Bible Numbers 2.0

Why Hast Thou Forsaken Me?

To show he was fulfilling prophecy even as he hung on the cross, Jesus quoted the opening of Psalm 22: My God, My God, why has thou forsaken me? To demonstrate how prophecy and fulfillment go together, the Hebrew of Psalm 22:1-2 and the Greek of Mark 15:33-34 are put together as numbers producing features similar to The Proclamation.

1 To the choirmaster: according to The Hind of the Dawn. A Psalm of David. My God, my God, why hast thou forsaken me? Why art thou so far from helping me, from the words of my groaning? (Psalm 22:1; Hebrew verse equivalent is Psalm 22:1-2.)1

There is a preamble to the psalm giving instructions to the choirmaster as to the style or music of the psalm. The preamble identifies the author as David. (This is verse 1 in the Hebrew.) The psalm begins with the cry, My God, My God-.

The Hebrew conversion to numbers is given below.

Psalm 22:1-22
4321:A
513441100218:B
151413121110987654321:C
20083005400301013070890504030:D
השחראילתעללמנצח:E
8765:A
414144293:B
302928272625242322212019181716:C
103011030146430200640740:D
אליאלילדודמזמור:E
11109:A
31453975:B
43424140393837363534333231:C
100682001050400277054030:D
רחוקעזבתנילמה:E
141312:A
714216836:B
59585756555453525150494847464544:C
10400313001020024104007063001040:D
שאגתידברימישועתי:E

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Hebrew.

Like the psalm, verse 33 in Mark 15 serves as a preamble. The description of darkness over the land for three hours identifies the event. It is longer than any eclipse, and it is unnatural because the darkness is not caused by dense clouds. Verse 33 clearly identifies the crucifixion event. Mark 15:34 is the quote from the opening of the psalm.

33 And when the sixth hour had come, there was darkness over the whole land until the ninth hour. 34 And at the ninth hour Jesus cried with a loud voice, "Eloi, Eloi, lama sabachthani?" which means, "My God, my God, why hast thou forsaken me?" (Mark 15:33-34)

The last part of the Hebrew from Psalm 22:2 is not included in Mark's version. This raises the question: Why doesn't the whole psalm go with the whole crucifixion and resurrection account? Wouldn't that be more appropriate? Had the entire Psalm 22 fit with the entire crucifixion and resurrection account in Mark, or any other gospel account, it would have been perfect. The numbers choose the smaller section because our world is imperfect.

The focus is actually on a very human question. Why? What is happening when it seems God has left us all alone? There are no answers in the next few verses of the psalm, or in Mark. This is a dark period, and as will be seen, this is also reflected in the numbers. There are fewer features than in other studies where Jesus fulfills prophecy.

The Greek conversion to numbers is given below.

Mark 15:33-343
A:123
B:20280771
C:12345678910111213141516
D:10193540603054079060080190
E:καιγενομενηςωρας
A:45
B:212410
C:1718192021222324252627
D:5101007909010601006090
E:εκτηςσκοτος
A:6789
B:218305127147
C:28293031323334353637383940414243
D:5354051006053006020740100740
E:εγενετοεφοληντην
A:10111213
B:50695771243
C:44454647484950515253545556575859
D:3740560090600801905401100790
E:γηνεωςωραςενατης
A:14151617
B:20107153681
C:60616263646566676869707172
D:1019100754011007600801
E:καιτηενατηωρα
A:181920
B:20960456
C:7374757677787980818283848586
D:52607905406097906020090
E:εβοησενοιησους
A:212223
B:94766634
C:87888990919293949596979899100
D:300600407305312075206009
E:φωνημεγαληελωι
A:2425
B:63456
C:101102103104105106107108
D:5206009205301
E:ελωιλεμα
A:262728
B:55260244
C:109110111112113114115116117118119120121122123
D:901214008140960590100940
E:σαβαχθανιοεστιν
A:29
B:645
C:124125126127128129130131132133134135136137138139
D:305858030740520060305406040
E:μεθερμηνευομενον
A:303132333435
B:6016329060163290
C:140141142143144145146147148149150151152153154155
D:608560903060200608560903060200
E:οθεοςμουοθεοςμου
A:363738
B:104109318
C:156157158159160161162163164165166167168169170171
D:5990100953101100520970590
E:ειςτιεγκατελιπες
A:39
B:35
C:172173
D:305
E:με

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Greek.

Primary Features

(Derived from Revelation 1:8 and grouped for easy reference.)

I Am (Present tense - living through it) Add up everything.

A.1Numeric total: 15750 = 2 x 32 x 53 x 7. (See feature 1.)

Is, Was, Is To Come (Second present tense - skipping sequentially through it) Add up every other occurrance.

B.3Every other word (odd): 8036 = 22 x 72 x 41. (See feature 2.1.1.)

B.3.2Every other word (even): 7714 = 2 x 7 x 19 x 29. (See feature 2.1.2.)

B.4Every other letter (odd): 7644 = 22 x 3 x 72 x 13. (See feature 7.2.1.)

B.4.2Every other letter (even): 8106 = 2 x 3 x 7 x 193. (See feature 7.2.2.)

Alpha & Omega (The first and last) Add up the first item with the last item.

C.3.2First and last letter of each word: 7399 = 72 x 151. (See feature 3.)

Alpha (The first) Add up the first item.

D.3.3First letter of each word: 3983 = 7 x 569. (See feature 4.)

Omega (The last) Add up the last item.

E.3.3Last letter of each word: 3416 = 23 x 7 x 61. (See feature 5.)

The Verses

List of verses:
1609 2776 4249 7116

1Placing Psalm 22:1-2 together with Mark 15:33-34 produces a passage with 53 words, 232 letters, and a numeric total of 15750 (2 x 32 x 53 x 7).

1.1Total of the odd positioned letters within each verse: 7293 = 3 x 11 x 13 x 17. (There is no matching feature with the even positioned letters within each verse.)

1.2The first word of each verse: 299 = 13 x 23.

1.3The last word of each verse: 1036 = 22 x 7 x 37.

1.4The first and last words from the Hebrew section, plus the first and last words from the Greek section: 987 = 3 x 7 x 47.

1.5The first and last letters of the first Hebrew verse, plus the first and last letters of the last Greek verse: 49 = 72. SF: 14 = 2 x 7.

1.6The first and last letters of each word from the first Hebrew verse plus the first and last letters of each word from the last Greek verse: 3978 = 2 x 32 x 13 x 17.

With only four verses, there isn't much to see in the verses.

The Words

List of words:
218 100 441 513 293 44 41 41 75 539 314 836 216 714 20 280 771 212 410 218 305 127 147 50 695 771 243 20 107 153 681 209 60 456 947 66 634 634 56 552 60 244 645 60 163 290 60 163 290 104 109 318 35

2Nine paired groups of words can be found, positioned Nth and Nth last, that together and individually are multiples of 7.

a) 4    4    10   11   11    12   14   15   17
b) 13   17   15   16   24    23   17   20   24
c) 4991 8652 4256 4571 10017 8855 3661 4704 5446

a) Starting position of group.
       (Also starting position from the end for second group.)
b) Ending position of group.
       (Also ending position of second group from the end.)
c) Total of both groups.

Total of the starting positions (a): 98 = 2 x 72.
Total of the ending positions (b): 169 = 132. SF: 26 = 2 x 13.

2.1Divide the words into two groups depending on their position: odd positioned, and even positioned.

2.1.1Odd positioned words:

a) 1   3   5   7  9  11  13  15 17  19  21  23  25  27  29  31  33 35
b) 218 441 293 41 75 314 216 20 771 410 305 147 695 243 107 681 60 947

a) 37  39 41 43  45  47 49  51  53 (Word position.)
b) 634 56 60 645 163 60 290 109 35 (Word value.)

Total of the words (b): 8036 = 22 x 72 x 41.

2.1.2Even positioned words:

a) 2   4   6  8  10  12  14  16  18  20  22  24 26  28 30  32  34  36
b) 100 513 44 41 539 836 714 280 212 218 127 50 771 20 153 209 456 66

a) 38  40  42  44 46  48  50  52  (Word position.)
b) 634 552 244 60 290 163 104 318 (Word value.)

Total of the words (b): 7714 = 2 x 7 x 19 x 29.

2.1.2.1First half of the results from 2.1.2:

100 513 44 41 539 836 714 280 212 218 127 50 771

Total: 4445 = 5 x 7 x 127.

2.1.2.2Last half of the results from 2.1.2:

20 153 209 456 66 634 552 244 60 290 163 104 318

Total: 3269 = 7 x 467.

2.1.2.2.1Odd valued from 2.1.2.2:

153 209 163

Total: 525 = 3 x 52 x 7.

2.1.2.2.2Even valued from 2.1.2.2:

20 456 66 634 552 244 60 290 104 318

Total: 2744 = 23 x 73

2.2.1Beginning with the first word, take every Nth word after. The following values of N select a total of words divisible by 13.

11 15 16

Total of the N values: 42 = 2 x 3 x 7.

2.2.2Take every Nth word. Only two values produce totals divisible by 13.

6 7

Total of the N values: 13.

2.3Divide the words into two groups depending on whether or not the first digit is odd or even.

2.3.123 words have an odd valued first digit:

100 513 75 539 314 714 771 305 127 147 50 771 107 153 947 56 552 163 163 104 109 318 35

Total: 7133 = 7 x 1019.

2.3.230 words have an even valued first digit:

218 441 293 44 41 41 836 216 20 280 212 410 218 695 243 20 681 209 60 456 66 634 634 60 244 645 60 290 60 290

Total: 8617 = 7 x 1231.

2.4Exactly 7 words are multiples of 7:

Word position: 3   10  14  16  23  39 53
Word value:    441 539 714 280 147 56 35

The first and last positions where words were multiples of 7: 56 = 23 x 7. SF: 13.

2.5Precisely 7 words can be found that are in positions divisible by 7:

41 714 305 20 947 244 290

Total of the words: 2561 = 13 x 197. SF: 210 = 2 x 3 x 5 x 7.

2.6.1When the words are added one by one, six times the accumulated total will be a multiple of 7. Where this happens is listed below.

a) Word position:     21   36    40    50    52    53
b) Word value:        305  66    552   104   318   35
c) Accumulated total: 6601 11333 13209 15288 15715 15750

Total of the positions (a): 252 = 22 x 32 x 7.

2.6.2When the words are added one by one, three times the accumulated total will be a multiple of 13. Where this happens is listed below.

a) Word position:     18   49    50
b) Word value:        212  290   104
c) Accumulated total: 5668 15184 15288

Total of the positions (a): 117 = 32 x 13.

2.7Eight word values appear more than once.

218 20 41 163 771 290 634 60

Total of these values: 2197 = 133. (35 word values occur only once, but there is no other feature.)

2.8Based on the first word 218, search for the next word that is higher in value 441. Then search for the next word that is lower in value than 441. Continue alternating the search between higher and lower until all the words are covered. This selects 33 words.

218 441 293 539 314 836 216 714 20 280 212 410 218 305 127 147 50 695 243 681 209 456 66 634 634 645 60 163 60 163 104 109 35

Total of the words selected: 10297 = 7 x 1471.

2.8.1Add up the odd valued from the list in 2.8:

441 293 539 305 127 147 695 243 681 209 645 163 163 109 35

Total: 4795 = 5 x 7 x 137.

2.8.2Add up the even valued from the list in 2.8:

218 314 836 216 714 20 280 212 410 218 50 456 66 634 634 60 60 104

Total: 5502 = 2 x 3 x 7 x 131. SF: 143 = 11 x 13.

First And Last

the statement in Revelation 1:8 leads to looking at the first and last letters of each word.

Totals for each pair of the first and last letters of each word.
38 100 401 205 240 34 11 11 35 80 300 50 14 310 19 93 690 95 180 65 305 100 140 43 95 690 95 19 107 12 601 45 120 99 307 37 14 14 21 99 120 45 70 120 98 230 120 98 230 95 109 95 35

3Grand total of the first and last letters of each word: 7399 = 72 x 151.

3.1Odd positioned from 3:

38 401 240 11 35 300 14 19 690 180 305 140 95 95 107 601 120 307 14 21 120 70 98 120 230 109 35

Total: 4515 = 3 x 5 x 7 x 43.

3.2Even positioned from 3:

100 205 34 11 80 50 310 93 95 65 100 43 690 19 12 45 99 37 14 99 45 120 230 98 95 95

Total: 2884 = 22 x 7 x 103.

3.2.1Odd positioned from 3.2:

100 34 80 310 95 100 690 12 99 14 45 230 95

Total: 1904 = 24 x 7 x 17.

3.2.1.1Odd positioned from 3.2.1:

100 80 95 690 99 45 95

Total: 1204 = 22 x 7 x 43.

3.2.1.2Even positioned from 3.2.1:

34 310 100 12 14 230

Total: 700 = 22 x 52 x 7. SF: 21 = 3 x 7.

3.2.1.2.1Odd positioned groups of 2 from 3.2.1.2:

34 310 14 230

Total: 588 = 22 x 3 x 72. SF: 21 = 3 x 7.

3.2.1.2.2Even positioned groups of 2 from 3.2.1.2:

100 12

Total: 112 = 24 x 7.

3.2.2Even positioned from 3.2:

205 11 50 93 65 43 19 45 37 99 120 98 95

Total: 980 = 22 x 5 x 72.

3.2.3First half of 13 from 3.2:

100 205 34 11 80 50 310 93 95 65 100 43 690

Total: 1876 = 22 x 7 x 67. SF: 78 = 2 x 3 x 13.

3.2.4Last half of 13 from 3.2:

19 12 45 99 37 14 99 45 120 230 98 95 95

Total: 1008 = 24 x 32 x 7. SF: 21 = 3 x 7.

3.3Divide the totals into two groups: odd valued and even valued.

3.3.127 of the totals are odd valued.

a) 3   4   7  8  9  15 16 18 20 21  24 25 27 28 29  31  32 34 35  36
b) 401 205 11 11 35 19 93 95 65 305 43 95 95 19 107 601 45 99 307 37

a) 39 40 42 50 51  52 53 (Word position.)
b) 21 99 45 95 109 95 35 (Total of the first and last letters.)

Total of the positions (a): 749 = 7 x 107.

3.3.226 of the totals (2 x 13) are even valued.

a) 1  2   5   6  10 11  12 13 14  17  19  22  23  26  30 33  37 38 41
b) 38 100 240 34 80 300 50 14 310 690 180 100 140 690 12 120 14 14 120

a) 43 44  45 46  47  48 49   (Word position.)
b) 70 120 98 230 120 98 230  (Total of the first and last letters.)

This time is is not the positions, but the sum of the totals (b): 4212 = 22 x 34 x 13.

3.4Divide the totals into two lists: those in word positions that are prime numbers, and those that are in word positions that are not prime numbers.

3.4.116 are in word positions that are prime numbers:

a) 2   3   5   7  11  13 17  19  23  29  31  37 41  43 47  53
b) 100 401 240 11 300 14 690 180 140 107 601 14 120 70 120 35

a) Word position that is a prime number.
b) Total of the first and last letters.

Sum of the totals (b): 3143 = 7 x 449.

3.4.137 are in word positions that are not prime numbers:

a) 1  4   6  8  9  10 12 14  15 16 18 20 21  22  24 25 26  27 28 30 32
b) 38 205 34 11 35 80 50 310 19 93 95 65 305 100 43 95 690 95 19 12 45

a) 33  34 35  36 38 39 40 42 44  45 46  48 49  50 51  52
b) 120 99 307 37 14 21 99 45 120 98 230 98 230 95 109 95

a) Word position that is not a prime number.
b) Total of the first and last letters.

Sum of the totals (b): 4256 = 25 x 7 x 19.

3.5Ten of the totals in feature 3 are multiples of 7.

a) 9  13 23  37 38 39 43 45 48 53 (Word position.)
b) 35 14 140 14 14 21 70 98 98 35 (First/last total.)

The sum of the totals yields an extra factor of 7: 539 = 72 x 11.

3.6When the list in feature 3 is added up one by one, ten times the accumulated total will be divisible by 7.

a) 3   7    10   12   13   15   21   25   52   53   (Word position.)
b) 401 11   80   50   14   19   305  95   95   35   (First/last total.)
c) 539 1029 1155 1505 1519 1848 3276 3654 7364 7399 (Running total.)

The sum of the totals (b): 1105 = 5 x 13 x 17. SF: 35 = 5 x 7.

3.7There are exactly 35 unique values in feature 3.

Alpha: The First Letter Of Each Word

First letter of each word:
30 70 1 5 40 30 1 1 30 70 200 40 4 300 10 3 600 5 90 5 5 60 100 3 5 600 5 10 100 5 600 5 60 9 300 30 5 5 20 90 60 5 30 60 8 30 60 8 30 5 100 5 30

4Total of the first letters: 3983 = 7 x 569.

4.1Whether one begins with the first letter in feature 4 before taking every Nth letter after, or just takes every Nth, only one N value produces a total divisible by 7. Providentially, the N value is 7.

4.1.1Take every 7th letter after the first letter.

1  8 15 22 29  36 43 50 (Word position.)
30 1 10 60 100 30 30 5  (First letter.)

Total of the letters: 266 = 2 x 7 x 19. SF: 28 = 22 x 7.

4.1.2Take every 7th letter.

7 14  21 28 35  42 49  (Word position.)
1 300 5  10 300 5  30  (First letter.)

Total of the letters: 651 = 3 x 7 x 31.

4.2Beginning with the first letter, and taking every Nth after, the following values of N produce totals divisible by 13.

13 15 24 26

Total of the N values: 78 = 2 x 3 x 13.

4.3Beginning with the first letter, and taking every Nth after, only one N value produces a total divisible by 91 (7 x 13). Providentially, the N value is 13.

1  14  27 40 53  (Word position.)
30 300 5  90 30  (First letter.)

Note how the results break down perfectly with every other entry: 30 + 5 + 30 = 65 (5 x 13). 300 + 90 = 390 (2 x 3 x 5 x 13).

4.434 of the first letters are even valued.

a) 1  2  5  6  9  10 11  12 13 14  15 17  19 22 23  26  28 29  31  33
b) 30 70 40 30 30 70 200 40 4  300 10 600 90 60 100 600 10 100 600 60

a) 35  36 39 40 41 43 44 45 46 47 48 49 51  53 (Word position.)
b) 300 30 20 90 60 30 60 8  30 60 8  30 100 30 (First letter.)

Total of the first letters: 3900 = 22 x 3 x 52 x 13. (There is no corresponding feature with the odd valued first letters.)

4.5From the list of first letters, add up the middle seven.

3 5 600 5 10 100 5

Total: 728 = 23 x 7 x 13. SF: 26 = 2 x 13.

4.6One can take every Nth of the first letters, where N is a fixed value, or one can take every Nth where N increases by 1 each time.

Count:        1  2  4 7 11  16 22 29  37 46
Increasing N: 1  2  3 4 5   6  7  8   9  10
First letter: 30 70 5 1 200 3  60 100 5  30

Total of the first letters found: 504 = 23 x 32 x 7.

4.7.1When the first letters are added one by one, 12 times the result will be a multiple of 7.

a) 12  17   21   25   35   37   41   43   46   49   51   53
b) 40  600  5    5    300  5    60   30   30   30   100  30
c) 518 1435 1540 1708 3402 3437 3612 3647 3745 3843 3948 3983

a) Word position.
b) First letter.
c) Accumulated total at that point.

Total of the letters (b): 1235 = 5 x 13 x 19.

4.7.2When the first letters are added one by one, 12 times the result will be a multiple of 13.

9   15  24   36   50    (Word position.)
30  10  3    30   5     (First letter.)
208 832 1703 3432 3848  (Accumulated total at that point.)

Total of the first letters: 78 = 2 x 3 x 13.

4.7.3When the first letters are added one by one, 22 times the result will be an odd number.

a) 3   7   16  17   20   24   27   28   29   32   33   37   42   43
b) 1   1   3   600  5    3    5    10   100  5    60   5    5    30
c) 101 177 835 1435 1535 1703 2313 2323 2423 3033 3093 3437 3617 3647

a) 44   45   46   47   48   49   52   53   (Word position.)
b) 60   8    30   60   8    30   5    30   (First letter.)
c) 3707 3715 3745 3805 3813 3843 3953 3983 (Accumulated total.)

Total of the positions (a): 742 = 2 x 7 x 53.
Total of the first letters (b): 1064 = 23 x 7 x 19.

4.7.4When the first letters are added one by one, 31 times the result will be an even number.

a) 1  2   4   5   6   8   9   10  11  12  13  14  15  18   19   21
b) 30 70  5   40  30  1   30  70  200 40  4   300 10  5    90   5
c) 30 100 106 146 176 178 208 278 478 518 522 822 832 1440 1530 1540

a) 22   23   25   26   30   31   34   35   36   38   39   40   41
b) 60   100  5    600  5    600  9    300  30   5    20   90   60
c) 1600 1700 1708 2308 2428 3028 3102 3402 3432 3442 3462 3552 3612

a) 50   51   (Word position.)
b) 5    100  (First letter.)
c) 3848 3948 (Accumulated total at that point.)

Total of the positions (a): 689 = 13 x 53.
Total of the letters (b): 2919 = 3 x 7 x 139.

4.8The table below shows the number of times a first letter occurs.

a) 1  3  4  5   8  9  10 20 30  40 60  70  90  100 200 300 600
b) 3  2  1  13  2  1  2  1  8   2  5   2   2   3   1   2   3
c) 3  6  4  65  16 9  20 20 240 80 300 140 180 300 200 600 1800
d) 18 40 13 396 93 34 43 39 243 17 187 12  59  103 11  49  74

First letter value.
Number of occurrences.
Total value in the list of first letters (a x b).
Total of the positions in the list of first letters.

4.8.1Letters 1, 5, and 9 are the only first letters that have an odd value on line (c). Their total value (c): 77 = 7 x 11.

4.8.2The remaining 14 letters have an even value on line (c).

a) First letter: 3 4 8  10 20 30  40 60  70  90  100 200 300 600
c) Total value:  6 4 16 20 20 240 80 300 140 180 300 200 600 1800

Their total value (C): 3906 = 2 x 32 x 7 x 31.

4.8.3Eleven letters have an odd value on line (d) of the table in 4.8.

a) First letter:       4  8  10 20 30  40 60  90  100 200 300
b) Occurrences:        1  2  2  1  8   2  5   2   3   1   2
c) Total value:        4  16 20 20 240 80 300 180 300 200 600
d) Total of positions: 13 93 43 39 243 17 187 59  103 11  49

Sum of the total values (c): 1960 = 23 x 5 x 72.

4.8.4Six letters have an even value on line (d) of the table in 4.8.

a) First letter:       1  3  5   9  70  600
b) Occurrences:        3  2  13  1  2   3
c) Total value:        3  6  65  9  140 1800
d) Total of positions: 18 40 396 34 12  74

Sum of the total values (c): 2023 = 7 x 172.

4.8.5Six letters have a prime number on line (d) of the table in 4.8.

a) First letter:       4  10 40 90  100 200
b) Occurrences:        1  2  2  2   3   1
c) Total value:        4  20 80 180 300 200
d) Total of positions: 13 43 17 59  103 11

Sum of the total values (c): 784 = 24 x 72.

4.8.6Eleven letters do not have a prime number on line (d) of the table in 4.8.

a) First letter:       1  3  5   8  9  20 30  60  70  300 600
b) Occurrence:         3  2  13  2  1  1  8   5   2   2   3
c) Total value:        3  6  65  16 9  20 240 300 140 600 1800
d) Total of positions: 18 40 396 93 34 39 243 187 12  49  74

Total number of occurrences (b): 42 = 2 x 3 x 7.
Sum of the total values (c): 3199 = 7 x 457.

Omega: The Last Letter Of Each Word

Last letter of each word:
8 30 400 200 200 4 10 10 5 10 100 10 10 10 9 90 90 90 90 60 300 40 40 40 90 90 90 9 7 7 1 40 60 90 7 7 9 9 1 9 60 40 40 60 90 200 60 90 200 90 9 90 5

5Total of the last letters: 3416 = 23 x 7 x 61.

5.1Thus far, no numeric features have included the letter values of God’s name in Hebrew. Applying 10-5-6-5 to the verses, words, the first and last letters together, and the first letters of each word, yielded nothing. This suddenly changes with the last letter of each word. One might think the numbers are telling us, that at the end, all will be well.

5.1.1The letters of God’s name in Hebrew are applied three times to cover the 53 last letters of each word.

Value from the Name:  10 5  6   5  10 5  6  5  10 5  6  5
Count:                10 15 21  26 36 41 47 52 62 14 20 25
Count adjusted to 53: 10 15 21  26 36 41 47 52 9  14 20 25
Last letter found:    10 9  300 90 7  60 60 90 5  10 60 90

Total of the last letters found: 791 = 7 x 113.

5.1.2The letters of God’s name in Hebrew are applied seven times.

a) 10 5  6   5  10 5  6  5  10 5  6  5  10 5  6   5  10 5  6  5  10 5
b) 10 15 21  26 36 41 47 52 62 14 20 25 35 40 46  51 61 13 19 24 34 39
c) 10 15 21  26 36 41 47 52 9  14 20 25 35 40 46  51 8  13 19 24 34 39
d) 10 9  300 90 7  60 60 90 5  10 60 90 7  9  200 9  10 10 90 40 90 1

a) 6  5  10 5  6  5  (Value from the Name.)
b) 45 50 60 12 18 23 (Count.)
c) 45 50 7  12 18 23 (Count adjusted to 53.)
d) 90 90 10 10 90 40 (Last letter found.)

Total of the last letters found: 1587 = 3 x 232. Twenty-three shows Jesus came as a man. 1587 is not a multiple of 7 or 13, but the sum of the factors leads to factors of seven. SF: 49 = 72. SF: 14 = 2 x 7.

5.1.3The letters of God’s name in Hebrew are applied thirteen times.

a) 10 5  6   5  10 5  6  5  10 5  6  5  10 5  6   5  10 5  6  5  10 5
b) 10 15 21  26 36 41 47 52 62 14 20 25 35 40 46  51 61 13 19 24 34 39
c) 10 15 21  26 36 41 47 52 9  14 20 25 35 40 46  51 8  13 19 24 34 39
d) 10 9  300 90 7  60 60 90 5  10 60 90 7  9  200 9  10 10 90 40 90 1

a) 6  5  10 5  6  5  10 5  6  5   10 5   6  5  10 5  6  5  10  5  6
b) 45 50 60 12 18 23 33 38 44 49  59 11  17 22 32 37 43 48 58  10 16
c) 45 50 7  12 18 23 33 38 44 49  6  11  17 22 32 37 43 48 5   10 16
d) 90 90 10 10 90 40 60 9  60 200 4  100 90 40 40 9  40 90 200 10 90

a) 5   10 5  6  5  10  5 6  5  (Value from the Name.)
b) 21  31 36 42 47 57  9 15 20 (Count.)
c) 21  31 36 42 47 4   9 15 20 (Count adjusted to 53.)
d) 300 1  7  40 60 200 5 9  60 (Last letter found.)

Total: 3311 = 7 x 11 x 43.

5.2From the list of last letters starting from the second entry, a group of 21 can be found that is a multiple of 13. A corresponding group of 21 can be found starting from the second entry from the end of the list. A group of 12 can be found starting from the 14th entry, along with a matching group of 12 starting from the 14th entry from the end. This is tabulated in the diagram below.

a) Group starting position (from the beginning or end): 2    14
b) Group ending position (from the beginning or end):   22   25
c) Total of the first group:                            1768 949
d) Total of the second group:                           1261 247
e) Sum of both groups:                                  3029 1196

The sum of the start and end positions (lines a + b): 63 = 32 x 7. SF: 13.

5.3Beginning with the first entry in feature 5, take every Nth after. The following values of N produce sequences that are a multiple of 13.

3 15 17

Total of the N values: 35 = 5 x 7.

5.4Exactly 14 of the last letters are odd valued. Exactly 39 of the last letters are even valued. The total of each group yields no feature, but the number of letters in each group is finely balanced.

5.5Four of the last letters are multiples of 7.

Word position: 29 30 35 36
Last letter:   7  7  7  7

Providentially, the word positions where these last letters reside, is a multiple of 13: 130 = 2 x 5 x 13.

5.6Six of the last letters divide the rest of the list into what is between, and what is not between their Nth and Nth last occurrences.

Between & Not Between The Last Letter Of A Word
Last LetterNth & Nth Last OccurrenceTotal Of Last Letters In BetweenTotal Of Last Letters Not In Between
20021834 = 2 x 7 x 131. SF: 140 = 22 x 5 x 7.1582 = 2 x 7 x 113.
912296 = 23 x 7 x 41.1120 = 25 x 5 x 7.
92238 = 2 x 7 x 17. SF: 26 = 2 x 13.3178 = 2 x 7 x 227.
930 =3416 = 23 x 7 x 61.
9060 =3416 = 23 x 7 x 61.
403294 = 2 x 3 x 72.3122 = 2 x 7 x 223.
53 Last Letters Of Each Word (Click to hide.)
83040020020041010
510100101010990
90909060300404040
909090977140
6090779919
60404060902006090
200909905

5.6.1The total of the six letters (column 1): 357 = 3 x 7 x 17.

5.6.2Three of the letters in column 1 have an even value in column 2. Total of these letters: 299 = 13 x 23.

Letters Not First/Last

6Precisely 130 letters are not first or last in a word. These letters form a complementary opposite when the first and last letters are considered together.

Letters not first or last in a word:
40 50 90 10 30 300 8 7 40 6 4 6 30 30 40 7 2 400 50 8 6 10 300 6 70 400 2 200 1 3 400 1 5 40 60 30 5 40 7 80 1 10 100 7 10 60 100 60 3 5 40 5 100 20 7 7 7 600 80 1 40 1 100 7 1 40 1 100 80 2 60 7 90 5 7 90 60 200 600 40 5 3 1 20 20 600 20 600 5 30 1 2 1 400 8 1 40 90 100 9 5 8 5 80 30 7 40 5 200 60 30 5 40 60 5 60 60 5 60 60 9 3 10 1 100 5 20 9 70 5

6.1Although the total of these letters yield no multiples of 7 or 13, there are some numeric features. Precisely seven pairs can be found that are positioned Nth and Nth last in the list that together are multiples of 7.

a) Nth letter: 5   13  22  25  43  56 61
b) Value:      30  30  10  70  100 7  40
c) Nth last:   126 118 109 106 88  75 70
d) Value:      5   5   200 7   600 7  2
e) Sum:        35  35  210 77  700 14 42

Total of the positions (a + c): 917 = 7 x 131.

6.232 paired groups of these letters, positioned Nth and Nth last, are together and individually multiples of 7.

a) 1    1    4   5   7    7    11   11   12   16   17   18   18   18
b) 30   39   13  9   19   43   42   51   49   34   52   33   53   59
c) 3213 4452 714 504 1008 4550 3766 5460 5306 2730 5698 2576 5936 6916

a) 20   21   21   22   24  29   31   32   33  34   34   36   37  37
b) 43   28   40   44   26  40   39   48   37  53   59   46   41  58
c) 3542 1421 2758 3465 553 1337 1239 2555 679 3360 4340 2037 567 4074

a) 39   42   43   54
b) 62   58   51   59
c) 3899 3507 1694 980

a) Start position of first group is from the beginning, and of the
     second group is from the end.
b) End position of first group is from the beginning, and of the 
     second group is from the end.
c) Total of both groups.

Total of the start positions (a): 735 = 3 x 5 x 72
Total of the end positions (b): 1358 = 2 x 7 x 97.
Total of the start and end positions (a + b): 2093 = 7 x 13 x 23. (Not only does a factor of 13 appear, but the factor for man, 23, also appears.)

6.3When these letters are added one by one, 20 times the accumulated total will be a multiple of 7. (Their positions in the list of feature 6, the letter, and the accumulated total are listed below when this occurs.)

a)  b)  c)        a)  b)  c)
10  6   581       59  80  4046
14  30  651       62  1   4088     a) Position in list.
17  2   700       69  80  4417
30  3   2156      82  3   5586     b) Letter not first/last.
33  5   2562      84  20  5607
38  40  2737      95  8   7294     c) Running total.
39  7   2744      99  100 7525
42  10  2835      101 5   7539
51  40  3220      108 5   7714
53  100 3325      118 5   8239

Total of the positions (a): 1204 = 22 x 7 x 43.

6.4The first letter in the list in feature 6 is 40. It is an even number. Search for the next letter that is an odd number. From that point, search for the next that is an even number. Continue searching through the list, alternating between even and odd, until the whole list is covered. This will end up selecting 68 letters. The total of these letters: 3198 = 2 x 3 x 13 x 41.

6.5Arrange the 130 letters as a 10 x 13 rectangle.

130 Letters Not First/Last
405090103030087406
4630304072400508
610300670400220013
40015406030540780
110100710601006035
40510020777600801
40110071401100802
6079057906020060040
531202060020600530
1214008140901009
5858030740520060
30540605606056060
931011005209705

6.5.1The perimeter, or outside, of the table: 1703 = 13 x 131.

6.5.2The inside of the table: 6888 = 23 x 3 x 7 x 41.

6.5.3The odd positioned columns of the table: 3562 = 2 x 13 x 137.

6.5.4A checker board pattern: 4719 = 3 x 112 x 13.

6.5.5Two inside perimeters: 2814 = 2 x 3 x 7 x 67.

6.6While the total of these letters is not a multiple of 7 or 13, the total of their positions is divisible by 7.

Positions of letters not first last:
2 3 4 9 10 13 14 17 18 19 22 23 26 29 32 35 36 37 38 41 42 45 46 47 48 49 52 53 56 57 58 61 64 65 66 67 68 69 70 73 74 77 78 79 82 83 84 85 88 89 90 91 92 97 98 101 104 107 110 111 114 115 116 117 120 125 126 127 130 133 134 135 136 137 141 142 143 144 147 148 151 152 153 154 157 158 161 162 165 166 169 170 171 172 173 174 175 179 180 181 184 185 186 187 188 189 190 191 192 193 194 195 196 197 201 202 205 209 210 213 216 221 222 223 224 225 226 227 228 229

Total of the positions: 15505 = 5 x 7 x 443. SF: 455 = 5 x 7 x 13.

6.6.1Every Nth position adds up to a multiple of 7 when N is one of the following values:

9 23 26 31 37 40 41 48 57

Total of the N values: 312 = 23 x 3 x 13.

6.6.2Beginning with the first position and taking every Nth after, the following values of N produce multiples of 13:

2 12 26 30 38 41 47

Total of the N values: 196 = 22 x 72.

6.6.3There are just over 150 ways of extracting alternating groups of these positions.

6.6.467 of the positions are odd valued:

a) 2 4 6  8  10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
b) 3 9 13 17 19 23 29 35 37 41 45 47 49 53 57 61 65 67 69 73 77 79 83

a) 48 50 52 54 56  58  60  62  64  66  68  70  72  74  75  77  79  81
b) 85 89 91 97 101 107 111 115 117 125 127 133 135 137 141 143 147 151

a) 83  85  87  89  91  93  95  97  98  100 102 104 106 108 110 112 114
b) 153 157 161 165 169 171 173 175 179 181 185 187 189 191 193 195 197

a) 115 117 118 120 122 124 126 128 130 (Position in list.)
b) 201 205 209 213 221 223 225 227 229 (Position in passage.)

Total of the positions (b): 8177 = 13 x 17 x 37.

6.6.5Divide the positions into four groups.

(Category A)
Odd valued position in list & odd valued position in the passage:
a) 75  77  79  81  83  85  87  89  91  93  95  97  115 117
b) 141 143 147 151 153 157 161 165 169 171 173 175 201 205

a) List position.
b) Passage position.
Total of the passage positions (b): 2312.

(Category B)
Odd valued position in list & even valued position in the passage:
a) 1 3 5  7  9  11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
b) 2 4 10 14 18 22 26 32 36 38 42 46 48 52 56 58 64 66 68 70 74 78 82

a) 47 49 51 53 55 57  59  61  63  65  67  69  71  73  99  101 103 105
b) 84 88 90 92 98 104 110 114 116 120 126 130 134 136 180 184 186 188

a) 107 109 111 113 119 121 123 125 127 129 (List position.)
b) 190 192 194 196 210 216 222 224 226 228 (Passage position.)
Total of the passage positions (b): 5384.

(Category C)
Even valued position in the list & odd valued position in the passage:
a) 2 4 6  8  10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
b) 3 9 13 17 19 23 29 35 37 41 45 47 49 53 57 61 65 67 69 73 77 79 83

a) 48 50 52 54 56  58  60  62  64  66  68  70  72  74  98  100 102 104
b) 85 89 91 97 101 107 111 115 117 125 127 133 135 137 179 181 185 187

a) 106 108 110 112 114 118 120 122 124 126 128 130 (List position.)
b) 189 191 193 195 197 209 213 221 223 225 227 229 (Passage position.)
Total of the passage positions (b): 5865.

(Category D)
Even position in the list & even valued position in the passage:
a) 76  78  80  82  84  86  88  90  92  94  96  116 (List position.)
b) 142 144 148 152 154 158 162 166 170 172 174 202 (Passage position.)
Total of the passage positions (b): 1944.

6.6.5.1The numbers in categories A and D are either purely odd, or purely even. The total of the positions from both categories: 4256 = 25 x 7 x 19.

6.6.5.2The numbers in categories B and C are mixed, odd and even, or even and odd. The total of the positions from both categories: 11249 = 7 x 1607.

6.6.633 of the positions are prime numbers.

a) 1 2 6  8  10 12 14 18 20 24 28 32 36 40 44 46 50 54 56  58  68
b) 2 3 13 17 19 23 29 37 41 47 53 61 67 73 79 83 89 97 101 107 127

a) 74  81  85  95  98  100 108 110 114 124 128 130
b) 137 151 157 173 179 181 191 193 197 223 227 229

a) Position in list.
b) Position in passage.

Total of the positions in the passage (b): 3406 = 2 x 13 x 131.

6.6.731 positions in the list (a) are prime numbers:

a) 2 3 5  7  11 13 17 19 23 29 31 37 41 43 47 53 59  61  67  71  73
b) 3 4 10 14 22 26 36 38 46 56 58 68 74 78 84 92 110 114 126 134 136

a) 79  83  89  97  101 103 107 109 113 127 (Position in the list.)
b) 147 153 165 175 184 186 190 192 196 226 (Position in the passage.)

Total of the positions in the passage (b): 3143 = 7 x 449.

6.6.899 positions in the list (a) are not prime numbers:

a) 1 4 6  8  9  10 12 14 15 16 18 20 21 22 24 25 26 27 28 30 32 33 34
b) 2 9 13 17 18 19 23 29 32 35 37 41 42 45 47 48 49 52 53 57 61 64 65

a) 35 36 38 39 40 42 44 45 46 48 49 50 51 52 54 55 56  57  58  60  62
b) 66 67 69 70 73 77 79 82 83 85 88 89 90 91 97 98 101 104 107 111 115

a) 63  64  65  66  68  69  70  72  74  75  76  77  78  80  81  82  84
b) 116 117 120 125 127 130 133 135 137 141 142 143 144 148 151 152 154

a) 85  86  87  88  90  91  92  93  94  95  96  98  99  100 102 104 105
b) 157 158 161 162 166 169 170 171 172 173 174 179 180 181 185 187 188

a) 106 108 110 111 112 114 115 116 117 118 119 120 121 122 123 124 125
b) 189 191 193 194 195 197 201 202 205 209 210 213 216 221 222 223 224

a) 126 128 129 130 (Position in the list.)
b) 225 227 228 229 (Position in the passage.)

Total of the positions in the passage (b): 12362 = 2 x 7 x 883.

6.6.920 of the passage positions are a multiple of 7:

a) 7  16 21 26 29 39 42 47 52 55 67  70  79  84  87  97  106 113 119
b) 14 35 42 49 56 70 77 84 91 98 126 133 147 154 161 175 189 196 210

a) 125 (Position in the list.)
b) 224 (Position in the passage.)

Total of the positions in the list (a): 1281 = 3 x 7 x 61.

6.6.10Precisely 13 of the positions are multiples of 13:

a) 6  13 27 34 43 52 57  64  69  77  91  112 122
b) 13 26 52 65 78 91 104 117 130 143 169 195 221

a) (Position in the list.)
b) (Position in the passage.)

Total of the positions in the list (a): 767 = 13 x 59.
Total of the positions in the passage (b): 1404 = 22 x 33 x 13. SF: 26 = 2 x 13.

6.6.11The middle N-number of positions add up to a multiple of 7 when N is one of the following:

128 126 124 118 114 100 96 78 60 48 32 24 2

Total of the N values: 1050 = 2 x 3 x 52 x 7. (There are exactly 13 N values. The first and the last total 130.)

6.6.12Divide the 130 positions into groups of 10 and add up each group.

6.6.12.1Odd valued groups of 10:

2 3 4 9 10 13 14 17 18 19
22 23 26 29 32 35 36 37 38 41
42 45 46 47 48 49 52 53 56 57
58 61 64 65 66 67 68 69 70 73
74 77 78 79 82 83 84 85 88 89
90 91 92 97 98 101 104 107 110 111
114 115 116 117 120 125 126 127 130 133
134 135 136 137 141 142 143 144 147 148
151 152 153 154 157 158 161 162 165 166
184 185 186 187 188 189 190 191 192 193
216 221 222 223 224 225 226 227 228 229

Total of the odd valued groups: 11739 = 3 x 7 x 13 x 43.

6.6.12.2Even valued groups of 10:

169 170 171 172 173 174 175 179 180 181
194 195 196 197 201 202 205 209 210 213

Total of the even valued groups: 3766 = 2 x 7 x 269.

6.6.12.3The difference is naturally a multiple of 7, but the sum of the factors goes further: 7973 = 7 x 17 x 67. SF: 91 = 7 x 13.

6.6.13The 130 positions can be divided into alternating groups of 26 and 39.

6.6.13.1Groups of 26: 4501 = 7 x 643. SF: 650 = 2 x 52 x 13.

6.6.13.2Groups of 39: 11004 = 22 x 3 x 7 x 131.

6.6.13.3The difference between the groups of 26 and 39 take an extra step in the sum of the factors: 6503 = 7 x 929. SF: 936 = 23 x 32 x 13.

All The Letters

Having examined subgroups of the letters, now all the letters are taken together.

List of letters:
30 40 50 90 8 70 30 1 10 30 400 5 300 8 200 40 7 40 6 200 30 4 6 4 1 30 10 1 30 10 30 40 5 70 7 2 400 50 10 200 8 6 100 40 10 300 6 70 400 10 4 2 200 10 300 1 3 400 10 10 1 9 3 5 40 60 30 5 40 7 90 600 80 1 90 5 10 100 7 90 90 10 60 100 60 90 5 3 5 40 5 100 60 5 300 60 20 7 40 100 7 40 3 7 40 5 600 90 600 80 1 90 5 40 1 100 7 90 10 1 9 100 7 5 40 1 100 7 600 80 1 5 2 60 7 90 5 40 60 9 7 90 60 200 90 300 600 40 7 30 5 3 1 20 7 5 20 600 9 5 20 600 9 20 5 30 1 90 1 2 1 400 8 1 40 9 60 5 90 100 9 40 30 5 8 5 80 30 7 40 5 200 60 30 5 40 60 40 60 8 5 60 90 30 60 200 60 8 5 60 90 30 60 200 5 9 90 100 9 5 3 10 1 100 5 20 9 70 5 90 30 5

7The first letter is 30, and the last letter is 5. First and last: 35 = 5 x 7.

7.1Fourteen letters can be paired Nth and Nth last that together are divisible by 13.

a) Nth letter: 5   16  20  33  34  40  41  48  65  80  94  96  108 115
b) Value:      8   40  200 5   70  200 8   70  40  90  5   60  90  1
c) Nth last:   228 217 213 200 199 193 192 185 168 153 139 137 125 118
d) Value:      70  90  60  8   60  60  200 8   90  1   60  5   40  90
e) Sum:        78  130 260 13  130 260 208 78  130 91  65  65  130 91

Total of the positions (a + c): 3262 = 2 x 7 x 233.

7.2.1The odd positioned letters: 7644 = 22 x 3 x 72 x 13.

7.2.2The even positioned letters: 8106 = 2 x 3 x 7 x 193.

7.3Over 120 alternating groups of letters can be extracted.

7.478 (2 x 3 x 13) letters are odd valued. 154 (2 x 7 x 11) letters are even valued.

7.550 letters are in positions that are prime numbers.

a) 2  3  5 7  11  13  17 19 23 29 31 37  41 43  47 53  59 61 67 71 73
b) 40 50 8 30 400 300 7  6  6  30 30 400 8  100 6  200 10 1  30 90 80

a) 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167
b) 7  60 5  20 7   3   600 600 5   100 1   5   60  7   5   20  9   1

a) 173 179 181 191 193 197 199 211 223 227 229 (Letter position.)
b) 8   90  9   5   60  60  60  90  1   9   5   (Letter value.)

Tota of the letters (a): 3744 = 25 x 32 x 13.

7.6The middle N letters add up to a multiple of 13 when N is one of the following values:

216 208 190 184 142 96 82 54 50

Total of the N values: 1222 = 2 x 13 x 47. The first and last N values: 266 = 2 x 7 x 19. SF: 28 = 22 x 7.

7.7Divide the letters into alternating groups of 26 and 77.

7.7.1.Groups of 26: 5355 = 32 x 5 x 7 x 17. SF: 35 = 5 x 7.

7.7.2Groups of 77: 10395 = 33 x 5 x 7 x 11.

7.8Nine letters divide the rest of the letters into two groups, what is between their Nth and Nth last occurrences, and what is not between them. Only the letter seven appears twice in this list, with its sixth and sixth last occurrences, and with its seventh and seventh last occurrences. Providentially, the Nth occurrences add up to 13.

Between & Not Between The Letter 7
LetterNth & Nth Last OccurrenceTotal Of Letters In BetweenTotal Of Letters Not In Between
762072 = 23 x 7 x 37.13678 = 2 x 7 x 977.
771869 = 3 x 7 x 89.13881 = 3 x 7 x 661.
All 232 Letters
3040509087030110304005300820040
74062003046413010130103040
570724005010200861004010300670
4001042200103001340010101935
40603054079060080190510100790
901060100609053540510060530060
20740100740374056009060080190
54011007901019100754011007
600801526079054060979060200
903006004073053120752060095
2060092053019012140081409
605901009403058580307405200
60305406040608560903060200608
5609030602005990100953101100
520970590305

Conclusion

Although there are fewer numeric features here compared with other studies on Jesus fulfilling prophecy, there is still enough to link Psalm 22:1 and Mark 15:33-34. The many numeric features with complementary opposites reveal God’s hand even in this dark time of despair.

Throughout history, many have asked this question: My God, my God, why hast thou forsaken me? Like Job, millions have probably wondered why they were suffering. The hidden numeric features that only appear when prophecy and fulfillment are joined, tell us to look deeper and further through the darkness and pain. One must go to the end of Psalm 22, past the crucifixion account of Mark. As the ending of Psalm 22 makes it clear, God has not forsaken people. It is also made clear in Jesus' resurrection that God will never abandon those He loves. (Psalm 16:10)

Notes

  1. English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.
  2. Hebrew text is from, The Biblia Hebraica Stuttgartensia (BHS), edited by K. Elliger and W. Rudolph of the Deutsche Biblegesselchaft (German Bible Society) 1983.
  3. The Greek text is from The Nestle-Aland 27th Edition of the Greek New Testament (GNT), Copyright © 1966, 1968, 1975, 1993-1994 United Bible Societies, found within Bibleworks 3.0 by Hermeneutika, Michael S. Bushell, 1995. Vowel marks and punctuation have been removed.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




The foolishness of God is greater than anything we can imagine (1 Corinthians 1:25). On the off chance the numbers are a form of foolishness, do not spend too much time on them.