: 686 = 2 x 73

5.10.2.2.3.2Even positioned letters from feature 5:.2.2.3:

30 200 30 8 2 5 30 400 400 6 7 9

Total: 1127 = 72 x 23.

5.10.2.2.4Even positioned groups of 5 from 5.10.2.2:

5 400 30 200 40 1 50 30 30 40 40 30 5 20 400 5 200 50 1 40 40 200 5 1 20

Total: 1883 = 7 x 269.

5.10.2.2.5Last half of 25 from 5.10.2.2:

5 400 30 200 40 50 30 10 200 20 1 50 30 30 40 30 200 8 40 2 40 30 5 20 400

Total: 1911 = 3 x 72 x 13.

5.10.2.2.6First half of 25 from 5.10.2.2:

1 5 50 30 40 5 200 50 1 40 400 200 400 5 6 40 200 5 1 20 1 7 9 9 60

Total: 1785 = 3 x 5 x 7 x 17.

5.11Separate the prime numbers from the last letters.

5.11.128 (22 x 7) of the last letters are prime numbers.

a) 2 4 23 39 62 69 70 78 80 85 87 91 92 98 107 108 110 124 126 141
b) 5 5 5  5  5  5  5  5  2  5  5  5  5  2  5   5   5   5   5   5

a) 149 156 165 169 172 173 179 188 (Word position.)
b) 5   5   5   5   5   5   5   7   (Last letter of word.)

Total of the positions (a): 2947 = 7 x 421.

5.11.2This leaves 175 (52 x 7) of the last letters that are not prime numbers. The total of the word positions of these letters: 17759 = 7 x 43 x 59. The total of these letters: 16237 = 13 x 1249.

5.12Only two of the last letters are multiples of 7. Providentially they are from the 106th and 188th word positions. 106 + 188 = 294 (2 x 3 x 72).

5.13.1When the last letters are added one by one, sometimes the total is a prime number. This occurs exactly 14 times. The sum of the letters where this happens: 1337 = 7 x 191.

5.13.2This means the remaining last letters where the accumulated total is not a prime number would also be divisible by 7: 15036 = 22 x 3 x 7 x 179.

5.14.1Where the number of occurrences of a last letter is an odd number, the total of the positions of these letters is a multiple of 7: 10178 = 2 x 7 x 727.

5.14.2Where the number of occurrences of a last letter is an even number, the total of the positions of these letters is also a multiple of 7: 10528 = 25 x 7 x 47.

5.14.3The total of word positions of last letters that are prime numbers: 2947 = 7 x 421.

5.14.2The total of word positions of last letters that are not prime numbers: 17759 = 7 x 43 x 59.

5.15Divide the last letters into alternating groups of M and N-number of letters where M and N are multiples of 7 or 13.

5.15.1Alternating groups of 14 and 7.

5.15.1.1Groups of 14: 11004 = 22 x 3 x 7 x 131.

5.15.1.2Groups of 7: 5369 = 7 x 13 x 59.

5.15.2Alternating groups of 14 and 13.

5.15.2.1Groups of 14: 7910 = 2 x 5 x 7 x 113.

5.15.2.2Groups of 13: 8463 = 3 x 7 x 13 x 31.

5.1618 of the last letters divide the rest of the list into what is between and what is not between their Nth and Nth last occurrences.

Between & Not Between The Nth & Nth Last Last Letter
Last LetterNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
20066335 = 5 x 7 x 181.10038 = 2 x 3 x 7 x 239.
20010826 = 2 x 7 x 59.15547 = 7 x 2221.
556279 = 3 x 7 x 13 x 23.10094 = 2 x 72 x 103. SF: 119 = 7 x 17.
564802 = 2 x 7411571 = 3 x 7 x 19 x 29.
30113139 = 7 x 1877.3234 = 2 x 3 x 72 x 11.
3065705 = 5 x 7 x 163. SF: 175 = 52 x 7.10668 = 22 x 3 x 7 x 127.
3092387 = 7 x 11 x 31. SF: 49 = 72 SF: 14 = 2 x 7.13986 = 2 x 33 x 7 x 37.
3012735 = 3 x 5 x 7215638 = 2 x 7 x 1117.
2027210 = 2 x 5 x 7 x 103. SF: 117 = 32 x 13.9163 = 72 x 11 x 17. SF: 42 = 2 x 3 x 7.
1037672 = 23 x 7 x 137.8701 = 7 x 11 x 113.
1046503 = 7 x 929. SF: 936 = 23 x 32 x 13.9870 = 2 x 3 x 5 x 7 x 47.
1073017 = 7 x 431.13356 = 22 x 32 x 7 x 53. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
400310493 = 7 x 1499.5880 = 23 x 3 x 5 x 72 SF: 28 = 22 x 7.
4083241 = 7 x 463.13132 = 22 x 72 x 67.
4013287 = 7 x 41.16086 = 2 x 3 x 7 x 383.
626909 = 3 x 72 x 47.9464 = 23 x 7 x 132 SF: 39 = 3 x 13.
643696 = 24 x 3 x 7 x 11.12677 = 7 x 1811.
60349 = 72 SF: 14 = 2 x 7.16324 = 22 x 7 x 11 x 53.

5.16.1The total of the Nth/Nth last occurrences (column 2): 104 = 23 x 13.

5.16.2The lowest Nth/Nth last number is 1. The highest is 13. Lowest and highest: 14 = 2 x 7. The letters associated with these Nth occurrences are 30 and 40. Naturally their total together is 70. (2 x 5 x 7. SF: 14 = 2 x 7.)

5.16.3From column 1, letter 30's twelfth and twelfth last occurrences in the list are as the 56th and 64th of the last letters. The sum of these positions is 120, and this is the lowest of the 18 letter values. Letter 60's third and third last occurrences in the list are as the 194th and 197th. The sum of these positions is 391, and this is the highest of the 18 letter values. Lowest and highest together: 120 + 391 = 511 (7 x 73).

5.16.4Eight of the 18 letters in the table have an odd valued Nth occurrence.

5 10 10 30 30 40 60 400

The total of these 8: 585 = 32 x 5 x 13.

5.16.5Twelve of the 18 letters have an odd value as the sum of their Nth and Nth last positions.

5 5 6 6 10 10 20 30 30 30 40 60

Total of these 12: 252 = 22 x 32 x 7.

5.16.6These are the Nth positions of each of the 18 letters.

29 54 62 69 3 34 50 56 40 30 32 74 14 59 84 51 73 194

Total of the Nth positions: 1008 = 24 x 32 x 7. SF: 21 = 3 x 7.

Letters Not First Or Last In A Word

Letters not first/last:
10 1 40 5 6 300 60 50 8 2 50 10 200 1 300 50 10 20 400 2 400 30 8 4 2 200 10 300 10 30 8 200 1 300 50 10 300 2 200 5 10 20 6 2 100 70 30 10 2 100 10 50 50 90 2 1 5 1 10 70 30 40 3 10 200 20 5 90 1 5 2 100 200 70 6 5 5 6 10 80 60 50 8 2 50 10 200 1 300 50 10 10 300 20 300 2 100 10 70 10 50 1 300 6 5 6 400 10 100 10 4 50 8 2 50 10 10 200 5 6 70 50 10 400 10 90 40 10 100 200 300 5 6 10 70 2 5 6 50 10 10 100 200 5 6 5 6 8 6 8 50 6 200 80 10 200 60 1 40 90 60 1 30 80 10 300 6 80 300 8 9 1 50 100 50 100 100 6 2 6 50 10 70 50 50 10 30 300 10 70 2 70 10 10 40 5 300 10 100 200 90 10 300 400 8 10 1 40 90 1 400 70 10 50 10 4 50 30 4 50 100 200 2 50 300 200 6 60 30 8 70 6 50 50 30 8 9 1 400 50 50 8 30 400 50 10 1 40 50 50 20 200 200 10 3 40 70 300 80 30 1 300 2 200 1 20 1 200 2 20 3 6 10 200 1 70 300 400 100 200 2 70 300 5 6 6 200 6 300 50 300 40 3 9 30 1 80 400 1 5 20 60 5 3 5 200 80 9 60 1 1 80 400 60 30 5 40 60 1 40 100 60 10 80 1 100 600

6327 letters are not first or last in a word. Their total: 24011 = 13 x 1847.

6.1The letters of God’s name in Hebrew (10-5-6-5) are applied 13 times to count through the letters in feature 6.

a) 10 5   6   5   10 5  6  5  10 5  6   5  10 5   6  5   10  5   6
b) 10 15  21  26  36 41 47 52 62 67 73  78 88 93  99 104 114 119 125
c) 10 15  21  26  36 41 47 52 62 67 73  78 88 93  99 104 114 119 125
d) 2  300 400 200 10 10 30 50 40 5  200 6  1  300 70 6   2   5   10

a) 5   10  5   6   5   10  5   6   5   10  5   6   5   10  5   6   5
b) 130 140 145 151 156 166 171 177 182 192 197 203 208 218 223 229 234
c) 130 140 145 151 156 166 171 177 182 192 197 203 208 218 223 229 234
d) 200 10  6   50  200 300 9   100 10  70  300 300 40  30  2   30  50

a) 10  5   6   5   10  5   6   5   10  5   6   5   10  5   6   5
b) 244 249 255 260 270 275 281 286 296 301 307 312 322 327 333 11
c) 244 249 255 260 270 275 281 286 296 301 307 312 322 327 6   11
d) 400 50  3   30  20  1   2   6   1   20  80  80  60  600 300 50

a) Letter from the Name.
b) Count.
c) Count adjusted to 327.
d) Letter not first/last found.

Total: 5057 = 13 x 389.

6.2Although these letters are not first or last in a word, Nth and Nth last can still be applied to the list. Exactly 28 pairs can be found that together are divisible by 7.

a) Nth position: 15  18  24  25  41  44  46  48  56  58  64  72  73  78
b) Value:        300 20  4   2   10  2   70  10  1   1   10  100 200 6
c) Nth last:     313 310 304 303 287 284 282 280 272 270 264 256 255 250
d) Value:        400 1   3   5   200 5   70  200 6   20  200 40  3   50
e) Sum:          700 21  7   7   210 7   140 210 7   21  210 140 203 56

a) 89  94  95  100 101 104 105 128 130 137 147 148 150 162
b) 300 20  300 10  50  6   5   10  200 5   6   8   8   1
c) 239 234 233 228 227 224 223 200 198 191 181 180 178 166
d) 400 50  50  60  6   50  2   200 10  2   50  6   6   300
e) 700 70  350 70  56  56  7   210 210 7   56  14  14  301

Sum of positions (a + c): 9184 = 25 x 7 x 41. Sum of the Nth positions (a): 2352 = 24 x 3 x 72 Sum of the Nth last positions (c): 6832 = 24 x 7 x 61. The difference between (a) and (c): 4480 = 27 x 5 x 7. SF: 26 = 2 x 13.

6.3Beginning with the first letter in feature 6 and taking every Nth after, the following values of N produce totals divisible by 13.

31 62 67 74 93 99 119 120

Total of the N values: 665 = 5 x 7 x 19.

6.4Whether one begins with the first letter in feature 6 and takes every Nth after, or simply begins by taking every Nth, only three values work both ways in producing multiples of 7.

20 52 145

Total of these three N values: 217 = 7 x 31.

6.5274 of the letters in feature 6 are even valued. The total of their positions in feature 6: 43810 = 2 x 5 x 13 x 337. SF: 357 = 3 x 7 x 17.

6.6Precisely 14 of these letters that are not first or last are multiples of 7.

Position in feature 6: 46 60 74 99 121 135 183 190 192 212 231 257 276 282
Letter not first/last: 70 70 70 70 70  70  70  70  70  70  70  70  70  70

The total of the letters has an extra factor of 7: 980 = 22 x 5 x 72.

6.7The middle N letters in feature 6 add up to a multiple of 7 when N is one of the following:

325 313 307 303 287 261 251 247 245 217 215 201 199 185 183 181 161 143 81 69 67 57 47 39 35 33 31

Total of the N values: 4683 = 3 x 7 x 223.

6.8Beginning with the first letter in feature 6, take every N after where N increases each time by one.

a) 1  2 4 7  11 16 22 29 37  46 56 67 79 92 106 121 137 154 172 191
b) 1  2 3 4  5  6  7  8  9   10 11 12 13 14 15  16  17  18  19  20
c) 10 1 5 60 50 50 30 10 300 70 1  5  10 10 6   70  5   80  1   2

a) 211 232 254 277 301 326   (Count.)
b) 21  22  23  24  25  26    (Increasing N.)
c) 400 6   10  300 20  100   (Letter found.)

Total of the letters found: 1612 = 22 x 13 x 31.

6.9.1When the letters in feature 6 are added one by one, 51 times the total will be a multiple of 7. The total of the positions of these letters in feature 6: 7306 = 2 x 13 x 281.

6.9.2When the letters in feature 6 are added one by one, 22 times the total will be a multiple of 13. The total of the positions of these letters in feature 6: 3766 = 2 x 7 x 269.

6.10The letters from feature 6 can be divided into alternating groups of 39 and 70.

6.10.1.Groups of 39: 8645 = 5 x 7 x 13 x 19.

6.10.2Groups of 70: 15366 = 2 x 3 x 13 x 197.

6.11Thirteen of the last letters divide the rest of the list into what is between and what is not between their Nth and Nth last occurrences.

Between & Not Between The Nth & Nth Last Letters That Are Not First Or Last In A Word
Letter Not First/LastNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
10108320 = 27 x 5 x 13.15691 = 13 x 17 x 71.
10127280 = 24 x 5 x 7 x 13.16731 = 32 x 11 x 132
1021741 = 3 x 13 x 19. SF: 35 = 5 x 7.23270 = 2 x 5 x 13 x 179.
198229 = 3 x 13 x 211.15782 = 2 x 13 x 607.
6413767 = 3 x 13 x 353.10244 = 22 x 13 x 197.
50512402 = 2 x 32 x 13 x 53.11609 = 13 x 19 x 47.
50810517 = 13 x 809.13494 = 2 x 3 x 13 x 173.
8115977 = 13 x 1229.8034 = 2 x 3 x 13 x 103.
2119604 = 22 x 132 x 29.4407 = 3 x 13 x 113.
2411687 = 13 x 29 x 31.12324 = 22 x 3 x 13 x 79.
200112977 = 13 x 229.21034 = 2 x 13 x 809.
40048047 = 13 x 619.15964 = 22 x 13 x 307.
100119578 = 2 x 3 x 13 x 251.4433 = 11 x 13 x 31.

6.11.1The 13 Nth occurrences (column 2):

10 12 21 9 4 5 8 1 1 4 11 4 1

Total of the Nths: 91 = 7 x 13.

6.11.2Seven of the 13 letters have Nth occurrences that are odd values.

Letter:         10 1 50 8 2 200 100
Nth occurrence: 21 9 5  1 1 11  1

Total of the letters: 371 = 7 x 53. (The total of the Nth positions of these letters: 1680 = 24 x 3 x 5 x 7.

6.11.3Five of the 13 letters have the total of the positions of their Nth and Nth occurrences as an even number. (Line e.)

a) Letter:                          10  10  6   50  400
b) Nth occurrence:                  12  21  4   8   4
c) Position of Nth occurrence:      79  117 78  85  124
d) Position of Nth last occurrence: 189 125 272 233 244
e) Sum of Nth/Nth last positions:   268 242 350 318 368

Total of the letters (a): 476 = 22 x 7 x 17. SF: 28 = 22 x 7. Total of their Nth numbers: 49 = 72. SF: 14 = 2 x 7. These 5 letters break down into two groups.

6.11.3.1Line a) letters in 6.11.3 where lines c) and d) are both odd valued.

10 10 50

Total of these three: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

6.11.3.2Line a) letters in 6.11.3 where lines c) and d) are both even valued.

6 400

Total of these two: 406 = 2 x 7 x 29.

6.11.4The lowest and highest of the 13 letters are 1 and 400. The sum of their Nths: 13.

All The Letters

7.1The letters of God’s name in Hebrew (10-5-6-5) are applied 13 times to count a little less than halfway through the 727 letters.

a) 10 5  6  5  10 5  6  5  10 5  6   5   10 5  6  5   10  5   6   5
b) 10 15 21 26 36 41 47 52 62 67 73  78  88 93 99 104 114 119 125 130
c) 1  80 50 1  10 2  30 5  10 30 300 300 50 2  10 200 50  10  1   6

a) 10  5   6   5   10  5   6   5   10  5   6   5   10  5   6   5   10
b) 140 145 151 156 166 171 177 182 192 197 203 208 218 223 229 234 244
c) 70  40  10  30  6   1   1   5   60  30  10  300 300 200 30  50  5

a) 5   6   5   10  5   6   5   10  5   6   5   10  5   6   5
b) 249 255 260 270 275 281 286 296 301 307 312 322 327 333 338
c) 6   10  10  10  6   6   2   1   5   2   5   200 5   30  6

a) Letter from the Name.
b) Count.
c) Letter found.

The total is a perfect 100 times the value of God’s name: 2600 = 23 x 52 x 13.

7.1.1The first and last letters found total 7.

7.1.2The first and last 13 letters found in 7.1 total 1157 (13 x 89).

7.1.3The middle 26 letters found in 7.1 total 1443 (3 x 13 x 37).

7.1.4The results in feature 7 form pairs of letter groups symmetrically positioned in the list that are divisible by 7.

a) Nth position:         1    5   9    10   14  17
b) Nth last position:    20   15  17   18   19  24
c) Total of both groups: 2037 812 1057 1085 574 1197

The Nth position for the first group is from the beginning of the list.
The Nth position for the second group is from the end of the list. This
also holds for the Nth last position.

Total of line a): 56 = 23 x 7. SF: 13. There is no corresponding match with line b). The total of lines a) and b): 169 = 132. SF: 26 = 2 x 13.

7.2Since there are 727 letters, this means taking any Nth or Nth last letter together will have a position total of 728. And since 728 is divisible by 7 and 13, this means any pairings found of the Nth and Nth last letters will have their positions automatically divisible by 7 and 13.

7.3Exactly 154 (2 x 7 x 11) letters are odd valued. The total of their positions: 61187 = 7 x 8741.

7.3.2The remaining 573 letters are even valued. The total of their positions: 203441 = 7 x 29063.

7.3.3The difference in the positions of 7.3.1 and 7.3.2: 142254 = 2 x 32 x 7 x 1129. SF: 1144 = 23 x 11 x 13.

7.3.4419 letters have an odd valued first digit. The total of the positions of these letters: 152033 = 7 x 37 x 587. The total of these letters: 19786 = 2 x 13 x 761.

7.3.5308 (22 x 7 x 11) letters have an even valued first digit. The total of the positions of these letters: 112595 = 5 x 7 x 3217. The total of these letters: 27716 = 22 x 132 x 41.

7.433 letters are multiples of 7:

a) 44 64 97 122 137 140 175 226 278 287 306 313 375 381 400 407 414 423
b) 70 70 70 70  70  70  70  70  70  70  70  70  70  70  70  70  70  70

a) 431 435 477 503 508 520 564 568 609 625 647 650 672 701 717
b) 70  70  70  70  70  70  70  70  70  70  70  70  7   7   70

a) Letter position.
b) Letter value.

Total of the positions (a): 13216 = 25 x 7 x 59. The total of the letters yields an extra factor of 13: 2184 = 23 x 3 x 7 x 13. (The odd positioned positions from line a add up to 6851 = 13 x 17 x 31.

7.5Extract every Nth letter, where N progressively increases by one each time.

a) 1 2  4  7 11 16 22 29 37 46 56 67 79  92 106 121 137 154 172 191 211
b) 1 2  3  4 5  6  7  8  9  10 11 12 13  14 15  16  17  18  19  20  21
c) 6 10 40 5 30 60 10 10 40 5  10 30 200 30 30  40  70  2   30  80  40

a) 232 254 277 301 326 352 379 407 436 466 497 529 562 596 631 667 704
b) 22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38
c) 60  2   2   5   6   2   80  70  10  40  200 1   20  30  5   60  1

a) Count.
b) Increasing N.
c) Letter found.

Total of the letters found: 1372 = 22 x 73.

7.6When the letters are added one by one, 104 (22 x 13) times the result will be divisible by 7.

a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)
22  10  1239       108 200 9058       171 1   12887      281 6   19278      371 40  23947      447 10  28287      527 8   32795      609 70  38213
27  2   1680       110 10  9128       202 50  14574      284 10  19698      373 300 24297      450 1   28392      536 30  33355      652 20  41678
37  40  2401       124 200 10416      205 20  14644      304 6   20937      376 6   24374      454 6   28693      540 6   33817      664 1   42511
45  30  3339       126 300 10717      214 300 15561      312 5   21245      378 6   24430      466 40  29715      551 10  34209      669 1   43281
47  30  3374       129 200 10927      228 1   16387      313 70  21315      405 6   25585      469 40  29806      558 400 35441      673 10  43778
58  1   4445       131 1   10934      230 5   16422      319 6   21497      412 40  26187      471 1   29897      562 20  35518      688 10  44184
69  400 5509       144 3   11529      236 20  16772      332 1   21861      418 10  26355      481 20  30527      565 40  35658      690 80  44464
80  300 6916       151 10  11921      238 300 17073      335 8   22099      426 30  26887      487 30  30632      567 1   35679      695 600 45283
83  400 7518       154 2   12124      242 5   17374      349 40  22617      429 40  27237      489 50  30702      568 70  35749      707 5   45535
86  10  7539       162 5   12432      245 6   17395      355 4   22897      434 2   27545      493 50  30758      586 2   37408      718 1   46431
92  30  7700       164 1   12523      248 400 17801      357 1   22904      435 70  27615      496 100 30870      590 1   37464      720 100 46571
96  6   8008       166 6   12579      274 5   19089      360 50  23394      438 6   27671      499 50  31122      606 20  38108      722 10  46641
97  70  8078       168 2   12586      279 50  19222      366 30  23786      444 300 28266      506 300 31668      608 5   38143      727 80  47502
a) Letter position.     b) Letter value.     c) Accumulated total at that point.

Total of the positions (a): 37800 = 23 x 33 x 52 x 7.

7.6.2When the letters are added one by one, 41 times the letter position, the letter value, and the accumulated total will all be odd valued.

a)  b) c)        a)  b) c)        a)  b) c)        a)  b) c)
3   1 17         207 1 14845      471 1 29897      659 9 42339
9   5 283        237 1 16773      507 5 31673      669 1 43281
33  1 2001       247 1 17401      513 1 32035      677 5 43893
85  5 7529       303 5 20931      529 1 32805      683 3 44091
105 1 8823       325 5 21823      545 5 34073      685 9 44105
125 1 10417      329 5 21849      567 1 35679      691 9 44473
135 1 11275      367 1 23787      589 5 37463      699 9 45343
149 1 11881      403 1 25577      597 5 37817      707 5 45535
157 5 12179      445 5 28271      629 5 40301
171 1 12887      453 5 28687      637 1 40599
185 5 13525      465 1 29675      653 5 41683
a) Letter position.   b) Letter value.   c) Accumulated total.

Total of the letters (b): 143 = 11 x 13.

7.6.3When the letters are added one by one, 136 times the letter position, the letter value, and the accumulated total will all be even valued.

a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)
2   10  16         104 200 8822       204 40  14624      324 10  21818      492 4   30708      612 300 38554
8   6   278        108 200 9058       206 200 14844      328 10  21844      494 10  30768      618 100 39262
12  40  354        110 10  9128       220 2   15968      344 200 22466      496 100 30870      620 2   39464
28  50  1730       112 10  9188       222 100 16070      358 40  22944      498 2   31072      628 10  40296
30  40  1780       114 50  9244       224 6   16276      360 50  23394      500 6   31128      632 20  40332
32  200 2000       116 2   9336       226 70  16356      362 200 23684      502 10  31158      634 50  40392
48  8   3382       118 30  9766       232 60  16682      364 60  23752      504 40  31268      636 200 40598
54  2   4194       120 300 10076      234 50  16742      366 30  23786      506 300 31668      642 300 40912
56  10  4404       122 70  10186      236 20  16772      376 6   24374      512 6   32034      650 70  41618
62  10  4960       124 200 10416      266 50  18804      378 6   24430      544 200 34068      652 20  41678
64  70  5036       132 10  10944      268 40  18854      380 300 24810      562 20  35518      658 30  42330
78  300 6416       134 30  11274      270 10  18870      382 6   24886      564 70  35618      666 100 42620
80  300 6916       140 70  11460      272 4   19074      398 100 25446      566 20  35678      668 600 43280
82  200 7118       142 20  11520      278 70  19172      400 70  25520      572 80  36184      676 100 43888
84  6   7524       148 300 11880      280 50  19272      402 50  25576      578 200 37116      688 10  44184
88  50  7594       154 2   12124      282 10  19288      442 200 27926      586 2   37408      690 80  44464
90  6   7620       156 30  12174      284 10  19698      444 300 28266      588 30  37458      702 40  45450
92  30  7700       168 2   12586      286 2   19790      452 90  28682      592 90  37754      706 60  45530
94  100 7802       170 200 12886      288 40  19900      464 200 29674      594 2   37762      714 60  46210
96  6   8008       178 30  13234      290 300 20206      470 90  29896      596 30  37812      716 60  46360
98  30  8108       180 6   13280      292 6   20252      484 50  30582      600 10  37836      726 600 47422
100 400 8518       184 200 13520      294 100 20362      486 10  30602      602 6   37882
102 2   8522       202 50  14574      302 6   20926      488 20  30652      606 20  38108
a) Letter position.     b) Letter value.     c) Accumulated total at that point.

Total of the letters (b): 11312 = 24 x 7 x 101.

7.6.4.1When the letters are added one by one, 82 times the accumulated total will be a prime number.

a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)
3   1   17         191 80  13633      318 6   21491      453 5   28687      589 5   37463
5   200 257        192 60  13693      334 200 22091      455 10  28703      604 1   38083
9   5   283        193 30  13723      339 8   22159      458 8   29411      644 1   41113
14  5   659        196 10  14083      347 80  22567      460 6   29423      647 70  41243
15  80  739        215 20  15581      393 10  25111      473 10  30307      648 300 41543
17  30  829        217 40  15661      395 100 25261      476 2   30367      661 60  42499
18  30  859        229 30  16417      403 1   25577      479 50  30497      678 20  43913
21  50  1229       244 5   17389      404 2   25579      490 1   30703      679 60  43973
24  8   1277       247 1   17401      414 70  26263      519 30  32569      692 60  44533
35  50  2351       249 6   17807      415 30  26293      534 50  33317      693 90  44623
42  400 3229       252 100 17923      419 2   26357      539 6   33811      694 60  44683
67  30  5101       258 300 18253      420 50  26407      541 10  33827      699 9   45343
85  5   7529       260 10  18313      421 10  26417      546 50  34123      700 60  45403
172 30  12917      296 1   20563      424 30  26557      548 1   34129      719 40  46471
174 200 13127      305 10  20947      428 10  27197      553 200 34429
188 1   13537      306 70  21017      446 6   28277      559 50  35491
190 10  13553      307 2   21019      448 100 28387      582 2   37199
a) Letter position.     b) Letter value.     c) Accumulated total that is a prime number.

Total of the positions (a): 30016 = 26 x 7 x 67. Total of the letters (b): 3952 = 24 x 13 x 19.

7.6.4.2When the letters are added one by one, 645 times the accumulated total will not be a prime number. The total of the positions of these letters (a): 234612 = 22 x 32 x 73 x 19. The total of the letters (b): 43550 = 2 x 52 x 13 x 67. The sum of the accumulated totals that are prime numbers (c): 15417983 = 7 x 653 x 3373.

7.7The table below summarizes each letter's number of occurrences, total value in the passage, and the total of all its positions.

a)  b) c)    d)         a)  b) c)    d)
1   70 70    27182      40  43 1720  15281
2   34 68    10722      50  48 2400  17308
3   6  18    2799       60  19 1140  10128
4   10 40    3685       70  31 2170  11843
5   65 325   22798      80  14 1120  6613
6   70 420   24252      90  11 990   4766
7   2  14    1373       100 19 1900  8151
8   16 128   5137       200 47 9400  15273
9   11 99    7035       300 32 9600  9487
10  76 760   24909      400 27 10800 9153
20  24 480   9607       600 4  2400  2744
30  48 1440  14382
a) Letter value.   b) Number of occurrences.
c) Total value (a x b).
d) Total of the positions of that letter.

7.7.1Eight letters (7 9 40 60 70 90 100 200) have a prime number as their number of occurrences (b). The total of these letters in the passage (c): 17433 = 32 x 13 x 149. SF: 168 = 23 x 3 x 7. The total of their positions (d): 73850 = 2 x 52 x 7 x 211.

7.7.2Fifteen letters (1 2 3 4 5 6 8 10 20 30 50 80 300 400 600) do not have a prime number as their number of occurrences (b). The total of these letters in the passage (c): 30069 = 32 x 13 x 257. The total of their positions (d): 190778 = 2 x 7 x 13627. SF: 13636 = 22 x 7 x 487.

7.8The 727 letters can be divided into alternating groups of M and N-number of letters where M and N are multiples of 7 and 13.

7.8.1Alternating groups of 13 and 21.

7.8.1.1Groups of 13: 17732 = 22 x 11 x 13 x 31.

7.8.1.2Groups of 21: 29770 = 2 x 5 x 13 x 229.

7.913 letters have the positions of their Nth and Nth last occurrences adding to a total divisible by 7. These 13 also have the unique ability of dividing the rest of the letters into two groups: what is between their Nth and Nth last occurrences, and what is not between them.

Between & Not Between A Letter's Nth & Nth Last Occurrence
LetterNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
6530352 = 24 x 7 x 271. SF: 286 = 2 x 11 x 13. SF: 26 = 2 x 13.17150 = 2 x 52 x 73
11426873 = 7 x 11 x 349.20629 = 72 x 421.
40195512 = 23 x 13 x 53.41990 = 2 x 5 x 13 x 17 x 19. SF: 56 = 23 x 7. SF: 13.
52020748 = 22 x 3 x 7 x 13 x 19.26754 = 2 x 3 x 73 x 13. SF: 39 = 3 x 13.
530924 = 22 x 3 x 7 x 11.46578 = 2 x 3 x 7 x 1109.
301614616 = 23 x 32 x 7 x 29.32886 = 2 x 34 x 7 x 29.
80146683 = 33 x 7 x 13 x 19.819 = 32 x 7 x 13. SF: 26 = 2 x 13.
501611310 = 2 x 3 x 5 x 13 x 29. SF: 52 = 22 x 13.36192 = 25 x 3 x 13 x 29.
50188840 = 23 x 5 x 13 x 17.38662 = 2 x 13 x 1487.
21310115 = 5 x 7 x 17237387 = 73 x 109. SF: 130 = 2 x 5 x 13.
2147644 = 22 x 3 x 72 x 13.39858 = 2 x 3 x 7 x 13 x 73. SF: 98 = 2 x 72
70236512 = 25 x 7 x 163.10990 = 2 x 5 x 7 x 157.
100138920 = 23 x 5 x 7 x 139.8582 = 2 x 7 x 613.

7.9.1The sum of the 13 letters (column 1):

6 1 40 5 5 30 80 50 50 2 2 70 100

Total: 441 = 32 x 72.

7.9.2The sum of their Nth occurrences (column 2):

5 14 19 20 30 16 1 16 18 13 14 2 1

Total: 169 = 132. SF: 26 = 2 x 13.

Conclusion

All these numeric features show how the GNS version of Revelation 1:8 fits with The Proclamation in Exodus 34 like a signature added to the end. In essence, the covenant continues into the New Testament, and the New Testament is the fulfillment of the Old Testament. Like two witnesses, Revelation 1:8 stands behind both covenants.

Notes

  1. The F.H.A Scrivener 1881 - Theodore Beza 1598 Textus Receptus Greek New Testament (GNS), ASCII edition copyright 1992 by Dr. Kirk D. DiVietro, Grace Baptist Church.
  2. English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.
  3. Hebrew text is from, The Biblia Hebraica Stuttgartensia (BHS), edited by K. Elliger and W. Rudolph of the Deutsche Biblegesselchaft (German Bible Society) 1983.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




The foolishness of God is greater than anything we can imagine (1 Corinthians 1:25). On the off chance the numbers are a form of foolishness, do not spend too much time on them.