Bible Numbers 2.0

The Ancient Ruler From Bethlehem

Jesus was with God before the founding of our world. (John 1:1) He is ancient of days and of old. Micah foresaw someone of old coming to rule the world (Micah 4:12-5:3), and Matthew claimed this was fulfilled by Jesus. (Matthew 2:2-5) Micah's prophecy gave context to Jesus' coming.

12 But they do not know the thoughts of the LORD, they do not understand his plan, that he has gathered them as sheaves to the threshing floor. 13 Arise and thresh, O daughter of Zion, for I will make your horn iron and your hoofs bronze; you shall beat in pieces many peoples, and shall devote their gain to the LORD, their wealth to the Lord of the whole earth. 5:1 Now you are walled about with a wall; siege is laid against us; with a rod they strike upon the cheek the ruler of Israel. 2 But you, O Bethlehem Ephrathah, who are little to be among the clans of Judah, from you shall come forth for me one who is to be ruler in Israel, whose origin is from of old, from ancient days. 3 Therefore he shall give them up until the time when she who is in travail has brought forth; then the rest of his brethren shall return to the people of Israel. 4 And he shall stand and feed his flock in the strength of the LORD, in the majesty of the name of the LORD his God. And they shall dwell secure, for now he shall be great to the ends of the earth. (Micah 4:12-5:4)1

The prophecy clearly states people do not understand God’s thoughts or His plans. So they would not understand Jesus' coming. The purpose is to thresh out the grain from the sheaves. Purification is the purpose.

While this happens, Zion, or Israel is hemmed in by foreigners and foreign forces. The ruler of Israel is humiliated and struck on the cheek. Jesus was treated this way by his own people and by Roman soldiers. (Matthew 26:67, 27:30) God gives up Israel until Jesus' work is done.

Even though Jesus brings back many brethren it is not to Israel, but to his flock. He feeds them in the strength of the LORD, in the majesty of the name of the LORD his God.

There still much we do not understand of God’s plans.

(Note: There is a difference between the English and Hebrew verse references. The Hebrew verse references are from Micah 4:12-5:3 as chapter 4 has one extra verse from chapter 5.)

Micah 4:12-5:32
4321:A
756903156:B
16151413121110987654321:C
4006230084067041013054056:D
מחשבותידעולאוהמה:E
8765:A
566733726:B
32313029282726252423222120191817:C
640090706501025130656510:D
עצתוהבינוולאיהוה:E
1211109:A
25834023230:B
474645444342414039383736353433:C
550200320010407020409021001020:D
גרנהכעמירקבצםכי:E
16151413:A
156402326156:B
626160595857565554535251504948:C
506109040021030064610406100:D
ציוןבתודושיקומי:E
20191817:A
23935137030:B
7675747372717069686766656463:C
30720024010300120502001001020:D
ברזלאשיםקרנךכי:E
232221:A
369351776:B
92919089888786858483828180797877:C
5300685040103001201040060200806:D
נחושהאשיםופרסתיך:E
262524:A
252160521:B
10610510410310210110099989796959493:C
40102200401040704006100456:D
רביםעמיםוהדקות:E
292827:A
20256669:B
122121120119118117116115114113112111110109108107:C
407090256510301040040200856:D
בצעםליהוהוהחרמתי:E
33323130:A
296509194:B
138137136135134133132131130129128127126125124123:C
90200153020506413040301086:D
הארץכללאדוןוחילם:E
37363534:A
17402821475:B
153152151150149148147146145144143142141140139:C
4643400210443400400540070:D
גדודבתתתגדדיעתה:E
41403938:A
313166340336:B
168167166165164163162161160159158157156155154:C
9230026501030704030020069040:D
בשבטעלינושםמצור:E
4645444342:A
3894015310036:B
182181180179178177176175174173172171170169:C
9803004001108305307062010:D
שפטאתהלחיעליכו:E
50494847:A
78412412541:B
197196195194193192191190189188187186185184183:C
4083040010254001630120030010:D
לחםביתואתהישראל:E
535251:A
451370686:B
211210209208207206205204203202201200199198:C
4006105302001070905400200801:D
להיותצעיראפרתה:E
57565554:A
4010030123:B
226225224223222221220219218217216215214213212:C
103020404054651010803012:D
ליממךיהודהבאלפי:E
605958:A
376451101:B
238237236235234233232231230229228227:C
3030064040061053019010:D
מושללהיותיצא:E
6261:A
559543:B
252251250249248247246245244243242241240239:C
6104001906406301200300102:D
ומוצאתיובישראל:E
66656463:A
100146100184:B
267266265264263262261260259258257256255254253:C
50203040306701040104040410040:D
לכןעולםמימימקדם:E
70696867:A
5547074500:B
280279278277276275274273272271270269268:C
543061040070470405040010:D
יולדהעתעדיתנם:E
737271:A
2561649:B
292291290289288287286285284283282281:C
61081200400106543010:D
אחיוויתרילדה:E
77767574:A
54162100374:B
308307306305304303302301300299298297296295294293:C
301200300101050230705062630010:D
ישראלבניעלישובון:E
81807978:A
2679281120:B
323322321320319318317316315314313312311310309:C
5651077025702006440706:D
יהוהבעזורעהועמד:E
85848382:A
522634062:B
339338337336335334333332331330329328327326325324:C
61053015651040300506132:D
אלהיויהוהשםבגאון:E
9089888786:A
744747530324:B
355354353352351350349348347346345344343342341340:C
470304310540070102062300106:D
עדיגדלעתהכיוישבו:E
9291:A
291151:B
362361360359358357356:C
9020011060801:D
ארץאפסי:E

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Hebrew.

There are 92 words, 362 letters and a numeric total of 23308. These three numbers have no numeric significance.

2 Where is he who has been born king of the Jews? For we have seen his star in the East, and have come to worship him. 3 When Herod the king heard this, he was troubled, and all Jerusalem with him; 4 and assembling all the chief priests and scribes of the people, he inquired of them where the Christ was to be born. 5 They told him, In Bethlehem of Judea; for so it is written by the prophet: (Matthew 2:2-5)

Imagine standing before king Herod, the king of Judea, and asking where the king of the Jews, who had recently been born, could be found. Not only was it a question of Herod's legitimacy, but a question of all those in his court and associated with him. Kings executed and imprisoned people for questioning their authority.

Two things may have saved the wise men. First, it was clear they were more than just wealthy men. If they were emissaries and mistreated, this could mean war with a great power in the east. Herod wasn't foolish enough to start a war. Two, Herod wanted to kill the child. If he threw out the wise men or killed them, he would not learn the child's location.

The chief priests and scribes could only point to Micah's prophecy of Bethlehem. They knew of the prophecy, but they hadn't been aware of the timing, and now it had surprised them. And in their hearts was the question, Could it be? Is this it?

The numeric section ends at Matthew 2:5 because verse 6 is slightly different from Micah's prophecy. The sense is there, but Ephrathah is missing.

Matthew 2:2-53
A:123
B:323330244
C:12345678910111213141516
D:205360401005907060200590100940
E:λεγοντεςπουεστιν
A:456
B:60617417
C:17181920212223242526272829303132
D:601005400859902190920520090
E:οτεχθειςβασιλευς
A:78
B:740923
C:3334353637383940414243
D:1006004096020041960040
E:τωνιουδαιων
A:91011
B:15384561
C:444546474849505152535455565758
D:59460305403180120010060200
E:ειδομενγαραυτου
A:12131415
B:20027745107
C:59606162636465666768697071
D:100604019010058015401007
E:τοναστεραεντη
A:1617
B:22920
C:72737475767778798081
D:1401100602071019
E:ανατοληκαι
A:18
B:170
C:82838485868788
D:72086030540
E:ηλθομεν
A:1920
B:657901
C:8990919293949596979899100101102103
D:708060901020040790191200100600
E:προσκυνησαιαυτω
A:212223
B:452960
C:104105106107108109110111112113
D:11060200901904560
E:ακουσαςδεο
A:2425
B:417788
C:114115116117118119120121122123124125126127
D:21909205200907806004790
E:βασιλευςηρωδης
A:262728
B:60220162
C:128129130131132133134135136137138139140141142
D:51001801400871019701901
E:εταραχθηκαιπασα
A:2930
B:555135
C:143144145146147148149150151152153154155
D:958060906020200301305100
E:ιεροσολυμαμετ
A:3132
B:56120
C:156157158159160161162163
D:1200100602001019
E:αυτουκαι
A:3334
B:978302
C:164165166167168169170171172173174175176177178
D:902004013136004070140100190
E:συναγαγωνπαντας
A:353637
B:45067920
C:179180181182183184185186187188189190191192193194
D:1006020090180400958059901019
E:τουςαρχιερειςκαι
A:3839
B:349360
C:195196197198199200201202203204205206207
D:380130301100599010060200
E:γραμματειςτου
A:4041
B:281529
C:208209210211212213214215216217218219220221
D:20160200570200408140510060
E:λαουεπυνθανετο
A:42434445
B:15194133060
C:222223224225226227228229230231232233
D:70180120010060040706020060
E:παραυτωνπουο
A:4647
B:829199
C:234235236237238239240241242243244245246247248
D:400809901006090354040110019
E:χριστοςγενναται
A:4849505152
B:69912590145
C:249250251252253254255256257258259260261262263
D:6094559701401200100600540
E:οιδεειπαναυτωεν
A:5354
B:77197
C:264265266267268269270271272273
D:278205530100790
E:βηθλεεμτης
A:555657
B:374105084
C:274275276277278279280281282283284285286287288289
D:96020041919060200100600903180
E:ιουδαιαςουτωςγαρ
A:585960
B:27214360
C:290291292293294295296297298299300301302303304
D:353801701001949110060200
E:γεγραπταιδιατου
A:61
B:877
C:305306307308309310311312
D:708060300710060200
E:προφητου

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Greek.

This section has 61 words, 312 letters, and a numeric total of 21751. Aside from the number of letters being divisible by 13, there are no other features.

As Matthew 2:2-5 is the fulfillment of the prophecy in Micah 4:12-5:3, the two are put together.

Primary Features

(Derived from Revelation 1:8 and grouped for easy reference.)

I Am (Present tense - living through it) Add up everything.

A.1Numeric total: 45059 = 7 x 41 x 157. (See feature 1.)

Is, Was, Is To Come (Second present tense - skipping sequentially through it) Add up every other occurrance.

B.2Every other verse (odd): 23387 = 7 x 13 x 257. (See feature 1.2.)

B.2.2Every other verse (even): 21672 = 23 x 32 x 7 x 43. (See feature 1.3.)

B.3Every other word (odd): 24213 = 3 x 7 x 1153. (See feature 2.5.1.)

B.3.2Every other word (even): 20846 = 2 x 7 x 1489. (See feature 2.5.2.)

B.4Every other letter (odd): 22183 = 7 x 3169. (See feature 4.1.)

B.4.2Every other letter (even): 22876 = 22 x 7 x 19 x 43. (See feature 4.2.)

Alpha & Omega (The first and last) Add up the first item with the last item.

C.2.3First and last letter of each verse: 1603 = 7 x 229. (See feature 1.1.)

C.3.2First and last letter of each word: 17157 = 3 x 7 x 19 x 43. (See feature 3.1.)

Alpha (The first) Add up the first item.

D.3.3First letter of each word: 5957 = 7 x 23 x 37. (See feature 3.2.)

Omega (The last) Add up the last item.

E.3.3Last letter of each word: 11200 = 26 x 52 x 7. (See feature 3.3.)

F.2First half of the verses: 24129 = 32 x 7 x 383. (See feature 1.7.1.)

F.2.2Last half of the verses: 20930 = 2 x 5 x 7 x 13 x 23. (See feature 1.7.2.)

The Verses

1There are 153 words (nf), 674 letters, and a numeric total of 45059 (7 x 41 x 157).

List of verse totals:
2495 5917 4390 5162 2966 2378 7058 3761 6478 4454

1.1First and last letter of each verse: 1603 = 7 x 229.

1.2Odd positioned verses:

2495 4390 2966 7058 6478

Total: 23387 = 7 x 13 x 257.

1.3Even positioned verses:

5917 5162 2378 3761 4454

Total: 21672 = 23 x 32 x 7 x 43.

1.4Odd valued verses:

2495 5917 3761

Total: 12173 = 7 x 37 x 47. SF: 91 = 7 x 13.

1.5Even valued verses:

4390 5162 2966 2378 7058 6478 4454

Total: 32886 = 2 x 34 x 7 x 29.

1.6The even positioned verses would be every second verse. (This is every Nth verse with N equalling 2.) The only other N value that yields a multiple of seven is 5.

5    10
2966 4454

Total of every 5th verse: 7420 = 22 x 5 x 7 x 53. (Since only N = 2 and N = 5 work, this draws attention to the fact that 2 + 5 = 7.)

1.7.1The first half of the verses just so happens to be odd valued:

2378 7058 3761 6478 4454

Total: 24129 = 32 x 7 x 383.

1.7.2The last half of the verses just so happens to be even valued:

2495 5917 4390 5162 2966

Total: 20930 = 2 x 5 x 7 x 13 x 23.

The Words

2.1How many pairs of words, Nth and Nth last, together and individually are divisible by 7? There is only one pair. It just so happens to be the 26th word, and the 26th word from the end. (The equivalent position from the beginning is 128).

Nth word:  26
Value:     252
Nth last:  128
Value:     679
Sum:       931

Sum of positions (26 + 128): 154 = 2 x 7 x 11. These two words are perfectly positioned. The sum of the words produces an extra factor of 7: 931 = 72 x 19.

2.2In the previous feature, two conditions had to be met. The sum of the pair had to be a multiple of 7, and the individual words also had to be multiples of 7. Relax one of the requirements so only the sum of the pair need be divisible by 7.

a) Nth word:  8   18  26  34  37  40  55  58  76
b) Value:     566 370 252 475 17  166 30  101 62
c) Nth last:  146 136 128 120 117 114 99  96  78
d) Value:     197 330 679 162 788 9   740 60  120
e) Sum:       763 700 931 637 805 175 770 161 182

Sum of positions (a + c): 1386 = 2 x 32 x 7 x 11. SF: 26 = 2 x 13.

2.3Five pairs of words, Nth and Nth last together are divisible by 13.

a) Nth word: 3   20  34  49  76
b) Value:    90  239 475 412 62
c) Nth last: 151 134 120 105 78
d) Value:    14  151 162 277 120
e) Sum:      104 390 637 689 182

Sum of positions (a + c): 770 = 2 x 5 x 7 x 11.

2.4Adding up every Nth word produces a multiple of 7 when N is one of the following:

2 6 8 12 13 23 27 32 42 56 57 58 67

The sum of the N values: 403 = 13 x 31.

2.4.2Beginning with the first word and adding up every Nth after produces a multiple of 13 when N is one of the following:

11 15 16 20 33 36 39 49 53 71

Providentially, the sum of the N values: 343 = 73. SF: 21 = 3 x 7.

2.4.3Adding up every Nth word produces a multiple of 91 (7 x 13) when N is one of the following:

42 56

Total of the N values: 98 = 2 x 72.

2.5.1Odd positioned words:

56 90 26 73 30 340 156 402 30 351 776 369 160 669 202 91 296 821 17 340 313 100 401 541 412 686 451 30 40 451 543 184 146 500 470 49 25 100 541 281 26 340 52 30 47 151 323 244 617 740 153 561 277 107 20 657 452 60 788 20 555 561 978 450 20 360 529 941 60 199 9 901 77 374 84 14 877

Total: 24213 = 3 x 7 x 1153.

2.5.2Even positioned words:

31 756 37 566 232 258 326 156 370 239 351 521 252 56 94 50 475 402 336 166 36 53 389 412 78 370 123 100 101 376 559 100 100 74 55 616 374 62 120 79 62 26 324 475 74 291 330 60 417 923 84 200 45 229 170 901 9 417 602 162 135 20 302 679 349 281 151 330 829 69 125 45 197 1050 272 360

Total: 20846 = 2 x 7 x 1489. SF: 1498 = 2 x 7 x 107.

2.6Divide the words into two complementary opposing groups depending on whether their first digit is odd or even.

2.6.1Ninety-four words have an odd valued first digit.

a) 1  2  3  4   6  7  8   9  11  13  14  16  17 18  19  21  22  23  24
b) 56 31 90 756 37 73 566 30 340 156 326 156 30 370 351 776 351 369 521

a) 25  28 30 31 32 37 38  39  40  41  42 43  44 46  47  50 52  54  55
b) 160 56 94 91 50 17 336 340 166 313 36 100 53 389 541 78 370 123 30

a) 56  58  60  61  62  63  64  65  66  67  68 70 74  75  77  78  80 83
b) 100 101 376 543 559 184 100 146 100 500 74 55 374 100 541 120 79 340

a) 85 86  87 90 91  93  94  99  100 101 103 107 110 112 114 117 120 121
b) 52 324 30 74 151 323 330 740 923 153 561 107 170 901 9   788 162 555

a) 122 123 125 126 130 131 133 134 135 136 139 141 142 143 145 146 147
b) 135 561 978 302 349 360 529 151 941 330 199 9   125 901 77  197 374

a) 148  151 152 (Word position.)
b) 1050 14  360 (Word value.)

Total of the positions (a): 6818 = 2 x 7 x 487. Total of the words (b): 27415 = 5 x 5483. SF: 5488 = 24 x 73.

2.6.2Fifty-nine of the words have an even valued first digit.

a) 5  10  12  15  20  26  27  29  33  34  35  36  45  48  49  51  53
b) 26 232 258 402 239 252 669 202 296 475 821 402 401 412 412 686 451

a) 57 59  69  71 72  73 76 79  81 82 84 88  89 92  95  96 97  98  102
b) 40 451 470 49 616 25 62 281 26 62 26 475 47 291 244 60 617 417 84

a) 104 105 106 108 109 111 113 115 116 118 119 124 127 128 129 132 137
b) 200 277 45  229 20  657 452 60  417 602 20  20  450 679 20  281 60

a) 138 140 144 149 150 153  (Word position.)
b) 829 69  45  84  272 877  (Word value.)

Total of the positions (a): 4963 = 7 x 709. Total of the words (b): 17644 = 22 x 11 x 401. SF: 416 = 25 x 13.

The total of the positions of the words with odd/even first digits are multiples of 7. They are strategically placed in the passage. The total of the words in each category are not. Providentially, in both cases, the sum of the factors for the total of the words is a multiple of 7 or 13.

2.7Divide the words into two complementary opposing groups depending on whether they are prime numbers or not.

2.7.1Thirty words are prime numbers.

a) 97  105 107 108 130 132 134 135 138 139 146 153 (Word position.)
b) 617 277 107 229 349 281 151 941 829 199 197 877 (Word value.)

Total of the positions (a): 2352 = 24 x 3 x 72.

2.7.2A hundred and twenty-three words are not prime numbers.

a) 22  23   25  26  27  28 29  30 31 32 33  34   36   38  39  40   42
b) 351 369  160 252 669 56 202 94 91 50 296 475  402  336 340 166  36

a) 43      48  49  50 51  52  53  54  55 56  57  59  60  61  62  63
b) 100     412 412 78 686 370 451 123 30 100 40  451 376 543 559 184

a) 64  65  66  67  68 69  70 71 72  73 74  75  76  78    81 82 83  84
b) 100 146 100 500 74 470 55 49 616 25 374 100 62  120   26 62 340 26

a) 85 86  87 88   90  92  93  94  95  96  98  99  100 101 102 103 104
b) 52 324 30 475  74  291 323 330 244 60  417 740 923 153 84  561 200

a) 106   109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
b) 45    20  170 657 901 452 9   60  417 788 602 20  162 555 135 561

a) 124 125 126 127 128 129  131  133   136 137   140 141 142 143 144
b) 20  978 302 450 679 20   360  529   330 60    69  9   125 901 45

a) 145  147 148  149 150 151 152
b) 77   374 1050 84  272 14  360

Total of the positions (a): 9429 = 3 x 7 x 449.

2.8Sixteen words are multiples of seven.

a) 1  4   26  28 31 38  51  71 72  102 118 128 145 148  149 151
b) 56 756 252 56 91 336 686 49 616 84  602 679 77  1050 84  14

a) Word position.
b) Word value.

The total of the words produces more factors of 7: 5488 = 24 x 73.

2.9When the words are added one by one, 20 times the accumulated total will be divisible by 7.

a) 1  5   10   16   27   28   40    45    53    61    67    77
b) 56 26  232  156  669  56   166   401   451   543   500   541
c) 56 959 1897 3535 7623 7679 10969 11872 15211 16975 18564 20930

a) 89    94    112   116   126   130   146   153
b) 47    330   901   417   302   349   197   877
c) 22792 23961 30366 31304 35427 36925 42028 45059

a) Word position.
b) Word value.
c) Accumulated total at that point.

Total of the words (b): 7217 = 7 x 1031.

2.10.1The lowest valued word (9), and the highest valued word (1050) are a complementary opposite. The total of both letters' positions in the passage: 403 = 13 x 31.

2.10.2The lowest valued word that appeared only once: 14. The highest valued word that appeared the most: 100. The total of both letters' positions in the passage: 455 = 5 x 7 x 13.

2.10.3The word with the lowest total value (value multiplied by number of appearances) is 14. The word with the highest total value: 901. The total of both letters' positions: 406 = 2 x 7 x 29.

2.10.4The word with the lowest total of all its positions (2): 31. The word with the highest total of all its positions (481): 20. The total of both letters' positions: 483 = 3 x 7 x 23.

2.11Divide the 153 words into a group of 52, a group of 49 and a final group of 52. These are alternating groups of M and N number of words where M and N are multiples of 7 or 13.

2.11.1Add the groups of 52 words:

56 31 90 756 26 37 73 566 30 232 340 258 156 326 402 156 30 370 351 239 776 351 369 521 160 252 669 56 202 94 91 50 296 475 821 402 17 336 340 166 313 36 100 53 401 389 541 412 412 78 686 370
84 561 200 277 45 107 229 20 170 657 901 452 9 60 417 788 602 20 162 555 135 561 20 978 302 450 679 20 349 360 281 529 151 941 330 60 829 199 69 9 125 901 45 77 197 374 1050 84 272 14 360 877

Total: 32704 = 26 x 7 x 73.

2.11.2Add the single group of 49 words:

451 123 30 100 40 101 451 376 543 559 184 100 146 100 500 74 470 55 49 616 25 374 100 62 541 120 281 79 26 62 340 26 52 324 30 475 47 74 151 291 323 330 244 60 617 417 740 923 153

Total: 12355 = 5 x 7 x 353.

2.11.3The difference between the groups of 52 and 49: 20349 = 32 x 7 x 17 x 19. SF: 49 = 72. SF: 14 = 2 x 7.

2.12Load the 153 words into a 51 column by 3 row rectangle.

2.12.1Outside (perimeter): 32704 = 26 x 7 x 73.

2.12.2Inside: 12355 = 5 x 7 x 353.

2.12.3Difference of inside and outside: 20349 = 32 x 7 x 17 x 19. SF: 49 = 72. SF: 14 = 2 x 7.

2.12.4Odd positioned columns: 23954 = 2 x 7 x 29 x 59.

2.12.5Even positioned columns: 21105 = 32 x 5 x 7 x 67.

2.12.6First column and every 7th after: 6860 = 22 x 5 x 73.

2.12.7Thirteen crosses: 17459 = 13 x 17 x 79.

First And Last

3.1The first and last letters of each word:

11 31 16 440 15 7 11 76 30 140 220 8 110 16 402 140 30 120 41 32 26 41 55 406 110 240 16 35 42 46 80 50 95 75 410 402 7 240 340 76 11 16 100 15 401 309 40 11 402 70 6 290 430 12 15 60 40 11 430 70 32 12 80 50 110 80 50 74 470 15 15 206 7 60 100 12 40 10 11 9 15 52 340 15 7 12 30 75 40 74 11 91 110 270 45 120 190 92 140 49 45 83 201 140 2 45 107 8 19 47 79 601 91 9 120 92 97 12 19 71 10 130 201 19 130 160 190 91 19 93 300 220 65 150 41 270 120 490 12 69 9 45 601 45 32 190 99 150 83 12 5 300 270

Total of the first and last letters of each word: 17157 = 3 x 7 x 19 x 43.

3.1.1Seven times the letter values of God’s name in Hebrew count through the first and last letters of each word.

a) 10  5   6  5   10  5  6  5   10 5  6  5  10 5   6   5   10  5   6
b) 10  15  21 26  36  41 47 52  62 67 73 78 88 93  99  104 114 119 125
c) 10  15  21 26  36  41 47 52  62 67 73 78 88 93  99  104 114 119 125
d) 140 402 26 240 402 11 40 290 12 50 7  10 75 110 140 140 9   19  130

a) 5   10  5   6   5   10  5   6   5  (Value from the Name.)
b) 130 140 145 151 156 13  18  24  29 (Count.)
c) 130 140 145 151 3   13  18  24  29 (Count adjusted to 153.)
d) 93  69  32  5   16  110 120 406 42 (Total from feature 3 found.)

Total: 3146 = 2 x 112 x 13.

3.1.2Similar to taking every other verse or word, the totals in feature 3 can be also be taken in alternating groups.

3.1.2.1Odd positioned groups of 9 from feature 3:

11 31 16 440 15 7 11 76 30 41 32 26 41 55 406 110 240 16 7 240 340 76 11 16 100 15 401 15 60 40 11 430 70 32 12 80 7 60 100 12 40 10 11 9 15 11 91 110 270 45 120 190 92 140 19 47 79 601 91 9 120 92 97 190 91 19 93 300 220 65 150 41 32 190 99 150 83 12 5 300 270

Total: 8358 = 2 x 3 x 7 x 199.

3.1.2.1.1Odd positioned groups of 9 from 3.2.1:

11 31 16 440 15 7 11 76 30 7 240 340 76 11 16 100 15 401 7 60 100 12 40 10 11 9 15 19 47 79 601 91 9 120 92 97 32 190 99 150 83 12 5 300 270

Total: 4403 = 7 x 17 x 37.

3.1.2.1.1.1Odd positioned groups of 1 from 3.2.1.1:

11 16 15 11 30 240 76 16 15 7 100 40 11 15 47 601 9 92 32 99 83 5 270

Total: 1841 = 7 x 263.

3.1.2.1.1.2Even positioned groups of 1 from 3.2.1.1:

31 440 7 76 7 340 11 100 401 60 12 10 9 19 79 91 120 97 190 150 12 300

Total: 2562 = 2 x 3 x 7 x 61.

3.1.2.1.2Even positioned groups of 9 from 3.2.1:

41 32 26 41 55 406 110 240 16 15 60 40 11 430 70 32 12 80 11 91 110 270 45 120 190 92 140 190 91 19 93 300 220 65 150 41

Total: 3955 = 5 x 7 x 113.

3.1.2.2Even positioned groups of 9 from feature 3:

140 220 8 110 16 402 140 30 120 35 42 46 80 50 95 75 410 402 309 40 11 402 70 6 290 430 12 50 110 80 50 74 470 15 15 206 52 340 15 7 12 30 75 40 74 49 45 83 201 140 2 45 107 8 12 19 71 10 130 201 19 130 160 270 120 490 12 69 9 45 601 45

Total: 8799 = 3 x 7 x 419. SF: 429 = 3 x 11 x 13.

3.1.2.2.1Odd positioned groups of 8 from 3.2.2:

140 220 8 110 16 402 140 30 410 402 309 40 11 402 70 6 470 15 15 206 52 340 15 7 201 140 2 45 107 8 12 19 120 490 12 69 9 45 601 45

Total: 5761 = 7 x 823.

3.1.2.2.1.1Odd positioned groups of 8 from 3.2.2.1:

140 220 8 110 16 402 140 30 470 15 15 206 52 340 15 7 120 490 12 69 9 45 601 45

Total: 3577 = 72 x 73.

3.1.2.2.1.1.1Odd positioned groups of 3 from 3.2.2.1.1:

140 220 8 140 30 470 52 340 15 12 69 9

Total: 1505 = 5 x 7 x 43.

3.1.2.2.1.1.1.1First half of 6 from 3.2.2.1.1.1:

52 340 15 12 69 9

Total: 497 = 7 x 71. SF: 78 = 2 x 3 x 13.

3.1.2.2.1.1.1.2Last half of 6 from 3.2.2.1.1.1:

140 220 8 140 30 470

Total: 1008 = 24 x 32 x 7. SF: 21 = 3 x 7.

3.1.2.2.1.1.2Even positioned groups of 3 from 3.2.2.1.1:

110 16 402 15 15 206 7 120 490 45 601 45

Total: 2072 = 23 x 7 x 37.

3.1.2.2.1.1.2.1Odd positioned groups of 2 from 3.2.2.1.1.2:

110 16 15 206 490 45

Total: 882 = 2 x 32 x 72

3.1.2.2.1.1.2.2Even positioned groups of 2 from 3.2.2.1.1.2:

402 15 7 120 601 45

Total: 1190 = 2 x 5 x 7 x 17.

3.1.2.2.1.1.3Odd positioned groups of 8 from 3.2.2.1.1:

140 220 8 110 16 402 140 30 120 490 12 69 9 45 601 45

Total: 2457 = 33 x 7 x 13.

3.1.2.2.1.1.3.1Odd positioned groups of 2 from 3.2.2.1.1.3:

140 220 16 402 120 490 9 45

Total: 1442 = 2 x 7 x 103. SF: 112 = 24 x 7.

3.1.2.2.1.1.3.2Even positioned groups of 2 from 3.2.2.1.1.3:

8 110 140 30 12 69 601 45

Total: 1015 = 5 x 7 x 29.

3.1.2.2.1.1.3.3Odd positioned groups of 4 from 3.2.2.1.1.3:

140 220 8 110 120 490 12 69

Total: 1169 = 7 x 167.

3.1.2.2.1.1.3.3.1       Odd positioned groups of 1 from 3.2.2.1.1.3.3:

140 8 120 12

Total: 280 = 23 x 5 x 7.

3.1.2.2.1.1.3.3.2       Even positioned groups of 1 from 3.2.2.1.1.3.3:

220 110 490 69

Total: 889 = 7 x 127.

3.1.2.2.1.1.3.4Even positioned groups of 4 from 3.2.2.1.1.3:

16 402 140 30 9 45 601 45

Total: 1288 = 23 x 7 x 23.

3.1.2.2.1.1.3.4.1       First half of 4 from 3.2.2.1.1.3.4:

16 402 140 30

Total: 588 = 22 x 3 x 72 SF: 21 = 3 x 7.

3.1.2.2.1.1.3.4.2Last half of 4 from 3.2.2.1.1.3.4:

9 45 601 45

Total: 700 = 22 x 52 x 7. SF: 21 = 3 x 7.

3.1.2.2.1.1.3.5First half of 8 from 3.2.2.1.1.3:

140 220 8 110 16 402 140 30

Total: 1066 = 2 x 13 x 41. SF: 56 = 23 x 7. SF: 13.

3.1.2.2.1.1.3.6Last half of 8 from 3.2.2.1.1.3:

120 490 12 69 9 45 601 45

Total: 1391 = 13 x 107.

3.1.2.2.1.1.4Even positioned groups of 8 from 3.2.2.1.1:

470 15 15 206 52 340 15 7

Total: 1120 = 25 x 5 x 7.

3.1.2.2.1.2Even positioned groups of 8 from 3.2.2.1:

410 402 309 40 11 402 70 6 201 140 2 45 107 8 12 19

Total: 2184 = 23 x 3 x 7 x 13.

3.1.2.2.2Even positioned groups of 8 from 3.2.2:

120 35 42 46 80 50 95 75 290 430 12 50 110 80 50 74 12 30 75 40 74 49 45 83 71 10 130 201 19 130 160 270

Total: 3038 = 2 x 72 x 31.

3.1.2.2.3First half of 36 from 3.2.2:

140 220 8 110 16 402 140 30 120 35 42 46 80 50 95 75 410 402 309 40 11 402 70 6 290 430 12 50 110 80 50 74 470 15 15 206

Total: 5061 = 3 x 7 x 241.

3.1.2.2.3.1Odd positioned groups of 3 from 3.2.2.3:

140 220 8 140 30 120 80 50 95 309 40 11 290 430 12 50 74 470

Total: 2569 = 7 x 367.

3.1.2.2.3.2Even positioned groups of 3 from 3.2.2.3:

110 16 402 35 42 46 75 410 402 402 70 6 50 110 80 15 15 206

Total: 2492 = 22 x 7 x 89.

3.1.2.2.3.2.1Odd positioned groups of 1 from 3.2.2.3.2:

110 402 42 75 402 70 50 80 15

Total: 1246 = 2 x 7 x 89. SF: 98 = 2 x 72

3.1.2.2.3.2.2Even positioned groups of 1 from 3.2.2.3.2:

16 35 46 410 402 6 110 15 206

Total: 1246 = 2 x 7 x 89. SF: 98 = 2 x 72

3.1.2.2.3.2.3Odd positioned groups of 6 from 3.2.2.3.2:

75 410 402 402 70 6

Total: 1365 = 3 x 5 x 7 x 13. SF: 28 = 22 x 7.

3.1.2.2.3.2.4Even positioned groups of 6 from 3.2.2.3.2:

110 16 402 35 42 46 50 110 80 15 15 206

Total: 1127 = 72 x 23.

3.1.2.2.3.2.4.1First half of 6 from 3.2.2.3.2.4:

50 110 80 15 15 206

Total: 476 = 22 x 7 x 17. SF: 28 = 22 x 7.

3.1.2.2.3.2.4.2Last half of 6 from 3.2.2.3.2.4:

110 16 402 35 42 46

Total: 651 = 3 x 7 x 31.

3.1.2.2.4Last half of 36 from 3.2.2:

52 340 15 7 12 30 75 40 74 49 45 83 201 140 2 45 107 8 12 19 71 10 130 201 19 130 160 270 120 490 12 69 9 45 601 45

Total: 3738 = 2 x 3 x 7 x 89.

3.1.2.3Odd positioned groups of 17 from feature 3:

120 41 32 26 41 55 406 110 240 16 35 42 46 80 50 95 75 290 430 12 15 60 40 11 430 70 32 12 80 50 110 80 50 74 12 30 75 40 74 11 91 110 270 45 120 190 92 140 49 45 83 71 10 130 201 19 130 160 190 91 19 93 300 220 65 150 41 270

Total: 6993 = 33 x 7 x 37.

3.1.2.4Even positioned groups of 17 from feature 3:

11 31 16 440 15 7 11 76 30 140 220 8 110 16 402 140 30 410 402 7 240 340 76 11 16 100 15 401 309 40 11 402 70 6 470 15 15 206 7 60 100 12 40 10 11 9 15 52 340 15 7 201 140 2 45 107 8 19 47 79 601 91 9 120 92 97 12 19 120 490 12 69 9 45 601 45 32 190 99 150 83 12 5 300 270

Total: 10164 = 22 x 3 x 7 x 112.

3.1.3Eight of the totals in feature 3 are multiples of 13.

Word position:                  21 82 92 113 122 125 128 133
Total of first and last letter: 26 52 91 91  130 130 91  65

The sum of the totals yields another 13: 676 = 22 x 132. Providentially, this symmetrical number has its first two digits and its last two digits both adding to 13.

3.1.4When the totals in feature 3 are added one by one, twenty-five times the accumulated total will be divisible by 7.

a) 2  9  10  15  16  25  34 36  37 44 51 57 59  60 66 70
b) 31 30 140 402 140 110 75 402 7  15 6  40 430 70 80 15

a) 91 92 97  109 111 118 140 144 153 (Word position.)
b) 11 91 190 19  79  12  69  45  270 (Total of first and last.)

Sum of the totals where the accumulated total is a multiple of seven: 2779 = 7 x 397.

3.1.4.2When the totals in feature 3 are added one by one, eight times the accumulated total will be divisible by 26.

6 57 75  77 113 124 125 144 (Word position.)
7 40 100 40 91  19  130 45  (Total of first and last.)

Sum of the totals: 721 = 7 x 103.

3.1.4.2When the totals in feature 3 are added one by one, three times the accumulated total will be divisible by 91 (7 x 13).

9  57 144 (Word position.)
30 40 45  (Total of first and last.)

Sum of the totals: 210 = 2 x 3 x 5 x 7.

3.1.5In feature 3, 2 and 601 are complementary opposites of the lowest and highest total of the first and last letters. The total value of 2 in the list in feature 3 is just 2. The total value of 601 in the list is 1202 because it appeared twice. Thus the total of these two totals that are complementary opposites is 1204 (22 x 7 x 43).

3.1.6Five of the totals in feature 3 divide the rest of the list into the complementary opposites of what is between their first and last occurrences, and what is not between these occurrences.

Between & Not Between The Sum Of The First & Last Letters
First & Last SumNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
1614641 = 3 x 7 x 13 x 17.12516 = 2 x 2 x 3 x 7 x 149.
1518764 = 2 x 2 x 7 x 313.8393 = 7 x 11 x 109.
8014718 = 2 x 7 x 337.12439 = 7 x 1777.
4013836 = 2 x 2 x 7 x 137.13321 = 7 x 11 x 173.
15012023 = 7 x 17 x 17.15134 = 2 x 7 x 23 x 47.

3.1.6.1The five totals from the first column of the table Between & Not Between:

16 15 80 40 150

Sum of the five totals: 301 = 7 x 43.

3.1.7The 153 totals in feature 3 are loaded into a 9 x 17 rectangle.

3.1.7.1Outside (perimeter): 4802 = 2 x 74.

3.1.7.2Inside: 12355 = 5 x 7 x 353.

3.1.7.3Even positioned columns: 9178 = 2 x 13 x 353. (Odd positioned columns: 7979 = 79 x 101.)

3.1.7.4Odd positioned rows: 8358 = 2 x 3 x 7 x 199.

3.1.7.5Even positioned rows: 8799 = 3 x 7 x 419. SF: 429 = 3 x 11 x 13.

3.1.7.6Four corners: 343 = 73 SF: 21 = 3 x 7.

3.1.7.7First and last columns: 3367 = 7 x 13 x 37.

3.1.7.8Middle column: 1631 = 7 x 233.

3.1.7.9First and last rows: 1778 = 2 x 7 x 127.

3.1.7.10Middle cross: 1855 = 5 x 7 x 53.

3.1.7.11Spiral: 8652 = 22 x 3 x 7 x 103. SF: 117 = 32 x 13.

3.1.7.12A second spiral: 8983 = 13 x 691.

3.1.7.13A third spiral: 9058 = 2 x 7 x 647.

3.1.7.14Hourglass: 6055 = 5 x 7 x 173.

3.1.7.15The hourglass is not a coincidence since the same applies to the columns: 7665 = 3 x 5 x 7 x 73.

3.1.7.16The previous pattern continues: 6447 = 3 x 7 x 307.

3.1.7.17And continues further: 5915 = 5 x 7 x 132.

While a final step is possible continuing from 3.1.7.17, the result is no longer divisible by 7 or 13. The skeptic would say this was all just a massive fluke. But was it a fluke when 3.1.7.17 had a spectacular result that was divisible by 7, and divisible by 13 twice? Perhaps 3.1.7.17 was making up for the final step failing.

The totals for the first and last letters of each word appear to have amazing structure and order.

3.2The previous section dealt with the first and last letter of each word together. This section considers the first letter of each word by itself.

Total of the first letter of each word: 5957 = 7 x 23 x 37.

3.2.2.1Beginning with the first letter in feature 3.2's list and taking every Nth letter after, the following values of N produce a total divisible by 7.

10 11 13 19 49 59 66 67

Total of the N values: 294 = 2 x 3 x 72.

3.2.2.2Taking every Nth from the list in feature 3.2, only one value yields a multiple of 7 and 13: 7.

3.2.3Taking every Nth is selecting only one number from the list in 3.2. One could also taking every other group of N numbers.

3.2.3.1Odd positioned groups of 3 from 3.2:

40 10 6 100 20 3 90 20 100 1 50 6 30 2 6 70 400 2 70 2 10 300 10 6 90 30 2 10 30 40 40 70 30 10 10 6 2 10 6 2 300 10 70 10 70 70 5 60 9 5 3 5 100 1 1 1 4 5 10 70 10 90 70 3 100 20 70 60 400 5 1 5 60 3 3

Total: 3451 = 7 x 17 x 29.

3.2.3.1.1Odd positioned groups of 15 from 3.2.3.1:

70 400 2 70 2 10 300 10 6 90 30 2 10 30 40 70 5 60 9 5 3 5 100 1 1 1 4 5 10 70

Total: 1421 = 72 x 29.

3.2.3.1.2Even positioned groups of 15 from 3.2.3.1:

40 10 6 100 20 3 90 20 100 1 50 6 30 2 6 40 70 30 10 10 6 2 10 6 2 300 10 70 10 70 10 90 70 3 100 20 70 60 400 5 1 5 60 3 3

Total: 2030 = 2 x 5 x 7 x 29.

3.2.3.2Even positioned groups of 3 from 3.2:

6 30 10 5 70 20 100 6 2 1 2 6 70 200 6 30 20 5 3 40 300 70 5 1 2 30 1 10 40 30 2 6 40 10 70 70 1 10 70 6 2 10 1 6 20 1 1 20 100 2 100 1 100 1 10 7 70 60 2 7 9 30 1 100 1 10 5 70 1 3 60 4 2 100 9 4 100 70

Total: 2506 = 2 x 7 x 179.

3.2.3.2.1Odd positioned groups of 1 from 3.2.3.2:

6 10 70 100 2 2 70 6 20 3 300 5 2 1 40 2 40 70 1 70 2 1 20 1 100 100 100 10 70 2 9 1 1 5 1 60 2 9 100

Total: 1414 = 2 x 7 x 101.

3.2.3.2.1.1Odd positioned groups of 13 from 3.2.3.2.1:

6 10 70 100 2 2 70 6 20 3 300 5 2 100 10 70 2 9 1 1 5 1 60 2 9 100

Total: 966 = 2 x 3 x 7 x 23. SF: 35 = 5 x 7.

3.2.3.2.1.2Even positioned groups of 13 from 3.2.3.2.1:

1 40 2 40 70 1 70 2 1 20 1 100 100

Total: 448 = 26 x 7.

3.2.3.2.1.2.1Odd positioned groups of 1 from 3.2.3.2.1.2:

1 2 70 70 1 1 100

Total: 245 = 5 x 72.

3.2.3.2.1.2.2Even positioned groups of 1 from 3.2.3.2.1.2:

40 40 1 2 20 100

Total: 203 = 7 x 29.

3.2.3.2.2Even positioned groups of 1 from 3.2.3.2:

30 5 20 6 1 6 200 30 5 40 70 1 30 10 30 6 10 70 10 6 10 6 1 20 2 1 1 7 60 7 30 100 10 70 3 4 100 4 70

Total: 1092 = 22 x 3 x 7 x 13.

3.2.3.2.2.1Odd positioned groups of 1 from 3.2.3.2.2:

30 20 1 200 5 70 30 30 10 10 10 1 2 1 60 30 10 3 100 70

Total: 693 = 32 x 7 x 11.

3.2.3.2.2.1.1Odd positioned groups of 2 from 3.2.3.2.2.1:

30 20 5 70 10 10 2 1 10 3

Total: 161 = 7 x 23.

3.2.3.2.2.1.2Even positioned groups of 2 from 3.2.3.2.2.1:

1 200 30 30 10 1 60 30 100 70

Total: 532 = 22 x 7 x 19.

3.2.3.2.2.1.3First half of 10 from 3.2.3.2.2.1:

10 1 2 1 60 30 10 3 100 70

Total: 287 = 7 x 41.

3.2.3.2.2.1.3.1     Odd positioned groups of 1 from 3.2.3.2.2.1.3:

10 2 60 10 100

Total: 182 = 2 x 7 x 13.

3.2.3.2.2.1.3.2     Even positioned groups of 1 from 3.2.3.2.2.1.3:

1 1 30 3 70

Total: 105 = 3 x 5 x 7.

3.2.3.2.2.1.4Last half of 10 from 3.2.3.2.2.1:

30 20 1 200 5 70 30 30 10 10

Total: 406 = 2 x 7 x 29.

3.2.3.2.2.2Even positioned groups of 1 from 3.2.3.2.2:

5 6 6 30 40 1 10 6 70 6 6 20 1 7 7 100 70 4 4

Total: 399 = 3 x 7 x 19.

3.2.3.2.2.3Odd positioned groups of 13 from 3.2.3.2.2:

30 5 20 6 1 6 200 30 5 40 70 1 30 1 7 60 7 30 100 10 70 3 4 100 4 70

Total: 910 = 2 x 5 x 7 x 13.

3.2.3.2.2.4Even positioned groups of 13 from 3.2.3.2.2:

10 30 6 10 70 10 6 10 6 1 20 2 1

Total: 182 = 2 x 7 x 13.

3.2.3.2.2.4.1Odd positioned groups of 1 from 3.2.3.2.2.4:

10 6 70 6 6 20 1

Total: 119 = 7 x 17.

3.2.3.2.2.4.2Even positioned groups of 1 from 3.2.3.2.2.4:

30 10 10 10 1 2

Total: 63 = 32 x 7. SF: 13.

3.2.3.2.3Odd positioned groups of 26 from 3.2.3.2:

6 30 10 5 70 20 100 6 2 1 2 6 70 200 6 30 20 5 3 40 300 70 5 1 2 30 100 1 10 7 70 60 2 7 9 30 1 100 1 10 5 70 1 3 60 4 2 100 9 4 100 70

Total: 1876 = 22 x 7 x 67. SF: 78 = 2 x 3 x 13.

3.2.3.2.3.1Odd positioned groups of 1 from 3.2.3.2.3:

6 10 70 100 2 2 70 6 20 3 300 5 2 100 10 70 2 9 1 1 5 1 60 2 9 100

Total: 966 = 2 x 3 x 7 x 23. SF: 35 = 5 x 7.

3.2.3.2.3.2Even positioned groups of 1 from 3.2.3.2.3:

30 5 20 6 1 6 200 30 5 40 70 1 30 1 7 60 7 30 100 10 70 3 4 100 4 70

Total: 910 = 2 x 5 x 7 x 13.

3.2.3.2.4Even positioned groups of 26 from 3.2.3.2:

1 10 40 30 2 6 40 10 70 70 1 10 70 6 2 10 1 6 20 1 1 20 100 2 100 1

Total: 630 = 2 x 32 x 5 x 7.

3.2.3.2.4.1Odd positioned groups of 1 from 3.2.3.2.4:

1 40 2 40 70 1 70 2 1 20 1 100 100

Total: 448 = 26 x 7.

3.2.3.2.4.1.1Odd positioned groups of 1 from 3.2.3.2.4.1:

1 2 70 70 1 1 100

Total: 245 = 5 x 72.

3.2.3.2.4.1.2Even positioned groups of 1 from 3.2.3.2.4.1:

40 40 1 2 20 100

Total: 203 = 7 x 29.

3.2.3.2.4.2Even positioned groups of 1 from 3.2.3.2.4:

10 30 6 10 70 10 6 10 6 1 20 2 1

Total: 182 = 2 x 7 x 13.

3.2.3.2.4.2.1Odd positioned groups of 1 from 3.2.3.2.4.2:

10 6 70 6 6 20 1

Total: 119 = 7 x 17.

3.2.3.2.4.2.2Even positioned groups of 1 from 3.2.3.2.4.2:

30 10 10 10 1 2

Total: 63 = 32 x 7. SF: 13.

3.2.3.2.4.3Odd positioned groups of 2 from 3.2.3.2.4:

1 10 2 6 70 70 70 6 1 6 1 20 100 1

Total: 364 = 22 x 7 x 13.

3.2.3.2.4.3.1Odd positioned groups of 1 from 3.2.3.2.4.3:

1 2 70 70 1 1 100

Total: 245 = 5 x 72.

3.2.3.2.4.3.2Even positioned groups of 1 from 3.2.3.2.4.3:

10 6 70 6 6 20 1

Total: 119 = 7 x 17.

3.2.3.2.4.3.3Odd positioned groups of 2 from 3.2.3.2.4.3:

1 10 70 70 1 6 100 1

Total: 259 = 7 x 37.

3.2.3.2.4.3.4Even positioned groups of 2 from 3.2.3.2.4.3:

2 6 70 6 1 20

Total: 105 = 3 x 5 x 7.

3.2.3.2.4.4Even positioned groups of 2 from 3.2.3.2.4:

40 30 40 10 1 10 2 10 20 1 100 2

Total: 266 = 2 x 7 x 19. SF: 28 = 22 x 7.

3.2.3.2.4.4.1Odd positioned groups of 1 from 3.2.3.2.4.4:

40 40 1 2 20 100

Total: 203 = 7 x 29.

3.2.3.2.4.4.2Even positioned groups of 1 from 3.2.3.2.4.4:

30 10 10 10 1 2

Total: 63 = 32 x 7. SF: 13.

3.2.3.2.5First half of 39 from 3.2.3.2:

6 2 10 1 6 20 1 1 20 100 2 100 1 100 1 10 7 70 60 2 7 9 30 1 100 1 10 5 70 1 3 60 4 2 100 9 4 100 70

Total: 1106 = 2 x 7 x 79.

3.2.3.2.6Last half of 39 from 3.2.3.2:

6 30 10 5 70 20 100 6 2 1 2 6 70 200 6 30 20 5 3 40 300 70 5 1 2 30 1 10 40 30 2 6 40 10 70 70 1 10 70

Total: 1400 = 23 x 52 x 7.

3.2.4Twenty of the numbers in feature 3.2 are multiples of 7.

a) 8  25 34 40 43 65 68 69 75 88 90 94 110 111 117 120 126 134 136 153
b) 70 70 70 70 70 70 70 70 70 70 70 70 7   70  7   70  70  70  70  70

a) Word position.
b) First letter of word.

Total of the letters (b): 1274 = 2 x 7 x 7 x 13. (An extra 7 and 13 appear.)

3.2.5When the first letters are added one by one, 25 times the accumulated total will be divisible by 7.

a) 13  16  27  41   50   52   55   57   64   65   74   75   89   90
b) 100 90  6   2    30   90   10   30   40   70   10   70   10   70
c) 420 518 980 1960 2394 2485 2527 2597 2765 2835 3052 3122 3577 3647

a) 98   106  112  121  127  130  135  136  142  152  153
b) 2    5    1    9    100  3    1    70   5    100  70
c) 3906 4130 4319 4487 4788 4802 4998 5068 5600 5887 5957

a) Word position.
b) First letter of word.
c) Accumulated total at that point.

Total of the letters (b): 994 = 2 x 7 x 71.

3.2.6Divide the list of letters in feature 3.2 into groups of 9, and add each group. Put all odd valued groups together, and all even valued groups together.

3.2.6.1Odd valued groups of 9:

6 30 10 40 10 6 5 70 20       100 20 3 100 6 2 90 20 100
30 2 6 30 20 5 70 400 2       3 40 300 70 2 10 70 5 1
300 10 6 2 30 1 90 30 2       1 10 70 2 10 6 6 2 10
2 300 10 1 6 20 70 10 70      1 1 20 70 5 60 100 2 100
9 5 3 1 100 1 5 100 1         5 10 70 9 30 1 10 90 70
2 100 9 60 3 3 4 100 70

Total: 4011 = 3 x 7 x 191.

3.2.6.2Even valued segments of 9:

1 2 6 1 50 6 70 200 6        10 40 30 10 30 40 2 6 40
40 70 30 10 70 70 10 10 6    10 7 70 1 1 4 60 2 7
100 1 10 3 100 20 5 70 1     70 60 400 3 60 4 5 1 5

Total: 1946 = 2 x 7 x 139.

3.3The last letter of each word also have numeric features.

Total of the letters: 11200 = 26 x 52 x 7.

3.3.1Difference between the totals of the first and last letters of each word: 5243 = 72 x 107.

3.3.2.1Apply the letter values of God’s name in Hebrew six times to count through the list in 3.3.

a) 10 5   6  5  10  5  6  5   10 5  6  5  10 5  6  5   10  5   6   5
b) 10 15  21 26 36  41 47 52  62 67 73 78 88 93 99 104 114 119 125 130
c) 10 15  21 26 36  41 47 52  62 67 73 78 88 93 99 104 114 119 125 130
d) 40 400 20 40 400 9  30 200 6  40 6  4  5  90 40 40  5   9   40  90

a) 10  5   6   5    (Letter from the Name.)
b) 140 145 151 156  (Count.)
c) 140 145 151 3    (Count adjusted to 153.)
d) 9   30  1   6    (Last letter of word found.)

Total: 1560 = 23 x 3 x 5 x 13.

3.3.2.2Apply the letter values of God’s name in Hebrew seven times to count through the list in 3.3.

a) 10  5   6   5   10 5  6   5   (Letter from the Name.)
b) 140 145 151 156 13 18 24  29  (Count.)
c) 140 145 151 3   13 18 24  29  (Count adjusted to 153.)
d) 9   30  1   6   10 20 400 40  (Last letter of word found.)

Total: 2030 = 2 x 5 x 7 x 29.

3.3.3.1Beginning with the first letter in 3.3 and taking every Nth after, the following values of N produce totals divisible by 13:

24 28 32 35

Total of the N values: 119 = 7 x 17.

3.3.3.2Taking every Nth letter from 3.3, the following N values have totals divisible by 13:

58 61 63 65 75

Total of the N values: 322 = 2 x 7 x 23.

3.3.3.3Beginning with the first letter in 3.3 and taking every Nth after, only one possibility exists for N to produce a multiple of 91:

35

Total of the single N value: 35 = 5 x 7.

3.3.4There is balance in the list in feature 3.3 between the odd valued and even valued letters.

3.3.4.1Thirty-eight of the last letters are odd valued.

a) 1 2 5 6 12 23 28 34 41 46 48 51 55 58 70 71 79 80 81 84 88 105 107
b) 5 1 5 1 5  5  5  5  9  9  5  5  5  1  5  5  5  7  5  5  5  1   7

a) 108 109 111 114 118 119 120 121 124 129 139 140 141 150 151
b) 7   9   9   5   7   9   1   1   9   9   9   9   5   9   1

a) Word position.
b) Last letter of word.

Total of the odd valued letters (b): 210 = 2 x 3 x 5 x 7.

3.3.4.2A hundred and fifteen of the last letters are even valued.

a) 3 4   7 8 9  10 11  13 14 15  16 17 18 19 20 21 22 24  25 26 27 29
b) 6 400 6 6 10 40 200 10 10 400 50 10 20 40 30 20 40 400 40 40 10 40

a) 30 31 32 33 35 36  37 38  39 40 42 43 44 45  47 49  50 52  53  54
b) 40 50 30 90 10 400 4  200 40 6  6  30 10 400 30 400 40 200 400 10

a) 56 57 59  60 61 62 63 64 65 66 67 68 69  72  73 74 75 76 77 78 82
b) 20 10 400 30 30 6  40 10 40 50 40 4  400 200 6  50 30 10 30 4  50

a) 83 85 86 87 89 90 91 92 93 94  95 96 97 98 99 100 101 102 103 104
b) 40 6  6  10 30 4  10 90 90 200 40 60 90 90 40 40  40  80  200 40

a) 106 110 112 113 115 116 117 122 123 125 126 127 128 130 131 132 133
b) 40  40  600 90  60  90  90  100 200 40  90  90  90  90  200 200 60

a) 134 135 136 137 138 142 143 144 145 146 147 148 149 152 153
b) 80  40  200 60  90  40  600 40  30  90  90  90  80  200 200

a) Word position.
b) Last letter of word.

Total of the letters (b): 10990 = 2 x 5 x 7 x 157.

3.3.5Four of the last letters of each word are multiples of 7:

Word position:       80 107 108 118
Last letter of word: 7  7   7   7

Total of the positions: 413 = 7 x 59.

3.3.6Add up the letters 3.3 one by one keeping track of the word position, the letter and the accumulated total.

3.3.6.1Seventy-five times the accumulated total will be an odd number.

a)  b)  c)      a)  b)  c)      a)  b)  c)
1   5   5       49  400 3629    103 200 6953
5   5   417     50  40  3669    104 40  6993
12  5   685     55  5   4289    107 7   7041
13  10  695     56  20  4309    109 9   7057
14  10  705     57  10  4319    110 40  7097
15  400 1105    70  5   5375    114 5   7801
16  50  1155    79  5   5715    115 60  7861
17  10  1165    81  5   5727    116 90  7951
18  20  1185    82  50  5777    117 90  8041
19  40  1225    83  40  5817    119 9   8057
20  30  1255    88  5   5849    121 1   8059
21  20  1275    89  30  5879    122 100 8159
22  40  1315    90  4   5883    123 200 8359
28  5   1815    91  10  5893    129 9   8687
29  40  1855    92  90  5983    130 90  8777
30  40  1895    93  90  6073    131 200 8977
31  50  1945    94  200 6273    132 200 9177
32  30  1975    95  40  6313    133 60  9237
33  90  2065    96  60  6373    134 80  9317
41  9   2739    97  90  6463    135 40  9357
42  6   2745    98  90  6553    136 200 9557
43  30  2775    99  40  6593    137 60  9617
44  10  2785    100 40  6633    138 90  9707
45  400 3185    101 40  6673    140 9   9725
48  5   3229    102 80  6753    150 9   10799
a) Word position.    b) Last letter of word.   c) Accumulated total.

Total of the positions (a): 5831 = 73 x 17.

3.3.6.2Seventy-eight times (2 x 3 x 13) the total will be even valued.

a)  b)  c)      a)  b)  c)      a)  b)  c)
2   1   6       54  10  4284    105 1   6994
3   6   12      58  1   4320    106 40  7034
4   400 412     59  400 4720    108 7   7048
6   1   418     60  30  4750    111 9   7106
7   6   424     61  30  4780    112 600 7706
8   6   430     62  6   4786    113 90  7796
9   10  440     63  40  4826    118 7   8048
10  40  480     64  10  4836    120 1   8058
11  200 680     65  40  4876    124 9   8368
23  5   1320    66  50  4926    125 40  8408
24  400 1720    67  40  4966    126 90  8498
25  40  1760    68  4   4970    127 90  8588
26  40  1800    69  400 5370    128 90  8678
27  10  1810    71  5   5380    139 9   9716
34  5   2070    72  200 5580    141 5   9730
35  10  2080    73  6   5586    142 40  9770
36  400 2480    74  50  5636    143 600 10370
37  4   2484    75  30  5666    144 40  10410
38  200 2684    76  10  5676    145 30  10440
39  40  2724    77  30  5706    146 90  10530
40  6   2730    78  4   5710    147 90  10620
46  9   3194    80  7   5722    148 90  10710
47  30  3224    84  5   5822    149 80  10790
51  5   3674    85  6   5828    151 1   10800
52  200 3874    86  6   5834    152 200 11000
53  400 4274    87  10  5844    153 200 11200
a) Word position.    b) Last letter of word.   c) Accumulated total.

Total of the positions (a): 5950 = 2 x 52 x 7 x 17.

3.3.6.3Twice the accumulated total will be a multiple of 91 (7 x 13).

a)  b)    c)
40  6     2730
45  400   3185

Total of the letters: 406 = 2 x 7 x 29.

3.3.7.1Only one of the last letters appeared seven times. Appropriately, the letter is 1.

3.3.7.2Of the last letters of each word, 100 and 40 form a complementary opposite. Together: 140 = 22 x 5 x 7. Letter 100 appeared only once. Letter 40 appeared the most, with 24 occurrences. The total of their word positions: 1911 = 3 x 72 x 13.

3.3.7.3Of the last letters, 1 and 400 form another complementary opposite. The total value of letter 1 is the lowest of all the last letters with a value of 7. The total value of letter 400 is the highest at 3600. All their positions together: 917 = 7 x 131.

3.3.8Twelve of the last letters have the unique ability of dividing the rest of the list in 3.3 into what is between their Nth and Nth last occurrences, and what is not between them.

Between & Not Between The Last Letter Of Each Word
Last LetterNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
535159 = 7 x 11 x 67. 6041 = 7 x 863.
563640 = 23 x 5 x 7 x 13. 7560 = 23 x 33 x 5 x 7.
4004749 = 7 x 107. 10451 = 7 x 1493.
1043661 = 7 x 523. 7539 = 3 x 7 x 359.
1052499 = 3 x 72 x 17. 8701 = 7 x 11 x 113.
4028505 = 35 x 5 x 7. 2695 = 5 x 72 x 11.
4046608 = 24 x 7 x 59. 4592 = 24 x 7 x 41. SF: 56 = 23 x 7. SF: 13.
4055257 = 7 x 751. 5943 = 3 x 7 x 283.
3050 = 11200 = 26 x 52 x 7.
413395 = 5 x 7 x 97. 7805 = 5 x 7 x 223.
720 = 11200 = 26 x 52 x 7.
6021316 = 22 x 7 x 47. 9884 = 22 x 7 x 353. SF: 364 = 22 x 7 x 13.

3.3.8.1The twelve letters from the first column of the above table form a multiple of 7.

5 5 400 10 10 40 40 40 30 4 7 60

Total of the letters: 651 = 3 x 7 x 31.

3.3.8.2The first and last letters of the twelve: 65 = 5 x 13.

3.3.8.3Of the twelve letters, five of them (5, 5, 400, 40, 4) have two factors of 7 when the difference is taken from what is between and not between. The odds would have suggested only two of them achieving this. (The difference for letter 40's fifth and fifth last occurrences is actually 686, or three factors of 7.)

3.4Since the combined passage contains Hebrew and Greek, and Greek has words consisting of a single letter, the letters that are not first or last in a word do not add up to a multiple of 7 even though the entire passage, and the first and last letters each are multiples of 7. Nevertheless, the letters that are not first or last in a word still have some numeric features.

Letters not first or last in a word:
5 40 4 70 8 300 2 6 5 6 30 2 10 50 90 400 2 90 70 40 10 200 50 6 40 4 6 300 10 6 200 50 300 10 200 7 80 200 60 400 10 300 10 8 6 300 5 4 100 6 40 10 2 10 5 8 200 40 400 10 5 6 90 70 8 10 30 1 4 6 1 200 400 400 3 4 4 4 6 90 6 30 10 50 300 2 20 30 8 80 300 200 1 1 400 10 8 80 200 400 70 10 5 10 6 1 30 80 5 6 4 40 90 5 10 6 6 300 10 300 200 1 40 6 90 1 400 10 100 4 10 40 6 30 20 400 50 6 30 4 30 4 10 400 8 10 300 6 2 6 50 300 200 1 70 40 200 70 70 5 6 3 1 6 5 6 30 5 10 10 300 2 400 3 4 80 60 200 5 3 60 40 100 5 60 90 100 9 5 400 8 5 9 1 90 9 20 5 200 600 60 200 4 1 9 600 9 4 60 30 5 1 200 100 60 60 90 100 5 80 40 1 100 60 20 1 20 8 60 30 5 80 60 90 10 200 40 7 90 1 200 100 10 60 200 90 1 1 90 9 20 5 200 80 600 4 7 100 1 80 1 400 8 1 1 90 5 80 60 90 60 20 200 30 5 200 100 60 1 200 40 1 3 1 3 600 1 40 100 1 60 200 80 400 9 5 80 5 9 1 80 1 30 30 1 100 5 9 60 1 60 70 200 40 8 1 40 5 100 1 200 100 600 60 80 9 90 100 60 5 40 40 1 100 1 9 70 1 200 100 7 8 20 5 5 7 60 200 4 1 9 1 200 100 600 1 5 3 80 1 70 100 1 9 60 80 60 300 7 100 60

3.4.1There are 371 letters that are not first or last in a word. (371 = 7 x 53.)

3.4.2Take every Nth letter from the above list. The following values of N produce multiples of 7.

4 7 13 22 26 37 46 48 53 56 69 87 88 100 103 104 106 110 114 117 121 124 128 130 136 146 147 149 150 162 168 171 172 174 182

Total of the N values: 3570 = 2 x 3 x 5 x 7 x 17.

3.4.3Take every Nth letter. Two values produce multiples of 91.

100 110

Total of the N values: 210 = 2 x 3 x 5 x 7.

3.4.4The lowest and highest valued letters are 1 and 600. Letter 1 appeared 40 times for a total of 40. Letter 600 occurred 6 times for a total of 3600. Thus the total value of the lowest and highest letters together: 3640 = 23 x 5 x 7 x 13.

3.4.5Another pair of complementary opposites is 2 and 200. 2 is the lowest letter that appeared the least with only 7 occurrences. 200 is the highest valued letter that appeared the most with 28 occurrences. This means the total of all these letters in the passage would a multiple of 7: 5614 = 2 x 7 x 401.

3.4.6The 371 letters can form alternating groups of M number of letters, and N number of letters where M and N are multiples of 7 or 13.

3.4.6.1Alternating groups of 140 and 91.

3.4.6.1.1Groups of 140: 21322 = 2 x 7 x 1523.

3.4.6.1.2Groups of 91: 6760 = 23 x 5 x 132.

3.4.6.2Alternating groups of 105 and 161.

3.4.6.2.1Groups of 105: 16044 = 22 x 3 x 7 x 191.

3.4.6.2.2Groups of 161: 12038 = 2 x 13 x 463.

All The Letters

4God’s name in Hebrew is applied 7 times to count through a portion of the letters.

a) 10 5  6  5  10 5  6  5  10 5  6  5  10 5  6  5   10  5   6   5   10
b) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130 140
c) 6  6  6  10 2  40 5  6  50 50 2  80 50 6  70 2   30  2   10  4   400

a) 5   6   5   10  5   6   5    (Letter from the Name.)
b) 145 151 156 166 171 177 182  (Count.)
c) 4   4   6   300 6   10  9    (Letter found.)

Total: 1176 = 23 x 3 x 72.

4.1Odd positioned letters: 22183 = 7 x 3169.

4.2Even positioned letters 22876 = 22 x 7 x 19 x 43.

4.3Beginning with the very first letter and taking every Nth letter after, the following values of N produce totals divisible by 13. There are exactly 28 of them.

15 16 21 24 34 41 73 82 87 89 103 119 122 145 152 153 158 172 179 192 215 216 219 233 235 278 298 312

Total of the N values: 3983 = 7 x 569.

4.4.1When the letters are added one by one, 94 times the accumulated total will be a multiple of 7.

a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)
4   5   56      196 8   13664   342 300 22232   507 80  32970
11  40  217     201 400 14385   345 20  22260   510 60  33180
13  300 525     205 10  14560   353 30  22792   526 90  34237
20  5   959     209 10  14805   354 70  22862   531 1   34482
24  5   1001    211 400 15211   367 40  23436   536 1   35196
38  40  1897    217 10  15344   369 5   23541   538 100 35336
42  10  2037    241 300 16744   373 200 23961   540 90  35427
44  3   2240    244 30  16975   388 1   24885   547 400 36358
54  6   2667    251 10  17528   391 20  25004   549 5   36372
60  10  3479    259 40  17808   402 1   26313   558 80  36659
62  50  3535    268 10  18074   404 600 26922   566 90  36925
81  400 5271    271 40  18564   413 3   27118   572 60  37366
93  6   6027    272 70  18634   421 100 27860   596 400 39977
103 200 6902    277 6   19124   445 20  28665   607 1   40495
108 5   6965    281 10  19173   448 30  28763   618 1   40768
113 10  7623    287 400 19628   457 40  29358   635 90  42028
118 5   7679    305 300 20699   458 7   29365   639 4   42301
162 10  10913   308 30  20930   460 1   29456   644 60  42462
164 6   10969   313 6   21056   463 200 29666   650 1   43456
170 20  11312   320 10  21420   465 600 30366   654 3   43547
179 400 11872   325 3   21441   479 9   30989   659 1   43799
183 10  12271   327 6   21448   483 90  31304   674 200 45059
190 400 13209   329 300 21798   484 7   31311
192 2   13216   338 10  21910   498 10  32704

a) Letter position.   b) Letter value.   c) Accumulated total.

Total of the letters (b): 8589 = 3 x 7 x 409.

4.4.2When the letters are added one by one, 60 times the total will be divisible by 13.

a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)
15  6   533     223 40  15444   401 4   26312   524 1   34138
24  5   1001    238 30  16432   405 40  26962   527 200 34437
56  10  2977    241 300 16744   409 60  27040   546 80  35958
94  5   6032    257 40  17758   413 3   27118   550 80  36452
96  100 6136    261 70  17888   419 60  27560   553 90  36556
133 20  8086    271 40  18564   428 80  28236   559 1   36660
146 4   9698    294 300 20163   436 1   28431   586 80  38246
153 4   10127   308 30  20930   445 20  28665   598 9   40066
155 90  10257   317 2   21333   450 40  28808   607 1   40495
159 40  10803   332 5   21853   463 200 29666   618 1   40768
166 300 11271   356 1   22867   483 90  31304   626 2   41756
172 70  11388   361 200 23218   490 5   32097   634 7   41938
175 30  11453   383 8   24778   494 1   32279   640 1   42302
184 300 12571   386 90  24882   506 5   32890   656 1   43628
205 10  14560   397 40  26039   517 100 33566   667 70  44252

a) Letter position.   b) Letter value.   c) Accumulated total.

Total of the letters (b): 3523 = 13 x 271.

4.4.3When the letters are added one by one, 11 times the total is a multiple of 91 (7 x 13).

a)  b)  c)      a)  b)  c)
24  5   1001    445 20  28665
205 10  14560   463 200 29666
241 300 16744   483 90  31304
271 40  18564   607 1   40495
308 30  20930   618 1   40768
413 3   27118

a) Letter position.   b) Letter value.   c) Accumulated total.

Total of the letters (b): 700 = 22 x 52 x 7. SF: 21 = 3 x 7.

4.5To account for God and Jesus, divide the 674 letters into alternating groups of M and N number of letters, where M and N are multiples of 7 or 13.

4.5.1Alternating groups of 112 and 169 letters.

4.5.1.1Groups of 112 letters: 21987 = 32 x 7 x 349.

4.5.1.2Groups of 169 letters: 23072 = 25 x 7 x 103.

4.5.2Alternating groups of 168 and 169 letters.

4.5.2.1Groups of 168 letters: 22267 = 7 x 3181.

4.5.2.2Groups of 169 letters: 22792 = 23 x 7 x 11 x 37.

4.6Precisely forty-two letters (2 x 3 x 7) divide the others with their Nth and Nth last occurrences into what is between, and not between them.

Between & Not Between The Nth & Nth Last Occurrences Of A Letter
LetterNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
6620356 = 22 x 7 x 727.24703 = 7 x 3529. SF: 3536 = 24 x 13 x 17.
6917514 = 2 x 32 x 7 x 139. SF: 154 = 2 x 7 x 11.27545 = 5 x 7 x 787.
51421462 = 2 x 3 x 72 x 73.23597 = 7 x 3371.
51912873 = 3 x 7 x 613. SF: 623 = 7 x 89.32186 = 2 x 7 x 112 x 19.
5243353 = 7 x 479.41706 = 2 x 32 x 7 x 331.
5281428 = 22 x 3 x 7 x 17.43631 = 7 x 23 x 271. SF: 301 = 7 x 43.
40240551 = 3 x 7 x 1931.4508 = 22 x 72 x 23.
11026789 = 7 x 43 x 89.18270 = 2 x 32 x 5 x 7 x 29. SF: 49 = 72. SF: 14 = 2 x 7.
11320944 = 24 x 7 x 11 x 17.24115 = 5 x 7 x 13 x 53. SF: 78 = 2 x 3 x 13.
11516891 = 7 x 19 x 127.28168 = 23 x 7 x 503.
101216226 = 2 x 7 x 19 x 61.28833 = 3 x 7 x 1373.
101413475 = 52 x 72 x 11. SF: 35 = 5 x 7.31584 = 25 x 3 x 7 x 47.
10225537 = 72 x 113.39522 = 2 x 3 x 7 x 941.
4716191 = 32 x 7 x 257.28868 = 22 x 7 x 1031.
497399 = 72 x 151.37660 = 22 x 5 x 7 x 269.
70338710 = 2 x 5 x 72 x 79.6349 = 7 x 907.
70530254 = 2 x 7 x 2161. SF: 2170 = 2 x 5 x 7 x 31.14805 = 32 x 5 x 7 x 47. SF: 65 = 5 x 13.
70114158 = 2 x 33 x 7 x 11.40901 = 7 x 5843. SF: 5850 = 2 x 32 x 52 x 13.
70131036 = 22 x 7 x 37.44023 = 7 x 19 x 331. SF: 357 = 3 x 7 x 17.
8141538 = 2 x 3 x 7 x 23 x 43. SF: 78 = 2 x 3 x 13.3521 = 7 x 503.
300317262 = 2 x 32 x 7 x 137.27797 = 7 x 11 x 192. SF: 56 = 23 x 7. SF: 13.
2614427 = 32 x 7 x 229.30632 = 23 x 7 x 547. SF: 560 = 24 x 5 x 7.
90142133 = 7 x 13 x 463. SF: 483 = 3 x 7 x 23.2926 = 2 x 7 x 11 x 19. SF: 39 = 3 x 13.
90531654 = 2 x 72 x 17 x 19. SF: 52 = 22 x 13.13405 = 5 x 7 x 383.
90128729 = 7 x 29 x 43.36330 = 2 x 3 x 5 x 7 x 173.
100340033 = 72 x 19 x 43.5026 = 2 x 7 x 359.
100436526 = 2 x 7 x 2609. SF: 2618 = 2 x 7 x 11 x 17.8533 = 7 x 23 x 53.
100524157 = 72 x 17 x 29.20902 = 2 x 7 x 1493.
100913048 = 23 x 7 x 233.32011 = 7 x 17 x 269.
100119065 = 5 x 72 x 37. SF: 56 = 23 x 7. SF: 13.35994 = 2 x 3 x 7 x 857.
2001121602 = 2 x 7 x 1543.23457 = 3 x 7 x 1117. SF: 1127 = 72 x 23.
200169758 = 2 x 7 x 17 x 41.35301 = 3 x 7 x 412 type="button" value="..." onclick="markD(0,313,481,673,this)" />
3513818 = 2 x 3 x 72 x 47.31241 = 7 x 4463.
761939 = 7 x 277.43120 = 24 x 5 x 72 x 11.
80139641 = 72 x 809.5418 = 2 x 32 x 7 x 43.
8069380 = 22 x 5 x 7 x 67.35679 = 3 x 7 x 1699.
60139928 = 23 x 7 x 23 x 31.5131 = 7 x 733.
60418641 = 7 x 2663.26418 = 2 x 3 x 7 x 17 x 37.
60614497 = 7 x 19 x 109.30562 = 2 x 7 x 37 x 59. SF: 105 = 3 x 5 x 7.
60713216 = 25 x 7 x 59.31843 = 7 x 4549.
9318137 = 7 x 2591.26922 = 2 x 3 x 7 x 641.
9131253 = 7 x 179.43806 = 2 x 3 x 72 x 149. SF: 168 = 23 x 3 x 7.

4.6.1The 42 letters have features on their own.

6 6 5 5 5 5 40 1 1 1 10 10 10 4 4 70 70 70 70 8 300 2 90 90 90 100 100 100 100 100 200 200 3 7 80 80 60 60 60 60 9 9

Total of the letters: 2301 = 3 x 13 x 59.

4.6.2Odd positioned letters from 4.6.1:

6 5 5 40 1 10 10 4 70 70 300 90 90 100 100 200 3 80 60 60 9

Total: 1313 = 13 x 101.

4.6.3Even positioned letters from 4.6.1:

6 5 5 1 1 10 4 70 70 8 2 90 100 100 100 200 7 80 60 60 9

Total: 988 = 22 x 13 x 19.

4.6.3.1Odd positioned from 4.6.3:

6 5 1 4 70 2 100 100 7 60 9

Total: 364 = 22 x 7 x 13.

4.6.3.2Even positioned from 4.6.3:

5 1 10 70 8 90 100 200 80 60

Total: 624 = 24 x 3 x 13.

4.6.4The total of the positions of all occurrences of these letters in the combined passage: 201523 = 7 x 28789.

Conclusion

The Gospel writer Matthew claimed Micah's prophecy as being fulfilled by Jesus. Joining the two passages together produced primary features like those found in The Proclamation. But this study has fewer numeric features than many of the others in this section. They are also less consistent. I have no answer for this other than the possibility of Micah's prophecy fulfilling two purposes. Psalm 110:1-5 mentions Jesus, who stood at God’s right hand (Acts 7:56) and was invited to sit (Psalm 110:1), and also another person who was at Jesus' right hand (Psalm 110:5). This person is also called lord. He is further from God’s throne, and he executes God’s plan for Jesus. As such, this person is inferior to Jesus. This would show in the numbers.

One point is certain. Although Jesus was with God at the beginning (John 1:1), and is ancient of days according to Micah, Jesus is not God. The numbers do not allow us to make this mistake.

Notes

  1. English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.
  2. Hebrew text is from, The Biblia Hebraica Stuttgartensia (BHS), edited by K. Elliger and W. Rudolph of the Deutsche Biblegesselchaft (German Bible Society) 1983.
  3. The Greek text is from The Nestle-Aland 27th Edition of the Greek New Testament (GNT), Copyright © 1966, 1968, 1975, 1993-1994 United Bible Societies, found within Bibleworks 3.0 by Hermeneutika, Michael S. Bushell, 1995. Vowel marks and punctuation have been removed.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




The foolishness of God is greater than anything we can imagine (1 Corinthians 1:25). On the off chance the numbers are a form of foolishness, do not spend too much time on them.