Bible Numbers 2.0

A Prophecy Of Three Individuals

Malachi 3:1-4:3 concerns three extremely important individuals who have heavy influence on human history: John the Baptist, Jesus the Son of God, and the man with the hidden name known only as The Word of God. (Revelation 19:13) John the Baptist, the greatest man ever born (Matthew 11:11), and Jesus the Son of God (Luke 1:35), have already come, and their coming was completely unlike anything anyone would have imagined. So too would be the third individual. As stated by Malachi's prophecy, he is inextricably linked to the covenant God made with Israel. (Malachi 3:1)

Unlike the other prophecies in this section, there is no prophetic confirmation for Malachi's prophecy in the Bible. However, for our time, the confirmation is John the Baptist and Jesus the Son of God. These two have already come. This confirms Malachi's prophecy of the third individual. He is destined to come. God is mindful of His covenant with Israel (1 Chronicles 16:15; Psalm 105:8, 111:5), and that means He will demand an accounting for that covenant (Malachi 4:1-6).

The specific prophecy is Malachi 3:1. The remaining verses of Malachi's book (Malachi 3:2-4:3) describes the ultimate purpose of these three individuals, that judgment falls on the wicked, Israel is purified and Israel is brought back to God. This ties in with New Testament verses concerning John the Baptist (Matthew 3:1-3), verses describing Jesus' abrupt appearance at the temple (Luke 2:41-52), and verses about the one known as The Word Of God (Revelation 19:11-21). The numbers that appear when all these verses are put together shows God’s hand in the prophecy (or prophecies).

As stated before, two thirds of Malachi's prophecy has already been fulfilled. It is now history and fact that John and Jesus have come. Because of this, even though some Greek manuscripts for Matthew 3:1-3, and Luke 2:41-52 have extra words, these extra words are ignored.

The third individual is yet to come. Even though the Apostle John wrote of his arrival in Revelation, he is still in our future. Depending on the Greek manuscript, there are four extra words in Revelation 19:11, 19:12, 19:14 and 19:17. In this case, all these extra words are included except for the last one in verse 17.

There are 854 words and 3896 letters when these passages are put together. Due to the sheer size of this, the numeric conversion of these four passages will be put on separate plain text pages: Malachi 3:1-4:3, Matthew 3:1-3, Luke 2:41-52, and Revelation 19:11-21. Most of the numeric features presented will only be summaries.

Primary Features

(Derived from Revelation 1:8 and grouped for easy reference.)

I Am (Present tense - living through it) Add up everything.

A.1Numeric total: 254121 = 3 x 7 x 12101. (See feature 1.)

A.4Number of words: 854 = 2 x 7 x 61. (See feature 3.)

Is, Was, Is To Come (Second present tense - skipping sequentially through it) Add up every other occurrance.

B.2Every other verse (odd): 124020 = 22 x 32 x 5 x 13 x 53. (See feature 2.1.)

B.4Every other letter (odd): 123270 = 2 x 3 x 5 x 7 x 587. (See feature 7.2.1.)

B.4.2Every other letter (even): 130851 = 32 x 7 x 31 x 67. (See feature 7.2.2.)

Alpha & Omega (The first and last) Add up the first item with the last item.

C.2First and last verses: 14784 = 26 x 3 x 7 x 11. (See feature 2.)

C.3.2First and last letter of each word: 96411 = 3 x 7 x 4591. (See feature 4.0.1.)

Alpha (The first) Add up the first item.

D.3.3First letter of each word: 34027 = 7 x 4861. (See feature 5.)

Omega (The last) Add up the last item.

E.3.3Last letter of each word: 62384 = 24 x 7 x 557. (See feature 6.)

Four Passages

These four passages together have 47 verses, 854 words, and 3896 letters.

Totals for the four passages:
Malachi   Matthew   Luke    Revelation 
86343     16937     60513   90328

1Grand total of all four passages together: 254121 = 3 x 7 x 12101.

1.1The odd valued passages: 163793 = 7 x 23399.

1.2The even valued passages: 90328 = 23 x 7 x 1613.

The Verses

List of verses:
5950 3046 3501 2721 7383 2140 5112 3681 2150 7172 4515 3215 1948 4591 2650 4596 4169 3139 5674 4068 4922 4842 3089 9006 3790 4621 7932 5147 3385 9355 3841 7646 3691 2024 5207 3874 5490 6851 3079 6411 10439 5094 9213 13328 8056 13533 8834

2First and last verses: 14784 = 26 x 3 x 7 x 11.

2.1The odd positioned verses:

5950 3501 7383 5112 2150 4515 1948 2650 4169 5674 4922 3089 3790 7932 3385 3841 3691 5207 5490 3079 10439 9213 8056 8834

Total: 124020 = 22 x 32 x 5 x 13 x 53. There is no corresponding feature with the even positioned verses because these passages cover three very different individuals.

2.2Although there is no corresponding feature with the even positioned verses, divide this list into verses that are odd valued or even valued.

2.2.1Even valued verses:

3046 2140 7172 4596 4068 4842 9006 7646 2024 3874 5094 13328

Total: 66836 = 22 x 72 x 11 x 31.

2.2.2Once again one of the categories failed. But once again we can take every other verse from the failed list of odd valued verses. The odd positioned verses of this list:

2721 3215 3139 5147 6851 13533

Total: 34606 = 2 x 113 x 13. These alternating results seem to indicate there still is something of Revelation 1:8's principle of complementary opposites.

2.3Beginning with the first verse, take every Nth verse after. Six times a value of N produces totals divisible by 13.

2.3.1N is 2:

a) 1    3    5    7    9    11   13   15   17   19   21   23   25   27
b) 5950 3501 7383 5112 2150 4515 1948 2650 4169 5674 4922 3089 3790 7932

a) 29   31   33   35   37   39   41    43   45   47   (Verse position.)
b) 3385 3841 3691 5207 5490 3079 10439 9213 8056 8834 (Verse value.)

Total of the verses found: 124020 = 22 x 32 x 5 x 13 x 53.

2.3.2N is 3:

a) 1    4    7    10   13   16   19   22   25   28   31   34   37   40
b) 5950 2721 5112 7172 1948 4596 5674 4842 3790 5147 3841 2024 5490 6411

a) 43   46       (Verse position.)
b) 9213 13533    (Verse value.)

Total of the verses found: 87464 = 23 x 13 x 292 SF: 77 = 7 x 11.

2.3.3N is 4:

a) 1    5    9    13   17   21   25   29   33   37   41    45   (Verse position.)
b) 5950 7383 2150 1948 4169 4922 3790 3385 3691 5490 10439 8056 (Verse value.)

Total of the verses found: 61373 = 13 x 4721.

2.3.4N is 11:

a) 1    12   23   34   45       (Verse position.)
b) 5950 3215 3089 2024 8056     (Verse value.)

Total of the verses found: 22334 = 2 x 13 x 859.

2.3.5N is 22:

a) 1    23   45       (Verse position.)
b) 5950 3089 8056     (Verse value.)

Total of the verses found: 17095 = 5 x 13 x 263.

2.3.6N is 23:

a) 1    24   47       (Verse position.)
b) 5950 9006 8834     (Verse value.)

Total of the verses found: 23790 = 2 x 3 x 5 x 13 x 61. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

2.3.7It might all appear to be coincidence, but the sum of all the N values that produced multiples of 13 add up to a multiple of 13:

N values: 2 3 4 11 22 23

Total of the N values: 65 = 5 x 13.

2.423 verses are odd valued. Although their total yields nothing, their positions in the combined passage does:

a) 3    4    5    8    11   12   14   17   18   23   26   28   29   30
b) 3501 2721 7383 3681 4515 3215 4591 4169 3139 3089 4621 5147 3385 9355

a) 31   33   35   38   39   40   41    43   46    (Verse position.)
b) 3841 3691 5207 6851 3079 6411 10439 9213 13533 (Verse value.)

Total of the positions (a): 574 = 2 x 7 x 41.

2.5.1Find all verses having positions that are prime numbers.

a) 2    3    5    7    11   13   17   19   23   29   31   37   41
b) 3046 3501 7383 5112 4515 1948 4169 5674 3089 3385 3841 5490 10439

a) 43   47    (Verse position.)
b) 9213 8834  (Verse total.)

Total of these verses (b): 79639 = 7 x 31 x 367.

2.5.2Find all verses that are not in positions that are prime numbers:

a) 1    4    6    8    9    10   12   14   15   16   18   20   21   22
b) 5950 2721 2140 3681 2150 7172 3215 4591 2650 4596 3139 4068 4922 4842

a) 24   25   26   27   28   30   32   33   34   35   36   38   39   40
b) 9006 3790 4621 7932 5147 9355 7646 3691 2024 5207 3874 6851 3079 6411

a) 42   44    45   46    (Verse position.)
b) 5094 13328 8056 13533 (Verse total.)

Total of these verses (b): 174482 = 2 x 7 x 112 x 103.

2.5.3The difference between these two categories of verses: 94843 = 7 x 17 x 797. Every factor has a digit of 7.

2.6Four of the 47 verses are multiples of 13. They are strategically positioned in the combined passage.

Verse position: 36   38   41    46
Verse total:    3874 6851 10439 13533

Total of the positions: 161 = 7 x 23. (Note: Curiously, the other two factors of the sum of the verses both have digits of 7: 34697 = 13 x 17 x 157.)

2.7.1The first verse has a value of 5950. Search for the next in the list that is lower in value. From that point search for the next in the list that is higher in value. Continue alternating in the search.

a) 1    2    3    4    5    6    7    8    10   11   14    15
b) 5950 3046 3501 2721 7383 2140 5112 3681 7172 4515 4591  2650

a) 16   17   19   20   21   22   24   25   26   29   30    31
b) 4596 4169 5674 4068 4922 4842 9006 3790 4621 3385 9355  3841

a) 32   33   35   36   37   39   40   42   43   45   46    47
b) 7646 3691 5207 3874 5490 3079 6411 5094 9213 8056 13533 8834

a) Verse position.
b) Verse value.

Total of the verses (b): 194859 = 33 x 7 x 1031.

2.7.2The opposite searches for the next verse that is higher, then lower, and alternates high and low.

a) 5    6    7    8    10   11   14   15   16   17
b) 5950 7383 2140 5112 3681 7172 4515 4591 2650 4596

a) 20   21   22   24   25   26   29   30   31   32
b) 5674 4068 4922 4842 9006 3790 4621 3385 9355 3841

a) 35   36   37   39   40   42   43   45   46   47
b) 3691 5207 3874 5490 3079 6411 5094 9213 8056 13533

a) Verse position.
b) Verse value.

Total of the verses (b): 185591 = 7 x 26513. SF: 26520 = 23 x 3 x 5 x 13 x 17.

The Words

List of words:
115 338 101 141 224 170 527 19 31 71 66 501 441 492 97 617 501 441 228 60 3 241 26 499 56 140 401 56 15 56 119 620 30 12 321 410 638 172 318 410 260 160 220 401 62 46 213 441 34 186 27 56 363 103 201 283 56 498 30 592 80 146 426 610 718 101 459 441 74 285 492 229 480 630 488 520 530 126 462 65 203 37 277 241 26 499 30 61 26 31 770 447 62 182 31 500 130 473 700 158 37 980 314 41 320 101 241 26 499 687 47 358 187 45 86 30 441 222 411 687 47 248 615 662 248 441 301 417 441 222 24 56 24 401 50 615 31 412 302 31 289 424 132 51 410 241 26 499 41 31 489 90 401 609 395 731 90 227 74 42 14 689 90 53 37 718 90 401 290 55 37 750 90 138 311 241 26 499 513 461 50 64 30 421 441 291 178 241 26 499 121 110 276 241 26 687 45 312 130 681 307 76 86 51 162 30 596 986 36 111 764 180 26 499 481 115 591 61 43 108 380 575 43 66 86 101 8 262 221 26 311 401 281 418 26 426 438 340 283 176 251 26 356 346 27 40 241 26 499 86 501 61 375 98 494 155 521 88 311 100 58 81 407 748 657 62 204 600 62 76 86 531 31 82 30 60 61 3 272 676 27 50 61 56 375 575 400 50 441 61 8 241 26 499 501 31 89 75 800 206 226 90 221 350 640 199 327 167 547 826 133 342 582 620 30 31 281 808 506 303 58 501 61 375 241 26 499 45 9 200 222 169 319 787 60 469 1117 45 107 722 197 374 668 355 77 84 7 137 740 1021 510 84 244 60 199 14 367 360 877 378 947 952 45 107 722 401 147 164 559 318 258 191 541 561 20 680 69 207 561 111 255 104 502 107 252 360 562 20 165 218 745 624 934 941 112 160 163 197 342 20 1610 191 213 45 700 959 651 404 456 60 170 45 502 20 270 779 69 207 561 465 9 401 64 45 107 404 135 213 164 20 459 401 45 259 685 20 259 992 20 37 580 1091 104 502 650 401 20 218 136 213 284 385 401 45 700 694 265 45 725 740 779 20 472 941 20 1601 651 455 9 306 69 566 561 84 107 439 20 200 464 561 20 308 401 292 20 129 300 401 7 224 561 255 109 332 86 1050 273 60 258 350 614 1048 453 95 20 129 300 651 109 169 237 35 270 130 169 45 259 360 401 290 18 64 35 20 370 260 388 160 118 60 188 460 20 125 135 941 20 80 104 141 20 47 896 460 20 7 224 561 219 212 101 219 45 107 105 398 20 456 500 460 20 56 20 599 152 613 20 958 20 118 200 481 830 20 273 299 385 20 60 251 75 401 516 419 20 235 20 45 430 153 20 199 69 9 488 561 690 430 500 20 84 147 383 561 157 171 1045 191 297 60 368 118 14 37 451 20 425 249 215 150 20 162 160 191 561 60 233 360 273 20 101 708 101 45 700 981 379 901 305 308 394 402 531 335 200 20 15 360 531 561 545 481 125 50 45 308 229 101 60 20 451 224 651 45 687 191 20 451 185 147 167 360 369 360 498 197 240 360 273 360 752 20 419 84 160 249 20 84 200 217 561 191 297 417 767 20 449 939 20 118 46 132 896 45 700 636 20 191 947 66 668 210 259 344 259 469 45 653 314 851 104 160 228 160 39 360 273 50 416 272 767 20 272 1559 20 272 1419 20 272 789 20 740 741 75 941 20 272 851 963 105 20 924 20 769 20 699 20 118 160 204 20 450 226 197 100 20 101 708 941 416 246 200 285 136 360 361 84 360 409 20 136 360 857 561 20 190 160 204 20 135 561 60 1483 60 327 101 142 824 561 45 159 278 450 314 160 516 360 364 20 450 1041 107 133 561 841 180 69 264 104 147 146 360 500 197 252 45 622 20 69 228 373 45 107 481 360 361 84 360 409 107 445 15 360 531 561 20 212 101 186 882 15 740 821 941

3The number of words has three levels of factors divisible by 7: 854 = 2 x 7 x 61. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

3.1Exactly 7 pairs of words can be found that are Nth and Nth last in the combined passage. Each pair total is a multiple of seven, and each individual word is also a multiple of 7.

a) Nth word:  5    18  30  78  185 254 347
b) Value:     224  441 56  126 441 98  7
c) Nth last:  850  837 825 777 670 601 508
d) Value:     882  84  252 84  147 84  651
e) Sum:       1106 525 308 210 588 182 658

Sum of positions (a + c): 5985 = 32 x 5 x 7 x 19. Since there are seven pairs, and the Nth plus Nth last positions all come to the same total, it is mathematically fixed that this total is divisible by 7. This doesn't explain why the Nth and Nth last positions separately are also multiples of 7. The sum of the Nth positions (a): 917 = 7 x 131. The sum of the Nth last positions (c): 5068 = 22 x 7 x 181. It also doesn't explain why the sum of (b) and (d) is 3577, which has an extra factor of seven (72 x 73), with all factors having a digit of 7.

3.2Over 1500 sub-features can be found in the 854 words when alternating groups of words are extracted and this process is repeated on those results over and over.

3.3Divide the words into two groups: odd valued and even valued.

3.3.1Precisely 413 words (7 x 59} are odd valued. They are providentially positioned in the passage. The total of their positions: 174097 = 72 x 11 x 17 x 19. (There are two factors of 7.)

3.3.2Exactly 441 words (32 x 72) are even valued. They too appear to have been positioned properly. The total of their positions: 190988 = 22 x 7 x 19 x 359. (Once again there are two factors of 7.)

3.4Similar to the previous feature, because there are 854 words, this means 147 (3 x 72) words will be in positions that are prime numbers. And 707 (7 x 101) words will be in positions that are not prime numbers. Unfortunately, there are no other features from the total of these words or their positions.

3.5.1104 (23 x 13) words are divisible by 7, but there is no other feature.

3.5.2The remaining 750 words are not divisible by 7. Their total has no feature, but the total of their positions is 321932 (22 x 13 x 41 x 151).

3.6When the words are added one by one, 62 times the accumulated total will be a multiple of 13.

a) 14  25  38   40  41  52  59  107 108 149 151 155
b) 492 56  172  410 260 56  30  241 26  41  489 395

a) 170 175 192  211 238 243 262 268 306 308 319 323
b) 55  311 110  764 340 356 81  600 199 167 506 61

a) 381 382 401  410 423 431 454 479 491 493 503 513
b) 255 104 1610 60  64  459 45  464 561 109 453 270

a) 514 515 557  569 578 585 604 617 626 649 655 670
b) 130 169 20   20  20  20  561 425 60  531 45  147

a) 684 687 719  735 772 778 780 798 804 806 820 833
b) 84  20  314  20  200 360 20  824 314 516 147 107

a) 834 848 (Word position.)
b) 481 101 (Word value.)

The total of the positions where this happens (a): 27352 = 23 x 13 x 263. The total of these words (b): 16328 = 23 x 13 x 157.

3.6.1Where the accumulated total is an odd number, the total of the words will be 128177 (7 x 18311).

3.6.2Where the accumulated total is an even number, the total of the words will be 125944 (23 x 7 x 13 x 173).

3.7God and Jesus were both present as the beginning of our world. As a result, it is possible to group the words into alternating groups of M and N-number of words where M and N are multiples of 7 or 13.

3.7.1Alternating groups of 7 and 7.

3.7.1.1Groups of 7: 121639 = 7 x 17377.

3.7.1.2Groups of 7: 132482 = 2 x 7 x 9463.

3.7.2Alternating groups of 420 and 7.

3.7.2.1Groups of 420: 249270 = 2 x 3 x 5 x 7 x 1187. SF: 1204 = 22 x 7 x 43.

3.7.2.2Groups of 7: 4851 = 32 x 72 x 11.

3.7.3Alternating groups of 14 and 14.

3.7.3.1Groups of 14: 128730 = 2 x 3 x 5 x 7 x 613. SF: 630 = 2 x 32 x 5 x 7.

3.7.3.2Groups of 14: 125391 = 3 x 72 x 853.

3.7.4Alternating groups of 14 and 266.

3.7.4.1Groups of 14: 16044 = 22 x 3 x 7 x 191.

3.7.4.2Groups of 266: 238077 = 32 x 7 x 3779.

3.7.5Alternating groups of 413 and 14.

3.7.5.1Groups of 413: 244755 = 33 x 5 x 72 x 37. SF: 65 = 5 x 13.

3.7.5.2Groups of 14: 9366 = 2 x 3 x 7 x 223.

3.7.6Alternating groups of 35 and 238.

3.7.6.1Groups of 35: 35952 = 24 x 3 x 7 x 107.

3.7.6.2Groups of 238: 218169 = 32 x 7 x 3463.

3.7.7Alternating groups of 42 and 161.

3.7.7.1Groups of 42: 59647 = 7 x 8521. SF: 8528 = 24 x 13 x 41.

3.7.7.2Groups of 161: 194474 = 2 x 7 x 29 x 479.

3.7.8Altenating groups of 406 and 42.

3.7.8.1Groups of 406: 241157 = 7 x 47 x 733.

3.7.8.2Groups of 42: 12964 = 22 x 7 x 463.

3.7.9Alternating groups of 378 and 49.

3.7.9.1Groups of 378: 221011 = 7 x 31573.

3.7.9.2Groups of 49: 33110 = 2 x 5 x 7 x 11 x 43.

3.7.10Alternating groups of 52 and 70.

3.7.10.1Groups of 52: 103719 = 3 x 7 x 11 x 449.

3.7.10.2Groups of 70: 150402 = 2 x 3 x 7 x 3581.

3.7.11Alternating groups of 126 and 56.

3.7.11.1Groups of 126: 187999 = 7 x 107 x 251.

3.7.11.2Groups of 56: 66122 = 2 x 7 x 4723. SF: 4732 = 22 x 7 x 132.

3.7.12Alternating groups of 56 and 371.

3.7.12.1Groups of 56: 33607 = 7 x 4801.

3.7.12.2Groups of 371: 220514 = 2 x 7 x 19 x 829.

3.7.13Alternating groups of 392 and 70.

3.7.13.1Groups of 392: 229138 = 2 x 7 x 13 x 1259. SF: 1281 = 3 x 7 x 61.

3.7.13.2Groups of 70: 24983 = 7 x 43 x 83. SF: 133 = 7 x 19. SF: 26 = 2 x 13.

3.7.14Alternating groups of 98 and 329.

3.7.14.1Groups of 98: 57169 = 7 x 8167.

3.7.14.2Groups of 329: 196952 = 23 x 7 x 3517.

3.7.15Alternating groups of 133 and 294.

3.7.15.1Groups of 133: 75810 = 2 x 3 x 5 x 7 x 192.

3.7.15.2Groups of 294: 178311 = 3 x 72 x 1213.

3.7.16Alternating groups of 294 and 133.

3.7.16.1Groups of 294: 163548 = 22 x 32 x 7 x 11 x 59.

3.7.16.2Groups of 133: 90573 = 3 x 7 x 19 x 227.

3.7.17Alternating groups of 140 and 217.

3.7.17.1Groups of 140: 135583 = 72 x 2767.

3.7.17.2Groups of 217: 118538 = 2 x 7 x 8467. SF: 8476 = 22 x 13 x 163.

3.7.18Alternating groups of 231 and 196.

3.7.18.1Groups of 231: 128345 = 5 x 7 x 19 x 193. SF: 224 = 25 x 7.

3.7.18.2Groups of 196: 125776 = 24 x 7 x 1123.

3.7.19Alternating groups of 203 and 224.

3.7.19.1Groups of 203: 111664 = 24 x 7 x 997.

3.7.19.2Groups of 224: 142457 = 7 x 47 x 433.

3.7.20Alternating groups of 308 and 238.

3.7.20.1Groups of 308: 175966 = 2 x 7 x 12569.

3.7.20.2Groups of 238: 78155 = 5 x 72 x 11 x 29.

3.7.21Alternating groups of 259 and 336.

3.7.21.1Groups of 259: 152166 = 2 x 3 x 7 x 3623.

3.7.21.2Groups of 336: 101955 = 3 x 5 x 7 x 971.

3.7.22Alternating groups of 273 and 308.

3.7.22.1Groups of 273: 158893 = 7 x 22699.

3.7.22.2Groups of 308: 95228 = 22 x 7 x 19 x 179.

3.8The first word has a value of 115. Find the next word that is lower in value. From that point find the following word that is higher in value. Continue searching alternating between lower and higher until the entire list is covered. The total of the words found: 117152 = 25 x 7 x 523.

The First And Last Letters Of Each Word

Totals for each word:
15 308 50 11 24 40 46 11 31 11 55 201 41 80 26 405 201 41 48 10 3 201 15 490 16 70 401 50 8 16 9 8 30 6 320 120 406 80 8 120 206 100 206 401 12 40 106 41 22 86 12 35 50 45 7 11 35 440 15 46 30 110 46 500 16 41 39 16 74 240 42 46 46 230 16 500 500 6 46 16 203 7 20 201 15 490 30 11 15 31 310 46 12 12 31 60 40 41 100 50 7 340 306 11 11 41 201 15 490 46 7 52 75 41 41 30 41 140 11 46 7 120 205 11 7 41 90 16 41 140 15 26 11 401 50 205 31 402 205 16 89 12 16 51 402 201 15 490 41 31 9 70 401 401 45 16 70 7 74 12 14 16 70 32 7 410 70 401 90 10 7 430 70 55 7 201 15 490 12 41 50 45 30 406 41 91 98 201 15 490 14 80 44 201 15 46 45 56 90 41 301 74 41 11 72 30 306 46 16 11 500 50 15 490 11 7 80 47 43 56 80 205 43 8 41 12 8 56 20 15 301 401 206 8 15 76 8 260 57 36 40 15 16 306 12 40 201 15 490 70 201 11 75 65 16 110 220 40 301 100 8 9 7 46 46 52 190 100 52 74 41 230 31 76 30 10 45 3 202 220 12 50 47 36 75 205 400 15 41 45 6 201 15 490 201 31 12 70 600 86 11 70 20 310 600 95 7 7 46 46 30 140 46 240 30 16 201 800 420 240 42 201 11 75 201 15 490 45 9 190 97 95 79 99 120 92 50 45 107 605 190 99 60 35 47 83 14 3 140 100 150 83 45 120 170 5 207 300 270 110 307 92 45 107 605 10 140 100 210 95 75 190 190 201 19 65 69 93 201 110 95 95 39 107 12 300 71 19 65 65 45 5 41 41 11 160 95 190 95 19 140 190 97 45 700 240 91 240 99 120 160 45 39 19 70 45 69 93 201 130 9 41 14 45 107 91 47 97 100 19 41 41 45 190 130 19 190 93 19 37 95 240 95 39 91 41 19 65 31 97 190 45 41 45 700 609 50 45 630 140 44 19 2 41 19 6 91 65 9 160 69 91 201 14 107 99 19 190 41 201 19 99 41 45 19 45 160 41 14 110 201 140 109 95 47 150 209 120 150 290 610 69 45 95 19 45 160 91 109 69 10 35 70 12 69 45 190 300 160 230 13 14 35 19 10 260 130 160 81 120 45 91 19 17 130 41 19 47 95 48 19 47 290 91 19 14 110 201 13 71 101 81 45 107 11 91 19 99 110 91 19 8 19 409 71 608 19 91 19 45 140 100 47 19 209 99 110 19 120 100 75 41 100 160 19 91 19 45 11 19 19 79 69 9 69 201 690 350 160 19 14 140 50 201 5 71 45 61 43 120 150 100 14 37 91 19 160 49 42 10 19 19 160 61 201 120 110 300 208 19 101 91 101 45 700 660 16 601 305 99 110 14 42 60 50 19 15 300 180 201 14 81 61 10 45 8 77 101 12 19 91 79 91 45 680 91 19 91 79 140 60 300 260 300 208 190 150 300 208 300 160 19 14 14 160 49 19 14 140 70 201 61 43 92 42 19 100 50 19 45 6 41 6 45 700 607 19 45 307 37 60 110 190 150 190 160 45 39 9 95 95 160 44 160 31 300 208 10 305 180 42 19 180 440 19 180 49 19 180 49 19 140 50 75 41 19 180 110 45 105 19 44 19 70 19 70 19 45 160 48 19 190 92 190 93 19 101 91 41 91 79 140 110 31 300 210 14 300 209 19 31 300 180 201 19 12 160 48 19 130 201 120 590 120 160 101 91 45 201 45 150 45 190 110 160 401 300 208 19 190 160 107 14 201 96 45 69 64 95 140 60 300 160 190 100 45 608 19 69 29 41 45 107 81 300 210 14 300 209 107 12 15 300 180 201 19 71 101 61 45 15 140 130 41

4.0.1The first and last letters of each word: 96411 = 3 x 7 x 4591.

4.0.2The positions of these first and last letters in the combined passage: 3184116 = 22 x 3 x 13 x 20411.

4.1The first and last of the first and last letters of each word (15 + 41): 56 = 23 x 7. SF: 13.

4.2From the list in feature 4, taking every Nth, the following values of N produce totals divisible by 13:

12 14 19 40 47 56 69 83 95 143 150 167 174 184 186 192 209 263 270 303 306 308 335 345 364 410 422

Total of the N values: 5166 = 2 x 32 x 7 x 41. SF: 56 = 23 x 7. SF: 13.

4.2.1The very first and last N values that succeeded are 12 and 422: 434 (2 x 7 x 31).

4.2.218 of the N values have a first digit that is odd valued:

12 14 19 56 95 143 150 167 174 184 186 192 303 306 308 335 345 364

Total of these N values: 3353 = 7 x 479.

4.2.39 of the N values have a first digit that is even valued:

40 47 69 83 209 263 270 410 422

Total of these N values: 1813 = 72 x 37.

4.3.1535 of the totals in feature 4 have an odd valued first digit. Their sum has no feature, but their positions in the list of feature 4 is 239568 = 24 x 3 x 7 x 23 x 31.

4.3.2319 of the totals in feature 4 have an even valued first digit. Their positions in the list: 125517 = 3 x 7 x 43 x 139.

4.4Precisely 133 (7 x 19. SF: 26 = 2 x 13) of the totals in feature 4 are multiples of 7.

a) 2   24  26 37  52 55 57 71 81  82 86  101 109 111 118 121 125 130
b) 308 490 70 406 35 7  35 42 203 7  490 7   490 7   140 7   7   140

a) 148 152 157 158 161 163 165 167 171 173 175 178 184 186 187 190 191
b) 490 70  70  7   14  70  7   70  7   70  7   490 406 91  98  490 14

a) 198 201 214 216 220 228 231 249 250 259 263 294 298 302 307 308 312
b) 56  301 490 7   56  56  301 490 70  301 7   490 70  70  7   7   140

a) 319 321 327 344 347 349 367 369 401 405 407 415 423 426 445 455 456
b) 420 42  490 35  14  140 140 210 140 700 91  70  14  91  91  700 609

a) 459 460 467 472 474 489 492 508 512 513 522 523 532 544 546 556 560
b) 630 140 91  91  14  14  140 91  35  70  14  35  91  91  14  91  91

a) 568 571 586 598 601 602 613 615 618 619 632 635 642 643 651 657 661
b) 91  140 91  350 14  140 14  91  49  42  91  700 14  42  14  77  91

a) 663 666 668 670 683 684 686 688 689 690 695 705 731 737 740 742 750
b) 91  91  91  140 14  14  49  14  140 70  42  700 42  49  49  140 105

a) 754 756 768 770 772 776 777 797 813 820 836 837 852 (Position in list.)
b) 70  70  91  91  140 210 14  91  14  140 210 14  140 (Total.)

Total of the positions (a): 56576 = 28 x 13 x 17.
The sum of the totals (b) is naturally divisible by 7, but the surprise is that it is divisible by 7 four times: 19208 = 23 x 74.

4.5The middle N number of totals in feature are divisible by 13 when N is one of the following:

754 748 746 744 722 680 656 644 612 584 554 550 548 464 452 414 380 368 342 338 276 262 254 194 182 178 148 66 48

Total of the N values: 12908 = 2 x 2 x 7 x 461.

4.6Beginning with the first total in feature 4, take every Nth after while increasing N by 1 each time.

a) 1   2   4   7   11  16  22  29  37  46  56  67
b) 1   2   3   4   5   6   7   8   9   10  11  12
c) 15  308 11  46  55  405 201 8   406 40  11  39

a) 79  92  106 121 137 154 172 191 211 232 254 277
b) 13  14  15  16  17  18  19  20  21  22  23  24
c) 46  46  41  7   31  401 430 14  500 401 65  45

a) 301 326 352 379 407 436 466 497 529 562 596 631
b) 25  26  27  28  29  30  31  32  33  34  35  36
c) 11  15  83  201 91  19  6   209 81  8   201 101

a) 667 704 742 781 821 (Position in feature 4 list.)
b) 37  38  39  40  41  (Increasing N.)
c) 19  45  140 31  60  (Total found.)

Sum of the totals found (c): 4893 = 3 x 7 x 233.

4.7When the totals in feature 4 are added one by one, sometimes the cumulative total will be an odd number, and sometimes an even number.

4.7.1The times where the cumulative total is an odd number, the total of the word positions where this occurs is 176722 (2 x 7 x 13 x 971).

4.7.2The times where the cumulative total is an even number, the total of the word positions where this occurs is 188363 (7 x 71 x 379).

4.7.3126 (2 x 32 x 7) times the position in the list, the total of the first and last word, and the accumulated total will all be odd numbers. The sum of the positions in this case: 59514 = 2 x 3 x 7 x 13 x 109.

4.7.4119 (7 x 17) times the position in the list, the total of the first and last word, and the accumulated total will all be even numbers. The sum of the totals in this case: 18122 (2 x 13 x 17 x 41). The total of the positions in the list: 43904 = 27 x 73. SF: 35 = 5 x 7.

4.8Since God and Jesus were both present at the beginning of the world (John 1:1), the list in feature 4 can be gathered into alternating groups of M and N-number of totals, where M and N are multiples of 7 or 13.

4.8.1Alternating groups of 14 and 7.

4.8.1.1Groups of 14: 65065 = 5 x 7 x 11 x 132. SF: 49 = 72 SF: 14 = 2 x 7.

4.8.1.2Groups of 7: 31346 = 2 x 7 x 2239.

4.8.2Alternating groups of 14 and 56.

4.8.2.1Groups of 14: 23870 = 2 x 5 x 7 x 11 x 31. SF: 56 = 23 x 7. SF: 13.

4.8.2.2Groups of 56: 72541 = 7 x 43 x 241.

4.8.3Alternating groups of 21 and 28.

4.8.3.1Groups of 21: 42315 = 3 x 5 x 7 x 13 x 31.

4.8.3.2Groups of 28: 54096 = 24 x 3 x 72 x 23.

4.8.4Alternating groups of 35 and 238.

4.8.4.1Groups of 35: 15603 = 3 x 7 x 743.

4.8.4.2Groups of 238: 80808 = 23 x 3 x 7 x 13 x 37.

4.8.5Alternating groups of 49 and 112.

4.8.5.1Groups of 49: 34678 = 2 x 7 x 2477.

4.8.5.2Groups of 112: 61733 = 7 x 8819.

4.8.6Alternating groups of 70 and 52.

4.8.6.1Groups of 70: 54698 = 2 x 7 x 3907.

4.8.6.2Groups of 52: 41713 = 7 x 59 x 101.

4.8.7Alternating groups of 371 and 56.

4.8.7.1Groups of 371: 83181 = 3 x 7 x 17 x 233. SF: 260 = 22 x 5 x 13.

4.8.7.2Groups of 56: 13230 = 2 x 33 x 5 x 72.

4.8.8Alternating groups of 63 and 364.

4.8.8.1Groups of 63: 12544 = 28 x 72.

4.8.8.2Groups of 364: 83867 = 7 x 11981.

4.8.9Alternating groups of 70 and 126.

4.8.9.1Groups of 70: 39690 = 2 x 34 x 5 x 72.

4.8.9.2Groups of 126: 56721 = 3 x 7 x 37 x 73.

4.8.10Alternating groups of 140 and 98.

4.8.10.1Groups of 140: 62055 = 32 x 5 x 7 x 197.

4.8.10.2Groups of 98: 34356 = 22 x 3 x 7 x 409.

4.8.11Alternating groups of 98 and 280.

4.8.11.1Groups of 98: 32991 = 3 x 7 x 1571.

4.8.11.2Groups of 280: 63420 = 22 x 3 x 5 x 7 x 151.

4.8.12Alternating groups of 119 and 308.

4.8.12.1Groups of 119: 24367 = 7 x 592.

4.8.12.2Groups of 308: 72044 = 22 x 7 x 31 x 83.

4.8.13Alternating groups of 140 and 287.

4.8.13.1Groups of 140: 28756 = 22 x 7 x 13 x 79.

4.8.13.2Groups of 287: 67655 = 5 x 7 x 1933.

4.8.14Alternating groups of 287 and 140.

4.8.14.1Groups of 287: 61936 = 24 x 72 x 79.

4.8.14.2Groups of 140: 34475 = 52 x 7 x 197.

4.8.15Alternating groups of 357 and 140.

4.8.15.1Groups of 357: 80689 = 7 x 11527.

4.8.15.2Groups of 140: 15722 = 2 x 7 x 1123.

4.8.16Alternating groups of 182 and 154.

4.8.16.1Groups of 182: 62181 = 33 x 72 x 47. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

4.8.16.2Groups of 154: 34230 = 2 x 3 x 5 x 7 x 163.

4.8.17Alternating groups of 259 and 168.

4.8.17.1Groups of 259: 56301 = 3 x 72 x 383.

4.8.17.2Groups of 168: 40110 = 2 x 3 x 5 x 7 x 191. SF: 208 = 24 x 13. SF: 21 = 3 x 7.

4.8.18Alternating groups of 189 and 238.

4.8.18.1Groups of 189: 39158 = 2 x 7 x 2797.

4.8.18.2Groups of 238: 57253 = 7 x 8179.

4.8.19Alternating groups of 210 and 217.

4.8.19.1Groups of 210: 44380 = 22 x 5 x 7 x 317.

4.8.19.2Groups of 217: 52031 = 7 x 7433.

4.8.20Alternating groups of 245 and 364.

4.8.20.1Groups of 245: 55867 = 7 x 23 x 347. SF: 377 = 13 x 29. SF: 42 = 2 x 3 x 7.

4.8.20.2Groups of 364: 40544 = 25 x 7 x 181.

4.9Starting with the first total in feature 4, which is an odd number, search for the next in the list that is an even number. Continue searching for the next odd number, and then the next even number until the whole list is covered. Sum of the totals found: 48828 = 22 x 3 x 13 x 313.

The First Letter Of Each Word

List of first letters:
5 300 40 6 4 30 6 10 1 5 5 1 1 40 6 5 1 1 8 5 2 1 10 90 6 40 1 10 2 6 5 2 20 5 20 40 6 40 6 40 6 20 6 1 2 30 6 1 20 6 6 30 40 40 2 6 30 40 10 6 20 70 6 100 6 1 30 6 70 40 2 6 6 30 6 300 300 1 6 6 3 6 10 1 10 90 20 1 10 30 300 6 2 10 30 20 30 1 60 40 6 300 300 1 6 1 1 10 90 6 2 50 5 1 1 20 1 100 1 6 2 100 5 6 2 1 50 6 1 100 5 20 5 1 20 5 1 2 5 6 9 2 6 50 2 1 10 90 1 30 1 30 1 1 5 6 30 2 70 2 4 6 30 2 6 10 30 1 80 5 6 400 30 5 2 1 10 90 6 1 20 5 20 400 1 1 8 1 10 90 8 70 4 1 10 6 40 50 70 1 300 70 1 6 2 20 300 40 6 5 100 40 10 90 6 1 40 7 3 50 70 200 3 2 1 6 1 50 10 10 1 1 200 6 10 6 6 60 7 30 30 10 6 300 6 30 1 10 90 30 1 1 70 60 6 70 20 10 1 70 2 5 1 6 6 2 90 30 2 70 1 30 30 70 20 5 5 2 2 20 6 20 7 6 70 200 100 6 1 5 5 1 10 90 1 30 10 30 300 6 6 30 10 300 300 90 6 2 6 6 20 40 6 200 20 10 1 400 20 200 2 1 1 70 1 10 90 5 4 100 7 5 70 9 60 2 10 5 100 5 100 9 20 30 7 3 7 2 100 60 60 3 5 60 80 4 7 100 70 20 300 2 5 100 5 5 100 60 10 5 70 100 100 1 10 5 60 3 1 10 5 5 9 100 5 100 70 10 60 5 5 4 1 1 10 100 5 100 5 10 100 100 7 5 100 200 1 200 9 60 70 5 9 10 60 5 60 3 1 40 4 1 5 5 100 90 7 7 60 10 1 1 5 100 90 10 100 3 10 30 5 200 5 9 1 1 10 5 30 7 100 5 1 5 100 9 10 5 30 100 4 10 1 1 10 5 1 5 4 70 60 1 1 5 100 90 10 100 1 1 10 9 1 5 10 5 70 1 7 30 1 100 100 5 7 60 9 60 70 90 10 60 5 90 10 5 70 1 100 60 5 30 60 7 60 5 100 100 70 30 4 5 30 10 1 60 90 100 80 60 5 1 10 10 30 1 10 7 5 40 10 7 200 1 10 7 30 1 4 70 100 80 5 100 10 1 10 9 70 90 10 7 10 400 70 8 10 1 10 5 100 60 7 10 9 9 20 10 60 10 5 1 10 70 10 1 10 5 4 10 10 70 60 4 60 1 600 300 70 10 5 100 10 1 4 70 5 60 3 60 60 60 5 30 1 10 70 9 2 1 10 10 100 60 1 60 20 100 8 10 100 90 100 5 100 60 7 1 5 9 20 5 2 20 10 10 5 100 90 1 5 80 60 9 5 1 70 100 5 10 1 70 1 5 80 90 10 1 70 100 20 100 60 100 8 100 60 100 8 100 70 10 5 5 100 9 10 5 100 30 1 60 3 2 2 10 10 10 10 5 5 1 5 5 100 7 10 5 300 30 20 70 100 60 100 70 5 30 4 90 5 100 4 100 30 100 8 9 300 90 2 10 90 400 10 90 9 10 90 9 10 100 10 5 1 10 90 70 5 100 10 4 10 30 10 30 10 5 100 8 10 100 2 100 3 10 100 90 1 90 70 100 70 30 100 10 5 100 9 10 30 100 90 1 10 5 100 8 10 30 1 60 500 60 70 100 90 5 1 5 60 5 100 20 100 400 100 8 10 100 70 100 5 1 6 5 60 4 5 100 20 100 70 100 10 5 8 10 60 20 1 5 100 80 100 10 5 100 9 100 5 5 100 90 1 10 70 100 60 5 5 100 90 1

5Total of the first letters: 34027 = 7 x 4861.

5.0.1Total of the positions of the first letters: 1590537 = 3 x 13 x 17 x 2399.

5.1Just over 200 sub-features reside in the first letters of each word when alternating groups of letters are extracted from the list, and the process is repeated over and over on the results.

5.2Divide the first letters into two groups depending on whether they are odd valued, or even valued.

5.2.1273 (3 x 7 x 13} of the first letters are odd valued. Their total: 1029 = 3 x 73.

5.2.2581 (7 x 83} of the first letters are even valued: 32998 = 2 x 7 x 2357. SF: 2366 = 2 x 7 x 132 SF: 35 = 5 x 7.

5.3.1Exactly 175 (52 x 7) of the first letters are prime numbers.

5.3.2This means exactly 679 (7 x 97; SF: 104 = 23 x 13) of the first letter are not prime numbers.

5.466 of the first letters are divisible by 7:

a) 62 69 159 192 199 202 218 221 239 253 256 260 270 274 283 285 324
b) 70 70 70  70  70  70  7   70  7   70  70  70  70  70  7   70  70

a) 331 333 345 347 357 359 371 387 403 411 427 428 450 470 487 489 495
b) 7   70  7   7   7   70  70  70  7   70  7   7   7   70  70  7   7

a) 499 507 514 519 538 542 546 550 559 562 565 573 584 592 599 606 617
b) 70  70  7   70  7   7   7   70  70  7   70  7   70  70  70  70  70

a) 637 657 662 669 681 706 712 716 748 771 773 795 811 823 847
b) 7   70  70  70  70  7   70  70  70  70  70  70  70  70  70

a) Word position of first letter.
b) Letter value.

Total of the positions (a): 31136 = 25 x 7 x 139. SF: 156 = 22 x 3 x 13.

5.5.1122 of the first letters are in word positions divisible by 7:

6 40 2 10 20 20 20 6 6 40 300 1 300 1 6 50 1 1 5 6 10 1 4 1 2 5 10 6 1 5 40 2 1 60 6 1 1 2 30 20 100 90 6 2 20 1 4 2 20 60 7 100 70 3 5 4 5 200 9 40 7 100 5 5 100 10 4 90 1 30 9 90 5 100 1 1 5 7 5 90 10 10 5 5 60 100 3 10 100 10 7 20 5 100 80 100 8 9 3 5 10 60 5 9 10 100 5 30 2 90 5 1 1 5 100 100 5 5 100 100 70 1

Total of these letters: 3926 = 2 x 13 x 151.

5.5.265 (5 x 13) of the first letters are in word positions divisible by 13:

1 40 6 30 6 1 300 1 1 100 6 6 80 5 10 40 70 6 1 70 30 200 300 40 1 5 60 100 60 5 7 5 60 200 100 5 10 5 70 30 10 7 70 60 10 300 60 60 7 1 1 100 100 1 100 9 10 30 100 10 500 400 5 5 1

Total of these letters: 4030 = 2 x 5 x 13 x 31.

5.6The middle N-number of first letters adds up to a multiple of 13 when N is one of the following:

852 850 824 808 806 804 774 762 744 722 686 674 652 598 548 528 524 518 508 416 382 362 332 330 316 298 224 204 138 136 102 90 52 44 10

Total of the N-values (there are 35 of them): 16618 = 2 x 7 x 1187.

5.7Beginning with the first letter of the list in feature 5, take every Nth after, with N increasing by 1 each time.

a) 1   2   4   7   11  16  22  29  37  46  56  67  79  92  106 121
b) 1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16
c) 5   300 6   6   5   5   1   2   6   30  6   30  6   6   1   2

a) 137 154 172 191 211 232 254 277 301 326 352 379 407 436 466 497
b) 17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32
c) 1   1   400 8   100 1   60  5   6   10  3   1   1   10  5   9

a) 529 562 596 631 667 704 742 781 821 (Word position.)
b) 33  34  35  36  37  38  39  40  41  (Increasing N.)
c) 80  7   1   100 10  5   100 30  20  (First letter found.)

Total of first letters found (c): 1391 = 13 x 107.

5.8.1When the first letters of each word are added one by one, sometimes the accumulated total will be an odd number. The cases where this happens, the total of the letters: 16527 = 3 x 7 x 787.

5.8.2Sometimes the accumulated total will be an even number. Total of the first letters where this happens: 17500 = 22 x 54 x 7.

5.9The table below summarizes the number of times a letter value appeared as a first letter. Revelation 1:8's principle of complementary opposites can be applied to the table columns depending on whether a value is odd or even, or a prime number or not a prime number.

a)  b)  c)   d)         a)  b)  c)   d)
1   111 111  40063      40  18  720  2598
2   35  70   9387       50  6   300  1029
3   11  33   4522       60  45  2700 24304
4   18  72   8657       70  45  3150 21706
5   108 540  52003      80  7   560  3756
6   60  360  9595       90  34  3060 16987
7   21  147  9430       100 88  8800 51658
8   12  96   6856       200 9   1800 3174
9   22  198  12031      300 16  4800 4408
10  104 1040 51966      400 6   2400 2778
20  31  620  10424      500 1   500  793
30  45  1350 16363      600 1   600  597

a) Letter value.    b) Number of occurrences.
c) Total (a x b).   d) Total of positions.

5.9.1The number of occurrences (column B) of odd valued letters (column A) total: 273 = 3 x 7 x 13.

5.9.1.1The total value of the letters in feature 5.9.1 (column C): 1029 = 3 x 73.

5.9.2The number of occurrences (column B) of even valued letters (column A) total: 581 = 7 x 83.

5.9.2.1The total value of these letters in feature 5.9.2 (column C): 32998 = 2 x 7 x 2357. SF: 2366 = 2 x 7 x 132 SF: 35 = 5 x 7.

5.9.3.1Total of the letters (column A) where the value in column C is an odd number: 1573 = 112 x 13. SF: 35 = 5 x 7.

5.9.3.1.1Total of column C in feature 5.9.3.1: 11641 = 7 x 1663.

5.9.3.2Total of the letters (column A) where the value in column C is an even number: 1022 = 2 x 7 x 73.

5.9.3.2.1Total of column C in feature 5.9.3.2: 22386 = 2 x 3 x 7 x 13 x 41.

5.9.4.1Where the total of the positions (column D) is an odd number, the number of appearances (column B) total 441 (32 x 72).

5.9.4.1.1The total of column C in feature 5.9.4.1: 7161 = 3 x 7 x 11 x 31. SF: 52 = 22 x 13.

5.9.4.2Where the total of the positions (column D) is an even number, the number of appearances (column B) total 413 (7 x 59).

5.9.4.2.1The total of column C in feature 5.9.4.2: 26866 = 2 x 7 x 19 x 101.

5.9.5.1Where the letter value (column A) is a prime number, the total of their occurrences (column B) is a multiple of 7: 175 = 52 x 7.

5.9.5.2Where the letter value (column A) is not a prime number, the total of their occurrences (column B) is also a multiple of 7: 679 = 7 x 97.

5.9.6.1Where the number of appearances (column B) is a prime number, the total of the occurrences (column B) is again divisible by 7: 49 = 72. SF: 14 = 2 x 7.

5.9.6.2Where the number of appearances (column B) is not a prime number, the total of the occurrences (column B) is again divisible by 7: 805 = 5 x 7 x 23. SF: 35 = 5 x 7.

5.10Divide the list in feature 5 into seven sections of 122 each and add up each section.

5.10.1Odd valued segments of 122: 5173 = 7 x 739.

5.10.2Even valued segments of 122: 28854 = 2 x 32 x 7 x 229.

5.11Divide the list in feature 5 into alternating groups of M and N-number of letters where M and N are multiples of 7 or 13.

5.11.1Alternating groups of 7 and 7.

5.11.1.1Groups of 7: 16317 = 32 x 72 x 37.

5.11.1.2Groups of 7: 17710 = 2 x 5 x 7 x 11 x 23.

5.11.2Alternating groups of 280 and 7.

5.11.2.1Groups of 280: 33425 = 52 x 7 x 191. SF: 208 = 24 x 13. SF: 21 = 3 x 7.

5.11.2.2Groups of 7: 602 = 2 x 7 x 43. SF: 52 = 22 x 13.

5.11.3Alternating groups of 14 and 154.

5.11.3.1Groups of 14: 3563 = 7 x 509.

5.11.3.2Groups of 154: 30464 = 28 x 7 x 17.

5.11.4Alternating groups of 14 and 266.

5.11.4.1Groups of 14: 2331 = 32 x 7 x 37.

5.11.4.2Groups of 266: 31696 = 24 x 7 x 283.

5.11.5Alternating groups of 119 and 28.

5.11.5.1Groups of 119: 28791 = 32 x 7 x 457.

5.11.5.2Groups of 28: 5236 = 22 x 7 x 11 x 17. SF: 39 = 3 x 13.

5.11.6Alternating groups of 70 and 42.

5.11.6.1Groups of 70: 21007 = 7 x 3001.

5.11.6.2Groups of 42: 13020 = 22 x 3 x 5 x 7 x 31.

5.11.7Alternating groups of 56 and 77.

5.11.7.1Groups of 56: 14861 = 7 x 11 x 193.

5.11.7.2Groups of 77: 19166 = 2 x 7 x 372

5.11.8Alternating groups of 371 and 56.

5.11.8.1Groups of 371: 29050 = 2 x 52 x 7 x 83.

5.11.8.2Groups of 56: 4977 = 32 x 7 x 79.

5.11.9Alternating groups of 84 and 70.

5.11.9.1Groups of 84: 19600 = 24 x 52 x 72

5.11.9.2Groups of 70: 14427 = 32 x 7 x 229.

5.11.10Alternating groups of 385 and 84.

5.11.10.1Groups of 385: 31178 = 2 x 7 x 17 x 131.

5.11.10.2Groups of 84: 2849 = 7 x 11 x 37.

5.11.11Alternating groups of 378 and 98.

5.11.11.1Groups of 378: 30716 = 22 x 7 x 1097.

5.11.11.2Groups of 98: 3311 = 7 x 11 x 43.

5.11.12Alternating groups of 196 and 133.

5.11.12.1Groups of 196: 22631 = 7 x 53 x 61.

5.11.12.2Groups of 133: 11396 = 22 x 7 x 11 x 37.

5.11.13Alternating groups of 357 and 140.

5.11.13.1Groups of 357: 29043 = 32 x 7 x 461.

5.11.13.2Groups of 140: 4984 = 23 x 7 x 89.

5.11.14Alternating groups of 182 and 154.

5.11.14.1Groups of 182: 21035 = 5 x 7 x 601.

5.11.14.2Groups of 154: 12992 = 26 x 7 x 29.

5.11.15Alternating groups of 161 and 266.

5.11.15.1Groups of 161: 9821 = 7 x 23 x 61. SF: 91 = 7 x 13.

5.11.15.2Groups of 266: 24206 = 2 x 72 x 13 x 19.

5.11.16Alternating groups of 343 and 168.

5.11.16.1Groups of 343: 27979 = 72 x 571. SF: 585 = 32 x 5 x 13.

5.11.16.2Groups of 168: 6048 = 25 x 33 x 7. SF: 26 = 2 x 13.

5.11.17Alternating groups of 189 and 238.

5.11.17.1Groups of 189: 12691 = 73 x 37.

5.11.17.2Groups of 238: 21336 = 23 x 3 x 7 x 127. SF: 143 = 11 x 13.

5.11.18Alternating groups of 231 and 196.

5.11.18.1Groups of 231: 16023 = 3 x 72 x 109. SF: 126 = 2 x 32 x 7.

5.11.18.2Groups of 196: 18004 = 22 x 7 x 643.

5.11.19Alternating groups of 210 and 217.

5.11.19.1Groups of 210: 14714 = 2 x 7 x 1051.

5.11.19.2Groups of 217: 19313 = 7 x 31 x 89.

5.11.20Alternating groups of 224 and 406.

5.11.20.1Groups of 224: 18172 = 22 x 7 x 11 x 59.

5.11.20.2Groups of 406: 15855 = 3 x 5 x 7 x 151.

5.11.21Alternating groups of 301 and 252.

5.11.21.1Groups of 301: 24080 = 24 x 5 x 7 x 43. SF: 63 = 32 x 7. SF: 13.

5.11.21.2Groups of 252: 9947 = 73 x 29.

5.12.1The very first letter in feature 5 is the letter 5. Search for the next letter that is higher and from that point continue searching for subsequent letters alternating between lower and higher. This finds 369 letters. Their total: 15400 = 23 x 52 x 7 x 11.

5.12.2Rather than search for a letter higher or lower, beginning with the first letter, search for the next letter that is even valued, and from that point alternate between searching odd and even. This covers 387 letters. Their total: 11544 = 23 x 3 x 13 x 37.

The Last Letter Of Each Word

List of last letters:
10 8 10 5 20 10 40 1 30 6 50 200 40 40 20 400 200 40 40 5 1 200 5 400 10 30 400 40 6 10 4 6 10 1 300 80 400 40 2 80 200 80 200 400 10 10 100 40 2 80 6 5 10 5 5 5 5 400 5 40 10 40 40 400 10 40 9 10 4 200 40 40 40 200 10 200 200 5 40 10 200 1 10 200 5 400 10 10 5 1 10 40 10 2 1 40 10 40 40 10 1 40 6 10 5 40 200 5 400 40 5 2 70 40 40 10 40 40 10 40 5 20 200 5 5 40 40 10 40 40 10 6 6 400 30 200 30 400 200 10 80 10 10 1 400 200 5 400 40 1 8 40 400 400 40 10 40 5 4 10 10 10 40 30 1 400 40 400 10 5 1 30 40 50 5 200 5 400 6 40 30 40 10 6 40 90 90 200 5 400 6 10 40 200 5 40 5 6 20 40 1 4 40 5 70 10 6 6 10 6 400 10 5 400 5 6 40 40 40 6 10 5 40 6 40 6 7 6 10 5 300 400 6 2 5 70 2 200 50 6 10 5 10 6 6 10 200 5 400 40 200 10 5 5 10 40 200 30 300 30 6 4 6 40 40 50 100 70 50 4 40 200 1 6 10 5 40 1 200 200 6 30 40 30 5 5 300 9 40 40 1 200 5 400 200 1 2 40 300 80 5 40 10 10 300 5 1 5 40 40 10 100 40 40 10 6 200 400 400 40 40 200 10 5 200 5 400 40 5 90 90 90 9 90 60 90 40 40 7 600 90 90 40 5 40 80 7 1 40 40 90 80 40 60 90 1 200 200 200 90 7 90 40 7 600 5 40 40 200 90 5 90 90 200 9 60 9 90 200 100 90 90 30 7 7 200 1 9 5 60 40 1 40 40 1 60 90 90 90 9 40 90 90 40 600 40 90 40 90 60 90 40 30 9 10 40 9 90 200 90 5 40 9 40 7 1 40 90 40 9 40 40 40 90 40 9 90 90 9 7 90 40 90 30 90 40 9 60 1 90 90 40 40 40 600 600 40 40 600 40 40 9 1 40 9 1 90 60 5 90 9 90 200 9 7 9 9 90 40 200 9 90 40 40 9 40 90 40 7 80 200 40 9 90 40 90 200 60 80 200 600 9 40 5 9 40 90 90 9 9 5 5 10 5 9 40 90 200 90 200 9 9 5 9 9 200 40 60 1 60 40 90 9 7 100 40 9 40 90 8 9 40 90 90 9 7 80 200 9 1 1 1 40 7 1 90 9 90 40 1 9 1 9 9 1 600 9 90 9 40 40 40 40 9 200 90 90 9 60 90 70 40 90 90 9 90 9 40 7 9 9 9 9 5 9 200 90 50 90 9 9 40 40 200 1 1 40 1 40 60 90 40 9 7 90 9 90 40 40 9 9 9 60 1 200 60 90 200 200 9 1 1 1 40 600 600 9 600 300 90 90 9 40 40 40 9 10 200 90 200 9 1 1 1 40 7 7 1 7 9 90 9 90 40 600 1 9 90 9 40 40 200 200 200 200 90 90 200 200 200 90 9 9 9 60 40 9 9 40 40 200 1 40 90 40 9 90 40 9 40 1 40 1 40 600 600 9 40 7 7 40 40 90 90 90 90 40 9 5 5 90 60 40 60 1 200 200 1 5 90 40 9 90 40 9 90 40 9 90 40 9 40 40 70 40 9 90 40 40 5 9 40 9 40 9 40 9 40 60 40 9 90 90 90 90 9 1 1 40 1 9 40 40 1 200 200 9 200 200 9 1 200 90 200 9 7 60 40 9 100 200 60 90 60 90 1 1 40 200 40 90 40 90 90 60 1 200 200 9 90 90 7 9 200 90 40 9 60 90 40 40 200 90 90 90 40 600 9 9 9 40 40 7 1 200 200 9 200 200 7 7 10 200 90 200 9 1 1 1 40 10 40 40 40

6The total of the last letters balances with the first letters in feature 5: 62384 = 24 x 7 x 557. SF: 572 = 22 x 11 x 13. SF: 28 = 22 x 7.

6.1The letters of God’s name in Hebrew (10-5-6-5) point out four of the last letters.

Position in list of last letters: 10 5  6  5
Last letter found:                6  20 10 20

Total of the letters found: 56 = 23 x 7. SF: 13.

6.1.1The letters of the Name can be applied seven times to count through a portion of the last letters.

a) 10 5  6  5  10 5   6   5  10 5  6  5  10 5  6  5   10  5   6   5
b) 10 15 21 26 36 41  47  52 62 67 73 78 88 93 99 104 114 119 125 130
c) 6  20 1  30 80 200 100 5  40 9  40 5  10 10 40 10  40  10  5   40

a) 10  5   6   5   10  5   6   5    (Letter from the Name.)
b) 140 145 151 156 166 171 177 182  (Count.)
c) 10  400 8   10  400 1   5   40   (Last letter found.)

Total: 1575 = 32 x 52 x 7.

None of these features with the Name occurred with the first letter of each word. This is because two of the individuals prophesied (great as they are), are people. Only Jesus is more than just a man. These features with the Name, occurring with the last letter of each word, point out the end result, which is more important than the beginning.

6.2The list of last letters can be paired, Nth and Nth last, where together the total is a multiple of 7. Providentially, this happens 70 times. (70 = 2 x 5 x 7. SF: 14 = 2 x 7.)

a) Nth in list: 11  18  33  38  39  44  50  61  66  67  68  78  80  89
b) Value:       50  40  10  40  2   400 80  10  40  9   10  5   10  5
c) Nth last:    844 837 822 817 816 811 805 794 789 788 787 777 775 766
d) Value:       90  9   200 9   40  90  60  60  9   40  60  9   200 9
e) Sum:         140 49  210 49  42  490 140 70  49  49  70  14  210 14

a) 90  98  102 112 114 117 120 128 131 134 135 167 173 174 178 183 193
b) 1   40  40  2   40  40  40  10  10  400 30  40  40  50  400 10  40
c) 765 757 753 743 741 738 735 727 724 721 720 688 682 681 677 672 662
d) 90  9   9   40  9   9   9   200 60  90  5   9   9   90  90  200 9
e) 91  49  49  42  49  49  49  210 70  490 35  49  49  140 490 210 49

a) 195 204 213 214 218 224 225 229 231 235 237 242 254 264 265 267 269
b) 5   5   5   400 40  6   40  10  300 5   2   5   5   40  40  100 50
c) 660 651 642 641 637 631 630 626 624 620 618 613 601 591 590 588 586
d) 9   9   9   90  9   1   9   60  1   9   40  9   9   9   9   40  90
e) 14  14  14  490 49  7   49  70  301 14  42  14  14  49  49  140 140

a) 277 278 282 284 286 298 305 306 310 314 320 340 345 348 350 353 393
b) 40  1   30  30  5   40  300 5   40  40  40  600 40  1   40  40  40
c) 578 577 573 571 569 557 550 549 545 541 535 515 510 507 505 502 462
d) 9   90  40  40  9   9   1   9   9   9   100 9   9   90  9   9   9
e) 49  91  70  70  14  49  301 14  49  49  140 609 49  91  49  49  49

a) 400 408 413 416 423
b) 9   40  30  40  9
c) 455 447 442 439 432
d) 600 9   40  9   40
e) 609 49  70  49  49

Sum of positions (a + c): 59850 = 2 x 32 x 52 x 7 x 19.

6.3Taking every Nth from the list in feature 6, the following values of N produce totals divisible by 7:

3 4 5 6 12 25 28 32 46 48 49 54 58 61 64 69 72 74 78 81 94 110 119 120 130 136 149 161 170 172 178 200 202 210 212 221 224 241 242 250 253 261 273 274 289 297 299 308 310 316 321 344 366 375 377 380 398 400 403 413

Total of the N values: 11067 = 3 x 7 x 17 x 31.

6.3.1The very first and last N values that succeed (3 + 413): 416 = 25 x 13.

6.3.2The odd valued from 6.3:

3 5 25 49 61 69 81 119 149 161 221 241 253 261 273 289 297 299 321 375 377 403 413

Total: 4745 = 5 x 13 x 73. SF: 91 = 7 x 13. (Unfortunately there is no feature with the even valued.)

6.4Divide the last letters into two groups: odd valued and even valued.

6.4.1There are exactly 252 last letters that are odd valued: 22 x 32 x 7.

6.4.2This means the number of even valued last letters is also a multiple of 7: 602 = 2 x 7 x 43. SF: 52 = 22 x 13.

6.4.3The totals of the last letters for 6.4.1 and 6.4.2 have no feature. Nor do the individual totals for their positions have a feature. However, there is something when the difference of the two positions is considered.

Total of positions for even valued last letters: 241699
Total of positions for odd valued last letters:  123386

Difference: 118313 = 13 x 19 x 479. SF: 511 = 7 x 73.

6.5.195 of the last letters are prime numbers. The total of their positions in the list: 32158 = 2 x 7 x 2297.

6.5.2This means the total of the positions of the last letters that are not prime numbers is also a feature: 332927 = 7 x 199 x 239.

6.632 of the last letters are multiples of 7 and strategically positioned:

a) 113 205 227 236 268 339 347 361 364 384 385 425 440 475 489 534 546
b) 70  70  7   70  70  7   7   7   7   7   7   7   7   7   7   7   7

a) 554 581 589 614 656 657 659 709 710 744 786 812 833 840 841
b) 7   70  7   7   7   7   7   7   7   70  7   7   7   7   7

a) Position in the list of feature 6.
b) Multiple of 7.

Total of the positions (a): 16723 = 7 x 2389. The sum of the letters has an extra feature of 7: 602 = 2 x 7 x 43. SF: 52 = 22 x 13.

6.7When the last letters are added one by one, 58 times the accumulated total will be a multiple of 13. The total of the positions where this happens: 25200 = 24 x 32 x 52 x 7.

6.8.1Total of the last letters that appeared an odd number of times in the list: 31920 = 24 x 3 x 5 x 7 x 19. SF: 42 = 2 x 3 x 7.

6.8.2Total of the last letters that appeared an even number of times in the list: 30464 = 28 x 7 x 17.

6.8.3Difference between 6.8.1 and 6.8.2: 1456 = 24 x 7 x 13. SF: 28 = 22 x 7.

6.8.4.1Total of the last letters where the number of occurrences is a prime number: 3927 = 3 x 7 x 11 x 17.

6.8.4.2Total of the last letters where the number of occurrences is not a prime number: 58457 = 72 x 1193.

6.9Divide the 854 last letters of each word into sections of 14 and add each section.

6.9.1Odd valued segments of 14: 32466 = 2 x 3 x 7 x 773.

6.9.2Even valued segments of 14: 29918 = 2 x 7 x 2137.

6.9.3Difference between 6.9.1 and 6.9.2: 2548 = 22 x 72 x 13.

6.10The last letters form alternating groups of M and N-number of letters where M and N are multiples of 7 or 13.

6.10.1Alternating groups of 14 and 28.

6.10.1.1Groups of 14: 19166 = 2 x 7 x 372.

6.10.1.2Groups of 28: 43218 = 2 x 32 x 74.

6.10.2Alternating groups of 21 and 98.

6.10.2.1Groups of 21: 11872 = 25 x 7 x 53. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

6.10.2.2Groups of 98: 50512 = 24 x 7 x 11 x 41.

6.10.3Alternating groups of 21 and 406.

6.10.3.1Groups of 21: 2219 = 7 x 317.

6.10.3.2Groups of 406: 60165 = 32 x 5 x 7 x 191.

6.10.4Alternating groups of 26 and 35.

6.10.4.1Groups of 26: 26831 = 7 x 3833.

6.10.4.2Groups of 35: 35553 = 3 x 7 x 1693. SF: 1703 = 13 x 131.

6.10.5Alternating groups of 413 and 28.

6.10.5.1Groups of 413: 61110 = 2 x 32 x 5 x 7 x 97. SF: 117 = 32 x 13.

6.10.5.2Groups of 28: 1274 = 2 x 72 x 13.

6.10.6Alternating groups of 371 and 56.

6.10.6.1Groups of 371: 54131 = 7 x 11 x 19 x 37.

6.10.6.2Groups of 56: 8253 = 32 x 7 x 131.

6.10.7Alternating groups of 161 and 70.

6.10.7.1Groups of 161: 45213 = 3 x 7 x 2153. SF: 2163 = 3 x 7 x 103.

6.10.7.2Groups of 70: 17171 = 7 x 11 x 223.

6.10.8Alternating groups of 392 and 70.

6.10.8.1Groups of 392: 56721 = 3 x 7 x 37 x 73.

6.10.8.2Groups of 70: 5663 = 7 x 809.

6.10.9Alternating groups of 126 and 238.

6.10.9.1Groups of 126: 26488 = 23 x 7 x 11 x 43.

6.10.9.2Groups of 238: 35896 = 23 x 7 x 641.

6.10.10Alternating groups of 301 and 126.

6.10.10.1Groups of 301: 43897 = 7 x 6271.

6.10.10.2Groups of 126: 18487 = 7 x 19 x 139.

6.10.11Alternating groups of 294 and 133.

6.10.11.1Groups of 294: 42707 = 7 x 6101.

6.10.11.2Groups of 133: 19677 = 3 x 7 x 937.

6.10.12Alternating groups of 357 and 140.

6.10.12.1Groups of 357: 51646 = 2 x 72 x 17 x 31.

6.10.12.2Groups of 140: 10738 = 2 x 7 x 13 x 59.

6.10.13Alternating groups of 147 and 280.

6.10.13.1Groups of 147: 20685 = 3 x 5 x 7 x 197.

6.10.13.2Groups of 280: 41699 = 72 x 23 x 37.

6.10.14Alternating groups of 182 and 154.

6.10.14.1Groups of 182: 41146 = 2 x 7 x 2939.

6.10.14.2Groups of 154: 21238 = 2 x 7 x 37 x 41.

6.10.15Alternating groups of 154 and 196.

6.10.15.1Groups of 154: 35259 = 3 x 7 x 23 x 73.

6.10.15.2Groups of 196: 27125 = 53 x 7 x 31.

6.10.16Alternating groups of 273 and 154.

6.10.16.1Groups of 273: 39200 = 25 x 52 x 72.

6.10.16.2Groups of 154: 23184 = 24 x 32 x 7 x 23.

6.10.17Alternating groups of 189 and 238.

6.10.17.1Groups of 189: 26467 = 7 x 19 x 199.

6.10.17.2Groups of 238: 35917 = 72 x 733.

6.10.18Alternating groups of 203 and 224.

6.10.18.1Groups of 203: 28301 = 7 x 13 x 311.

6.10.18.2Groups of 224: 34083 = 32 x 7 x 541.

6.10.19Alternating groups of 210 and 217.

6.10.19.1Groups of 210: 29666 = 2 x 7 x 13 x 163.

6.10.19.2Groups of 217: 32718 = 2 x 3 x 7 x 19 x 41.

6.10.20Alternating groups of 322 and 210.

6.10.20.1Groups of 322: 46354 = 2 x 72 x 11 x 43. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

6.10.20.2Groups of 210: 16030 = 2 x 5 x 7 x 229.

6.10.21Alternating groups of 308 and 238.

6.10.21.1Groups of 308: 44240 = 24 x 5 x 7 x 79.

6.10.21.2Groups of 238: 18144 = 25 x 34 x 7.

6.11The list in feature 6 is of the last letter of each word. As these letter values are from Hebrew and Greek and the two alphabets differ in the number of letters, there is no agreement as to which is the last letter. There is a first letter for both alphabets.

6.11.1Five of the letter 1's occurrences can be paired Nth and Nth last to divide the rest of the last letters into what is between these occurrences, and what is not between them. The five Nth (or Nth last) occurrences just so happen to be: 3, 8, 10, 27 and 29. The sum of these five numbers: 77 (7 x 11).

6.11.2In each case of 6.11, the letters between the Nth and Nth last occurrences add up to a multiple of 7.

59913 46368 43365 4018 2947

The total of all these letters is also a multiple of 13: 156611 = 7 x 13 x 1721.

All The Letters

List of letters:
5 50 50 10 300 30 8 40 30 1 20 10 6 80 50 5 4 200 20 30 80 50 10 6 80 400 1 40 10 2 6 1 1 30 5 10 20 30 6 5 1 4 6 50 1 300 200 1 400 40 40 2 100 300 10 40 6 40 30 1 20 5 2 200 10 400 1 300 200 1 400 40 8 80 90 10 40 5 50 5 2 1 1 40 200 10 5 6 5 90 2 1 6 400 6 40 10 40 20 30 20 30 1 400 10 6 40 2 6 1 6 6 40 10 5 70 40 4 2 5 200 1 6 400 6 20 10 5 6 1 20 1 300 40 90 200 80 6 20 2 200 10 400 40 20 2 60 10 40 6 10 300 2 40 90 200 80 6 40 9 5 200 20 60 80 6 9 5 200 1 400 2 50 10 30 6 10 6 7 100 100 1 400 40 20 7 5 2 6 20 20 60 80 6 5 10 6 30 10 5 6 5 40 3 10 300 10 40 50 8 5 2 90 4 100 5 6 70 200 2 5 30 10 5 6 5 40 50 8 400 10 5 6 4 5 6 10 200 6 300 30 40 20 10 40 10 70 6 30 40 6 20 300 50 10 40 100 4 40 50 10 6 400 6 100 200 2 400 10 1 30 10 20 40 30 40 300 80 9 6 5 10 10 400 10 70 4 40 40 5 200 2 40 20 300 80 10 40 6 2 40 50 1 80 10 40 6 2 50 300 2 70 10 40 30 300 100 200 6 2 70 300 100 10 300 20 200 300 20 10 200 1 30 40 50 5 6 10 400 6 40 6 40 9 10 3 200 6 30 1 10 200 1 6 50 10 1 40 200 10 5 6 5 90 2 1 6 400 20 10 1 50 10 10 5 6 5 30 1 300 50 10 400 10 6 1 400 40 2 50 10 10 70 100 2 30 1 20 30 10 400 40 30 40 10 40 10 1 2 400 10 20 40 60 200 400 40 40 8 100 10 6 30 1 300 40 200 400 40 300 6 2 6 1 30 10 6 1 300 6 2 5 1 30 10 20 40 1 40 200 10 5 6 5 90 2 1 6 400 6 1 40 200 400 40 2 40 5 50 300 6 2 5 10 100 2 70 1 4 40 1 30 5 10 40 20 10 1 400 40 100 2 70 10 40 1 400 10 6 1 40 200 400 40 2 40 5 100 2 70 50 6 20 5 40 70 300 200 6 5 400 200 6 40 5 2 40 1 200 5 1 400 40 50 1 200 10 40 6 1 400 10 1 400 40 100 2 70 10 40 5 3 6 10 20 30 6 5 2 10 1 6 1 400 20 30 5 40 70 300 200 1 30 2 10 400 5 1 6 90 200 6 10 5 10 9 200 80 2 2 10 400 10 6 2 8 50 6 50 10 50 1 2 7 1 400 1 40 200 10 5 6 5 90 2 1 6 400 1 40 30 1 1 80 400 8 30 20 40 1 400 1 200 2 6 400 5 300 40 10 40 6 5 200 10 100 400 10 30 20 40 2 200 20 5 70 4 2 30 10 4 10 6 3 70 200 400 10 30 20 40 2 1 20 30 6 30 1 10 300 8 400 30 20 40 1 400 80 200 10 5 1 4 40 5 6 30 1 400 300 20 30 30 20 40 5 3 80 50 2 300 4 5 1 40 200 10 5 6 5 90 2 1 6 400 6 1 300 200 6 1 400 20 40 20 30 5 3 6 10 40 20 10 400 5 10 6 1 400 40 1 200 90 8 80 90 1 40 200 10 5 6 5 90 2 1 6 400 8 7 100 6 70 30 10 4 2 200 10 20 40 1 40 200 10 5 6 5 6 1 40 200 400 40 40 5 50 4 2 200 50 6 70 30 10 20 1 40 200 400 40 300 6 1 70 2 4 1 30 5 10 40 6 40 5 2 90 70 20 10 300 40 200 50 6 40 300 40 200 400 6 6 20 10 5 30 20 50 6 100 4 200 50 10 400 40 80 50 10 10 5 6 5 90 2 1 6 400 6 70 400 5 1 50 8 50 6 40 1 300 200 10 40 7 4 10 40 3 40 50 2 50 6 70 300 10 200 300 70 5 3 40 2 8 50 6 1 30 5 10 40 6 10 40 30 9 6 1 7 50 4 2 200 6 10 200 1 10 10 5 6 5 1 10 300 1 400 200 70 5 6 6 10 100 300 2 10 5 6 5 6 10 300 40 70 6 10 20 400 2 60 80 200 7 20 200 6 50 30 80 50 10 6 30 10 200 1 10 10 5 6 5 6 30 8 300 2 10 300 40 6 6 5 10 6 30 10 1 40 200 10 5 6 5 90 2 1 6 400 30 10 6 40 1 300 200 1 50 10 70 300 5 60 3 30 5 6 8 40 30 400 10 70 30 10 5 40 20 1 300 200 10 8 40 30 1 10 300 70 30 2 50 6 5 70 2 4 1 400 6 6 300 2 400 40 6 200 1 10 400 40 2 10 50 90 4 10 100 30 200 300 70 2 10 50 70 2 4 1 30 5 10 40 30 1 300 200 30 1 70 2 4 6 20 10 5 50 5 5 10 6 40 2 1 2 70 200 20 400 50 6 200 6 5 10 6 20 30 7 4 10 40 6 20 30 70 300 5 200 300 70 5 100 300 6 30 5 9 1 400 40 5 10 6 40 5 2 1 1 40 200 10 5 6 5 90 2 1 6 400 1 300 200 30 1 10 70 7 2 30 5 40 300 200 300 6 70 50 80 6 7 200 8 5 30 20 40 10 200 1 10 300 40 10 300 40 300 90 4 100 5 6 40 200 80 1 2 20 50 80 10 5 6 10 90 1 400 40 6 80 300 400 40 20 70 3 30 10 40 200 2 100 6 70 60 6 400 40 200 300 70 10 40 20 10 10 5 10 6 1 80 200 400 8 400 20 80 6 400 200 3 30 10 20 40 2 10 6 40 1 300 200 1 50 10 70 300 5 1 40 200 10 5 6 5 90 2 1 6 400 5 40 4 5 100 1 9 90 7 30 5 80 1 9 90 5 10 5 9 40 1 9 90 70 1 80 1 3 9 40 5 100 1 9 9 600 1 40 40 7 90 60 2 1 70 100 9 90 100 7 90 10 7 80 200 90 90 600 40 5 40 100 7 5 80 7 30 600 100 7 90 9 60 200 4 1 9 1 90 20 5 3 600 40 30 5 100 1 40 60 5 9 100 5 7 3 3 9 10 5 40 3 1 80 7 2 1 90 9 20 5 9 1 100 600 40 60 200 80 1 40 600 40 60 200 100 60 90 3 1 80 5 90 100 9 40 60 80 7 8 5 9 90 4 9 1 7 90 1 9 60 200 100 60 200 70 80 60 300 7 100 60 200 20 5 3 60 40 100 60 90 300 600 40 7 2 60 600 40 100 60 90 5 40 100 7 5 80 7 30 600 5 100 60 9 30 1 90 1 100 5 100 7 40 60 4 60 40 10 200 80 9 60 200 5 200 8 5 9 1 90 70 60 9 5 9 100 5 100 1 90 100 80 9 2 60 200 90 1 200 100 60 200 10 1 9 5 70 60 80 5 200 60 40 100 60 60 9 3 60 40 5 9 90 1 200 100 60 200 10 1 100 5 100 60 90 5 9 90 9 5 80 60 200 90 1 20 7 30 100 7 5 60 80 100 7 100 60 200 70 1 90 400 1 10 1 9 60 100 5 5 3 5 40 5 100 60 5 100 600 40 4 600 4 5 10 1 1 40 1 2 1 9 40 60 40 100 600 40 1 200 100 600 40 10 1 100 1 100 60 5 8 60 90 100 7 90 5 60 80 100 7 90 10 1 9 100 5 20 5 9 600 90 1 40 100 600 40 100 1 90 7 30 5 80 1 90 5 40 100 600 200 70 60 90 100 80 5 300 5 9 40 1 200 100 60 200 90 200 70 5 30 5 9 40 5 40 9 7 90 60 200 90 60 70 1 9 90 5 40 9 5 80 60 200 90 1 20 7 30 10 1 9 60 200 10 5 3 40 600 90 1 40 60 9 3 60 40 5 9 90 1 200 100 60 200 40 60 30 9 90 1 40 100 5 90 4 5 1 200 100 60 40 5 9 40 1 9 5 40 100 7 90 200 40 60 4 9 1 7 20 8 60 40 7 30 5 80 1 90 60 4 60 40 10 1 9 1 40 5 6 7 100 60 200 40 1 200 100 60 40 5 40 100 60 9 90 90 200 3 3 5 40 5 200 90 9 40 10 1 9 100 60 9 90 3 40 600 90 100 60 9 90 10 1 9 30 7 5 200 80 60 40 100 5 90 200 70 5 90 100 80 5 500 1 40 5 9 90 9 5 80 60 200 90 1 20 7 30 1 40 1 6 7 100 60 200 40 100 5 90 1 200 100 60 40 10 1 9 5 3 5 40 5 100 60 30 5 100 1 7 30 5 80 1 90 100 80 5 9 90 5 200 80 60 40 1 200 100 60 40 5 40 100 600 9 5 80 600 10 1 8 5 6 60 30 5 40 60 40 5 40 30 5 90 600 100 600 40 4 9 4 1 90 10 1 20 600 40 10 1 9 1 10 60 200 60 40 100 1 1 200 100 600 40 10 1 9 5 70 5 80 600 100 600 40 100 1 1 200 100 60 200 90 5 50 9 90 100 1 40 100 60 4 5 70 1 40 100 5 90 60 9 1 10 60 200 60 40 100 5 90 1 200 100 60 200 5 70 9 100 7 90 200 40 5 90 5 9 10 1 9 100 1 9 90 1 70 60 10 80 9 90 5 90 9 40 1 200 100 60 200 10 1 9 9 4 60 40 100 5 90 1 200 100 60 40 5 50 5 70 20 1 3 7 90 1 40 10 1 9 5 9 70 5 40 70 80 60 90 1 200 100 60 40 7 30 7 100 7 80 1 200 100 60 200 100 5 10 40 60 40 100 9 5 70 60 9 7 90 1 90 7 30 9 40 60 200 100 600 90 9 4 60 200 60 70 1 100 7 80 90 60 200 10 1 3 600 60 4 200 40 600 30 5 40 60 9 5 6 7 100 60 200 30 5 40 90 5 10 1 9 5 9 70 5 40 70 80 60 90 1 200 100 60 200 90 100 9 60 100 9 5 6 7 100 5 9 100 5 30 5 60 200 10 7 4 5 9 100 5 60 100 9 5 40 100 60 9 90 100 60 200 70 1 100 80 60 90 30 60 200 4 5 9 5 9 40 1 9 30 5 10 1 9 1 200 100 60 9 60 200 90 200 40 7 10 1 40 100 60 80 7 30 1 60 5 20 1 20 7 90 5 40 1 200 100 60 9 90 10 1 9 10 1 100 5 2 7 30 5 100 1 200 100 600 40 10 1 9 7 20 8 5 40 5 9 90 40 1 6 1 80 5 8 10 1 9 7 40 200 70 60 100 1 90 90 60 30 5 40 60 90 1 200 100 60 9 90 10 1 9 7 30 7 100 7 80 1 200 100 60 200 4 9 5 100 7 80 5 9 70 1 40 100 1 100 1 80 7 30 1 100 1 5 40 100 7 10 1 80 4 9 1 1 200 100 7 90 10 1 9 9 7 90 60 200 90 70 80 60 5 10 60 70 100 5 40 90 60 300 9 1 10 1 9 7 20 9 10 9 1 10 1 9 400 1 80 9 100 9 70 1 80 1 8 5 600 10 1 9 1 40 8 80 600 70 60 9 90 10 1 9 5 9 4 60 40 100 60 40 60 200 80 1 40 60 40 7 40 5 600 3 30 5 40 60 40 10 1 9 9 4 60 200 9 70 70 60 90 20 5 200 10 60 90 10 1 9 60 10 1 8 7 30 5 40 60 90 5 70 1 200 100 60 40 10 1 20 60 200 30 5 40 60 90 70 9 90 100 60 90 10 1 9 1 20 7 8 9 40 60 90 10 1 9 5 40 4 9 10 1 9 60 90 200 40 7 10 80 9 40 5 9 10 1 9 70 60 20 5 30 5 9 60 9 4 5 60 300 8 1 20 30 60 9 1 200 100 60 200 600 90 300 20 60 50 70 200 80 60 90 10 1 9 5 70 9 100 7 40 10 5 300 1 20 7 40 1 200 100 60 200 4 9 1 4 7 30 1 100 1 70 60 20 20 1 5 400 600 40 60 40 60 30 1 3 5 3 80 1 30 30 5 40 60 40 60 60 200 4 5 9 90 60 9 4 5 40 5 9 30 7 1 200 100 60 90 10 1 9 70 5 80 9 2 5 2 20 7 30 5 40 60 90 9 30 1 100 9 60 40 2 5 2 1 30 30 5 40 60 40 1 9 30 1 100 9 10 1 9 10 5 10 20 7 100 1 9 100 60 60 40 60 30 1 1 200 100 60 200 60 20 60 3 60 90 100 60 200 8 5 60 200 10 1 9 100 1 90 100 80 1 100 5 200 30 1 100 1 100 1 5 40 100 600 60 200 80 1 40 600 7 10 60 20 60 200 8 5 9 1 200 100 600 5 300 9 70 70 60 9 90 20 5 200 10 60 9 90 5 40 4 5 4 200 30 5 40 60 9 2 200 90 90 9 40 60 40 20 5 200 10 60 40 10 1 8 1 80 60 40 10 1 9 5 10 100 60 200 90 100 60 30 1 100 60 90 1 200 100 60 200 5 10 70 60 80 5 200 5 100 1 9 80 60 30 300 1 9 1 60 50 5 9 1 9 40 1 5 40 1 200 100 7 70 1 100 1 50 7 100 1 5 8 40 7 10 1 9 1 200 100 60 90 70 60 9 30 1 40 5 9 1 200 100 60 200 90 5 40 80 1 2 4 600 90 9 4 7 80 1 10 1 9 1 200 100 60 90 70 1 100 5 9 100 7 40 20 7 40 60 40 100 60 200 60 9 40 60 200 100 60 200 8 200 30 60 200 100 7 90 60 80 3 7 90 100 60 200 8 5 60 200 100 60 200 70 1 40 100 60 10 80 1 100 60 80 60 90 10 1 9 5 400 5 9 5 70 9 100 60 9 30 1 100 9 60 40 10 1 9 5 70 9 100 60 40 30 7 80 60 40 1 200 100 60 200 60 40 60 30 1 3 5 3 80 1 30 30 5 40 60 40 2 1 90 9 20 5 200 90 2 1 90 9 20 5 600 40 10 1 9 10 200 80 9 60 90 10 200 80 9 600 40 10 1 9 5 9 4 60 40 5 40 1 1 3 3 5 20 60 40 5 90 100 600 100 1 5 40 100 600 7 20 9 600 10 1 9 5 10 80 1 50 5 40 300 600 40 7 30 5 3 1 20 7 20 5 3 600 40 70 1 90 9 40 100 60 9 90 60 80 40 5 60 9 90 100 60 9 90 70 5 100 60 30 5 40 60 9 90 5 40 30 5 90 60 200 80 1 40 7 30 1 100 9 4 5 200 100 5 90 200 40 1 400 8 7 100 5 5 9 90 100 60 4 5 9 70 40 60 40 100 60 30 5 3 1 100 60 200 8 5 60 200 9 40 1 300 1 3 7 100 5 90 1 80 10 1 90 2 1 90 9 20 5 600 40 10 1 9 90 1 80 10 1 90 400 9 20 9 1 80 400 600 40 10 1 9 90 1 80 10 1 90 9 90 400 200 80 600 40 10 1 9 90 1 80 10 1 90 9 70 70 600 40 10 1 9 100 600 40 10 1 8 7 30 5 40 600 40 5 70 1 200 100 600 40 10 1 9 90 1 80 10 1 90 70 1 40 100 600 40 5 20 5 200 8 5 80 600 40 100 5 10 1 9 4 60 200 20 600 40 10 1 9 30 9 10 80 600 40 10 1 9 30 5 3 1 20 600 40 10 1 9 5 9 4 60 40 100 60 8 7 80 9 60 40 10 1 9 100 60 200 90 2 1 90 9 20 5 9 90 100 7 90 3 7 90 10 1 9 100 1 90 100 80 1 100 5 200 30 1 100 1 1 200 100 600 40 90 200 40 7 3 30 5 40 1 70 60 9 7 90 1 9 100 60 40 70 60 20 5 30 60 40 30 5 100 1 100 60 200 10 1 8 7 30 5 40 60 200 5 70 9 100 60 200 9 70 70 60 200 10 1 9 30 5 100 1 100 60 200 90 100 80 1 100 5 200 30 1 100 60 90 1 200 100 60 200 10 1 9 5 70 9 1 90 8 7 100 60 8 7 80 9 60 40 10 1 9 30 5 100 1 200 100 60 200 60 500 5 200 4 60 70 80 60 300 7 100 7 90 60 70 60 9 7 90 1 90 100 1 90 7 30 5 9 1 5 40 600 70 9 60 40 1 200 100 60 200 5 40 60 9 90 5 70 20 1 40 7 90 5 40 100 60 200 90 20 1 2 60 40 100 1 90 100 60 400 1 80 1 3 30 1 100 60 200 8 7 80 9 60 200 10 1 9 100 60 200 90 70 80 60 90 10 200 40 60 200 40 100 1 90 100 7 5 9 10 60 40 9 1 200 100 60 200 6 600 40 100 5 90 5 2 20 7 8 7 90 1 40 60 9 4 200 60 5 9 90 100 7 40 20 9 30 40 7 40 100 60 200 70 200 80 60 90 100 7 90 10 1 9 60 30 5 40 7 90 5 40 8 5 9 600 10 1 9 60 9 20 60 9 70 60 9 1 70 5 10 100 1 40 8 7 90 1 40 5 40 100 7 80 60 30 300 1 9 1 100 60 200 10 1 8 7 30 5 40 60 200 5 70 9 100 60 200 9 70 70 60 200 100 7 5 50 5 20 8 60 200 90 7 5 10 100 60 200 90 100 60 30 1 100 60 90 1 200 100 60 200 10 1 9 70 1 40 100 1 100 1 60 80 40 5 1 5 400 60 80 100 1 90 8 7 90 1 40 5 10 100 600 40 90 1 80 10 600 40 1 200 100 600 40

7There are 3897 letters from all four prophecies. The letters of God’s name in Hebrew (10-5-6-5) are applied 150 times to count through these letters. The total found: 35140 = 22 x 5 x 7 x 251.

7.1.1286 pairs of letters, positioned Nth and Nth last, can be found that together are a multiple of 7. 286 = 2 x 11 x 13. SF: 26 = 2 x 13.

7.1.2156 pairs of letters, positioned Nth and Nth last together are multiples of 13. 156 = 22 x 3 x 13.

7.2.1The odd positioned letters: 123270 = 2 x 3 x 5 x 7 x 587.

7.2.2The even positioned letters: 130851 = 32 x 7 x 31 x 67.

7.3Over 5000 sub-features exist in the letters by taking odd/even positioned groups of letters and repeating the process on the results.

7.4Odd valued letters: 5395 = 5 x 13 x 83.

7.5619 letters are prime numbers. (619 is a prime number.) The total of their positions: 1172509 = 13 x 19 x 47 x 101. The total of their values: 2964 = 22 x 3 x 13 x 19. SF: 39 = 3 x 13.

7.6233 letters are multiples of 7. Their total yields an extra factor of 7: 8624 = 24 x 72 x 11. The total of their positions is also a multiple of 7: 523019 = 7 x 74717. SF: 74724 = 22 x 3 x 13 x 479.

7.7When the letters are added one by one, 559 times the total will be a multiple of 7. The total of the letters where this occurs: 39438 = 2 x 32 x 7 x 313.

7.8Only two letters occur a multiple of 7 times. Providentially, the two letters are 5 and 9, which together add up to 14 (2 x 7).

7.9Only three letters had the total of their individual positions as a multiple of 13. It just so happens the three letters are 9, 20 and 400. These three values together add up to 429 (3 x 11 x 13).

7.10.1Divide the letters into groups of two and add up each group.

7.10.1.1Total of the groups of two that are odd valued: 74543 = 7 x 23 x 463.

7.10.1.2Total of the groups of two that are even valued: 179578 = 2 x 7 x 101 x 127.

7.10.2Divide the letters into groups of 8 and add up each group.

7.10.2.1Total of the odd valued groups of 8: 122563 = 7 x 17509.

7.10.2.2Total of the even valued groups of 8: 131558 = 2 x 7 x 9397.

7.10.3Divide the letters into groups of 1948 and add up each group.

7.10.3.1Total of the odd valued groups of 1948: 124509 = 3 x 73 x 112.

7.10.3.2Total of the even valued groups of 1948: 129612 = 22 x 3 x 7 x 1543.

7.11The previous feature consisted of groups that were all the same size. If one were to account for God and Jesus, one could have alternating groups of two different sizes. These would be groups of M and N number of letters where M and N are multiples of 7 or 13.

7.11.1Alternating groups of 21 and 104.

7.11.1.1Groups of 21: 48300 = 22 x 3 x 52 x 7 x 23.

7.11.1.2Groups of 104: 205821 = 35 x 7 x 112.

7.11.2Alternating groups of 39 and 448.

7.11.2.1Groups of 39: 20419 = 7 x 2917.

7.11.2.2Groups of 448: 233702 = 2 x 7 x 16693. SF: 16702 = 2 x 7 x 1193.

7.11.3Alternating groups of 42 and 1885.

7.11.3.1Groups of 42: 8708 = 22 x 7 x 311. SF: 322 = 2 x 7 x 23.

7.11.3.2Groups of 1885: 245413 = 7 x 35059.

7.11.4Alternating groups of 104 and 1792.

7.11.4.1Groups of 104: 21896 = 23 x 7 x 17 x 23.

7.11.4.2Groups of 1792: 232225 = 52 x 7 x 1327. SF: 1344 = 26 x 3 x 7.

7.11.5Alternating groups of 806 and 224.

7.11.5.1Groups of 806: 210182 = 2 x 7 x 15013. SF: 15022 = 2 x 7 x 29 x 37.

7.11.5.2Groups of 224: 43939 = 7 x 6277.

7.11.6Alternating groups of 260 and 714.

7.11.6.1Groups of 260: 68467 = 7 x 9781.

7.11.6.2Groups of 714: 185654 = 2 x 7 x 89 x 149. SF: 247 = 13 x 19.

7.11.7Alternating groups of 714 and 260.

7.11.7.1Groups of 714: 188846 = 2 x 72 x 41 x 47. SF: 104 = 23 x 13.

7.11.7.2Groups of 260: 65275 = 52 x 7 x 373. SF: 390 = 2 x 3 x 5 x 13.

7.11.8Alternating groups of 416 and 280.

7.11.8.1Groups of 416: 160293 = 3 x 7 x 17 x 449. SF: 476 = 22 x 7 x 17. SF: 28 = 22 x 7.

7.11.8.2Groups of 280: 93828 = 22 x 3 x 7 x 1117. SF: 1131 = 3 x 13 x 29.

7.11.9Alternating groups of 338 and 1610.

7.11.9.1Groups of 338: 43904 = 27 x 73 SF: 35 = 5 x 7.

7.11.9.2Groups of 1610: 210217 = 7 x 59 x 509.

7.11.10Alternating groups of 350 and 624.

7.11.10.1Groups of 350: 91168 = 25 x 7 x 11 x 37. SF: 65 = 5 x 13.

7.11.10.2Groups of 624: 162953 = 7 x 23279.

7.11.11Alternating groups of 429 and 1519.

7.11.11.1Groups of 429: 55209 = 3 x 7 x 11 x 239. SF: 260 = 22 x 5 x 13.

7.11.11.2Groups of 1519: 198912 = 28 x 3 x 7 x 37. SF: 63 = 32 x 7. SF: 13.

7.11.12Alternating groups of 952 and 520.

7.11.12.1Groups of 952: 188720 = 24 x 5 x 7 x 337. SF: 357 = 3 x 7 x 17.

7.11.12.2Groups of 520: 65401 = 7 x 9343.

7.11.13Alternating groups of 1428 and 520.

7.11.13.1Groups of 1428: 184408 = 23 x 7 x 37 x 89.

7.11.13.2Groups of 520: 69713 = 7 x 23 x 433.

7.11.14Alternating groups of 1337 and 611.

7.11.14.1Groups of 1337: 169141 = 7 x 73 x 331.

7.11.14.2Groups of 611: 84980 = 22 x 5 x 7 x 607. SF: 623 = 7 x 89.

7.11.15Alternating groups of 793 and 1155.

7.11.15.1Groups of 793: 99183 = 3 x 7 x 4723.

7.11.15.2Groups of 1155: 154938 = 2 x 3 x 72 x 17 x 31.

7.11.16Alternating groups of 1521 and 854.

7.11.16.1Groups of 1521: 198408 = 23 x 3 x 7 x 1181. SF: 1197 = 32 x 7 x 19.

7.11.16.2Groups of 854: 55713 = 3 x 72 x 379.

7.11.17Alternating groups of 975 and 1946.

7.11.17.1Groups of 975: 129416 = 23 x 7 x 2311. SF: 2324 = 22 x 7 x 83.

7.11.17.2Groups of 1946: 124705 = 5 x 72 x 509.

7.11.18Alternating groups of 1064 and 1768.

7.11.18.1Groups of 1064: 141120 = 26 x 32 x 5 x 72.

7.11.18.2Groups of 1768: 113001 = 3 x 7 x 5381.

7.11.19Alternating groups of 1066 and 1764.

7.11.19.1Groups of 1066: 141176 = 23 x 7 x 2521. SF: 2534 = 2 x 7 x 181.

7.11.19.2Groups of 1764: 112945 = 5 x 72 x 461.

7.11.20Alternating groups of 1246 and 1404.

7.11.20.1Groups of 1246: 163443 = 3 x 7 x 43 x 181. SF: 234 = 2 x 32 x 13. SF: 21 = 3 x 7.

7.11.20.2Groups of 1404: 90678 = 2 x 3 x 7 x 17 x 127. SF: 156 = 22 x 3 x 13.

7.12Exactly 280 letters divide the rest of the letters into what is between and what is not between their Nth and Nth last occurrences. (280 = 23 x 5 x 7.)

7.12.1Only three letters have the unique characteristic of having their first and last appearances divide the rest of the letters into what is between them and what is not between, where what is between and not between are multiples of 7. Providentially, these three letters are 50, 20 and 70. The sum of these 3 letters: 140 = 22 x 5 x 7.

7.12.2Four letters have their 13th and 13th last occurrences divide the rest of the letters into groups divisible by 7. These four letters are 40, 100, 3 and 200. Providentially, their total is 343 = 73. The sum of the factors: 21 = 3 x 7.

7.12.3Only one letter has its 7th and 7th last occurrences dividing the remaining letters. This just so happens to be the letter 1. (Note: 28 times the letter 1's Nth and Nth last occurrences successfully divide the passage. This is because there is one God.)

7.13.1Beginning with the first letter, search for the next letter that is lower in value, then for a letter higher in value from that one, and continue alternating lower and higher until the entire passage is covered. The letters found total 147042 (2 x 33 x 7 x 389).

7.13.2The opposite of the previous feature is to search for a letter higher, and then lower. Total of the letters found: 147511 = 7 x 13 x 1621.

7.14Starting with the first letter, which is an odd number, search for the next even valued letter, and then alternate searching for odd and even. Total of the letters found: 81466 = 2 x 7 x 11 x 232.

Conclusion

The numeric features show how two thirds of Malachi's prophecy has already been fulfilled. We can be certain the messenger of the covenant (Malachi 3:1), the king of kings and lord of lords (Revelation 19:16), who is also known as The Word Of God (Revelation 19:13) will also come and triumph. And as John the Baptist, and Jesus the Son of God were completely unlike anything anyone could have imagined, we can be reasonably certain the same would apply for the third individual of Malachi's prophecy.

Notes

  1. English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




The foolishness of God is greater than anything we can imagine (1 Corinthians 1:25). On the off chance the numbers are a form of foolishness, do not spend too much time on them.