Bible Numbers 2.0

The Good News Jesus Preached

How do we know Jesus' teaching fulfilled ancient prophecy? We know this to be true when an Old Testament prophecy is placed with a New Testament claim of fulfillment and astonishing numeric features appear following the rules laid out by Revelation 1:8. These aren't just any numeric features. These are numeric features similar to those found in The Proclamation.

1 The Spirit of the Lord GOD is upon me, because the LORD has anointed me to bring good tidings to the afflicted; he has sent me to bind up the brokenhearted, to proclaim liberty to the captives, and the opening of the prison to those who are bound; 2 to proclaim the year of the LORD's favor, and the day of vengeance of our God; to comfort all who mourn; 3 to grant to those who mourn in Zion -- to give them a garland instead of ashes, the oil of gladness instead of mourning, the mantle of praise instead of a faint spirit; that they may be called oaks of righteousness, the planting of the LORD, that he may be glorified. 4 They shall build up the ancient ruins, they shall raise up the former devastations; they shall repair the ruined cities, the devastations of many generations. 5 Aliens shall stand and feed your flocks, foreigners shall be your plowmen and vinedressers; 6 but you shall be called the priests of the LORD, men shall speak of you as the ministers of our God; you shall eat the wealth of the nations, and in their riches you shall glory. 7 Instead of your shame you shall have a double portion, instead of dishonor you shall rejoice in your lot; therefore in your land you shall possess a double portion; yours shall be everlasting joy. 8 For I the LORD love justice, I hate robbery and wrong; I will faithfully give them their recompense, and I will make an everlasting covenant with them. 9 Their descendants shall be known among the nations, and their offspring in the midst of the peoples; all who see them shall acknowledge them, that they are a people whom the LORD has blessed. (Isaiah 61:1-9)1

Jesus came to bring good news (good tidings) for the afflicted, broken hearted, captives, imprisoned, and those who mourn. He brought gladness, praise and righteousness. It was also the good news of a day of vengeance when God rights wrongs. It was good news to rebuild a ruined nation, to turn the people of Israel into priests of God and to be blessed.

Isaiah 61:1-92
4321:A
1102665214:B
1413121110987654321:C
1030705651010504186200:D
עלייהוהאדנירוח:E
8765:A
41126348130:B
27262524232221201918171615:C
10400156510830040507010:D
אתייהוהמשחיען:E
11109:A
398176532:B
4140393837363534333231302928:C
1050830300401065070200300230:D
שלחניענויםלבשר:E
141312:A
32592340:B
535251504948474645444342:C
23010200230050303002830:D
לבלנשברילחבש:E
171615:A
410388331:B
6766656463626160595857565554:C
2006200440106230030120010030:D
דרורלשבויםלקרא:E
201918:A
114188353:B
8180797877767574737271706968:C
8610081008040102006601306:D
קוחפקחולאסורים:E
232221:A
346750331:B
9291908988878685848382:C
5069020040050300120010030:D
רצוןשנתלקרא:E
262524:A
1906256:B
10410310210110099989796959493:C
40100504061065651030:D
נקםויוםליהוה:E
292827:A
50128132:B
117116115114113112111110109108107106105:C
3020408503065010530130:D
כללנחםלאלהינו:E
323130:A
7337683:B
131130129128127126125124123122121120119118:C
103021304063003040103021:D
לאבלילשוםאבלים:E
36353433:A
28175830156:B
144143142141140139138137136135134133132:C
20018040530400400305061090:D
פארלהםלתתציון:E
40393837:A
656390281808:B
157156155154153152151150149148147146145:C
50630030050403002008014008400:D
ששוןשמןאפרתחת:E
44434241:A
44012433808:B
171170169168167166165164163162161160159158:C
530540059704030214008400:D
תהלהמעטהאבלתחת:E
48474645:A
30730214808:B
184183182181180179178177176175174173172:C
120010065520862004008400:D
וקראכההרוחתחת:E
52515049:A
1191995175:B
198197196195194193192191190189188187186185:C
709401004905103010140530:D
מטעהצדקאילילהם:E
555453:A
6471626:B
212211210209208207206205204203202201200199:C
6502620018040053056510:D
ובנולהתפאריהוה:E
585756:A
786146616:B
226225224223222221220219218217216215214213:C
400640403004030670400622008:D
שממותעולםחרבות:E
6059:A
202601:B
238237236235234233232231230229228227:C
640406100104010503001200:D
יקוממוראשנים:E
636261:A
210280324:B
249248247246245244243242241240239:C
2200810200706300486:D
חרבעריוחדשו:E
666564:A
216210786:B
261260259258257256255254253252251250:C
2006462006440064040300:D
ודורדורשממות:E
696867:A
282257126:B
274273272271270269268267266265264263262:C
6702006401020076440706:D
ורעוזריםועמדו:E
727170:A
27068201:B
286285284283282281280279278277276275:C
2002050105026402050190:D
נכרובניצאנכם:E
7473:A
336291:B
299298297296295294293292291290289288287:C
40201040200206402010200201:D
וכרמיכםאכריכם:E
777675:A
2685447:B
311310309308307306305304303302301300:C
5651010505204040016:D
יהוהכהניואתם:E
7978:A
950707:B
321320319318317316315314313312:C
104002003004061200100400:D
משרתיתקראו:E
828180:A
90251102:B
334333332331330329328327326325324323322:C
40203020040110650105301:D
לכםיאמראלהינו:E
858483:A
4575948:B
346345344343342341340339338337336335:C
63020140040106330108:D
תאכלוגויםחיל:E
8786:A
105680:B
359358357356355354353352351350349348347:C
62004010400400404622026:D
תתימרוובכבודם:E
908988:A
395762808:B
371370369368367366365364363362361360:C
55030040402040030024008400:D
משנהבשתכםתחת:E
939291:A
178266101:B
384383382381380379378377376375374373372:C
401003086502001054030206:D
חלקםירנווכלמה:E
969594:A
395333100:B
396395394393392391390389388387386385:C
55030040409020012502030:D
משנהבארצםלכן:E
999897:A
146748526:B
409408407406405404403402401400399398397:C
403067040084030063002001010:D
עולםשמחתיירשו:E
103102101100:A
613075420:B
421420419418417416415414413412411410:C
105011020405305105400:D
אניכילהםתהיה:E
107106105104:A
351429826:B
435434433432431430429428427426425424423422:C
1503009803004025156510:D
שנאמשפטאהביהוה:E
110109108:A
86611340:B
448447446445444443442441440439438437436:C
1040040050653067023073:D
ונתתיבעולהגזל:E
113112111:A
618443620:B
462461460459458457456455454453452451450449:C
4001020026400401240400307080:D
ובריתבאמתפעלתם:E
116115114:A
75627146:B
474473472471470469468467466465464463:C
4053040062002014030670:D
להםאכרותעולם:E
119118117:A
31761136:B
488487486485484483482481480479478477476475:C
4070200740106327046506:D
זרעםבגויםונודע:E
121120:A
428243:B
500499498497496495494493492491490489:C
2064002405101901906:D
בתוךוצאצאיהם:E
124123122:A
25650165:B
512511510509508507506505504503502501:C
4051012003020401040705:D
ראיהםכלהעמים:E
128127126125:A
2774530286:B
525524523522521520519518517516515514513:C
7020074051020406200102010:D
זרעהםכייכירום:E
Word position130129:A
Word value26222:B
Letter position532531530529528527526:C
Letter value56510202002:D
יהוהברך:E

In Luke 4:19, Jesus claimed to be fulfilling prophecy. The passage in Luke is only a portion of Isaiah's prophecy. The Gospel of Mark has a two verse passage that foreshadows the rejection of Jesus' message, sums up Isaiah's prophecy as the kingdom of God, and good news (i.e. the gospel).

14 Now after John was arrested, Jesus came into Galilee, preaching the gospel of God, 15 and saying, The time is fulfilled, and the kingdom of God is at hand; repent, and believe in the gospel. (Mark 1:14-15)
Mark 1:14-153
A:123
B:1369160
C:12345678
D:30510014510060
E:μεταδετο
A:45
B:281200
C:910111213141516171819202122
D:7018014608740191006040
E:παραδοθηναιτον
A:678
B:7378060
C:23242526272829303132333435
D:960014040740720854060
E:ιωαννηνηλθενο
A:91011
B:456104147
C:363738394041424344454647
D:979060200905990100740
E:ιησουςειςτην
A:12
B:104
C:484950515253545556
D:312092019140
E:γαλιλαιαν
A:1314
B:1117160
C:57585960616263646566
D:1078020090906004010060
E:κηρυσσωντο
A:1516
B:346360
C:67686970717273747576777879
D:52001335209604010060200
E:ευαγγελιοντου
A:17181920
B:27320668169
C:808182838485868788899091929394
D:85602001019205360040601009
E:θεουκαιλεγωνοτι
A:2122
B:96260
C:9596979899100101102103104105
D:70570207806001001960
E:πεπληρωταιο
A:2324
B:25020
C:106107108109110111112113114
D:10198060901019
E:καιροςκαι
A:2526
B:777
C:115116117118119120121122
D:7339105407
E:ηγγικενη
A:272829
B:137360273
C:123124125126127128129130131132133134135136137
D:2190920591100602008560200
E:βασιλειατουθεου
A:3031
B:35520
C:138139140141142143144145146147148149150
D:305100140605910051019
E:μετανοειτεκαι
A:323334
B:58445700
C:151152153154155156157158159160161162163
D:70990100520051005540100600
E:πιστευετεεντω
A:35Word position
B:846Word value
C:164165166167168169170171172Letter position
D:52001335209600Letter value
E:ευαγγελιω

Primary Features

(Derived from Revelation 1:8 and grouped for easy reference.)

I Am (Present tense - living through it) Add up everything.

A.1Numeric total: 48349 = 7 x 6907. (See feature 1.)

Is, Was, Is To Come (Second present tense - skipping sequentially through it) Add up every other occurrance.

B.3Every other word (odd): 25396 = 22 x 7 x 907. (See feature 2.1.1.)

B.3.2Every other word (even): 22953 = 3 x 7 x 1093. (See feature 2.1.2.)

B.4Every other letter (odd): 21434 = 2 x 7 x 1531. (See feature 4.3.1.)

B.4.2Every other letter (even): 26915 = 5 x 7 x 769. (See feature 4.3.2.)

Alpha & Omega (The first and last) Add up the first item with the last item.

C.3.2First and last letter of each word: 3517 = 33 x 13 x 67. (See feature 3.)

Alpha (The first) Add up the first item.

D.2.2First word of each verse: 2688 = 27 x 3 x 7. (See feature 1.6.1.)

Omega (The last) Add up the last item.

E.2.3Last letter of each verse: 1379 = 7 x 197. (See feature 1.6.2.)

E.3.3Last letter of each word: 12844 = 22 x 132 x 19. (See feature 3.4.)

The Verses

1Combining the two passages produces a total of 11 verses (nf), 165 words (nf), and 704 letters (nf). The numeric total: 48349 = 7 x 6907.

List of verses
5184 2128 7876 4441 1831 4358 5253 4453 2542 4730 5553

1.1Applying Revelation 1:8's principle of complementary opposites, divide the verses into two groups depending on the odd/even value of the first digit.

1.1.1First digit odd:

5184 7876 1831 5253 5553

Total: 25697 = 7 x 3671.

1.1.2First digit even:

2128 4441 4358 4453 2542 4730

Total: 22652 = 22 x 7 x 809.

1.2The 7th verse and the 7th verse from the end form a unique pair: 7084 = 22 x 7 x 11 x 23.

1.3Two groups, symmetrically positioned are together and individually divisible by 13.

1234567891011
1110987654321
51842128787644411831435852534453254247305553

1.3.1The two groups together: 33254 = 2 x 13 x 1279.

1.3.2The first group:

2128 7876 4441 1831

Total: 16276 = 22 x 13 x 313.

1.3.3The second group:

5253 4453 2542 4730

Total: 16978 = 2 x 13 x 653.

1.3.4This might seem to be coincidence until the placement of the groups are considered. Whether one starts from the beginning, or from the end of the verses, the beginning of the group is verse 2, and the end of the group is verse 5. Beginning and end together: 2 + 5 = 7.

1.4Continuing with the idea of complementary opposites, how else might these verses be classified? Although every other verse, or odd/even valued verses show nothing, the verses can be grouped as prime numbers, and not prime numbers.

1.4.1Verses with totals that are prime numbers:

4    5
4441 1831

Total: 6272 = 27 x 72. SF: 28 = 22 x 7.

1.4.2Verses that are not prime numbers:

1    2    3      6    7    8    9    10   11
5184 2128 7876   4358 5253 4453 2542 4730 5553

Total: 42077 = 7 x 6011.

It is interesting that the total for the prime numbers in feature 1.4.1 has two levels of factors, while the feature for regular numbers only as one. It is also peculiar that the prime numbers not only has a factor of 7 but also 2 to the power of 7, while the total for verses that are not prime numbers is just a multiple of 7.

1.5The number of words in the odd positioned verses:

20 24 8 14 14 18

Total: 98 = 2 x 72. (Since the total number of words is not a multiple of 7 or 13, there is no corresponding feature with the number of words for the even positioned verses.)

1.6.1The first word of each verse:

214 331 376 64 126 447 808 30 136 136 20

Total: 2688 = 27 x 3 x 7. (Unfortunately, there is no matching feature with the last word of each verse.)

1.6.2The last letter of each verse:

8 40 200 200 40 6 40 40 5 200 600

Total: 1379 = 7 x 197.

Lacking their corresponding opposites, features 1.5 and 1.6 would seem to be coincidental. There is a reason for this. The combined passage is about Jesus fulfilling prophecy. God is not talking, and God is not describing Himself as in Exodus 34:6-7. This is a lower level of inspiration and the numbers show it.

The Words

2Like the verses in feature 1.3, the paired groups of words symmetrically positioned from the beginning and ends of the passage are together and individually multiples of 7. There are 82 pairs.

a) 1     1     1     1     2     4    4     5     6     7     8    8
b) 22    38    58    63    71    6    81    48    41    81    19   31
c) 12957 21000 33173 35665 39424 1547 46256 24101 20475 44709 7154 13643

a) 8     8     10  10    10    12    12    13    14    14    14    15
b) 43    64    11  33    62    33    62    42    44    67    69    29
c) 19936 32739 658 12873 30212 12215 29554 17304 17241 30632 32445 8855

a) 15    15    15    15    15    17    19   19    20   20    20    21
b) 32    39    51    60    76    47    26   77    31   43    64    30
c) 10605 14301 20720 27622 35819 17339 4648 33306 6489 12782 25585 5439

a) 22    22    23   23    23    24    26  27    29   29    30   30
b) 56    59    38   58    63    53    27  77    45   75    32   39
c) 20041 22078 8043 20216 22708 14343 882 28658 9660 26614 1750 5446

a) 30    30    30    32   32    33   33    33    33    34    36    37
b) 51    60    76    43   64    39   51    60    76    62    65    40
c) 11865 18767 26964 6293 19096 3696 10115 17017 25214 17339 17661 2709

a) 37    37    38    39    39    40   40    40    41    41    44    45
b) 78    82    55    58    63    51   60    76    78    82    64    67
c) 25844 28889 10164 12173 14665 6419 13321 21518 23135 26180 12803 13391

a) 45    46    52   52    53   57   59   61   68   79
b) 69    75    60   76    57   59   63   76   69   82
c) 15204 16954 6902 15099 4228 2037 2492 8197 1813 3045

a) Starting position of the first group, and also starting position of
   the second group, but from the end.
b) Ending position of the first group, and also ending position of the
   second group, but from the end.
c) Total of both groups.

Total of the positions (a + b): 6656 = 29 x 13.

2.1.1Odd positioned words:

a) 1   3  5   7  9   11  13  15  17  19  21  23  25 27  29 31  33  35
b) 214 26 130 26 532 398 592 331 410 188 331 346 62 132 50 376 156 75

a) 37  39  41  43  45  47 49 51  53 55 57  59  61  63  65  67  69  71
b) 808 390 808 124 808 30 75 199 26 64 146 601 324 210 210 126 282 68

a) 73  75  77 79  81  83 85  87   89  91  93  95  97  99  101 103 105
b) 291 447 26 950 251 48 457 1056 762 101 178 333 526 146 75  61  8

a) 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139
b) 351 113 620 618 627 136 317 428 50  286 45  222 136 160 200 80  456

a) 141 143  145 147 149 151 153 155 157 159 161 163 165
b) 147 1117 346 273 668 962 250 77  137 273 20  45  846

a) Word position.
b) Word value.

Total: 25396 = 22 x 7 x 907.

2.1.2Even positioned words:

a) 2  4   6   8   10  12  14 16  18  20  22  24 26  28  30 32 34  36
b) 65 110 348 411 176 340 32 388 353 114 750 56 190 128 83 73 830 281

a) 38  40  42 44  46  48  50 52  54  56  58  60  62  64  66  68  70
b) 281 656 33 440 214 307 51 119 716 616 786 202 280 786 216 257 201

a) 72  74  76 78  80  82 84 86 88  90  92  94  96  98  100 102 104 106
b) 270 336 85 707 102 90 59 80 808 395 266 100 395 748 420 30  26  429

a) 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140
b) 40  866 443 146 75  61  243 165 256 30  277 26  9   281 737 60  104

a) 142 144 146 148 150 152 154 156 158 160 162 164  (Word position.)
b) 104 160 360 20  169 60  20  7   360 355 584 700  (Word value.)

Total: 22953 = 3 x 7 x 1093.

2.2Besides adding up every other word, which is skipping one word each time, it is also possible to take every Nth word.

2.2.1Taking every Nth word, the result is a multiple of 7 when N is one of the following:

2 25 30 53 58 68 73 75 78

This might seem arbitrary until one realizes the total of the N values that worked is a multiple of 7: 462 = 2 x 3 x 7 x 11.

2.2.2Beginning with the first word and taking every Nth after, the result is a multiple of 13 when N is one of the following:

6 23 25 27 30 69 70 75

The previous might be coincidence, but applying the same technique for totals of 13 also succeed. The sum of N: 325 = 52 x 13.

2.3Like the verses in feature 1.1, the words can be placed into two groups depending on the odd/even value of the first digit.

2.3.1Eighty-nine words have an odd valued first digit.

a) 4   5   6   9   10  11  12  13  14  15  16  18  19   20  21  22
b) 110 130 348 532 176 398 340 592 32  331 388 353 188  114 331 750

a) 23  24  26  27  28  29  31  32  33  35  39  42  43   47  48  49
b) 346 56  190 132 128 50  376 73  156 75  390 33  124  30  307 75

a) 50  51  52  54  57  58  61  64  67  74  78  79  80   82  84  87
b) 51  199 119 716 146 786 324 786 126 336 707 950 102  90  59  1056

a) 89  90  91  93  94  95  96  97  98  99  101 102 107  109 114 116
b) 762 395 101 178 100 333 395 526 748 146 75  30  351  113 146 75

a) 117 119 122 123 126 131 132 133 136 140 141 142 143  144 145 146
b) 136 317 165 50  30  136 9   160 737 104 147 104 1117 160 346 360

a) 150 151 155 156 157 158 160 162 164  (Word position.)
b) 169 962 77   7  137 360 355 584 700  (Word value.)

Total of positions (a): 6993 = 33 x 7 x 37.
Total of the words (b): 26110 = 2 x 5 x 7 x 373.

2.3.2Seventy-six words have an even valued first digit.

a) 1   2   3   7   8   17  25  30  34  36  37  38  40  41  44  45
b) 214 65  26  26  411 410 62  83  830 281 808 281 656 808 440 808

a) 46  53  55  56  59  60  62  63  65  66  68  69  70  71  72  73
b) 214 26  64  616 601 202 280 210 210 216 257 282 201 68  270 291

a) 75  76  77  81  83  85  86  88  92  100 103 104 105 106 108 110
b) 447 85  26  251 48  457 80  808 266 420 61  26  8   429 40  866

a) 111 112 113 115 118 120 121 124 125 127 128 129 130 134 135 137
b) 620 443 618 627 61  243 428 256 286 45  277 222 26  281 200 80

a) 138 139 147 148 149 152 153 154 159 161 163 165 (Word position.)
b) 60  456 273 20  668 60  250 20  273 20  45  846 (Word value.)

Total of the words (b): 22239 = 32 x 7 x 353.

2.3.3The difference between 2.3.1 and 2.3.2 produces an extra factor of 7: 3871 = 72 x 79.

2.4Since 7 is associated with God’s perfection, and 13 is related to His Name in Hebrew, search for words that are multiples of 7 and 13. It appears they are perfectly positioned in the combined passage.

2.4.1Eighteen words are multiples of 7.

a) 9   24 52  56  62  63  65  67  74  78  92  100 141 147 155 156 159
b) 532 56 119 616 280 210 210 126 336 707 266 420 147 273 77  7   273

a) 164  (Word position.)
b) 700  (Word value.)

Total of the positions (a): 1664 = 27 x 13.
Total of the words (b): 5355 = 32 x 5 x 7 x 17. SF: 35 = 5 x 7. (These words were chosen because they were divisible by 7, and thus the total is a multiple of 7. The real feature is in the next level of factors.)

2.4.2Nineteen words are multiples of 13. Normally, words that are multiples of 7 should outnumber words that are multiples of 13, but the reverse is true here.

a) 2  3  5   7  33  39  53 77 104 106 107 125 130 140 142 147 150 151
b) 65 26 130 26 156 390 26 26 26  429 351 286 26  104 104 273 169 962

a) 159  (Word position.)
b) 273  (Word value.)

Total of the positions (a): 1680 = 24 x 3 x 5 x 7.
Total of the words (b): 3848 = 23 x 13 x 37. SF: 56 = 23 x 7. SF: 13. (Once again the feature is in the extra two levels of factors.)

2.5When the words are added up one by one, sometimes the accumulated total will be odd or even valued. Track all cases where the word position, word value, and accumulated total are all odd valued. These would be words that are purely odd. The same came be done with words that are purely even. Fourteen words are purely odd. Twenty-six words are purely even.

Purely Odd                   Purely Even

a)  b)   c)           a)  b)   c)       a)  b)   c)
15  331  3731         10 176 2038       94  100 28428
21  331  5515         12 340 2776       98  748 30430
49  75   14077        14 32  3400       100 420 30996
51  199  14327        20 114 5184       104 26  31188
59  601  17401        40 656 11238      108 40  32016
75  447  21907        54 716 15188      114 146 34822
95  333  28761        56 616 15868      124 256 37180
101 75   31071        58 786 16800      126 30  37496
109 113  32129        74 336 21460      130 26  38066
115 627  35449        82 90  24118      142 104 40540
127 45   37541        86 80  24762      148 20  42816
143 1117 41657        88 808 26626      158 360 45526
159 273  45799        92 266 28150      162 584 46758
163 45   46803

a) Word position.   b) Word value.
c) Accumulated total.

Total of the words (b): 12488 = 23 x 7 x 223.

2.6Compare word values that occurred only once with word values that occurred more than once.

2.6.1Word values that appeared only once:

7 8 9 32 33 40 48 51 56 59 62 64 65 68 73 77 83 85 90 100 101 102 110 113 114 119 124 126 128 130 132 137 147 156 165 169 176 178 188 190 199 200 201 202 216 222 243 250 251 256 257 266 270 277 280 282 286 291 307 317 324 333 336 340 348 351 353 355 376 388 390 398 410 411 420 428 429 440 443 447 456 457 526 532 584 592 601 616 618 620 627 656 668 700 707 716 737 748 750 762 830 846 866 950 962 1056 1117

Total: 36008 = 23 x 7 x 643.

2.6.2Word values that appeared more than once:

a) 273 214 360 160 61  80  104 395 45  50  60  331 136 346 210 786  281 146 20  30  75  808  26
b) 2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2    3   3   3   3   4   4    6
c) 546 428 720 320 122 160 208 790 90  100 120 662 272 692 420 1572 843 438 60  90  300 3232 156
d) 306 47  304 277 221 223 282 186 290 152 290 36  248 168 128 122  208 270 463 275 301 211  374

a) Word value.
b) Number of appearances.
c) Total in the passage.
d) Total of the positions in the passage.

Total of the words in the passage (c): 12341 = 7 x 41 x 43. SF: 91 = 7 x 13.

Total of their positions (d): 5382 = 2 x 32 x 13 x 23.

2.7The 165 words can be divided into a group of 63, a group of 39, and a final group of 63 words.

2.7.1The two groups of 63 words:

214 65 26 110 130 348 26 411 532 176 398 340 592 32 331 388 410 353
188 114 331 750 346 56 62 190 132 128 50 83 376 73 156 830 75 281
808 281 390 656 808 33 124 440 808 214 30 307 75 51 199 119 26 716
64 616 146 786 601 202 324 280 210

61 26 8 429 351 40 113 866 620 443 618 146 627 75 136 61 317 243 428
165 50 256 286 30 45 277 222 26 136 9 160 281 200 737 80 60 456 104
147 104 1117 160 346 360 273 20 668 169 962 60 250 20 77 7 137 360
273 355 20 584 45 700 846

Total of the groups of 63: 35665 = 5 x 7 x 1019.

2.7.1.1The first group of 63: 18417 = 3 x 7 x 877.

2.7.1.2The last group of 63: 17248 = 25 x 72 x 11. SF: 35 = 5 x 7.

2.7.2The single group of 39 words:

786 210 216 126 257 282 201 68 270 291 336 447 85 26 707 950 102 251
90 48 59 457 80 1056 808 762 395 101 266 178 100 333 395 526 748 146
420 75 30

Total of the single group of 39: 12684 = 22 x 3 x 7 x 151.

2.8Eight word values appear more than once and have the ability of dividing the passage into what is between them, and what is not between them. Providentially, exactly seven of them do so with with their first and last appearances. The remaining word value divides the passage with its second and second last appearances.

Between & Not Between
Word ValueTotal of words in between.Total of words not between.
21413237 = 7 x 31 x 61.35112 = 23 x 3 x 7 x 11 x 19.
5029645 = 5 x 72 x 112.18704 = 24 x 7 x 167. SF: 182 = 2 x 7 x 13.
14618662 = 2 x 7 x 31 x 43.29687 = 7 x 4241.
7861617 = 3 x 72 x 11. SF: 28 = 22 x 7.46732 = 22 x 7 x 1669. SF: 1680 = 24 x 3 x 5 x 7.
604886 = 2 x 7 x 349.43463 = 72 x 887.
104147 = 3 x 72.48202 = 2 x 7 x 11 x 313.
2732730 = 2 x 3 x 5 x 7 x 13.45619 = 74 x 19.
75*16919 = 7 x 2417.31430 = 2 x 5 x 7 x 449.
*Word value 75 is the only exception with its second and second last occurrences.

Are these eight word values just some sort fluke? No they aren't. When these eight word values are added together, the total is 1708 (22 x 7 x 61).

First And Last

3Revelation 1:8's Alpha and Omega leads to looking at the first and last letters of each word. The total of these letters: 23517 = 33 x 13 x 67.

3.1For each word, add up the first and last letters.

208 11 15 80 60 48 15 11 230 110 310 330 40 32 31 70 204 46 88 108 31 700 250 35 46 90 36 70 50 41 70 40 140 430 70 280 800 201 350 350 800 31 45 405 800 208 25 7 70 11 105 110 15 230 12 408 110 700 240 16 12 80 10 700 204 206 12 47 12 130 16 250 41 46 46 30 15 406 50 7 210 70 38 43 406 46 406 800 42 45 11 16 48 80 42 45 16 700 110 405 70 30 11 15 3 49 301 33 7 16 120 402 406 110 401 70 76 42 47 46 22 45 50 240 50 30 45 77 22 15 31 9 160 79 140 49 47 120 99 95 140 43 50 160 45 300 208 19 60 69 79 120 100 19 47 14 3 300 208 35 19 75 45 700 605

Divide the list according to the odd/even value of the first digit.

3.1.1First digit odd:

11 15 15 11 110 310 330 32 31 70 108 31 700 35 90 36 70 50 70 140 70 350 350 31 7 70 11 105 110 15 12 110 700 16 12 10 700 12 12 130 16 30 15 50 7 70 38 11 16 16 700 110 70 30 11 15 3 301 33 7 16 120 110 70 76 50 50 30 77 15 31 9 160 79 140 120 99 95 140 50 160 300 19 79 120 100 19 14 3 300 35 19 75 700

Total: 10127 = 13 x 19 x 41.

3.1.2First digit even:

208 80 60 48 230 40 204 46 88 250 46 41 40 430 280 800 201 800 45 405 800 208 25 230 408 240 80 204 206 47 250 41 46 46 406 210 43 406 46 406 800 42 45 48 80 42 45 405 49 402 406 401 42 47 46 22 45 240 45 22 49 47 43 45 208 60 69 47 208 45 605

Total: 13390 = 2 x 5 x 13 x 103.

3.1.3Use the list in 3.1 to count through the passage's letters.

a) 208  11   15   80   60   48   15   11   230  110  310  330  40  32
b) 208  219  234  314  374  422  437  448  678  788  394  724  60  92
c) 208  219  234  314  374  422  437  448  678  84   394  20   60  92
d) 200  6    100  200  30   10   7    10   100  200  300  8    2   50

a) 31   70   204  46   88   108  31   700   250  35   46   90   36
b) 123  193  397  443  531  639  670  1370  916  247  293  383  419
c) 123  193  397  443  531  639  670  666   212  247  293  383  419
d) 30   90   10   5    6    1    30   8     6    8    6    100  1

a) 70   50   41   70   40   140  430  70   280  800   201  350  350
b) 489  539  580  650  690  830  556  626  906  1002  499  849  495
c) 489  539  580  650  690  126  556  626  202  298   499  145  495
d) 6    100  3    9    100  40   600  9    5    20    6    400  5

a) 800   31   45   405   800   208  25   7    70   11  105  110  15
b) 1295  622  667  1072  1168  672  697  704  774  81  186  296  311
c) 591   622  667  368   464   672  697  704  70   81  186  296  311
d) 80    600  5    40    6     100  200  600  1    8   5    40   5

a) 230  12   408  110  700   240  16   12   80   10  700  204  206  12
b) 541  553  961  367  1067  603  619  631  711  17  717  217  423  435
c) 541  553  257  367  363   603  619  631  7    17  13   217  423  435
d) 70   60   200  40   2     3    20   7    10   50  30   400  5    1

a) 47   12   130  16   250  41   46   46   30   15   406  50   7    210
b) 482  494  624  640  890  227  273  319  349  364  770  116  123  333
c) 482  494  624  640  186  227  273  319  349  364  66   116  123  333
d) 6    10   60   9    5    200  70   200  20   300  6    20   30   20

a) 70   38   43   406  46   406  800   42  45   11   16   48   80   42
b) 403  441  484  890  232  638  1438  72  117  128  144  192  272  314
c) 403  441  484  186  232  638  30    72  117  128  144  192  272  314
d) 40   6    40   5    40   10   300   6   30   1    200  5    200  200

a) 45   16   700   110  405  70   30   11   15   3    49   301  33
b) 359  375  1075  481  886  252  282  293  308  311  360  661  694
c) 359  375  371   481  182  252  282  293  308  311  360  661  694
d) 6    40   5     3    100  40   50   6    10   5    400  9    100

a) 7    16   120  402  406  110  401  70   76   42   47   46   22   45
b) 701  717  133  535  941  347  748  114  190  232  279  325  347  392
c) 701  13   133  535  237  347  44   114  190  232  279  325  347  392
d) 5    30   10   100  40   6    2    8    30   40   40   10   6    40

a) 50   240  50   30  45   77   22   15   31   9    160  79   140  49
b) 442  682  732  58  103  180  202  217  248  257  417  496  636  685
c) 442  682  28   58  103  180  202  217  248  257  417  496  636  685
d) 30   9    30   30  100  5    5    400  200  200  20   40   9    90

a) 47   120  99   95   140  43   50   160  45  300  208  19   60   69
b) 732  148  247  342  482  525  575  735  76  376  584  603  663  732
c) 28   148  247  342  482  525  575  31   76  376  584  603  663  28
d) 30   1    8    400  6    70   9    200  80  5    20   3    100  30

a) 79   120  100  19   47   14   3    300  208  35   19   75   45   700
b) 107  227  327  346  393  407  410  710  214  249  268  343  388  1088
c) 107  227  327  346  393  407  410  6    214  249  268  343  388  384
d) 30   200  6    6    40   6    400  50   200  2    200  1    2    40

a) 605   (Sum of the first and last letter of each word.)
b) 989   (Count.)
c) 285   (Count adjusted to 704 letters.)
d) 20    (Letter found.)

Total of letters found (d): 11928 = 23 x 3 x 7 x 71.

3.2Odd and even positioned groups can be extracted from the list in 3.1.

3.2.1
Odd positioned groups of 3 from 3.1:
80 60 48 110 310 330 70 204 46 700 250 35 70 50 41 430 70 280 350 800 31 208 25 7 110 15 230 700 240 16 700 204 206 130 16 250 30 15 406 70 38 43 800 42 45 80 42 45 405 70 30 49 301 33 402 406 110 42 47 46 240 50 30 15 31 9 49 47 120 43 50 160 19 60 69 19 47 14 35 19 75
Total: 12220 = 2 x 2 x 5 x 13 x 47.

3.2.1.1
Odd positioned groups of 9 from 3.2.1:
80 60 48 110 310 330 70 204 46 350 800 31 208 25 7 110 15 230 30 15 406 70 38 43 800 42 45 402 406 110 42 47 46 240 50 30 19 60 69 19 47 14 35 19 75
Total: 6253 = 13 x 13 x 37. SF: 63 = 3 x 3 x 7. SF: 13.

3.2.1.1.1
Odd positioned groups of 1 from 3.2.1.1:
80 48 310 70 46 800 208 7 15 30 406 38 800 45 406 42 46 50 19 69 47 35 75
Total: 3692 = 2 x 2 x 13 x 71.

3.2.1.1.2
Even positioned groups of 1 from 3.2.1.1:
60 110 330 204 350 31 25 110 230 15 70 43 42 402 110 47 240 30 60 19 14 19
Total: 2561 = 13 x 197. SF: 210 = 2 x 3 x 5 x 7.

3.2.1.2
Even positioned groups of 9 from 3.2.1:
700 250 35 70 50 41 430 70 280 700 240 16 700 204 206 130 16 250 80 42 45 405 70 30 49 301 33 15 31 9 49 47 120 43 50 160
Total: 5967 = 3 x 3 x 3 x 13 x 17. SF: 39 = 3 x 13.

3.2.2
Even positioned groups of 3 from 3.1:
208 11 15 15 11 230 40 32 31 88 108 31 46 90 36 70 40 140 800 201 350 45 405 800 70 11 105 12 408 110 12 80 10 12 47 12 41 46 46 50 7 210 406 46 406 11 16 48 16 700 110 11 15 3 7 16 120 401 70 76 22 45 50 45 77 22 160 79 140 99 95 140 45 300 208 79 120 100 3 300 208 45 700 605
Total: 11297 = 11 x 13 x 79.

3.2.2.1
Odd positioned groups of 3 from 3.2.2:
208 11 15 40 32 31 46 90 36 800 201 350 70 11 105 12 80 10 41 46 46 406 46 406 16 700 110 7 16 120 22 45 50 160 79 140 45 300 208 3 300 208
Total: 5668 = 2 x 2 x 13 x 109. SF: 126 = 2 x 3 x 3 x 7.

3.2.2.2
Even positioned groups of 3 from 3.2.2:
15 11 230 88 108 31 70 40 140 45 405 800 12 408 110 12 47 12 50 7 210 11 16 48 11 15 3 401 70 76 45 77 22 99 95 140 79 120 100 45 700 605
Total: 5629 = 13 x 433.

3.2.2.2.1
Odd positioned groups of 2 from 3.2.2.2:
15 11 108 31 140 45 12 408 47 12 210 11 11 15 70 76 22 99 79 120 700 605
Total: 2847 = 3 x 13 x 73.

3.2.2.2.2
Even positioned groups of 2 from 3.2.2.2:
230 88 70 40 405 800 110 12 50 7 16 48 3 401 45 77 95 140 100 45
Total: 2782 = 2 x 13 x 107.

3.2.2.3
Odd positioned groups of 12 from 3.2.2:
46 90 36 70 40 140 800 201 350 45 405 800 41 46 46 50 7 210 406 46 406 11 16 48 22 45 50 45 77 22 160 79 140 99 95 140
Total: 5330 = 2 x 5 x 13 x 41.

3.2.2.4
Even positioned groups of 12 from 3.2.2:
208 11 15 15 11 230 40 32 31 88 108 31 70 11 105 12 408 110 12 80 10 12 47 12 16 700 110 11 15 3 7 16 120 401 70 76 45 300 208 79 120 100 3 300 208 45 700 605
Total: 5967 = 3 x 3 x 3 x 13 x 17. SF: 39 = 3 x 13.

3.3The first letter of each word:

a) 1   4 8  12 15 18 21 25 28 32 37  42 46 52 54 58 64 68 76 79  82 86
b) 200 1 10 70 10 40 10 1  30 70 300 30 30 30 30 30 4  6  80 100 30 300

a) 89  93 98 102 105 112 116 118 123 127 132 136 139 142 145 148 151
b) 200 30 6  50  30  30  20  1   30  30  90  30  30  80  400 1   300

a) 154 158 161 164 168 172 175 178 181 185 188 192 196 199 203 209 213
b) 300 400 1   40  400 400 200 20  6   30  1   5   40  10  30  6   8

a) 218 222 227 233 239 244 247 250 255 258 262 267 271 275 280 284 287
b) 70  300 200 10  6   70  8   300 4   6   6   7   6   90  6   50  1

a) 293 300 304 308 312 317 322 328 332 335 338 342 347 354 360 363 368
b) 6   6   20  10  400 40  1   10  30  8   3   400 6   400 400 2   40

a) 372 377 381 385 388 393 397 402 406 410 414 417 419 422 426 429 433
b) 6   10  8   30  2   40  10  300 70  400 30  20  1   10  1   40  300

a) 436 439 444 449 454 458 463 467 472 475 480 485 489 497 501 506 508
b) 3   2   6   80  2   6   70  1   30  6   2   7   6   2   5   20  200

a) 513 519 521 523 526 529 533 537 539 541 552 555 562 567 568 574 577
b) 10  20  5   7   2   10  30  4   100 70  100 9   7   60  9   5   100

a) 580 589 597 599 609 612 616 619 624 627 637 638 644 647 654 655 663
b) 3   10  100 5   100 8   10  20  60  70  60  10  10  7   7   2   100

a) 666 670 680 683 692 694 696    (Letter position.)
b) 8   30  10  70  5   100 5      (Letter value.)

Total of the first letter of each word: 10673 = 13 x 821.

3.3.1Use the value of the first letter of each word as a position to find another letter.

a) 200  1    10  70  10  40  10  1    30   70  300  30   30   30   30
b) 5    200  6   1   6   50  6   200  300  1   6    300  300  300  300

a) 30   4  6   80  100  30   300  200  30   6   50   30   30   20  1
b) 300  1  50  6   6    300  6    5    300  50  200  300  300  8   200

a) 30   30   90  30   30   80  400  1    300  300  400  1    40  400
b) 300  300  90  300  300  6   300  200  6    6    300  200  50  300

a) 400  200  20  6   30   1    5  40  10  30   6   8   70  300  200
b) 300  5    8   50  300  200  4  50  6   300  50  10  1   6    5

a) 10  6   70  8   300  4  6   6   7   6   90  6   50   1    6   6
b) 6   50  1   10  6    1  50  50  10  50  90  50  200  200  50  50

a) 20  10  400  40  1    10  30   8   3  400  6   400  400  2  40  6
b) 8   6   300  50  200  6   300  10  8  300  50  300  300  6  50  50

a) 10  8   30   2  40  10  300  70  400  30   20  1    10  1    40  300
b) 6   10  300  6  50  6   6    1   300  300  8   200  6   200  50  6

a) 3  2  6   80  2  6   70  1    30   6   2  7   6   2  5  20  200  10
b) 8  6  50  6   6  50  1   200  300  50  6  10  50  6  4  8   5    6

a) 20  5  7   2  10  30   4  100  70  100  9  7   60  9  5  100  3  10
b) 8   4  10  6  6   300  1  6    1   6    5  10  2   5  4  6    8  6

a) 100  5  100  8   10  20  60  70  60  10  10  7   7   2  100  8   30
b) 6    4  6    10  6   8   2   1   2   6   6   10  10  6  6    10  300

a) 10  70  5  100  5  (First letter of each word as a letter position.)
b) 6   1   4  6    4  (Letter found.)

Total of the letters found: 13825 = 52 x 7 x 79.

3.3.2Use the values of the first letter of each word to count through the passage finding other letters.

a) 200  1    10   70   10   40   10   1    30   70   300  30  30  30
b) 200  201  211  281  291  331  341  342  372  442  742  68  98  128
c) 200  201  211  281  291  331  341  342  372  442  38   68  98  128
d) 5    6    50   2    20   200  40   400  6    30   30   6   6   1

a) 30   30   4    6    80   100  30   300  200  30   6    50   30   30
b) 158  188  192  198  278  378  408  708  204  234  240  290  320  350
c) 158  188  192  198  278  378  408  4    204  234  240  290  320  350
d) 400  1    5    70   20   200  30   1    5    100  8    10   400  2

a) 20   1    30   30   90   30   30   80   400   1    300  300  400
b) 370  371  401  431  521  551  581  661  1061  358  658  958  654
c) 370  371  401  431  521  551  581  661  357   358  658  254  654
d) 50   5    6    80   5    9    1    9    40    200  9    400  7

a) 1    40   400   400  200  20   6    30   1    5    40   10   30
b) 655  695  1095  791  287  307  313  343  344  349  389  399  429
c) 655  695  391   87   287  307  313  343  344  349  389  399  429
d) 2    600  90    50   1    10   100  1    20   20   1    200  40

a) 6    8    70   300  200  10   6    70   8    300  4    6  6   7
b) 435  443  513  813  309  319  325  395  403  703  707  9  15  22
c) 435  443  513  109  309  319  325  395  403  703  3    9  15  22
d) 1    5    10   10   5    200  10   50   40   9    8    5  10  5

a) 6   90   6    50   1    6    6    20   10   400  40   1    10   30
b) 28  118  124  174  175  181  187  207  217  617  657  658  668  698
c) 28  118  124  174  175  181  187  207  217  617  657  658  668  698
d) 30  1    300  400  200  6    40   1    400  1    90   9    60   1

a) 8    3  400  6    400  400  2    40   6    10   8    30   2    40
b) 706  5  405  411  811  507  509  549  555  565  573  603  605  645
c) 2    5  405  411  107  507  509  549  555  565  573  603  605  645
d) 6    4  400  5    30   30   1    40   9    5    90   3    20   1

a) 10   300  70   400  30  20   1   10  1    40   300  3    2    6
b) 655  955  321  721  47  67   68  78  79   119  419  422  424  430
c) 655  251  321  17   47  67   68  78  79   119  419  422  424  430
d) 2    40   10   50   50  200  6   8   100  2    1    10   6    300

a) 80   2    6    70   1    30   6    2    7    6    2    5    20   200
b) 510  512  518  588  589  619  625  627  634  640  642  647  667  867
c) 510  512  518  588  589  619  625  627  634  640  642  647  667  163
d) 10   40   40   40   10   20   100  70   100  9    60   7    5    30

a) 10   20   5    7    2    10   30   4    100  70   100  9    7    60
b) 173  193  198  205  207  217  247  251  351  421  521  530  537  597
c) 173  193  198  205  207  217  247  251  351  421  521  530  537  597
d) 8    90   70   400  1    400  8    40   6    10   5    5    4    100

a) 9    5    100  3   10  100  5    100  8    10   20   60   70   60
b) 606  611  711  10  20  120  125  225  233  243  263  323  393  453
c) 606  611  7    10  20  120  125  225  233  243  263  323  393  453
d) 9    200  10   6   8   30   6    6    10   6    70   30   40   40

a) 10   10   7    7    2    100  8    30   10   70   5   100  5
b) 463  473  480  487  489  589  597  627  637  707  8   108  113
c) 463  473  480  487  489  589  597  627  637  3    8   108  113
d) 70   5    2    70   6    10   100  70   60   8    10  5    50

a) First letter of each word.
b) Count.
c) Count adjusted to 704 letters.
d) Letter found.

Total of the letters found: 9971 = 132 x 59.

3.4The last letter of each word:

a) 3 7  11 14 17 20 24 27 31  36 41 45  51 53 57 63 67  75 78 81 85 88
b) 8 10 5  10 50 8  5  10 200 40 10 300 10 2  1  40 200 40 8  8  1  400

a) 92 97 101 104 111 115 117 122 126 131 135 138 141 144 147 150 153
b) 50 5  40  40  6   40  30  40  40  10  50  400 40  200 400 200 50

a) 157 160 163 167 171 174 177 180 184 187 191 195 198 202 208 212 217
b) 50  400 30  5   5   400 8   5   1   40  10  100 70  5   200 6   400

a) 221 226 232 238 243 246 249 254 257 261 266 270 274 279 283 286 292
b) 40  400 40  6   6   10  2   400 200 200 6   40  6   40  10  200 40

a) 299 303 307 311 316 321 327 331 334 337 341 346 353 359 362 367 371
b) 40  40  10  5   6   10  6   200 40  30  40  6   40  6   400 40  5

a) 376 380 384 387 392 396 401 405 409 413 416 418 421 425 428 432 435
b) 5   6   40  50  40  5   6   400 40  5   40  10  10  5   2   9   1

a) 438 443 448 453 457 462 466 471 474 479 484 488 496 500 505 507 512
b) 30  5   10  40  400 400 40  400 40  70  40  40  40  20  40  30  40

a) 518 520 522 525 528 532 536 538 540 551 554 561 566 567 573 576 579
b) 40  10  40  70  20  5   1   5   60  9   40  40  40  60  90  90  40

a) 588 596 598 608 611 615 618 623 626 636 637 643 646 653 654 662 665
b) 40  40  60  40  200 200 9   40  9   9   60  90  9   40  7   1   200

a) 669 679 682 691 693 695 704   (Letter position.)
b) 200 5   9   5   40  600 600   (Letter value.)

Total of the positions (a): 56082 = 2 x 3 x 13 x 719.
Total of the letters (b): 12844 = 22 x 132 x 19. SF: 49 = 72. SF: 14 = 2 x 7.

In feature 3.3.2, the first letter of each word could be used to count through the entire passage. This does not work for the last letter of each word, since this is not about the one God who is the same from beginning and end. In this case, what is last cannot be exactly the same as the first. By itself, the last letter of each word already outshone the first by having its sum being a square of 13, and even its positions divisible by 13. As a result the last letter of each word is applied more directly.

3.4.1The last letter of each word is used to point directly to a word position in the passage.

a) 8    10   5    10   50  8    5    10   200  40   10   300  10   2
b) 8    10   5    10   50  8    5    10   35   40   10   135  10   2
c) 411  176  130  176  51  411  130  176  75   656  176  200  176  65

a) 1    40   200  40   8    8    1    400  50  5    40   40   6    40
b) 1    40   35   40   8    8    1    70   50  5    40   40   6    40
c) 214  656  75   656  411  411  214  201  51  130  656  656  348  656

a) 30  40   40   10   50  400  40   200  400  200  50  50  400  30  5
b) 30  40   40   10   50  70   40   35   70   35   50  50  70   30  5
c) 83  656  656  176  51  201  656  75   201  75   51  51  201  83  130

a) 5    400  8    5    1    40   10   100  70   5    200  6    400  40
b) 5    70   8    5    1    40   10   100  70   5    35   6    70   40
c) 130  201  411  130  214  656  176  420  201  130  75   348  201  656

a) 400  40   6    6    10   2   400  200  200  6    40   6    40   10
b) 70   40   6    6    10   2   70   35   35   6    40   6    40   10
c) 201  656  348  348  176  65  201  75   75   348  656  348  656  176

a) 200  40   40   40   10   5    6    10   6    200  40   30  40   6
b) 35   40   40   40   10   5    6    10   6    35   40   30  40   6
c) 75   656  656  656  176  130  348  176  348  75   656  83  656  348

a) 40   6    400  40   5    5    6    40   50  40   5    6    400  40
b) 40   6    70   40   5    5    6    40   50  40   5    6    70   40
c) 656  348  201  656  130  130  348  656  51  656  130  348  201  656

a) 5    40   10   10   5    2   9    1    30  5    10   40   400  400
b) 5    40   10   10   5    2   9    1    30  5    10   40   70   70
c) 130  656  176  176  130  65  532  214  83  130  176  656  201  201

a) 40   400  40   70   40   40   40   20   40   30  40   40   10   40
b) 40   70   40   70   40   40   40   20   40   30  40   40   10   40
c) 656  201  656  201  656  656  656  114  656  83  656  656  176  656

a) 70   20   5    1    5    60   9    40   40   40   60   90   90   40
b) 70   20   5    1    5    60   9    40   40   40   60   90   90   40
c) 201  114  130  214  130  202  532  656  656  656  202  395  395  656

a) 40   40   60   40   200  200  9    40   9    9    60   90   9    40
b) 40   40   60   40   35   35   9    40   9    9    60   90   9    40
c) 656  656  202  656  75   75   532  656  532  532  202  395  532  656

a) 7   1    200  200  5    9    5    40   600  600
b) 7   1    35   35   5    9    5    40   105  105
c) 26  214  75   75   130  532  130  656  8    8

a) Last letter of each word.
b) Last letter adjusted to 165 words if necessary.
c) Word found.

Total of words found (c): 53729 = 13 x 4133.

3.5Turning to letters that are not first or last in a word, first consider their positions in the passage.

List of letter positions that are not first/last in a word:
2 5 6 9 10 13 16 19 22 23 26 29 30 33 34 35 38 39 40 43 44 47 48 49 50 55 56 59 60 61 62 65 66 69 70 71 72 73 74 77 80 83 84 87 90 91 94 95 96 99 100 103 106 107 108 109 110 113 114 119 120 121 124 125 128 129 130 133 134 137 140 143 146 149 152 155 156 159 162 165 166 169 170 173 176 179 182 183 186 189 190 193 194 197 200 201 204 205 206 207 210 211 214 215 216 219 220 223 224 225 228 229 230 231 234 235 236 237 240 241 242 245 248 251 252 253 256 259 260 263 264 265 268 269 272 273 276 277 278 281 282 285 288 289 290 291 294 295 296 297 298 301 302 305 306 309 310 313 314 315 318 319 320 323 324 325 326 329 330 333 336 339 340 343 344 345 348 349 350 351 352 355 356 357 358 361 364 365 366 369 370 373 374 375 378 379 382 383 386 389 390 391 394 395 398 399 400 403 404 407 408 411 412 415 420 423 424 427 430 431 434 437 440 441 442 445 446 447 450 451 452 455 456 459 460 461 464 465 468 469 470 473 476 477 478 481 482 483 486 487 490 491 492 493 494 495 498 499 502 503 504 509 510 511 514 515 516 517 524 527 530 531 534 535 542 543 544 545 546 547 548 549 550 553 556 557 558 559 560 563 564 565 569 570 571 572 575 578 581 582 583 584 585 586 587 590 591 592 593 594 595 600 601 602 603 604 605 606 607 610 613 614 617 620 621 622 625 628 629 630 631 632 633 634 635 639 640 641 642 645 648 649 650 651 652 656 657 658 659 660 661 664 667 668 671 672 673 674 675 676 677 678 681 684 685 686 687 688 689 690 697 698 699 700 701 702 703

3.5.1Beginning with the first from the list in 3.5, take every other position after.

2 6 10 16 22 26 30 34 38 40 44 48 50 56 60 62 66 70 72 74 80 84 90 94 96 100 106 108 110 114 120 124 128 130 134 140 146 152 156 162 166 170 176 182 186 190 194 200 204 206 210 214 216 220 224 228 230 234 236 240 242 248 252 256 260 264 268 272 276 278 282 288 290 294 296 298 302 306 310 314 318 320 324 326 330 336 340 344 348 350 352 356 358 364 366 370 374 378 382 386 390 394 398 400 404 408 412 420 424 430 434 440 442 446 450 452 456 460 464 468 470 476 478 482 486 490 492 494 498 502 504 510 514 516 524 530 534 542 544 546 548 550 556 558 560 564 569 571 575 581 583 585 587 591 593 595 601 603 605 607 613 617 621 625 629 631 633 635 640 642 648 650 652 657 659 661 667 671 673 675 677 681 685 687 689 697 699 701 703

Total of the odd positioned positions: 69368 = 23 x 13 x 23 x 29. (Since the original list was not a multiple of 7 or 13, there is no corresponding feature with the even positioned in the list.)

3.5.2From the list in 3.5, collect all those that are even valued (last digit is even):

2 6 10 16 22 26 30 34 38 40 44 48 50 56 60 62 66 70 72 74 80 84 90 94 96 100 106 108 110 114 120 124 128 130 134 140 146 152 156 162 166 170 176 182 186 190 194 200 204 206 210 214 216 220 224 228 230 234 236 240 242 248 252 256 260 264 268 272 276 278 282 288 290 294 296 298 302 306 310 314 318 320 324 326 330 336 340 344 348 350 352 356 358 364 366 370 374 378 382 386 390 394 398 400 404 408 412 420 424 430 434 440 442 446 450 452 456 460 464 468 470 476 478 482 486 490 492 494 498 502 504 510 514 516 524 530 534 542 544 546 548 550 556 558 560 564 570 572 578 582 584 586 590 592 594 600 602 604 606 610 614 620 622 628 630 632 634 640 642 648 650 652 656 658 660 664 668 672 674 676 678 684 686 688 690 698 700 702

Total: 68740 = 22 x 5 x 7 x 491. SF: 507 = 3 x 132.

3.5.3From the list in 3.5, gather all those whose first digit is even valued:

2 6 22 23 26 29 40 43 44 47 48 49 60 61 62 65 66 69 80 83 84 87 200 201 204 205 206 207 210 211 214 215 216 219 220 223 224 225 228 229 230 231 234 235 236 237 240 241 242 245 248 251 252 253 256 259 260 263 264 265 268 269 272 273 276 277 278 281 282 285 288 289 290 291 294 295 296 297 298 400 403 404 407 408 411 412 415 420 423 424 427 430 431 434 437 440 441 442 445 446 447 450 451 452 455 456 459 460 461 464 465 468 469 470 473 476 477 478 481 482 483 486 487 490 491 492 493 494 495 498 499 600 601 602 603 604 605 606 607 610 613 614 617 620 621 622 625 628 629 630 631 632 633 634 635 639 640 641 642 645 648 649 650 651 652 656 657 658 659 660 661 664 667 668 671 672 673 674 675 676 677 678 681 684 685 686 687 688 689 690 697 698 699

Total: 79105 = 5 x 13 x 1217. SF: 1235 = 5 x 13 x 19.

3.6Turning to the letters that are not first or last in a word...

List of letters that are not first or last in a word:
6 4 50 5 6 30 70 300 5 6 400 2 300 50 6 10 30 8 50 8 2 50 300 2 200 100 200 300 2 6 10 200 6 30 1 60 6 200 10 100 6 100 200 50 90 6 10 5 6 10 6 100 1 30 5 10 50 50 8 2 30 10 300 6 1 2 30 10 6 400 5 1 8 80 40 300 6 8 2 70 9 5 30 8 6 5 100 200 5 10 30 90 4 9 5 6 5 400 80 1 2 50 200 2 6 6 30 40 40 6 1 300 50 10 100 6 40 40 8 4 300 200 200 40 40 6 6 4 6 70 40 4 200 10 200 70 1 50 20 2 50 20 20 200 10 20 20 200 40 10 20 1 400 5 50 5 6 100 200 1 300 200 400 30 5 10 50 1 40 20 10 6 10 1 20 30 2 20 2 6 4 400 10 40 200 8 300 400 20 300 50 20 30 40 200 50 30 100 20 1 200 90 300 50 10 200 300 40 8 6 30 5 10 5 50 5 6 5 300 80 50 7 70 6 30 50 400 400 70 30 400 1 40 2 200 10 6 30 20 200 6 5 50 6 4 3 6 10 200 70 90 1 90 1 10 5 400 6 70 40 10 1 10 5 20 10 200 6 200 200 5 6 5 100 1 80 1 4 60 8 7 40 1 60 600 1 40 40 7 20 8 5 7 90 60 200 9 7 1 20 9 20 1 9 1 7 80 200 90 90 600 200 1 3 3 5 20 9 60 60 5 60 1 5 3 600 100 5 70 20 7 80 600 100 1 1 9 80 60 1 3 3 9 10 5 1 90 9 20 5 9 60 5 60 5 100 1 40 60 5 9 100 1 9 90 100 5 200 5 100 200 1 3 3 5 20 9

The total is 24959, and this number has no features.

Letter values are not position values. The techniques in 3.5 do not apply.

Classify the letters that are not first or last in a word into two groups: prime numbers and not prime numbers.

3.6.1Exactly 63 letters are prime numbers. (32 x 7. SF: 13.)

a) 4   9   12  21  24  29  48  55  60  66  71  79  82  86  89
b) 5   5   2   2   2   2   5   5   2   2   5   2   5   5   5

a) 95  97  101 104 140 154 156 165 177 179 212 214 216 218 222
b) 5   5   2   2   2   5   5   5   2   2   5   5   5   5   7

a) 234 242 246 256 264 271 273 281 289 292 293 298 306 314 315
b) 2   5   3   5   5   5   5   7   7   5   7   7   7   3   3

a) 316 321 324 325 328 331 341 342 345 350 353 355 360 367 369
b) 5   5   5   3   5   7   3   3   5   5   5   5   5   5   5

a) 373 374 375 (Position in the list 3.6.)
b) 3   3   5   (Letter that is a prime number.)

The total of these letters has no feature, but the total of their positions in the list from 3.6 is 13608. (23 x 35 x 7. SF: 28 = 22 x 7.)

3.6.2Three hundred and fourteen of the letters in 3.6 are not prime numbers.

a) 1   2   3   5   6   7   8   10  11  13  14  15  16  17  18  19
b) 6   4   50  6   30  70  300 6   400 300 50  6   10  30  8   50

a) 20  22  23  25  26  27  28  30  31  32  33  34  35  36  37  38
b) 8   50  300 200 100 200 300 6   10  200 6   30  1   60  6   200

a) 39  40  41  42  43  44  45  46  47  49  50  51  52  53  54  56
b) 10  100 6   100 200 50  90  6   10  6   10  6   100 1   30  10

a) 57  58  59  61  62  63  64  65  67  68  69  70  72  73  74  75
b) 50  50  8   30  10  300 6   1   30  10  6   400 1   8   80  40

a) 76  77  78  80  81  83  84  85  87  88  90  91  92  93  94  96
b) 300 6   8   70  9   30  8   6   100 200 10  30  90  4   9   6

a) 98  99  100 102 103 105 106 107 108 109 110 111 112 113 114 115
b) 400 80  1   50  200 6   6   30  40  40  6   1   300 50  10  100

a) 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
b) 6   40  40  8   4   300 200 200 40  40  6   6   4   6   70  40

a) 132 133 134 135 136 137 138 139 141 142 143 144 145 146 147 148
b) 4   200 10  200 70  1   50  20  50  20  20  200 10  20  20  200

a) 149 150 151 152 153 155 157 158 159 160 161 162 163 164 166 167
b) 40  10  20  1   400 50  6   100 200 1   300 200 400 30  10  50

a) 168 169 170 171 172 173 174 175 176 178 180 181 182 183 184 185
b) 1   40  20  10  6   10  1   20  30  20  6   4   400 10  40  200

a) 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
b) 8   300 400 20  300 50  20  30  40  200 50  30  100 20  1   200

a) 202 203 204 205 206 207 208 209 210 211 213 215 217 219 220 221
b) 90  300 50  10  200 300 40  8   6   30  10  50  6   300 80  50

a) 223 224 225 226 227 228 229 230 231 232 233 235 236 237 238 239
b) 70  6   30  50  400 400 70  30  400 1   40  200 10  6   30  20

a) 240 241 243 244 245 247 248 249 250 251 252 253 254 255 257 258
b) 200 6   50  6   4   6   10  200 70  90  1   90  1   10  400 6

a) 259 260 261 262 263 265 266 267 268 269 270 272 274 275 276 277
b) 70  40  10  1   10  20  10  200 6   200 200 6   100 1   80  1

a) 278 279 280 282 283 284 285 286 287 288 290 291 294 295 296 297
b) 4   60  8   40  1   60  600 1   40  40  20  8   90  60  200 9

a) 299 300 301 302 303 304 305 307 308 309 310 311 312 313 317 318
b) 1   20  9   20  1   9   1   80  200 90  90  600 200 1   20  9

a) 319 320 322 323 326 327 329 330 332 333 334 335 336 337 338 339
b) 60  60  60  1   600 100 70  20  80  600 100 1   1   9   80  60

a) 340 343 344 346 347 348 349 351 352 354 356 357 358 359 361 362
b) 1   9   10  1   90  9   20  9   60  60  100 1   40  60  9   100

a) 363 364 365 366 368 370 371 372 376 377 (Position in 3.6.)
b) 1   9   90  100 200 100 200 1   20  9   (Letter value.)

Once again the total of the actual letters has no feature, but the feature is in the sum of their positions in the list of 3.6: 57645 = 33 x 5 x 7 x 61.

3.6.3.1When the letters that are not first or last are added up one by one, 168 times the accumulated total will be an odd number.

a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)
4   5   65         72  1   4677       106 6   6465       164 30  10917      233 40  16627      287 40  19849      349 20  23749
5   6   71         73  8   4685       107 30  6495       168 1   10983      234 2   16629      288 40  19889      351 9   23763
6   30  101        74  80  4765       108 40  6535       169 40  11023      235 200 16829      292 5   19929      352 60  23823
7   70  171        75  40  4805       109 40  6575       170 20  11043      236 10  16839      297 9   20295      355 5   23893
8   300 471        76  300 5105       110 6   6581       171 10  11053      237 6   16845      299 1   20303      356 100 23993
35  1   2755       77  6   5111       137 1   8537       172 6   11059      238 30  16875      300 20  20323      360 5   24099
36  60  2815       78  8   5119       138 50  8587       173 10  11069      239 20  16895      303 1   20353      363 1   24209
37  6   2821       79  2   5121       139 20  8607       200 1   13373      240 200 17095      305 1   20363      367 5   24413
38  200 3021       80  70  5191       140 2   8609       201 200 13573      241 6   17101      313 1   21631      368 200 24613
39  10  3031       82  5   5205       141 50  8659       202 90  13663      246 3   17169      315 3   21637      372 1   24919
40  100 3131       83  30  5235       142 20  8679       203 300 13963      247 6   17175      318 9   21671      374 3   24925
41  6   3137       84  8   5243       143 20  8699       204 50  14013      248 10  17185      319 60  21731      377 9   24959
42  100 3237       85  6   5249       144 200 8899       205 10  14023      249 200 17385      320 60  21791
43  200 3437       89  5   5559       145 10  8909       206 200 14223      250 70  17455      323 1   21857
44  50  3487       90  10  5569       146 20  8929       207 300 14523      251 90  17545      325 3   21865
45  90  3577       91  30  5599       147 20  8949       208 40  14563      254 1   17637      326 600 22465
46  6   3583       92  90  5689       148 200 9149       209 8   14571      255 10  17647      327 100 22565
47  10  3593       93  4   5693       149 40  9189       210 6   14577      262 1   18179      331 7   22667
53  1   3721       95  5   5707       150 10  9199       211 30  14607      263 10  18189      332 80  22747
54  30  3751       96  6   5713       151 20  9219       214 5   14627      271 5   18835      333 600 23347
65  1   4223       100 1   6199       154 5   9625       215 50  14677      272 6   18841      334 100 23447
66  2   4225       101 2   6201       155 50  9675       218 5   14693      275 1   18947      336 1   23449
67  30  4255       102 50  6251       160 1   9987       219 300 14993      276 80  19027      340 1   23599
68  10  4265       103 200 6451       161 300 10287      220 80  15073      281 7   19107      342 3   23605
69  6   4271       104 2   6453       162 200 10487      221 50  15123      282 40  19147      345 5   23629
70  400 4671       105 6   6459       163 400 10887      232 1   16587      286 1   19809      348 9   23729

a) Position in the list of 3.6.     b) Letter value.     c) Accumulated total.

Total of the positions (a): 31444 = 22 x 7 x 1123. SF: 1134 = 2 x 34 x 7. SF: 21 = 3 x 7.
Total of the letters (b): 9542 = 2 x 13 x 367.

3.6.3.2This means the total of the positions of the remaining letters will also be a multiple of 7: 39809 = 7 x 112 x 47.

3.6.3.3The previous two features used the positions of the letters as they stood in the list from 3.6. What about their actual positions in the passage? The same holds true for letters where the accumulated total is an odd number.

a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)
9   5   65         143 1   4677       219 6   6465       323 30  10917      456 40  16627      558 40  19849      659 20  23749
10  6   71         146 8   4685       220 30  6495       329 1   10983      459 2   16629      559 40  19889      661 9   23763
13  30  101        149 80  4765       223 40  6535       330 40  11023      460 200 16829      565 5   19929      664 60  23823
16  70  171        152 40  4805       224 40  6575       333 20  11043      461 10  16839      575 9   20295      671 5   23893
19  300 471        155 300 5105       225 6   6581       336 10  11053      464 6   16845      581 1   20303      672 100 23993
70  1   2755       156 6   5111       276 1   8537       339 6   11059      465 30  16875      582 20  20323      676 5   24099
71  60  2815       159 8   5119       277 50  8587       340 10  11069      468 20  16895      585 1   20353      681 1   24209
72  6   2821       162 2   5121       278 20  8607       389 1   13373      469 200 17095      587 1   20363      687 5   24413
73  200 3021       165 70  5191       281 2   8609       390 200 13573      470 6   17101      601 1   21631      688 200 24613
74  10  3031       169 5   5205       282 50  8659       391 90  13663      481 3   17169      603 3   21637      698 1   24919
77  100 3131       170 30  5235       285 20  8679       394 300 13963      482 6   17175      606 9   21671      700 3   24925
80  6   3137       173 8   5243       288 20  8699       395 50  14013      483 10  17185      607 60  21731      703 9   24959
83  100 3237       176 6   5249       289 200 8899       398 10  14023      486 200 17385      610 60  21791
84  200 3437       186 5   5559       290 10  8909       399 200 14223      487 70  17455      617 1   21857
87  50  3487       189 10  5569       291 20  8929       400 300 14523      490 90  17545      621 3   21865
90  90  3577       190 30  5599       294 20  8949       403 40  14563      493 1   17637      622 600 22465
91  6   3583       193 90  5689       295 200 9149       404 8   14571      494 10  17647      625 100 22565
94  10  3593       194 4   5693       296 40  9189       407 6   14577      509 1   18179      631 7   22667
106 1   3721       200 5   5707       297 10  9199       408 30  14607      510 10  18189      632 80  22747
107 30  3751       201 6   5713       298 20  9219       415 5   14627      530 5   18835      633 600 23347
128 1   4223       207 1   6199       305 5   9625       420 50  14677      531 6   18841      634 100 23447
129 2   4225       210 2   6201       306 50  9675       427 5   14693      542 1   18947      639 1   23449
130 30  4255       211 50  6251       315 1   9987       430 300 14993      543 80  19027      645 1   23599
133 10  4265       214 200 6451       318 300 10287      431 80  15073      548 7   19107      649 3   23605
134 6   4271       215 2   6453       319 200 10487      434 50  15123      549 40  19147      652 5   23629
137 400 4671       216 6   6459       320 400 10887      455 1   16587      557 1   19809      658 9   23729

a) Original position within the combined passage.
b) Letter not first or last in a word.
c) Accumulated total at that point.

Total of the positions (from the passage; column a): 61173 = 32 x 7 x 971.

3.6.3.4Where the accumulated totals are even, the total of the positions in the actual passage is now a multiple of 13.

a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)
2   6   6          62  10  2518       204 5   5718       268 200 8256       361 8   11812      450 70  16156      545 4   19032      604 5   21642      684 9   24218
5   4   10         65  200 2718       205 400 6118       269 10  8266       364 300 12112      451 30  16186      546 60  19092      605 20  21662      685 90  24308
6   50  60         66  6   2724       206 80  6198       272 200 8466       365 400 12512      452 400 16586      547 8   19100      613 5   21796      686 100 24408
22  5   476        69  30  2754       228 1   6582       273 70  8536       366 20  12532      473 5   17106      550 1   19148      614 60  21856      689 5   24618
23  6   482        95  5   3598       229 300 6882       301 1   9220       369 300 12832      476 50  17156      553 60  19208      620 5   21862      690 100 24718
26  400 882        96  6   3604       230 50  6932       302 400 9620       370 50  12882      477 6   17162      556 600 19808      628 5   22570      697 200 24918
29  2   884        99  10  3614       231 10  6942       309 5   9680       373 20  12902      478 4   17166      560 7   19896      629 70  22640      699 3   24922
30  300 1184       100 6   3620       234 100 7042       310 6   9686       374 30  12932      491 1   17546      563 20  19916      630 20  22660      701 5   24930
33  50  1234       103 100 3720       235 6   7048       313 100 9786       375 40  12972      492 90  17636      564 8   19924      635 1   23448      702 20  24950
34  6   1240       108 5   3756       236 40  7088       314 200 9986       378 200 13172      495 5   17652      569 7   19936      640 9   23458
35  10  1250       109 10  3766       237 40  7128       324 5   10922      379 50  13222      498 400 18052      570 90  20026      641 80  23538
38  30  1280       110 50  3816       240 8   7136       325 10  10932      382 30  13252      499 6   18058      571 60  20086      642 60  23598
39  8   1288       113 50  3866       241 4   7140       326 50  10982      383 100 13352      502 70  18128      572 200 20286      648 3   23602
40  50  1338       114 8   3874       242 300 7440       343 1   11070      386 20  13372      503 40  18168      578 7   20302      650 9   23614
43  8   1346       119 2   3876       245 200 7640       344 20  11090      411 5   14612      504 10  18178      583 9   20332      651 10  23624
44  2   1348       120 30  3906       248 200 7840       345 30  11120      412 10  14622      511 5   18194      584 20  20352      656 1   23630
47  50  1398       121 10  3916       251 40  7880       348 2   11122      423 5   14682      514 20  18214      586 9   20362      657 90  23720
48  300 1698       124 300 4216       252 40  7920       349 20  11142      424 6   14688      515 10  18224      590 7   20370      660 5   23754
49  2   1700       125 6   4222       253 6   7926       350 2   11144      437 7   15130      516 200 18424      591 80  20450      667 5   23828
50  200 1900       140 5   4676       256 6   7932       351 6   11150      440 70  15200      517 6   18430      592 200 20650      668 60  23888
55  100 2000       166 9   5200       259 4   7936       352 4   11154      441 6   15206      524 200 18630      593 90  20740      673 1   23994
56  200 2200       179 5   5254       260 6   7942       355 400 11554      442 30  15236      527 200 18830      594 90  20830      674 40  24034
59  300 2500       182 100 5354       263 70  8012       356 10  11564      445 50  15286      534 5   18846      595 600 21430      675 60  24094
60  2   2502       183 200 5554       264 40  8052       357 40  11604      446 400 15686      535 100 18946      600 200 21630      677 9   24108
61  6   2508       197 9   5702       265 4   8056       358 200 11804      447 400 16086      544 1   19028      602 3   21634      678 100 24208

a) Original position within the combined passage.
b) Letter not first or last in a word.
c) Accumulated total at that point.

Total of the positions in the passage (a): 77220 = 22 x 33 x 5 x 11 x 13. SF: 42 = 2 x 3 x 7.

All 704 Letters

4Pair up the Nth and Nth last letters and record only pairs whose sum together is a multiple of 7 or 13.

4.1There are precisely 65 pairs whose sum is divisible by 7.

a) Nth position: 3   5   8   11  13  20  29  38  41  52  53  56  64  66
b) Value:        8   4   10  5   30  8   2   30  10  30  2   200 4   6
c) Nth last:     702 700 697 694 692 685 676 667 664 653 652 649 641 639
d) Value:        20  3   200 100 5   90  5   5   60  40  5   3   80  1
e) Sum:          28  7   210 105 35  98  7   35  70  70  7   203 84  7

a) 67  73  77  82  83  84  89  94  108 117 122 124 133 135 139 155 174
b) 200 200 100 30  100 200 200 10  5   30  40  300 10  50  30  300 400
c) 638 632 628 623 622 621 616 611 597 588 583 581 572 570 566 550 531
d) 10  80  5   40  600 3   10  200 100 40  9   1   200 90  40  1   6
e) 210 280 105 70  700 203 210 210 105 70  49  301 210 140 70  301 406

a) 177 179 188 189 205 210 212 213 218 228 229 230 238 243 247 249 250
b) 8   5   1   10  400 2   6   8   70  1   300 50  6   6   8   2   300
c) 528 526 517 516 500 495 493 492 487 477 476 475 467 462 458 456 455
d) 20  2   6   200 20  5   1   90  70  6   50  6   1   400 6   40  1
e) 28  7   7   210 420 7   7   98  140 7   350 56  7   406 14  42  301

a) 251 253 257 258 260 271 285 300 310 313 316 317 318 337 344 348 351
b) 40  6   200 6   6   6   20  6   6   100 6   40  300 30  20  2   6
c) 454 452 448 447 445 434 420 405 395 392 389 388 387 368 361 357 354
d) 2   400 10  400 50  50  50  400 50  40  1   2   50  40  8   40  400
e) 42  406 210 406 56  56  70  406 56  140 7   42  350 70  28  42  406

Sum of positions (a + c): 45825 = 3 x 52 x 13 x 47.
Note that the sum of line a), which represents the Nth position, has its own feature: 11109 = 3 x 7 x 232. SF: 56 = 23 x 7. SF: 13.

4.2There are exactly 21 pairs whose sum is divisible by 13. (This is an interesting switch from the previous where 65 pairs were divisible by 7.)

a) Nth position: 28  42  48  69  78  95  100 110 130 165 170 173 193 269
b) Value:        30  30  300 30  8   5   6   50  30  70  30  8   90  10
c) Nth last:     677 663 657 636 627 610 605 595 575 540 535 532 512 436
d) Value:        9   100 90  9   70  60  20  600 9   60  100 5   40  3
e) Sum:          39  130 390 39  78  65  26  650 39  130 130 13  130 13

a) 275 277 298 304 324 333 339
b) 90  50  20  20  5   20  6
c) 430 428 407 401 381 372 366
d) 300 2   6   6   8   6   20
e) 390 52  26  26  13  26  26

Sum of positions (a + c): 14805 = 32 x 5 x 7 x 47. SF: 65 = 5 x 13.
This time it is the sum of line c), which represents the Nth last, with its own feature: 10985 = 5 x 133.

4.3Take every other letter.

4.3.1The odd positioned letters:

a) 1   3 5 7  9 11 13 15 17 19  21 23 25 27 29 31  33 35 37  39 41 43
b) 200 8 4 10 5 5  30 10 50 300 10 6  1  10 2  200 50 10 300 8  10 8

a) 45  47 49 51 53 55  57 59  61 63 65  67  69 71 73  75 77  79  81 83
b) 300 50 2  10 2  100 1  300 6  40 200 200 30 60 200 40 100 100 8  100

a) 85 87 89  91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121
b) 1  50 200 6  30 5  5  10 40  100 30  30  10  6   50  40  30  2   10

a) 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155
b) 30  6   30  2   10  10  50  400 30  40  1   400 400 80  300 50  300

a) 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189
b) 50  8   1   30  70  5   5   5   8   200 8   5   6   200 30  40  10

a) 191 193 195 197 199 201 203 205 207 209 211 213 215 217 219 221 223
b) 10  90  100 9   10  6   30  400 1   6   50  8   2   400 6   40  40

a) 225 227 229 231 233 235 237 239 241 243 245 247 249 251 253 255 257
b) 6   200 300 10  10  6   40  6   4   6   200 8   2   40  6   4   200

a) 259 261 263 265 267 269 271 273 275 277 279 281 283 285 287 289 291
b) 4   200 70  4   7   10  6   70  90  50  40  2   10  20  1   200 20

a) 293 295 297 299 301 303 305 307 309 311 313 315 317 319 321 323 325
b) 6   200 10  40  1   40  5   10  5   5   100 1   40  200 10  30  10

a) 327 329 331 333 335 337 339 341 343 345 347 349 351 353 355 357 359
b) 6   1   200 20  8   30  6   40  1   30  6   20  6   40  400 40  6

a) 361 363 365 367 369 371 373 375 377 379 381 383 385 387 389 391 393
b) 8   2   400 40  300 5   20  40  10  50  8   100 30  50  1   90  40

a) 395 397 399 401 403 405 407 409 411 413 415 417 419 421 423 425 427
b) 50  10  200 6   40  400 6   40  5   5   5   20  1   10  5   5   5

a) 429 431 433 435 437 439 441 443 445 447 449 451 453 455 457 459 461
b) 40  80  300 1   7   2   6   5   50  400 80  30  40  1   400 2   10

a) 463 465 467 469 471 473 475 477 479 481 483 485 487 489 491 493 495
b) 70  30  1   200 400 5   6   6   70  3   10  7   70  6   1   1   5

a) 497 499 501 503 505 507 509 511 513 515 517 519 521 523 525 527 529
b) 2   6   5   40  40  30  1   5   10  10  6   20  5   7   70  200 10

a) 531 533 535 537 539 541 543 545 547 549 551 553 555 557 559 561 563
b) 6   30  100 4   100 70  80  4   8   40  9   60  9   1   40  40  20

a) 565 567 569 571 573 575 577 579 581 583 585 587 589 591 593 595 597
b) 5   60  7   60  90  9   100 40  1   9   1   1   10  80  90  600 100

a) 599 601 603 605 607 609 611 613 615 617 619 621 623 625 627 629 631
b) 5   1   3   20  60  100 200 5   200 1   20  3   40  100 70  70  7

a) 633 635 637 639 641 643 645 647 649 651 653 655 657 659 661 663 665
b) 600 1   60  1   80  90  1   7   3   10  40  2   90  20  9   100 200

a) 667 669 671 673 675 677 679 681 683 685 687 689 691 693 695 697 699
b) 5   200 5   1   60  9   5   1   70  90  5   5   5   40  600 200 3

a) 701 703  (Odd positioned letter.)
b) 5  9     (Letter value.)

Total of the odd positioned letters: 21434 = 2 x 7 x 1531. SF: 1540 = 22 x 5 x 7 x 11.

4.3.2Since the total all the letters is 48349, which is divisible by 7, this means all the even positioned letters is also divisible by 7: 26915 = 5 x 7 x 769.

Features 4.3.1 and 4.3.2 continue with over 350 sub-features.

4.4.1When the letters are added one by one, there are 102 instances when the accumulated total will be divisible by 7.

a)  b)  c)       a)  b)  c)       a)  b)  c)       a)  b)  c)       a)  b)  c)
9   5   294      187 40  14077    340 10  24185    450 70  33145    623 40  43484
21  10  903      192 5   14133    343 1   24626    470 6   35049    640 9   44695
27  10  1330     206 80  14987    346 6   24682    481 3   35665    642 60  44835
31  200 1862     211 50  15246    349 20  24710    484 40  35721    652 5   44982
32  70  1932     213 8   15260    363 2   26628    485 7   35728    655 2   45031
34  6   1988     220 30  15974    365 400 27328    490 90  36134    657 90  45122
37  300 2338     224 40  16394    371 5   27783    492 90  36225    670 30  45829
41  10  2436     226 400 16800    374 30  27839    496 40  36281    672 100 45934
47  50  2856     243 6   17927    386 20  28378    504 10  36834    681 1   46165
54  30  3430     244 70  17997    391 90  28721    510 10  37135    688 200 46648
57  1   3731     246 10  18207    398 10  29176    522 40  37541    690 100 46753
64  4   4123     249 2   18417    404 8   30030    523 7   37548    699 3   47712
67  200 4529     262 6   19635    407 6   30506    532 5   38066    702 20  47740
88  400 6265     263 70  19705    409 40  30576    534 5   38101    704 600 48349
129 2   7721     275 90  20384    413 5   30996    537 4   38206
133 10  7861     281 2   20503    415 5   31031    539 100 38311
135 50  7917     291 20  21084    418 10  31101    552 100 38752
148 1   9912     295 200 21350    435 1   31976    566 40  39669
150 200 10192    298 20  21420    439 2   32018    580 3   40439
161 1   12047    318 300 23065    440 70  32088    582 20  40460
176 6   13657    330 40  23828    446 400 32585    596 40  41657
178 20  13685    336 10  24136    449 80  33075    606 9   42063

a) Letter position.   b) Letter value.    c) Accumulated total divisible by 7.

Total of the letters where this happens (b): 6305 = 5 x 13 x 97.

4.4.2There are 51 instances where the accumulated total will be a multiple of 13.

a)  b)  c)       a)  b)  c)       a)  b)  c)
18  40  585      275 90  20384    541 70  38441
57  1   3731     280 6   20501    564 8   39624
61  6   4069     282 50  20553    583 9   40469
66  6   4329     327 6   23777    603 3   42029
78  8   5070     359 6   25818    609 100 42263
95  5   6656     381 8   28158    611 200 42523
131 10  7761     383 100 28288    613 5   42536
135 50  7917     389 1   28431    615 200 42796
145 400 9503     404 8   30030    650 9   44967
150 200 10192    409 40  30576    656 1   45032
153 50  10582    415 5   31031    663 100 45266
183 200 14001    431 80  31616    665 200 45526
190 30  14118    455 1   33618    667 5   45539
199 10  14456    497 2   36283    669 200 45799
218 70  15938    506 20  36894    703 9   47749
223 40  16354    512 40  37180
234 100 17511    518 40  37466
243 6   17927    539 100 38311

a) Letter position.     b) Letter value.
c) Accumulated total divisible by 13.

Total of the letters where this happens (b): 2954 = 2 x 7 x 211.

It is curious how searching for accumulated totals divisible by 7, the letters added together total a multiple of 13, and how searching for accumulated totals divisible by 13, the end total is a multiple of 7.

4.4.3There are 187 times when a letter's position, value and accumulated total are all odd valued, or all even valued. The positions of these letters, which are purely odd, or purely even is a multiple of 7: 66143 = 7 x 11 x 859

4.4.4There are exactly 39 times where the letter's position, value and accumulated total will all be odd valued.

a)  b) c)     a)  b) c)     a)  b) c)
11  5 305     411 5 30981   575 9 40199
57  1 3731    415 5 31031   583 9 40469
85  1 5515    423 5 31177   601 1 42023
97  5 6667    443 5 32129   603 3 42029
143 1 8903    467 1 34823   617 1 42807
161 1 12047   481 3 35665   631 7 43825
167 5 12203   491 1 36135   661 9 45165
171 5 12643   495 5 36241   667 5 45539
301 1 21467   509 1 37125   673 1 45935
309 5 22007   521 5 37501   677 9 46049
315 1 22719   555 9 38861   681 1 46165
371 5 27783   565 5 39629   689 5 46653
389 1 28431   569 7 39745   703 9 47749

a) Letter position.   b) Letter value.
c) Accumulated total.

Total of the positions of these letters: 17283 = 3 x 7 x 823. SF: 833 = 72 x 17.

4.4.5There are 148 times the letter's position, value and accumulated total will all be even valued.

a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)
2   6   206        96  6   6662       268 200 19962      356 10  25572      430 300 31536      518 40  37466
10  6   300        120 30  7262       270 40  20012      358 200 25812      438 30  32016      520 10  37496
26  400 1320       122 40  7312       272 200 20218      360 400 26218      440 70  32088      524 200 37748
28  30  1360       124 300 7642       274 6   20294      362 400 26626      442 30  32124      526 2   37820
30  300 1662       126 40  7688       288 20  20854      364 300 26928      456 40  33658      528 20  38040
32  70  1932       142 80  8902       290 10  21064      366 20  27348      458 6   34064      552 100 38752
34  6   1988       150 200 10192      292 40  21124      368 40  27428      460 200 34266      554 40  38852
36  40  2038       152 40  10532      294 20  21150      370 50  27778      462 400 34676      558 40  39502
38  30  2368       154 300 10882      296 40  21390      378 200 28094      464 6   34752      564 8   39624
40  50  2426       156 6   11188      298 20  21420      380 6   28150      466 40  34822      582 20  40460
42  30  2466       158 400 11638      300 6   21466      382 30  28188      474 40  35524      588 40  40540
44  2   2476       160 400 12046      306 50  21982      384 40  28328      476 50  35580      600 200 42022
46  30  2806       170 30  12638      308 10  22002      386 20  28378      478 4   35590      614 60  42596
48  300 3156       190 30  14118      312 400 22418      388 2   28430      480 2   35662      616 10  42806
50  200 3358       198 70  14446      314 200 22718      398 10  29176      486 200 35928      622 600 43444
52  30  3398       208 200 15188      330 40  23828      400 300 29676      488 40  36038      624 60  43544
54  30  3430       210 2   15196      332 30  24058      402 300 29982      490 90  36134      630 20  43818
56  200 3730       212 6   15252      334 40  24118      404 8   30030      494 10  36236      664 60  45326
72  6   4632       214 200 15460      336 10  24136      406 70  30500      502 70  36784      666 8   45534
74  10  4842       216 6   15468      344 20  24646      408 30  30536      504 10  36834      672 100 45934
76  80  4962       218 70  15938      346 6   24682      410 400 30976      506 20  36894      680 10  46164
78  8   5070       220 30  15974      348 2   24690      414 30  31026      508 200 37124      688 200 46648
80  6   5176       222 300 16314      350 2   24712      420 50  31152      512 40  37180      702 20  47740
82  30  5214       224 40  16394      352 4   24722      422 10  31172      514 20  37210
84  200 5514       226 400 16800      354 400 25162      428 2   31196      516 200 37420

a) Letter position.     b) Letter value.     c) Accumulated total.

Total of the positions of these letters (a): 48860 = 22 x 5 x 7 x 349.

4.4.6The difference between the positions of letters purely odd and purely even reveals an extra 13: 31577 = 7 x 13 x 347.

4.5Letter 600 appeared the least number of times in the passage. It occurred only 6 times for a total of 3600. Its opposite is letter 40, which appeared the most at 71 times for a total of 2840. Thus the total of these letters, appearing the least and appearing the most: 6440 = 23 x 5 x 7 x 23.

4.6Divide the 704 letters into segments of 8 letters. Add each segment. Separate the segments depending on whether the total is odd or even.

4.6.1Odd valued segments of 8 letters:

200 6 8 1 4 50 10 10           30 20 50 2 1 200 90 40
1 400 10 30 2 300 200 70       40 300 50 5 10 10 200 300
1 30 300 2 6 10 40 4           40 400 5 10 5 30 5 40
200 6 200 6 30 1 60 6          300 50 1 3 7 30 2 70
8 30 100 200 1 300 50 400      6 30 5 6 50 400 400 10
200 90 6 50 30 10 5 6          80 70 30 400 40 2 1 40
5 6 10 6 40 50 100 40          30 40 1 20 200 6 400 30
50 8 40 20 30 1 2 30           5 40 6 50 6 4 70 2
10 40 30 300 6 40 30 1         6 90 1 90 1 10 5 40
400 8 400 1 80 200 300 40      2 400 6 20 5 70 40 10
1 2 30 40 70 9 5 400           4 5 100 60 70 1 80 1
8 20 5 5 6 100 200 1           4 60 8 7 40 1 9 100
30 5 40 1 10 30 10 5           60 40 9 600 1 40 40 7
6 5 30 5 400 80 1 200          40 7 20 8 5 40 60 9
6 400 200 1 300 50 10 40       7 90 60 200 90 5 9 90
4 6 7 200 10 40 6 200          90 90 600 40 100 60 5 200
70 6 90 1 50 20 40 6           1 3 3 5 20 9 60 40
2 50 10 50 20 200 1 20         100 60 200 8 5 60 200 10
10 20 40 6 1 400 40 20         100 9 70 5 70 20 7 80
5 50 10 10 5 6 5 400           3 9 10 5 40 7 2 1
100 200 1 6 40 300 200 400     200 1 3 3 5 20 9 600
1 40 200 30 20 40 8 10

Total of the odd valued segments: 23471 = 72 x 479.

4.6.2Even valued segments of 8:

5 6 5 70 30 10 10 70           8 400 2 300 400 20 40 40
50 40 300 8 10 5 6 5           300 50 5 6 20 30 40 5
50 6 10 40 300 30 8 50         10 200 50 6 8 30 100 40
10 30 8 2 300 30 50 300        6 300 40 8 400 70 6 30
2 200 10 30 2 30 100 200       20 10 1 50 10 10 5 6
200 10 40 80 100 8 100 6       5 1 5 2 40 300 80 9
30 1 30 5 10 50 6 30           400 6 2 200 10 400 70 6
2 30 10 90 10 6 50 30          3 6 10 40 7 200 70 40
400 400 30 5 40 80 1 200       40 20 30 200 1 10 5 40
50 300 300 6 50 400 8 400      10 20 10 200 6 40 20 10
5 30 5 400 8 400 200 6         5 40 7 200 70 2 200 20
90 4 100 40 9 70 10 5          10 5 6 5 30 5 100 1
6 2 50 6 8 200 2 6             100 7 40 3 1 20 9 20
400 70 6 30 40 300 40 40       1 9 1 40 10 7 80 200
10 100 6 40 40 6 6 8           1 9 20 5 3 600 40 60
4 300 6 70 200 10 8 200        600 100 1 9 60 10 1 9
2 300 40 40 6 400 4 6          80 60 90 10 1 9 7 3
200 6 4 6 200 6 70 40          90 9 20 5 9 1 100 60
200 10 20 40 6 20 200 40       200 8 5 60 200 30 5 100
10 1 30 5 10 50 6 10           1 40 60 5 9 100 5 10
30 3 6 10 40 400 1 20          1 9 70 9 90 100 5 200
30 6 6 2 20 2 6 4              5 100 5 5 40 100 600 5
40 400 400 10 40 200 6 400

Total of the even valued segments: 24878 = 2 x 7 x 1777.

4.6.3The difference between the odd and even valued segments: 1407 = 3 x 7 x 67. SF: 77 = 7 x 11.

4.7John 1:1 describes God and the Word at the beginning of our world. The numbers have demonstrated the importance of 7 and 13. Isaiah's prophecy is from God about Jesus bringing the good news. Thus the two numbers, 7 and 13, can both be applied at the same time in grouping the letters. With 704 letters, it is possible to arrange them into groups of M number of letters, and groups of N number of letters where M and N are multiples of either 7 or 13, and where all groups of M together and all groups of N together are either multiples of 7 or 13.

4.7.1The 704 letters are arranged in alternating groups of 156 (22 x 3 x 13) and groups of 196 (22 x 72).

4.7.1.1Groups of 156:

200 6 8 1 4 50 10 10 5 6 5 70 30 10 10 70 50 40 300 8 10 5 6 5 1 400 10 30 2 300 200 70 50 6 10 40 300 30 8 50 10 30 8 2 300 30 50 300 2 200 10 30 2 30 100 200 1 30 300 2 6 10 40 4 200 6 200 6 30 1 60 6 200 10 40 80 100 8 100 6 8 30 100 200 1 300 50 400 200 90 6 50 30 10 5 6 5 6 10 6 40 50 100 40 30 1 30 5 10 50 6 30 50 8 40 20 30 1 2 30 10 40 30 300 6 40 30 1 2 30 10 90 10 6 50 30 400 400 30 5 40 80 1 200 400 8 400 1 80 200 300 40 50 300 300 6
40 400 400 10 40 200 6 400 8 400 2 300 400 20 40 40 300 50 5 6 20 30 40 5 10 200 50 6 8 30 100 40 30 20 50 2 1 200 90 40 40 300 50 5 10 10 200 300 6 300 40 8 400 70 6 30 40 400 5 10 5 30 5 40 20 10 1 50 10 10 5 6 5 1 5 2 40 300 80 9 300 50 1 3 7 30 2 70 6 30 5 6 50 400 400 10 80 70 30 400 40 2 1 40 400 6 2 200 10 400 70 6 30 40 1 20 200 6 400 30 5 40 6 50 6 4 70 2 3 6 10 40 7 200 70 40 6 90 1 90 1 10 5 40 2 400 6 20 5 70 40 10 40 20 30 200

Total of the groups of 156: 23590 = 2 x 5 x 7 x 337. SF: 351 = 33 x 13.

4.7.1.2Groups of 196:

50 400 8 400 1 2 30 40 70 9 5 400 5 30 5 400 8 400 200 6 8 20 5 5 6 100 200 1 30 5 40 1 10 30 10 5 90 4 100 40 9 70 10 5 6 5 30 5 400 80 1 200 6 2 50 6 8 200 2 6 400 70 6 30 40 300 40 40 6 400 200 1 300 50 10 40 10 100 6 40 40 6 6 8 4 300 6 70 200 10 8 200 2 300 40 40 6 400 4 6 200 6 4 6 200 6 70 40 4 6 7 200 10 40 6 200 70 6 90 1 50 20 40 6 2 50 10 50 20 200 1 20 200 10 20 40 6 20 200 40 10 20 40 6 1 400 40 20 5 50 10 10 5 6 5 400 100 200 1 6 40 300 200 400 10 1 30 5 10 50 6 10 1 40 200 30 20 40 8 10 30 3 6 10 40 400 1 20 30 6 6 2 20 2 6 4
1 10 5 40 10 20 10 200 6 40 20 10 5 40 7 200 70 2 200 20 10 5 6 5 30 5 100 1 4 5 100 60 70 1 80 1 4 60 8 7 40 1 9 100 60 40 9 600 1 40 40 7 40 7 20 8 5 40 60 9 7 90 60 200 90 5 9 90 100 7 40 3 1 20 9 20 1 9 1 40 10 7 80 200 90 90 600 40 100 60 5 200 1 3 3 5 20 9 60 40 100 60 200 8 5 60 200 10 1 9 20 5 3 600 40 60 100 9 70 5 70 20 7 80 600 100 1 9 60 10 1 9 80 60 90 10 1 9 7 3 3 9 10 5 40 7 2 1 90 9 20 5 9 1 100 60 200 8 5 60 200 30 5 100 1 40 60 5 9 100 5 10 1 9 70 9 90 100 5 200 5 100 5 5 40 100 600 5 200 1 3 3 5 20 9 600

Total of the groups of 196: 24759 = 33 x 7 x 131. SF: 147 = 3 x 72.

4.7.2The 704 letters are arranged in alternating groups of 169 (132) and groups of 7.

4.7.2.1Groups of 169:

200 6 8 1 4 50 10 10 5 6 5 70 30 10 10 70 50 40 300 8 10 5 6 5 1 400 10 30 2 300 200 70 50 6 10 40 300 30 8 50 10 30 8 2 300 30 50 300 2 200 10 30 2 30 100 200 1 30 300 2 6 10 40 4 200 6 200 6 30 1 60 6 200 10 40 80 100 8 100 6 8 30 100 200 1 300 50 400 200 90 6 50 30 10 5 6 5 6 10 6 40 50 100 40 30 1 30 5 10 50 6 30 50 8 40 20 30 1 2 30 10 40 30 300 6 40 30 1 2 30 10 90 10 6 50 30 400 400 30 5 40 80 1 200 400 8 400 1 80 200 300 40 50 300 300 6 50 400 8 400 1 2 30 40 70 9 5 400 5
8 20 5 5 6 100 200 1 30 5 40 1 10 30 10 5 90 4 100 40 9 70 10 5 6 5 30 5 400 80 1 200 6 2 50 6 8 200 2 6 400 70 6 30 40 300 40 40 6 400 200 1 300 50 10 40 10 100 6 40 40 6 6 8 4 300 6 70 200 10 8 200 2 300 40 40 6 400 4 6 200 6 4 6 200 6 70 40 4 6 7 200 10 40 6 200 70 6 90 1 50 20 40 6 2 50 10 50 20 200 1 20 200 10 20 40 6 20 200 40 10 20 40 6 1 400 40 20 5 50 10 10 5 6 5 400 100 200 1 6 40 300 200 400 10 1 30 5 10 50 6 10 1 40 200 30 20 40 8 10 30 3 6 10 40 400 1 20 30
40 400 400 10 40 200 6 400 8 400 2 300 400 20 40 40 300 50 5 6 20 30 40 5 10 200 50 6 8 30 100 40 30 20 50 2 1 200 90 40 40 300 50 5 10 10 200 300 6 300 40 8 400 70 6 30 40 400 5 10 5 30 5 40 20 10 1 50 10 10 5 6 5 1 5 2 40 300 80 9 300 50 1 3 7 30 2 70 6 30 5 6 50 400 400 10 80 70 30 400 40 2 1 40 400 6 2 200 10 400 70 6 30 40 1 20 200 6 400 30 5 40 6 50 6 4 70 2 3 6 10 40 7 200 70 40 6 90 1 90 1 10 5 40 2 400 6 20 5 70 40 10 40 20 30 200 1 10 5 40 10 20 10 200 6 40 20 10 5
10 5 6 5 30 5 100 1 4 5 100 60 70 1 80 1 4 60 8 7 40 1 9 100 60 40 9 600 1 40 40 7 40 7 20 8 5 40 60 9 7 90 60 200 90 5 9 90 100 7 40 3 1 20 9 20 1 9 1 40 10 7 80 200 90 90 600 40 100 60 5 200 1 3 3 5 20 9 60 40 100 60 200 8 5 60 200 10 1 9 20 5 3 600 40 60 100 9 70 5 70 20 7 80 600 100 1 9 60 10 1 9 80 60 90 10 1 9 7 3 3 9 10 5 40 7 2 1 90 9 20 5 9 1 100 60 200 8 5 60 200 30 5 100 1 40 60 5 9 100 5 10 1 9 70 9 90 100 5 200 5 100 5 5 40 100 600 5 200

Total of the groups of 169: 46074 = 2 x 3 x 7 x 1097.

4.7.2.2Groups of 7:

30 5 400 8 400 200 6
6 6 2 20 2 6 4
40 7 200 70 2 200 20
1 3 3 5 20 9 600

Total of the groups of 7: 2275 = 52 x 7 x 13.

4.7.3The 704 letters are arranged in alternating groups of 196 (22 x 72), groups of 312 (23 x 3 x 13).

4.7.3.1Groups of 196:

200 6 8 1 4 50 10 10 5 6 5 70 30 10 10 70 50 40 300 8 10 5 6 5 1 400 10 30 2 300 200 70 50 6 10 40 300 30 8 50 10 30 8 2 300 30 50 300 2 200 10 30 2 30 100 200 1 30 300 2 6 10 40 4 200 6 200 6 30 1 60 6 200 10 40 80 100 8 100 6 8 30 100 200 1 300 50 400 200 90 6 50 30 10 5 6 5 6 10 6 40 50 100 40 30 1 30 5 10 50 6 30 50 8 40 20 30 1 2 30 10 40 30 300 6 40 30 1 2 30 10 90 10 6 50 30 400 400 30 5 40 80 1 200 400 8 400 1 80 200 300 40 50 300 300 6 50 400 8 400 1 2 30 40 70 9 5 400 5 30 5 400 8 400 200 6 8 20 5 5 6 100 200 1 30 5 40 1 10 30 10 5 90 4 100 40
1 10 5 40 10 20 10 200 6 40 20 10 5 40 7 200 70 2 200 20 10 5 6 5 30 5 100 1 4 5 100 60 70 1 80 1 4 60 8 7 40 1 9 100 60 40 9 600 1 40 40 7 40 7 20 8 5 40 60 9 7 90 60 200 90 5 9 90 100 7 40 3 1 20 9 20 1 9 1 40 10 7 80 200 90 90 600 40 100 60 5 200 1 3 3 5 20 9 60 40 100 60 200 8 5 60 200 10 1 9 20 5 3 600 40 60 100 9 70 5 70 20 7 80 600 100 1 9 60 10 1 9 80 60 90 10 1 9 7 3 3 9 10 5 40 7 2 1 90 9 20 5 9 1 100 60 200 8 5 60 200 30 5 100 1 40 60 5 9 100 5 10 1 9 70 9 90 100 5 200 5 100 5 5 40 100 600 5 200 1 3 3 5 20 9 600

Total of the groups of 196: 25592 = 23 x 7 x 457.

4.7.3.2Groups of 312:

9 70 10 5 6 5 30 5 400 80 1 200 6 2 50 6 8 200 2 6 400 70 6 30 40 300 40 40 6 400 200 1 300 50 10 40 10 100 6 40 40 6 6 8 4 300 6 70 200 10 8 200 2 300 40 40 6 400 4 6 200 6 4 6 200 6 70 40 4 6 7 200 10 40 6 200 70 6 90 1 50 20 40 6 2 50 10 50 20 200 1 20 200 10 20 40 6 20 200 40 10 20 40 6 1 400 40 20 5 50 10 10 5 6 5 400 100 200 1 6 40 300 200 400 10 1 30 5 10 50 6 10 1 40 200 30 20 40 8 10 30 3 6 10 40 400 1 20 30 6 6 2 20 2 6 4 40 400 400 10 40 200 6 400 8 400 2 300 400 20 40 40 300 50 5 6 20 30 40 5 10 200 50 6 8 30 100 40 30 20 50 2 1 200 90 40 40 300 50 5 10 10 200 300 6 300 40 8 400 70 6 30 40 400 5 10 5 30 5 40 20 10 1 50 10 10 5 6 5 1 5 2 40 300 80 9 300 50 1 3 7 30 2 70 6 30 5 6 50 400 400 10 80 70 30 400 40 2 1 40 400 6 2 200 10 400 70 6 30 40 1 20 200 6 400 30 5 40 6 50 6 4 70 2 3 6 10 40 7 200 70 40 6 90 1 90 1 10 5 40 2 400 6 20 5 70 40 10 40 20 30 200

Total of the groups of 312: 22757 = 7 x 3251.

4.7.4The 704 letters are arranged in alternating groups of 247 (13 x 19) and groups of 105 (3 x 5 x 7).

4.7.4.1Groups of 247:

200 6 8 1 4 50 10 10 5 6 5 70 30 10 10 70 50 40 300 8 10 5 6 5 1 400 10 30 2 300 200 70 50 6 10 40 300 30 8 50 10 30 8 2 300 30 50 300 2 200 10 30 2 30 100 200 1 30 300 2 6 10 40 4 200 6 200 6 30 1 60 6 200 10 40 80 100 8 100 6 8 30 100 200 1 300 50 400 200 90 6 50 30 10 5 6 5 6 10 6 40 50 100 40 30 1 30 5 10 50 6 30 50 8 40 20 30 1 2 30 10 40 30 300 6 40 30 1 2 30 10 90 10 6 50 30 400 400 30 5 40 80 1 200 400 8 400 1 80 200 300 40 50 300 300 6 50 400 8 400 1 2 30 40 70 9 5 400 5 30 5 400 8 400 200 6 8 20 5 5 6 100 200 1 30 5 40 1 10 30 10 5 90 4 100 40 9 70 10 5 6 5 30 5 400 80 1 200 6 2 50 6 8 200 2 6 400 70 6 30 40 300 40 40 6 400 200 1 300 50 10 40 10 100 6 40 40 6 6 8 4 300 6 70 200 10 8
40 400 400 10 40 200 6 400 8 400 2 300 400 20 40 40 300 50 5 6 20 30 40 5 10 200 50 6 8 30 100 40 30 20 50 2 1 200 90 40 40 300 50 5 10 10 200 300 6 300 40 8 400 70 6 30 40 400 5 10 5 30 5 40 20 10 1 50 10 10 5 6 5 1 5 2 40 300 80 9 300 50 1 3 7 30 2 70 6 30 5 6 50 400 400 10 80 70 30 400 40 2 1 40 400 6 2 200 10 400 70 6 30 40 1 20 200 6 400 30 5 40 6 50 6 4 70 2 3 6 10 40 7 200 70 40 6 90 1 90 1 10 5 40 2 400 6 20 5 70 40 10 40 20 30 200 1 10 5 40 10 20 10 200 6 40 20 10 5 40 7 200 70 2 200 20 10 5 6 5 30 5 100 1 4 5 100 60 70 1 80 1 4 60 8 7 40 1 9 100 60 40 9 600 1 40 40 7 40 7 20 8 5 40 60 9 7 90 60 200 90 5 9 90 100 7 40 3 1 20 9 20 1 9 1 40 10 7 80 200 90 90 600 40 100 60 5

Total of the groups of 247: 35315 = 5 x 7 x 1009.

4.7.4.2Groups of 105:

200 2 300 40 40 6 400 4 6 200 6 4 6 200 6 70 40 4 6 7 200 10 40 6 200 70 6 90 1 50 20 40 6 2 50 10 50 20 200 1 20 200 10 20 40 6 20 200 40 10 20 40 6 1 400 40 20 5 50 10 10 5 6 5 400 100 200 1 6 40 300 200 400 10 1 30 5 10 50 6 10 1 40 200 30 20 40 8 10 30 3 6 10 40 400 1 20 30 6 6 2 20 2 6 4 200 1 3 3 5 20 9 60 40 100 60 200 8 5 60 200 10 1 9 20 5 3 600 40 60 100 9 70 5 70 20 7 80 600 100 1 9 60 10 1 9 80 60 90 10 1 9 7 3 3 9 10 5 40 7 2 1 90 9 20 5 9 1 100 60 200 8 5 60 200 30 5 100 1 40 60 5 9 100 5 10 1 9 70 9 90 100 5 200 5 100 5 5 40 100 600 5 200 1 3 3 5 20 9 600

Total of the groups of 105: 13034 = 2 x 73 x 19. SF: 42 = 2 x 3 x 7.

4.7.5The 704 letters are arranged in alternating groups of 338 (2 x 132), and groups of 14 (2 x 7).

4.7.5.1Groups of 338:

200 6 8 1 4 50 10 10 5 6 5 70 30 10 10 70 50 40 300 8 10 5 6 5 1 400 10 30 2 300 200 70 50 6 10 40 300 30 8 50 10 30 8 2 300 30 50 300 2 200 10 30 2 30 100 200 1 30 300 2 6 10 40 4 200 6 200 6 30 1 60 6 200 10 40 80 100 8 100 6 8 30 100 200 1 300 50 400 200 90 6 50 30 10 5 6 5 6 10 6 40 50 100 40 30 1 30 5 10 50 6 30 50 8 40 20 30 1 2 30 10 40 30 300 6 40 30 1 2 30 10 90 10 6 50 30 400 400 30 5 40 80 1 200 400 8 400 1 80 200 300 40 50 300 300 6 50 400 8 400 1 2 30 40 70 9 5 400 5 30 5 400 8 400 200 6 8 20 5 5 6 100 200 1 30 5 40 1 10 30 10 5 90 4 100 40 9 70 10 5 6 5 30 5 400 80 1 200 6 2 50 6 8 200 2 6 400 70 6 30 40 300 40 40 6 400 200 1 300 50 10 40 10 100 6 40 40 6 6 8 4 300 6 70 200 10 8 200 2 300 40 40 6 400 4 6 200 6 4 6 200 6 70 40 4 6 7 200 10 40 6 200 70 6 90 1 50 20 40 6 2 50 10 50 20 200 1 20 200 10 20 40 6 20 200 40 10 20 40 6 1 400 40 20 5 50 10 10 5 6 5 400 100 200 1 6 40 300 200 400 10 1 30 5 10 50 6 10 1 40 200 30 20 40 8 10 30 3 40 400 400 10 40 200 6 400 8 400 2 300 400 20 40 40 300 50 5 6 20 30 40 5 10 200 50 6 8 30 100 40 30 20 50 2 1 200 90 40 40 300 50 5 10 10 200 300 6 300 40 8 400 70 6 30 40 400 5 10 5 30 5 40 20 10 1 50 10 10 5 6 5 1 5 2 40 300 80 9 300 50 1 3 7 30 2 70 6 30 5 6 50 400 400 10 80 70 30 400 40 2 1 40 400 6 2 200 10 400 70 6 30 40 1 20 200 6 400 30 5 40 6 50 6 4 70 2 3 6 10 40 7 200 70 40 6 90 1 90 1 10 5 40 2 400 6 20 5 70 40 10 40 20 30 200 1 10 5 40 10 20 10 200 6 40 20 10 5 40 7 200 70 2 200 20 10 5 6 5 30 5 100 1 4 5 100 60 70 1 80 1 4 60 8 7 40 1 9 100 60 40 9 600 1 40 40 7 40 7 20 8 5 40 60 9 7 90 60 200 90 5 9 90 100 7 40 3 1 20 9 20 1 9 1 40 10 7 80 200 90 90 600 40 100 60 5 200 1 3 3 5 20 9 60 40 100 60 200 8 5 60 200 10 1 9 20 5 3 600 40 60 100 9 70 5 70 20 7 80 600 100 1 9 60 10 1 9 80 60 90 10 1 9 7 3 3 9 10 5 40 7 2 1 90 9 20 5 9 1 100 60 200 8 5 60 200 30 5 100 1 40 60 5 9 100 5 10 1 9 70 9 90 100 5 200 5 100

Total of the groups of 338: 46200 = 23 x 3 x 52 x 7 x 11.

4.7.5.2Groups of 14:

6 10 40 400 1 20 30 6 6 2 20 2 6 4
5 5 40 100 600 5 200 1 3 3 5 20 9 600

Total of the groups of 14: 2149 = 7 x 307.

4.8There are 704 letters, and 704 factors into 2 x 2 x 2 x 2 x 2 x 2 x 11. This means the 704 letters can be placed into a seven dimension object. As this is difficult to visualize or imagine, the 704 letters are laid out with their coordinates in a simple table form. The position of the letter in the combined passage is listed first. This is followed by the actual letter value. The remaining 7 columns are the dimension coordinates. The first six dimensions only range from 1 to 2. The seventh dimension ranges from 1 to 11.

1   200 1 1 1 1 1 1 1
2   6   2 1 1 1 1 1 1
3   8   1 2 1 1 1 1 1
4   1   2 2 1 1 1 1 1
5   4   1 1 2 1 1 1 1
6   50  2 1 2 1 1 1 1
7   10  1 2 2 1 1 1 1
8   10  2 2 2 1 1 1 1
9   5   1 1 1 2 1 1 1
10  6   2 1 1 2 1 1 1
11  5   1 2 1 2 1 1 1
12  70  2 2 1 2 1 1 1
13  30  1 1 2 2 1 1 1
14  10  2 1 2 2 1 1 1
15  10  1 2 2 2 1 1 1
16  70  2 2 2 2 1 1 1
17  50  1 1 1 1 2 1 1
18  40  2 1 1 1 2 1 1
19  300 1 2 1 1 2 1 1
20  8   2 2 1 1 2 1 1
21  10  1 1 2 1 2 1 1
22  5   2 1 2 1 2 1 1
23  6   1 2 2 1 2 1 1
24  5   2 2 2 1 2 1 1
25  1   1 1 1 2 2 1 1
26  400 2 1 1 2 2 1 1
27  10  1 2 1 2 2 1 1
28  30  2 2 1 2 2 1 1
29  2   1 1 2 2 2 1 1
30  300 2 1 2 2 2 1 1
31  200 1 2 2 2 2 1 1
32  70  2 2 2 2 2 1 1
33  50  1 1 1 1 1 2 1
34  6   2 1 1 1 1 2 1
35  10  1 2 1 1 1 2 1
36  40  2 2 1 1 1 2 1
37  300 1 1 2 1 1 2 1
38  30  2 1 2 1 1 2 1
39  8   1 2 2 1 1 2 1
40  50  2 2 2 1 1 2 1
41  10  1 1 1 2 1 2 1
42  30  2 1 1 2 1 2 1
43  8   1 2 1 2 1 2 1
44  2   2 2 1 2 1 2 1
45  300 1 1 2 2 1 2 1
46  30  2 1 2 2 1 2 1
47  50  1 2 2 2 1 2 1
48  300 2 2 2 2 1 2 1
49  2   1 1 1 1 2 2 1
50  200 2 1 1 1 2 2 1
51  10  1 2 1 1 2 2 1
52  30  2 2 1 1 2 2 1
53  2   1 1 2 1 2 2 1
54  30  2 1 2 1 2 2 1
55  100 1 2 2 1 2 2 1
56  200 2 2 2 1 2 2 1
57  1   1 1 1 2 2 2 1
58  30  2 1 1 2 2 2 1
59  300 1 2 1 2 2 2 1
60  2   2 2 1 2 2 2 1
61  6   1 1 2 2 2 2 1
62  10  2 1 2 2 2 2 1
63  40  1 2 2 2 2 2 1
64  4   2 2 2 2 2 2 1
65  200 1 1 1 1 1 1 2
66  6   2 1 1 1 1 1 2
67  200 1 2 1 1 1 1 2
68  6   2 2 1 1 1 1 2
69  30  1 1 2 1 1 1 2
70  1   2 1 2 1 1 1 2
71  60  1 2 2 1 1 1 2
72  6   2 2 2 1 1 1 2
73  200 1 1 1 2 1 1 2
74  10  2 1 1 2 1 1 2
75  40  1 2 1 2 1 1 2
76  80  2 2 1 2 1 1 2
77  100 1 1 2 2 1 1 2
78  8   2 1 2 2 1 1 2
79  100 1 2 2 2 1 1 2
80  6   2 2 2 2 1 1 2
81  8   1 1 1 1 2 1 2
82  30  2 1 1 1 2 1 2
83  100 1 2 1 1 2 1 2
84  200 2 2 1 1 2 1 2
85  1   1 1 2 1 2 1 2
86  300 2 1 2 1 2 1 2
87  50  1 2 2 1 2 1 2
88  400 2 2 2 1 2 1 2
89  200 1 1 1 2 2 1 2
90  90  2 1 1 2 2 1 2
91  6   1 2 1 2 2 1 2
92  50  2 2 1 2 2 1 2
93  30  1 1 2 2 2 1 2
94  10  2 1 2 2 2 1 2
95  5   1 2 2 2 2 1 2
96  6   2 2 2 2 2 1 2
97  5   1 1 1 1 1 2 2
98  6   2 1 1 1 1 2 2
99  10  1 2 1 1 1 2 2
100 6   2 2 1 1 1 2 2
101 40  1 1 2 1 1 2 2
102 50  2 1 2 1 1 2 2
103 100 1 2 2 1 1 2 2
104 40  2 2 2 1 1 2 2
105 30  1 1 1 2 1 2 2
106 1   2 1 1 2 1 2 2
107 30  1 2 1 2 1 2 2
108 5   2 2 1 2 1 2 2
109 10  1 1 2 2 1 2 2
110 50  2 1 2 2 1 2 2
111 6   1 2 2 2 1 2 2
112 30  2 2 2 2 1 2 2
113 50  1 1 1 1 2 2 2
114 8   2 1 1 1 2 2 2
115 40  1 2 1 1 2 2 2
116 20  2 2 1 1 2 2 2
117 30  1 1 2 1 2 2 2
118 1   2 1 2 1 2 2 2
119 2   1 2 2 1 2 2 2
120 30  2 2 2 1 2 2 2
121 10  1 1 1 2 2 2 2
122 40  2 1 1 2 2 2 2
123 30  1 2 1 2 2 2 2
124 300 2 2 1 2 2 2 2
125 6   1 1 2 2 2 2 2
126 40  2 1 2 2 2 2 2
127 30  1 2 2 2 2 2 2
128 1   2 2 2 2 2 2 2
129 2   1 1 1 1 1 1 3
130 30  2 1 1 1 1 1 3
131 10  1 2 1 1 1 1 3
132 90  2 2 1 1 1 1 3
133 10  1 1 2 1 1 1 3
134 6   2 1 2 1 1 1 3
135 50  1 2 2 1 1 1 3
136 30  2 2 2 1 1 1 3
137 400 1 1 1 2 1 1 3
138 400 2 1 1 2 1 1 3
139 30  1 2 1 2 1 1 3
140 5   2 2 1 2 1 1 3
141 40  1 1 2 2 1 1 3
142 80  2 1 2 2 1 1 3
143 1   1 2 2 2 1 1 3
144 200 2 2 2 2 1 1 3
145 400 1 1 1 1 2 1 3
146 8   2 1 1 1 2 1 3
147 400 1 2 1 1 2 1 3
148 1   2 2 1 1 2 1 3
149 80  1 1 2 1 2 1 3
150 200 2 1 2 1 2 1 3
151 300 1 2 2 1 2 1 3
152 40  2 2 2 1 2 1 3
153 50  1 1 1 2 2 1 3
154 300 2 1 1 2 2 1 3
155 300 1 2 1 2 2 1 3
156 6   2 2 1 2 2 1 3
157 50  1 1 2 2 2 1 3
158 400 2 1 2 2 2 1 3
159 8   1 2 2 2 2 1 3
160 400 2 2 2 2 2 1 3
161 1   1 1 1 1 1 2 3
162 2   2 1 1 1 1 2 3
163 30  1 2 1 1 1 2 3
164 40  2 2 1 1 1 2 3
165 70  1 1 2 1 1 2 3
166 9   2 1 2 1 1 2 3
167 5   1 2 2 1 1 2 3
168 400 2 2 2 1 1 2 3
169 5   1 1 1 2 1 2 3
170 30  2 1 1 2 1 2 3
171 5   1 2 1 2 1 2 3
172 400 2 2 1 2 1 2 3
173 8   1 1 2 2 1 2 3
174 400 2 1 2 2 1 2 3
175 200 1 2 2 2 1 2 3
176 6   2 2 2 2 1 2 3
177 8   1 1 1 1 2 2 3
178 20  2 1 1 1 2 2 3
179 5   1 2 1 1 2 2 3
180 5   2 2 1 1 2 2 3
181 6   1 1 2 1 2 2 3
182 100 2 1 2 1 2 2 3
183 200 1 2 2 1 2 2 3
184 1   2 2 2 1 2 2 3
185 30  1 1 1 2 2 2 3
186 5   2 1 1 2 2 2 3
187 40  1 2 1 2 2 2 3
188 1   2 2 1 2 2 2 3
189 10  1 1 2 2 2 2 3
190 30  2 1 2 2 2 2 3
191 10  1 2 2 2 2 2 3
192 5   2 2 2 2 2 2 3
193 90  1 1 1 1 1 1 4
194 4   2 1 1 1 1 1 4
195 100 1 2 1 1 1 1 4
196 40  2 2 1 1 1 1 4
197 9   1 1 2 1 1 1 4
198 70  2 1 2 1 1 1 4
199 10  1 2 2 1 1 1 4
200 5   2 2 2 1 1 1 4
201 6   1 1 1 2 1 1 4
202 5   2 1 1 2 1 1 4
203 30  1 2 1 2 1 1 4
204 5   2 2 1 2 1 1 4
205 400 1 1 2 2 1 1 4
206 80  2 1 2 2 1 1 4
207 1   1 2 2 2 1 1 4
208 200 2 2 2 2 1 1 4
209 6   1 1 1 1 2 1 4
210 2   2 1 1 1 2 1 4
211 50  1 2 1 1 2 1 4
212 6   2 2 1 1 2 1 4
213 8   1 1 2 1 2 1 4
214 200 2 1 2 1 2 1 4
215 2   1 2 2 1 2 1 4
216 6   2 2 2 1 2 1 4
217 400 1 1 1 2 2 1 4
218 70  2 1 1 2 2 1 4
219 6   1 2 1 2 2 1 4
220 30  2 2 1 2 2 1 4
221 40  1 1 2 2 2 1 4
222 300 2 1 2 2 2 1 4
223 40  1 2 2 2 2 1 4
224 40  2 2 2 2 2 1 4
225 6   1 1 1 1 1 2 4
226 400 2 1 1 1 1 2 4
227 200 1 2 1 1 1 2 4
228 1   2 2 1 1 1 2 4
229 300 1 1 2 1 1 2 4
230 50  2 1 2 1 1 2 4
231 10  1 2 2 1 1 2 4
232 40  2 2 2 1 1 2 4
233 10  1 1 1 2 1 2 4
234 100 2 1 1 2 1 2 4
235 6   1 2 1 2 1 2 4
236 40  2 2 1 2 1 2 4
237 40  1 1 2 2 1 2 4
238 6   2 1 2 2 1 2 4
239 6   1 2 2 2 1 2 4
240 8   2 2 2 2 1 2 4
241 4   1 1 1 1 2 2 4
242 300 2 1 1 1 2 2 4
243 6   1 2 1 1 2 2 4
244 70  2 2 1 1 2 2 4
245 200 1 1 2 1 2 2 4
246 10  2 1 2 1 2 2 4
247 8   1 2 2 1 2 2 4
248 200 2 2 2 1 2 2 4
249 2   1 1 1 2 2 2 4
250 300 2 1 1 2 2 2 4
251 40  1 2 1 2 2 2 4
252 40  2 2 1 2 2 2 4
253 6   1 1 2 2 2 2 4
254 400 2 1 2 2 2 2 4
255 4   1 2 2 2 2 2 4
256 6   2 2 2 2 2 2 4
257 200 1 1 1 1 1 1 5
258 6   2 1 1 1 1 1 5
259 4   1 2 1 1 1 1 5
260 6   2 2 1 1 1 1 5
261 200 1 1 2 1 1 1 5
262 6   2 1 2 1 1 1 5
263 70  1 2 2 1 1 1 5
264 40  2 2 2 1 1 1 5
265 4   1 1 1 2 1 1 5
266 6   2 1 1 2 1 1 5
267 7   1 2 1 2 1 1 5
268 200 2 2 1 2 1 1 5
269 10  1 1 2 2 1 1 5
270 40  2 1 2 2 1 1 5
271 6   1 2 2 2 1 1 5
272 200 2 2 2 2 1 1 5
273 70  1 1 1 1 2 1 5
274 6   2 1 1 1 2 1 5
275 90  1 2 1 1 2 1 5
276 1   2 2 1 1 2 1 5
277 50  1 1 2 1 2 1 5
278 20  2 1 2 1 2 1 5
279 40  1 2 2 1 2 1 5
280 6   2 2 2 1 2 1 5
281 2   1 1 1 2 2 1 5
282 50  2 1 1 2 2 1 5
283 10  1 2 1 2 2 1 5
284 50  2 2 1 2 2 1 5
285 20  1 1 2 2 2 1 5
286 200 2 1 2 2 2 1 5
287 1   1 2 2 2 2 1 5
288 20  2 2 2 2 2 1 5
289 200 1 1 1 1 1 2 5
290 10  2 1 1 1 1 2 5
291 20  1 2 1 1 1 2 5
292 40  2 2 1 1 1 2 5
293 6   1 1 2 1 1 2 5
294 20  2 1 2 1 1 2 5
295 200 1 2 2 1 1 2 5
296 40  2 2 2 1 1 2 5
297 10  1 1 1 2 1 2 5
298 20  2 1 1 2 1 2 5
299 40  1 2 1 2 1 2 5
300 6   2 2 1 2 1 2 5
301 1   1 1 2 2 1 2 5
302 400 2 1 2 2 1 2 5
303 40  1 2 2 2 1 2 5
304 20  2 2 2 2 1 2 5
305 5   1 1 1 1 2 2 5
306 50  2 1 1 1 2 2 5
307 10  1 2 1 1 2 2 5
308 10  2 2 1 1 2 2 5
309 5   1 1 2 1 2 2 5
310 6   2 1 2 1 2 2 5
311 5   1 2 2 1 2 2 5
312 400 2 2 2 1 2 2 5
313 100 1 1 1 2 2 2 5
314 200 2 1 1 2 2 2 5
315 1   1 2 1 2 2 2 5
316 6   2 2 1 2 2 2 5
317 40  1 1 2 2 2 2 5
318 300 2 1 2 2 2 2 5
319 200 1 2 2 2 2 2 5
320 400 2 2 2 2 2 2 5
321 10  1 1 1 1 1 1 6
322 1   2 1 1 1 1 1 6
323 30  1 2 1 1 1 1 6
324 5   2 2 1 1 1 1 6
325 10  1 1 2 1 1 1 6
326 50  2 1 2 1 1 1 6
327 6   1 2 2 1 1 1 6
328 10  2 2 2 1 1 1 6
329 1   1 1 1 2 1 1 6
330 40  2 1 1 2 1 1 6
331 200 1 2 1 2 1 1 6
332 30  2 2 1 2 1 1 6
333 20  1 1 2 2 1 1 6
334 40  2 1 2 2 1 1 6
335 8   1 2 2 2 1 1 6
336 10  2 2 2 2 1 1 6
337 30  1 1 1 1 2 1 6
338 3   2 1 1 1 2 1 6
339 6   1 2 1 1 2 1 6
340 10  2 2 1 1 2 1 6
341 40  1 1 2 1 2 1 6
342 400 2 1 2 1 2 1 6
343 1   1 2 2 1 2 1 6
344 20  2 2 2 1 2 1 6
345 30  1 1 1 2 2 1 6
346 6   2 1 1 2 2 1 6
347 6   1 2 1 2 2 1 6
348 2   2 2 1 2 2 1 6
349 20  1 1 2 2 2 1 6
350 2   2 1 2 2 2 1 6
351 6   1 2 2 2 2 1 6
352 4   2 2 2 2 2 1 6
353 40  1 1 1 1 1 2 6
354 400 2 1 1 1 1 2 6
355 400 1 2 1 1 1 2 6
356 10  2 2 1 1 1 2 6
357 40  1 1 2 1 1 2 6
358 200 2 1 2 1 1 2 6
359 6   1 2 2 1 1 2 6
360 400 2 2 2 1 1 2 6
361 8   1 1 1 2 1 2 6
362 400 2 1 1 2 1 2 6
363 2   1 2 1 2 1 2 6
364 300 2 2 1 2 1 2 6
365 400 1 1 2 2 1 2 6
366 20  2 1 2 2 1 2 6
367 40  1 2 2 2 1 2 6
368 40  2 2 2 2 1 2 6
369 300 1 1 1 1 2 2 6
370 50  2 1 1 1 2 2 6
371 5   1 2 1 1 2 2 6
372 6   2 2 1 1 2 2 6
373 20  1 1 2 1 2 2 6
374 30  2 1 2 1 2 2 6
375 40  1 2 2 1 2 2 6
376 5   2 2 2 1 2 2 6
377 10  1 1 1 2 2 2 6
378 200 2 1 1 2 2 2 6
379 50  1 2 1 2 2 2 6
380 6   2 2 1 2 2 2 6
381 8   1 1 2 2 2 2 6
382 30  2 1 2 2 2 2 6
383 100 1 2 2 2 2 2 6
384 40  2 2 2 2 2 2 6
385 30  1 1 1 1 1 1 7
386 20  2 1 1 1 1 1 7
387 50  1 2 1 1 1 1 7
388 2   2 2 1 1 1 1 7
389 1   1 1 2 1 1 1 7
390 200 2 1 2 1 1 1 7
391 90  1 2 2 1 1 1 7
392 40  2 2 2 1 1 1 7
393 40  1 1 1 2 1 1 7
394 300 2 1 1 2 1 1 7
395 50  1 2 1 2 1 1 7
396 5   2 2 1 2 1 1 7
397 10  1 1 2 2 1 1 7
398 10  2 1 2 2 1 1 7
399 200 1 2 2 2 1 1 7
400 300 2 2 2 2 1 1 7
401 6   1 1 1 1 2 1 7
402 300 2 1 1 1 2 1 7
403 40  1 2 1 1 2 1 7
404 8   2 2 1 1 2 1 7
405 400 1 1 2 1 2 1 7
406 70  2 1 2 1 2 1 7
407 6   1 2 2 1 2 1 7
408 30  2 2 2 1 2 1 7
409 40  1 1 1 2 2 1 7
410 400 2 1 1 2 2 1 7
411 5   1 2 1 2 2 1 7
412 10  2 2 1 2 2 1 7
413 5   1 1 2 2 2 1 7
414 30  2 1 2 2 2 1 7
415 5   1 2 2 2 2 1 7
416 40  2 2 2 2 2 1 7
417 20  1 1 1 1 1 2 7
418 10  2 1 1 1 1 2 7
419 1   1 2 1 1 1 2 7
420 50  2 2 1 1 1 2 7
421 10  1 1 2 1 1 2 7
422 10  2 1 2 1 1 2 7
423 5   1 2 2 1 1 2 7
424 6   2 2 2 1 1 2 7
425 5   1 1 1 2 1 2 7
426 1   2 1 1 2 1 2 7
427 5   1 2 1 2 1 2 7
428 2   2 2 1 2 1 2 7
429 40  1 1 2 2 1 2 7
430 300 2 1 2 2 1 2 7
431 80  1 2 2 2 1 2 7
432 9   2 2 2 2 1 2 7
433 300 1 1 1 1 2 2 7
434 50  2 1 1 1 2 2 7
435 1   1 2 1 1 2 2 7
436 3   2 2 1 1 2 2 7
437 7   1 1 2 1 2 2 7
438 30  2 1 2 1 2 2 7
439 2   1 2 2 1 2 2 7
440 70  2 2 2 1 2 2 7
441 6   1 1 1 2 2 2 7
442 30  2 1 1 2 2 2 7
443 5   1 2 1 2 2 2 7
444 6   2 2 1 2 2 2 7
445 50  1 1 2 2 2 2 7
446 400 2 1 2 2 2 2 7
447 400 1 2 2 2 2 2 7
448 10  2 2 2 2 2 2 7
449 80  1 1 1 1 1 1 8
450 70  2 1 1 1 1 1 8
451 30  1 2 1 1 1 1 8
452 400 2 2 1 1 1 1 8
453 40  1 1 2 1 1 1 8
454 2   2 1 2 1 1 1 8
455 1   1 2 2 1 1 1 8
456 40  2 2 2 1 1 1 8
457 400 1 1 1 2 1 1 8
458 6   2 1 1 2 1 1 8
459 2   1 2 1 2 1 1 8
460 200 2 2 1 2 1 1 8
461 10  1 1 2 2 1 1 8
462 400 2 1 2 2 1 1 8
463 70  1 2 2 2 1 1 8
464 6   2 2 2 2 1 1 8
465 30  1 1 1 1 2 1 8
466 40  2 1 1 1 2 1 8
467 1   1 2 1 1 2 1 8
468 20  2 2 1 1 2 1 8
469 200 1 1 2 1 2 1 8
470 6   2 1 2 1 2 1 8
471 400 1 2 2 1 2 1 8
472 30  2 2 2 1 2 1 8
473 5   1 1 1 2 2 1 8
474 40  2 1 1 2 2 1 8
475 6   1 2 1 2 2 1 8
476 50  2 2 1 2 2 1 8
477 6   1 1 2 2 2 1 8
478 4   2 1 2 2 2 1 8
479 70  1 2 2 2 2 1 8
480 2   2 2 2 2 2 1 8
481 3   1 1 1 1 1 2 8
482 6   2 1 1 1 1 2 8
483 10  1 2 1 1 1 2 8
484 40  2 2 1 1 1 2 8
485 7   1 1 2 1 1 2 8
486 200 2 1 2 1 1 2 8
487 70  1 2 2 1 1 2 8
488 40  2 2 2 1 1 2 8
489 6   1 1 1 2 1 2 8
490 90  2 1 1 2 1 2 8
491 1   1 2 1 2 1 2 8
492 90  2 2 1 2 1 2 8
493 1   1 1 2 2 1 2 8
494 10  2 1 2 2 1 2 8
495 5   1 2 2 2 1 2 8
496 40  2 2 2 2 1 2 8
497 2   1 1 1 1 2 2 8
498 400 2 1 1 1 2 2 8
499 6   1 2 1 1 2 2 8
500 20  2 2 1 1 2 2 8
501 5   1 1 2 1 2 2 8
502 70  2 1 2 1 2 2 8
503 40  1 2 2 1 2 2 8
504 10  2 2 2 1 2 2 8
505 40  1 1 1 2 2 2 8
506 20  2 1 1 2 2 2 8
507 30  1 2 1 2 2 2 8
508 200 2 2 1 2 2 2 8
509 1   1 1 2 2 2 2 8
510 10  2 1 2 2 2 2 8
511 5   1 2 2 2 2 2 8
512 40  2 2 2 2 2 2 8
513 10  1 1 1 1 1 1 9
514 20  2 1 1 1 1 1 9
515 10  1 2 1 1 1 1 9
516 200 2 2 1 1 1 1 9
517 6   1 1 2 1 1 1 9
518 40  2 1 2 1 1 1 9
519 20  1 2 2 1 1 1 9
520 10  2 2 2 1 1 1 9
521 5   1 1 1 2 1 1 9
522 40  2 1 1 2 1 1 9
523 7   1 2 1 2 1 1 9
524 200 2 2 1 2 1 1 9
525 70  1 1 2 2 1 1 9
526 2   2 1 2 2 1 1 9
527 200 1 2 2 2 1 1 9
528 20  2 2 2 2 1 1 9
529 10  1 1 1 1 2 1 9
530 5   2 1 1 1 2 1 9
531 6   1 2 1 1 2 1 9
532 5   2 2 1 1 2 1 9
533 30  1 1 2 1 2 1 9
534 5   2 1 2 1 2 1 9
535 100 1 2 2 1 2 1 9
536 1   2 2 2 1 2 1 9
537 4   1 1 1 2 2 1 9
538 5   2 1 1 2 2 1 9
539 100 1 2 1 2 2 1 9
540 60  2 2 1 2 2 1 9
541 70  1 1 2 2 2 1 9
542 1   2 1 2 2 2 1 9
543 80  1 2 2 2 2 1 9
544 1   2 2 2 2 2 1 9
545 4   1 1 1 1 1 2 9
546 60  2 1 1 1 1 2 9
547 8   1 2 1 1 1 2 9
548 7   2 2 1 1 1 2 9
549 40  1 1 2 1 1 2 9
550 1   2 1 2 1 1 2 9
551 9   1 2 2 1 1 2 9
552 100 2 2 2 1 1 2 9
553 60  1 1 1 2 1 2 9
554 40  2 1 1 2 1 2 9
555 9   1 2 1 2 1 2 9
556 600 2 2 1 2 1 2 9
557 1   1 1 2 2 1 2 9
558 40  2 1 2 2 1 2 9
559 40  1 2 2 2 1 2 9
560 7   2 2 2 2 1 2 9
561 40  1 1 1 1 2 2 9
562 7   2 1 1 1 2 2 9
563 20  1 2 1 1 2 2 9
564 8   2 2 1 1 2 2 9
565 5   1 1 2 1 2 2 9
566 40  2 1 2 1 2 2 9
567 60  1 2 2 1 2 2 9
568 9   2 2 2 1 2 2 9
569 7   1 1 1 2 2 2 9
570 90  2 1 1 2 2 2 9
571 60  1 2 1 2 2 2 9
572 200 2 2 1 2 2 2 9
573 90  1 1 2 2 2 2 9
574 5   2 1 2 2 2 2 9
575 9   1 2 2 2 2 2 9
576 90  2 2 2 2 2 2 9
577 100 1 1 1 1 1 1 10
578 7   2 1 1 1 1 1 10
579 40  1 2 1 1 1 1 10
580 3   2 2 1 1 1 1 10
581 1   1 1 2 1 1 1 10
582 20  2 1 2 1 1 1 10
583 9   1 2 2 1 1 1 10
584 20  2 2 2 1 1 1 10
585 1   1 1 1 2 1 1 10
586 9   2 1 1 2 1 1 10
587 1   1 2 1 2 1 1 10
588 40  2 2 1 2 1 1 10
589 10  1 1 2 2 1 1 10
590 7   2 1 2 2 1 1 10
591 80  1 2 2 2 1 1 10
592 200 2 2 2 2 1 1 10
593 90  1 1 1 1 2 1 10
594 90  2 1 1 1 2 1 10
595 600 1 2 1 1 2 1 10
596 40  2 2 1 1 2 1 10
597 100 1 1 2 1 2 1 10
598 60  2 1 2 1 2 1 10
599 5   1 2 2 1 2 1 10
600 200 2 2 2 1 2 1 10
601 1   1 1 1 2 2 1 10
602 3   2 1 1 2 2 1 10
603 3   1 2 1 2 2 1 10
604 5   2 2 1 2 2 1 10
605 20  1 1 2 2 2 1 10
606 9   2 1 2 2 2 1 10
607 60  1 2 2 2 2 1 10
608 40  2 2 2 2 2 1 10
609 100 1 1 1 1 1 2 10
610 60  2 1 1 1 1 2 10
611 200 1 2 1 1 1 2 10
612 8   2 2 1 1 1 2 10
613 5   1 1 2 1 1 2 10
614 60  2 1 2 1 1 2 10
615 200 1 2 2 1 1 2 10
616 10  2 2 2 1 1 2 10
617 1   1 1 1 2 1 2 10
618 9   2 1 1 2 1 2 10
619 20  1 2 1 2 1 2 10
620 5   2 2 1 2 1 2 10
621 3   1 1 2 2 1 2 10
622 600 2 1 2 2 1 2 10
623 40  1 2 2 2 1 2 10
624 60  2 2 2 2 1 2 10
625 100 1 1 1 1 2 2 10
626 9   2 1 1 1 2 2 10
627 70  1 2 1 1 2 2 10
628 5   2 2 1 1 2 2 10
629 70  1 1 2 1 2 2 10
630 20  2 1 2 1 2 2 10
631 7   1 2 2 1 2 2 10
632 80  2 2 2 1 2 2 10
633 600 1 1 1 2 2 2 10
634 100 2 1 1 2 2 2 10
635 1   1 2 1 2 2 2 10
636 9   2 2 1 2 2 2 10
637 60  1 1 2 2 2 2 10
638 10  2 1 2 2 2 2 10
639 1   1 2 2 2 2 2 10
640 9   2 2 2 2 2 2 10
641 80  1 1 1 1 1 1 11
642 60  2 1 1 1 1 1 11
643 90  1 2 1 1 1 1 11
644 10  2 2 1 1 1 1 11
645 1   1 1 2 1 1 1 11
646 9   2 1 2 1 1 1 11
647 7   1 2 2 1 1 1 11
648 3   2 2 2 1 1 1 11
649 3   1 1 1 2 1 1 11
650 9   2 1 1 2 1 1 11
651 10  1 2 1 2 1 1 11
652 5   2 2 1 2 1 1 11
653 40  1 1 2 2 1 1 11
654 7   2 1 2 2 1 1 11
655 2   1 2 2 2 1 1 11
656 1   2 2 2 2 1 1 11
657 90  1 1 1 1 2 1 11
658 9   2 1 1 1 2 1 11
659 20  1 2 1 1 2 1 11
660 5   2 2 1 1 2 1 11
661 9   1 1 2 1 2 1 11
662 1   2 1 2 1 2 1 11
663 100 1 2 2 1 2 1 11
664 60  2 2 2 1 2 1 11
665 200 1 1 1 2 2 1 11
666 8   2 1 1 2 2 1 11
667 5   1 2 1 2 2 1 11
668 60  2 2 1 2 2 1 11
669 200 1 1 2 2 2 1 11
670 30  2 1 2 2 2 1 11
671 5   1 2 2 2 2 1 11
672 100 2 2 2 2 2 1 11
673 1   1 1 1 1 1 2 11
674 40  2 1 1 1 1 2 11
675 60  1 2 1 1 1 2 11
676 5   2 2 1 1 1 2 11
677 9   1 1 2 1 1 2 11
678 100 2 1 2 1 1 2 11
679 5   1 2 2 1 1 2 11
680 10  2 2 2 1 1 2 11
681 1   1 1 1 2 1 2 11
682 9   2 1 1 2 1 2 11
683 70  1 2 1 2 1 2 11
684 9   2 2 1 2 1 2 11
685 90  1 1 2 2 1 2 11
686 100 2 1 2 2 1 2 11
687 5   1 2 2 2 1 2 11
688 200 2 2 2 2 1 2 11
689 5   1 1 1 1 2 2 11
690 100 2 1 1 1 2 2 11
691 5   1 2 1 1 2 2 11
692 5   2 2 1 1 2 2 11
693 40  1 1 2 1 2 2 11
694 100 2 1 2 1 2 2 11
695 600 1 2 2 1 2 2 11
696 5   2 2 2 1 2 2 11
697 200 1 1 1 2 2 2 11
698 1   2 1 1 2 2 2 11
699 3   1 2 1 2 2 2 11
700 3   2 2 1 2 2 2 11
701 5   1 1 2 2 2 2 11
702 20  2 1 2 2 2 2 11
703 9   1 2 2 2 2 2 11
704 600 2 2 2 2 2 2 11

Since the first dimension alternates between 1 and 2, the first dimension is actually the odd and even positioned letters, which we have already seen in features 4.3.1 and 4.3.2. As Revelation 1:8 mentions Alpha and Omega, this turns attention from the first dimension to the last. Attention also moves to the last dimension because it is the seventh dimension.

4.8.1As the first dimension's first and last values are 1 and 2, so the last dimension's first and last values are 1 and 11. Thus from the list of 704 letters, pick out all letters where the seventh dimension has the value 1 or 11.

A  B   C D E F G H I         A   B   C D E F G H I
1  200 1 1 1 1 1 1 1         641 80  1 1 1 1 1 1 11
2  6   2 1 1 1 1 1 1         642 60  2 1 1 1 1 1 11
3  8   1 2 1 1 1 1 1         643 90  1 2 1 1 1 1 11
4  1   2 2 1 1 1 1 1         644 10  2 2 1 1 1 1 11
5  4   1 1 2 1 1 1 1         645 1   1 1 2 1 1 1 11
6  50  2 1 2 1 1 1 1         646 9   2 1 2 1 1 1 11
7  10  1 2 2 1 1 1 1         647 7   1 2 2 1 1 1 11
8  10  2 2 2 1 1 1 1         648 3   2 2 2 1 1 1 11
9  5   1 1 1 2 1 1 1         649 3   1 1 1 2 1 1 11
10 6   2 1 1 2 1 1 1         650 9   2 1 1 2 1 1 11
11 5   1 2 1 2 1 1 1         651 10  1 2 1 2 1 1 11
12 70  2 2 1 2 1 1 1         652 5   2 2 1 2 1 1 11
13 30  1 1 2 2 1 1 1         653 40  1 1 2 2 1 1 11
14 10  2 1 2 2 1 1 1         654 7   2 1 2 2 1 1 11
15 10  1 2 2 2 1 1 1         655 2   1 2 2 2 1 1 11
16 70  2 2 2 2 1 1 1         656 1   2 2 2 2 1 1 11
17 50  1 1 1 1 2 1 1         657 90  1 1 1 1 2 1 11
18 40  2 1 1 1 2 1 1         658 9   2 1 1 1 2 1 11
19 300 1 2 1 1 2 1 1         659 20  1 2 1 1 2 1 11
20 8   2 2 1 1 2 1 1         660 5   2 2 1 1 2 1 11
21 10  1 1 2 1 2 1 1         661 9   1 1 2 1 2 1 11
22 5   2 1 2 1 2 1 1         662 1   2 1 2 1 2 1 11
23 6   1 2 2 1 2 1 1         663 100 1 2 2 1 2 1 11
24 5   2 2 2 1 2 1 1         664 60  2 2 2 1 2 1 11
25 1   1 1 1 2 2 1 1         665 200 1 1 1 2 2 1 11
26 400 2 1 1 2 2 1 1         666 8   2 1 1 2 2 1 11
27 10  1 2 1 2 2 1 1         667 5   1 2 1 2 2 1 11
28 30  2 2 1 2 2 1 1         668 60  2 2 1 2 2 1 11
29 2   1 1 2 2 2 1 1         669 200 1 1 2 2 2 1 11
30 300 2 1 2 2 2 1 1         670 30  2 1 2 2 2 1 11
31 200 1 2 2 2 2 1 1         671 5   1 2 2 2 2 1 11
32 70  2 2 2 2 2 1 1         672 100 2 2 2 2 2 1 11
33 50  1 1 1 1 1 2 1         673 1   1 1 1 1 1 2 11
34 6   2 1 1 1 1 2 1         674 40  2 1 1 1 1 2 11
35 10  1 2 1 1 1 2 1         675 60  1 2 1 1 1 2 11
36 40  2 2 1 1 1 2 1         676 5   2 2 1 1 1 2 11
37 300 1 1 2 1 1 2 1         677 9   1 1 2 1 1 2 11
38 30  2 1 2 1 1 2 1         678 100 2 1 2 1 1 2 11
39 8   1 2 2 1 1 2 1         679 5   1 2 2 1 1 2 11
40 50  2 2 2 1 1 2 1         680 10  2 2 2 1 1 2 11
41 10  1 1 1 2 1 2 1         681 1   1 1 1 2 1 2 11
42 30  2 1 1 2 1 2 1         682 9   2 1 1 2 1 2 11
43 8   1 2 1 2 1 2 1         683 70  1 2 1 2 1 2 11
44 2   2 2 1 2 1 2 1         684 9   2 2 1 2 1 2 11
45 300 1 1 2 2 1 2 1         685 90  1 1 2 2 1 2 11
46 30  2 1 2 2 1 2 1         686 100 2 1 2 2 1 2 11
47 50  1 2 2 2 1 2 1         687 5   1 2 2 2 1 2 11
48 300 2 2 2 2 1 2 1         688 200 2 2 2 2 1 2 11
49 2   1 1 1 1 2 2 1         689 5   1 1 1 1 2 2 11
50 200 2 1 1 1 2 2 1         690 100 2 1 1 1 2 2 11
51 10  1 2 1 1 2 2 1         691 5   1 2 1 1 2 2 11
52 30  2 2 1 1 2 2 1         692 5   2 2 1 1 2 2 11
53 2   1 1 2 1 2 2 1         693 40  1 1 2 1 2 2 11
54 30  2 1 2 1 2 2 1         694 100 2 1 2 1 2 2 11
55 100 1 2 2 1 2 2 1         695 600 1 2 2 1 2 2 11
56 200 2 2 2 1 2 2 1         696 5   2 2 2 1 2 2 11
57 1   1 1 1 2 2 2 1         697 200 1 1 1 2 2 2 11
58 30  2 1 1 2 2 2 1         698 1   2 1 1 2 2 2 11
59 300 1 2 1 2 2 2 1         699 3   1 2 1 2 2 2 11
60 2   2 2 1 2 2 2 1         700 3   2 2 1 2 2 2 11
61 6   1 1 2 2 2 2 1         701 5   1 1 2 2 2 2 11
62 10  2 1 2 2 2 2 1         702 20  2 1 2 2 2 2 11
63 40  1 2 2 2 2 2 1         703 9   1 2 2 2 2 2 11
64 4   2 2 2 2 2 2 1         704 600 2 2 2 2 2 2 11

A) Letter position.     B) Letter value.
C) First dimension.     D) Second dimension.
E) Third dimension.     F) Fourth dimension.
G) Fifth dimension.     H) Sixth dimension.
I) Seventh dimension.

Total of the letters (column B) where the seventh dimension is minimum or maximum: 7777 = 7 x 11 x 101. SF: 119 = 7 x 17. The result is an astonishing number with four digits of seven!

The previous result can be further subdivided to show a perfect balance between minimum and maximum.

4.8.2Add up the letters (column B) only from the group where the seventh dimension is minimum: 4123 = 7 x 19 x 31.

4.8.3Then add up the letters (column B) where the seventh dimension is maximum: 3654 = 2 x 32 x 7 x 29.

4.8.4This is not coincidence because every column of the digits in 4123 and 3654 line up perfectly to individually produce 7.

Essentially, what we have in feature 4.8 are the first and last 64 letters of the passage. This could have been presented as the first and last 64 letters of the passage, but that would invite the skeptic to ask, Why the first and last 64 letters? Why not the first and last N letters? There are hundreds to choose from. Of course you will find something. When one delves deeper, one realizes it is the first and last of the seventh dimension.

4.8.5Since the last dimension is the only one with a maximum value greater than two, it is the only dimension where a letter could have a coordinate of 7. Sixty-four letters have a coordinate value of 7.

A   B   C D E F G H I      A   B   C D E F G H I      A   B   C D E F G H I      A   B   C D E F G H I
385 30  1 1 1 1 1 1 7      401 6   1 1 1 1 2 1 7      417 20  1 1 1 1 1 2 7      433 300 1 1 1 1 2 2 7
386 20  2 1 1 1 1 1 7      402 300 2 1 1 1 2 1 7      418 10  2 1 1 1 1 2 7      434 50  2 1 1 1 2 2 7
387 50  1 2 1 1 1 1 7      403 40  1 2 1 1 2 1 7      419 1   1 2 1 1 1 2 7      435 1   1 2 1 1 2 2 7
388 2   2 2 1 1 1 1 7      404 8   2 2 1 1 2 1 7      420 50  2 2 1 1 1 2 7      436 3   2 2 1 1 2 2 7
389 1   1 1 2 1 1 1 7      405 400 1 1 2 1 2 1 7      421 10  1 1 2 1 1 2 7      437 7   1 1 2 1 2 2 7
390 200 2 1 2 1 1 1 7      406 70  2 1 2 1 2 1 7      422 10  2 1 2 1 1 2 7      438 30  2 1 2 1 2 2 7
391 90  1 2 2 1 1 1 7      407 6   1 2 2 1 2 1 7      423 5   1 2 2 1 1 2 7      439 2   1 2 2 1 2 2 7
392 40  2 2 2 1 1 1 7      408 30  2 2 2 1 2 1 7      424 6   2 2 2 1 1 2 7      440 70  2 2 2 1 2 2 7
393 40  1 1 1 2 1 1 7      409 40  1 1 1 2 2 1 7      425 5   1 1 1 2 1 2 7      441 6   1 1 1 2 2 2 7
394 300 2 1 1 2 1 1 7      410 400 2 1 1 2 2 1 7      426 1   2 1 1 2 1 2 7      442 30  2 1 1 2 2 2 7
395 50  1 2 1 2 1 1 7      411 5   1 2 1 2 2 1 7      427 5   1 2 1 2 1 2 7      443 5   1 2 1 2 2 2 7
396 5   2 2 1 2 1 1 7      412 10  2 2 1 2 2 1 7      428 2   2 2 1 2 1 2 7      444 6   2 2 1 2 2 2 7
397 10  1 1 2 2 1 1 7      413 5   1 1 2 2 2 1 7      429 40  1 1 2 2 1 2 7      445 50  1 1 2 2 2 2 7
398 10  2 1 2 2 1 1 7      414 30  2 1 2 2 2 1 7      430 300 2 1 2 2 1 2 7      446 400 2 1 2 2 2 2 7
399 200 1 2 2 2 1 1 7      415 5   1 2 2 2 2 1 7      431 80  1 2 2 2 1 2 7      447 400 1 2 2 2 2 2 7
400 300 2 2 2 2 1 1 7      416 40  2 2 2 2 2 1 7      432 9   2 2 2 2 1 2 7      448 10  2 2 2 2 2 2 7

A) Letter position.     B) Letter value.
C) First dimension.     D) Second dimension.
E) Third dimension.     F) Fourth dimension.
G) Fifth dimension.     H) Sixth dimension.
I) Seventh dimension.

Total of the positions (column A): 26656 = 25 x 72 x 17.
Total of the letters (column B): 4667 = 13 x 359.

Conclusion

Placing Isaiah 61:1-9 with Mark 1:14-15 gives a more complete picture of prophecy and fulfillment. This is demonstrated by the numeric features following the pattern of Revelation 1:8 and Exodus 34:6-7. Jesus came to offer the ultimate renewal, to heal the sick, free those who were bound, offer joy to those who mourn, and bring righteousness to all people. This was his message of hope and peace. As seen in Luke 4:20-30, humanity did not believe, and rejected what Jesus brought. The acceptable year of the lord, the jubilee was rejected. The world and all people continue to suffer when God’s simple plan is rejected for made up earthly schemes. Now the world awaits the the day of the lord, a day of vengeance.

Notes

  1. English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.
  2. Hebrew text is from, The Biblia Hebraica Stuttgartensia (BHS), edited by K. Elliger and W. Rudolph of the Deutsche Biblegesselchaft (German Bible Society) 1983.
  3. The Greek text is from The Nestle-Aland 27th Edition of the Greek New Testament (GNT), Copyright © 1966, 1968, 1975, 1993-1994 United Bible Societies, found within Bibleworks 3.0 by Hermeneutika, Michael S. Bushell, 1995. Vowel marks and punctuation have been removed.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




The foolishness of God is greater than anything we can imagine (1 Corinthians 1:25). On the off chance the numbers are a form of foolishness, do not spend too much time on them.