Bible Numbers 2.0

Prophecy Of A Deliverer

Judges 13:15-24 is one of the few prophecies confirmed with a miracle as a down payment that it would be fulfilled. Manoah was a superstitious man who was either ignorant of the law of Moses or who chose to ignore it. He was quick to jump to conclusions and not a very clear headed thinker. He asked God to send the angel to teach him how to raise his future son, but when the angel returned was only interested in what was going to happen in the future. His wife was much more perceptive, and the angel went to her first twice. (For more on Samson's parents, see this.)

The angel's prophecy of Samson's birth is tied to Deuteronomy 18:21-22, not just as an example of prophetic confirmation, but also as an example contrasting the angel (or prophet) with a soothsayer/diviner. The soothsayer will not be able to provide a miracle. The soothsayer will not be like Moses and will contradict other parts of the Bible.

21 And if you say in your heart, `How may we know the word which the LORD has not spoken?' -- 22 when a prophet speaks in the name of the LORD, if the word does not come to pass or come true, that is a word which the LORD has not spoken; the prophet has spoken it presumptuously, you need not be afraid of him. (Deuteronomy 18:21-22)1

Verse 21 focuses on what God has not said. It is understood that these cases will be much more numerous. God does not always speak, and there are times when it is rare. (1 Samuel 3:1)

Prophecy must be in the name of the lord. Remember this when experts advise you to do this or that. Experts are only human, and they have all the prejudices, biases and failings of humans.

The main distinguishing mark of God’s word is that it comes to pass. What man says that does not come to pass is simply a presumptuous opinion, no matter his credentials. (See John Perkins' book, Confessions Of An Economic Hitman, for experts who sell ideas of the future knowing they will be long gone before anyone can say they were wrong.)

Deuteronomy 18:21-222
4321:A
365664136:B
16151413121110987654321:C
520101202230220040140010206:D
איכהבלבבךתאמרוכי:E
98765:A
31501211401124:B
3029282726252423222120191817:C
1302003001200245400170450:D
לאאשרהדבראתנדע:E
13121110:A
21650126212:B
454443424140393837363534333231:C
2002410200300156510620024:D
ידבראשריהוהדברו:E
17161514:A
372634268:B
605958575655545352515049484746:C
1306565104030021102505:D
ולאיהוהבשםהנביא:E
21201918:A
193721130:B
757473727170696867666564636261:C
162101306200245510510:D
יבואולאהדבריהיה:E
2625242322:A
2123150121112:B
91908988878685848382818079787776:C
6200241302003001200245165:D
דברולאאשרהדברהוא:E
292827:A
2126926:B
1041031021011009998979695949392:C
62002450647256510:D
דברובזדוןיהוה:E
33323130:A
1366093168:B
119118117116115114113112111110109108107106105:C
6504040200634001301102505:D
ממנותגורלאהנביא:E

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Hebrew.

These two verses have 33 words, 119 letters (7 x 17), and a numeric total of 5880 = 23 x 3 x 5 x 72 SF: 28 = 22 x 7.

15 Manoah said to the angel of the LORD, "Pray, let us detain you, and prepare a kid for you." 16 And the angel of the LORD said to Manoah, "If you detain me, I will not eat of your food; but if you make ready a burnt offering, then offer it to the LORD." (For Manoah did not know that he was the angel of the LORD.) 17 And Manoah said to the angel of the LORD, "What is your name, so that, when your words come true, we may honor you?" 18 And the angel of the LORD said to him, "Why do you ask my name, seeing it is wonderful?" 19 So Manoah took the kid with the cereal offering, and offered it upon the rock to the LORD, to him who works wonders. 20 And when the flame went up toward heaven from the altar, the angel of the LORD ascended in the flame of the altar while Manoah and his wife looked on; and they fell on their faces to the ground. 21 The angel of the LORD appeared no more to Manoah and to his wife. Then Manoah knew that he was the angel of the LORD. 22 And Manoah said to his wife, "We shall surely die, for we have seen God." 23 But his wife said to him, "If the LORD had meant to kill us, he would not have accepted a burnt offering and a cereal offering at our hands, or shown us all these things, or now announced to us such things as these." 24 And the woman bore a son, and called his name Samson; and the boy grew, and the LORD blessed him. (Judges 13:15-24)

Superstitious Manoah was ready to offer a burnt offering to a being he didn't even know! (Verse 16.) He was fortunate the angel didn't take offence. It becomes clear why the angel went to his wife first, and why the angel returned to his wife. The angel was avoiding him.

Manoah persisted in his error wanting to know the angel's name. He would honour the angel, but not the lord. The angel told him directly to offer the gift to the lord, and with no name, Manoah had no choice but to do as instructed.

The angel ascended into heaven from the flame of the burnt offering, showing the lord had accepted Manoah's reluctant offering, and showing confirmation of the prophecy.

Filled with superstitious dread, Manoah now feared he would die for seeing the face of God. He did not remember the seventy elders who ate with Elohim. (Exodus 24:9-11) His false beliefs got in the way of gaining true knowledge of how to teach his unborn son.

It was left up to his wife to name his son Samson.

Judges 13:15-24
4321:A
9131104257:B
151413121110987654321:C
2013040301865040200401106:D
מלאךאלמנוחויאמר:E
8765:A
4275141526:B
302928272625242322212019181716:C
2040061150520090705056510:D
אותךנאנעצרהיהוה:E
11109:A
17190431:B
43424140393837363534333231:C
10432010508030530070506:D
גדילפניךונעשה:E
141312:A
91257127:B
56555453525150494847464544:C
20130402004011064010770:D
מלאךויאמרעזים:E
18171615:A
411043126:B
686766656463626160595857:C
40186504030156510:D
אםמנוחאליהוה:E
22212019:A
1005131820:B
84838281807978777675747372717069:C
204083023020113010502009070400:D
בלחמךאכללאתעצרני:E
26252423:A
5610577547:B
999897969594939291908988878685:C
5651030530705300704004016:D
ליהוהעלהתעשהואם:E
3130292827:A
104843130555:B
115114113112111110109108107106105104103102101100:C
8650407041013010205503070400:D
מנוחידעלאכיתעלנה:E
35343332:A
12269130:B
128127126125124123122121120119118117116:C
1655651020130401020:D
הואיהוהמלאךכי:E
39383736:A
9131104257:B
143142141140139138137136135134133132131130129:C
2013040301865040200401106:D
מלאךאלמנוחויאמר:E
4443424140:A
13303605026:B
157156155154153152151150149148147146145144:C
121010202040300104056510:D
יבאכישמךמייהוה:E
4645:A
108236:B
169168167166165164163162161160159158:C
2065042206201020024:D
וכבדנוךדבריך:E
50494847:A
269136257:B
184183182181180179178177176175174173172171170:C
565102013040630200401106:D
יהוהמלאךלוויאמר:E
54535251:A
3807311275:B
197196195194193192191190189188187186185:C
1040300303013004005754030:D
לשמיתשאלזהלמה:E
58575655:A
10412412118:B
213212211210209208207206205204203202201200199198:C
865040810010610130801656:D
מנוחויקחפלאיוהוא:E
62616059:A
40713217401:B
226225224223222221220219218217216215214:C
400164010770510434001:D
ואתהעזיםגדיאת:E
66656463:A
301100116108:B
241240239238237236235234233232231230229228227:C
2006905307030701065850405:D
הצורעלויעלהמנחה:E
696867:A
80615756:B
256255254253252251250249248247246245244243242:C
40063007030130804065651030:D
לעשותומפלאליהוה:E
727170:A
251713110:B
270269268267266265264263262261260259258257:C
401012006400300168650406:D
ראיםואשתוומנוח:E
76757473:A
1404250831:B
286285284283282281280279278277276275274273272271:C
30704025305400630702105106:D
מעלהלהבבעלותויהי:E
797877:A
11640062:B
301300299298297296295294293292291290289288287:C
307010654010403005827405:D
ויעלהשמימההמזבח:E
828180:A
392691:B
313312311310309308307306305304303302:C
25302565102013040:D
בלהביהוהמלאך:E
858483:A
71311062:B
328327326325324323322321320319318317316315314:C
6400300168650406827405:D
ואשתוומנוחהמזבח:E
89888786:A
185100132251:B
344343342341340339338337336335334333332331330329:C
40510508030706308010640101200:D
פניהםעלויפלוראים:E
93929190:A
8015037296:B
357356355354353352351350349348347346345:C
467080601013065902001:D
עודיסףולאארצה:E
97969594:A
312412691:B
372371370369368367366365364363362361360359358:C
30151200530565102013040:D
אללהראהיהוהמלאך:E
1021011009998:A
84870737104:B
388387386385384383382381380379378377376375374373:C
7041071640030013016865040:D
ידעאזאשתוואלמנוח:E
106105104103:A
269130104:B
402401400399398397396395394393392391390389:C
5651020130401020865040:D
יהוהמלאךכימנוח:E
110109108107:A
3110425712:B
416415414413412411410409408407406405404403:C
301865040200401106165:D
אלמנוחויאמרהוא:E
114113112111:A
30496446707:B
429428427426425424423422421420419418417:C
10204006405040064064003001:D
כינמותמותאשתו:E
117116115:A
64726786:B
444443442441440439438437436435434433432431430:C
200401400665010120040105301:D
ותאמרראינואלהים:E
122121120119118:A
261783670736:B
459458457456455454453452451450449448447446445:C
565109080863064003001630:D
יהוהחפץלואשתולו:E
125124123:A
13831541:B
471470469468467466465464463462461460:C
8100301306504001040530:D
לקחלאלהמיתנו:E
129128127126:A
37109105110:B
487486485484483482481480479478477476475474473472:C
130658504065307065041040:D
ולאומנחהעלהמידנו:E
134133132131130:A
4963650401262:B
503502501500499498497496495494493492491490489488:C
4007020653013020400165012005:D
וכעתאלהכלאתהראנו:E
137136135:A
42848131:B
516515514513512511510509508507506505504:C
40017206507010403005130:D
כזאתהשמיענולא:E
141140139138:A
70752311440:B
531530529528527526525524523522521520519518517:C
120010040065025300154304006:D
ותקראבןהאשהותלד:E
145144143142:A
53696346401:B
546545544543542541540539538537536535534533532:C
3043106506300403006403004001:D
ויגדלשמשוןשמואת:E
148147146:A
26249325:B
561560559558557556555554553552551550549548547:C
565106520200210620070505:D
יהוהויברכהוהנער:E

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Hebrew.

This section has 148 words, 561 letters, and a numeric total of 28700 = 22 x 52 x 7 x 41.

Primary Features

(Derived from Revelation 1:8 and grouped for easy reference.)

I Am (Present tense - living through it) Add up everything.

A.1Numeric total: 34580 = 22 x 5 x 7 x 13 x 19. (See feature 1.)

Is, Was, Is To Come (Second present tense - skipping sequentially through it) Add up every other occurrance.

B.3Every other word (odd): 15414 = 2 x 3 x 7 x 367. (See feature 2.4.1.)

B.3.2Every other word (even): 19166 = 2 x 7 x 372. (See feature 2.4.2.)

B.4Every other letter (odd): 17171 = 7 x 11 x 223. (See feature 4.2.1.)

B.4.2Every other letter (even): 17409 = 3 x 7 x 829. (See feature 4.2.2.)

Alpha & Omega (The first and last) Add up the first item with the last item.

C.3.2First and last letter of each word: 16800 = 25 x 3 x 52 x 7. (See feature 3.1.1.)

Alpha (The first) Add up the first item.

D.3.3First letter of each word: 6797 = 7 x 971. (See feature 3.2.1.)

Omega (The last) Add up the last item.

E.3.3Last letter of each word: 10003 = 7 x 1429. (See feature 3.3.1.)

The Verses

1Placing these two passages together, there are 12 verses, 181 words, 680 letters, and a numeric total of 34580 (22 x 5 x 7 x 13 x 19).

List of verses:
2275 3605 2167 3498 1306 1747 3903 3304 1859 2424 4886 3606

1.1.1Verses where the total has an odd valued first digit:

3605 3498 1306 1747 3903 3304 1859 3606

Total: 22828 = 22 x 13 x 439.

1.1.2Verses where the total has an even valued first digit:

2275 2167 2424 4886

Total: 11752 = 23 x 13 x 113.

1.1.3The difference between verses with an odd/even first digit: 11076 = 22 x 3 x 13 x 71. SF: 91 = 7 x 13.

1.2The letter values of God’s name in Hebrew are 10-5-6-5. This points to four verses among the twelve.

2424 1306 1747 1306

Total of the verses: 6783 = 3 x 7 x 17 x 19.

1.3The second and second last verses are the only two that are together and individually multiples of 7: 8491 = 7 x 1213. (The second last verse is the eleventh verse. Thus the positions of these two verses amount to 13.)

1.4Divide the 12 verses into groups of 2.

1.4.1Odd positioned groups of two:

2275 3605 1306 1747 1859 2424

Total: 13216 = 25 x 7 x 59.

1.4.2Even positioned groups of two:

2167 3498 3903 3304 4886 3606

Total: 21364 = 22 x 72 x 109.

1.5Divide the 12 verses into groups of 3. Since there are four groups, there is no middle group. However, there are two groups that can be considered the middle, and there are two groups that are at either end.

1.5.1The two middle groups:

3498 1306 1747 3903 3304 1859

Total of the middle: 15617 = 7 x 23 x 97.

1.5.2The two end groups:

2275 3605 2167 2424 4886 3606

Total of the ends: 18963 = 3 x 3 x 7 x 7 x 43. SF: 63 = 3 x 3 x 7. SF: 13.

1.6Add up the verses one by one.

a) 1    2    3    4     5     6     7     8     9     10    11    12
b) 2275 3605 2167 3498  1306  1747  3903  3304  1859  2424  4886  3606
c) 2275 5880 8047 11545 12851 14598 18501 21805 23664 26088 30974 34580
d) *                                *     *                       *

a) Verse position.
b) Verse total.
c) Accumulated verse total.
d) Verse total divisible by 7 and or 13.

Providentially, the positions of the verses where they are divisible by 7 total 28 (22 x 7).

1.6.2It just so happens that the very first, and the very last accumulated totals are both multiples of 7 and 13.

The Words

2Like the verses in feature 1.2, the 10th, 5th, 6th and 5th words also have a feature.

Word position: 10  5   6   5
Word value:    212 124 401 124

Total of the four words: 861 = 3 x 7 x 41.

2.2The letter values of the Name are applied 7 times to cover all the words.

a) 10  5   6  5   10 5   6  5   10 5  6  5   10 5  6   5   10  5   6
b) 10  15  21 26  36 41  47 52  62 67 73 78  88 93 99  104 114 119 125
c) 10  15  21 26  36 41  47 52  62 67 73 78  88 93 99  104 114 119 125
d) 212 342 19 212 31 427 91 820 31 26 26 236 18 17 301 713 26  251 150

a) 5   10  5   6   5   10  5   6   5     (Letter from the Name.)
b) 130 140 145 151 156 166 171 177 182   (Count.)
c) 130 140 145 151 156 166 171 177 1     (Count adjusted to 181 words.)
d) 31  12  446 36  541 36  440 696 36    (Word found.)

Total of the words found (d): 6223 = 72 x 127.

2.3The sum of every Nth word is a multiple of 13 when N is one of the following:

5 9 12 21 23 54 60 64 88

Total of the N values: 336 = 24 x 3 x 7.

2.3.1Every 7th word:

a) 7   14 21 28 35  42  49 56 63 70  77 84 91  98  105 112 119 126 133
b) 211 68 19 69 104 431 31 47 84 104 13 75 104 100 251 116 251 80  707

a) 140 147 154 161 168 175   (Word position.)
b) 12  30  178 109 31  401   (Word value.)

Total of the words: 3626 = 2 x 72 x 37.

2.3.1.1Odd valued words in positions divisible by 7:

211 19 69 431 31 47 13 75 251 251 707 109 31 401

Total: 2646 = 2 x 33 x 72.

2.3.1.2Even valued words in positions divisible by 7:

68 104 84 104 104 100 116 80 12 30 178

Total: 980 = 22 x 5 x 72.

2.4Following Revelation 1:8's is, was and is to come where the present tense is removed, almost 90 sub-features are possible when odd or even positioned groups of N-number of words are extracted. The two main sub-features are given below.

2.4.1Odd positioned words:

36 56 124 211 31 26 216 342 37 211 19 211 31 26 212 31 136 104 91 415 427 190 127 91 31 41 31 100 775 56 30 84 30 26 257 31 26 360 13 108 36 26 12 380 121 104 17 407 116 301 157 110 251 508 140 400 91 39 110 251 100 296 150 91 241 104 707 84 30 26 257 31 446 30 267 36 36 26 31 110 109 262 50 496 481 440 52 401 696 325 26

Total: 15414 = 2 x 3 x 7 x 367.

2.4.2Even positioned words:

641 36 401 501 212 501 68 26 30 37 12 501 212 69 68 609 257 31 26 51 431 17 257 26 104 820 51 47 105 555 31 104 91 12 104 91 50 30 236 257 91 75 731 18 124 401 132 108 100 56 806 713 31 42 62 116 26 62 713 132 185 37 80 26 31 37 8 104 91 12 104 707 496 86 647 707 178 541 138 105 37 401 36 31 428 311 707 346 53 249

Total: 19166 = 2 x 7 x 372.

2.4.3The first two, and last two words of the combined passage are the first and last odd positioned words, and the first and last even positioned words. Providentially, these four words are a multiple of 7: 952 = 23 x 7 x 17.

2.5There is perfect placement and division between odd and even valued words.

2.5.186 words are odd valued:

a) 2   6   7   8   9  12  17 19  20 21 23  24  25 28 31 32  34  36 37
b) 641 401 211 501 31 501 37 211 37 19 211 501 31 69 31 609 257 31 91

a) 39  40 41  42  44 45  46  47 49 51 53 54 56 57  58  60  62 66 69
b) 415 51 427 431 17 127 257 91 31 41 31 51 47 775 105 555 31 91 257

a) 71 72 77 80  82 84 86  89  92  93 95  99  101 104 105 106 113 115
b) 31 91 13 257 91 75 731 121 401 17 407 301 157 713 251 31  91  39

a) 118 119 122 124 127 129 130 132 133 138 141 143 144 149 150 152 156
b) 713 251 185 37  91  241 31  37  707 91  257 31  707 267 647 707 541

a) 157 160 161 162 164 168 169 172 174 175 178 179 180
b) 31  105 109 37  401 31  481 311 707 401 53  325 249

a) Word position.
b) Word value.

Total of the positions of these words (a): 7540 = 22 x 5 x 13 x 29. Total of the odd valued words (b): 20852 = 22 x 13 x 401.

2.5.295 words are even valued:

a) 1  3  4  5   10  11 13  14 15  16 18 22 26  27 29  30 33  35  38 43
b) 36 56 36 124 212 26 216 68 342 26 30 12 212 26 212 68 136 104 26 190

a) 48 50  52  55  59 61 63 64  65 67 68 70  73 74 75  76 78  79  81 83
b) 26 104 820 100 56 30 84 104 30 26 12 104 26 50 360 30 236 108 36 26

a) 85 87  88 90  91  94  96  97  98  100 102 103 107 108 109 110 111
b) 12 380 18 124 104 132 108 116 100 56  806 110 508 42  140 62  400

a) 112 114 116 117 120 121 123 125 126 128 131 134 135 136 137 139 140
b) 116 26  62  110 132 100 296 150 80  26  104 8   84  104 30  26  12

a) 142 145 146 147 148 151 153 154 155 158 159 163 165 166 167 170 171
b) 104 446 496 30  86  36  36  178 26  138 110 262 50  36  496 428 440

a) 173 176 177 181  (Word position)
b) 52  346 696 26   (Word value.)

Total of the positions of these words (a): 8931 = 3 x 13 x 229. SF: 245 = 5 x 72 Total of the even valued words (b): 13728 = 25 x 3 x 11 x 13.

2.5.3The difference between the totals of the odd and even valued words leads to 7: 7124 = 22 x 13 x 137. SF: 154 = 2 x 7 x 11.

2.5.4The even valued words outnumber the odd valued words by 9 words. If the last 9 words were subtracted from the even valued words, the total would be 11158. (2 x 7 x 797. SF: 806 = 2 x 13 x 31.)

2.6Divide the words into two groups, prime numbers, and not prime numbers. This reveals the highly structured nature of the combined passage.

2.6.148 words are prime numbers.

a) 2   6   7   9   17  19  20  21  23  25  31  34  36  42  44  45
b) 641 401 211 31  37  211 37  19  211 31  31  257 31  431 17  127

a) 46  49  51  53  56  62  69  71  77  80  92  93  101 105 106 119
b) 257 31  41  31  47  31  257 31  13  257 401 17  157 251 31  251

a) 124 129 130 132 141 143 150 156 157 161 162 164 168 172 175 178
b) 37  241 31  37  257 31  647 541 31  109 37  401 31  311 401 53

a) Word position.
b) Word value.

The sum of the primes yield nothing, but the total of the positions is something else (a): 4053 = 3 x 7 x 193. SF: 203 = 7 x 29.

2.6.1.1From the list of prime numbers above, take the odd positioned numbers.

641 211 37 37 211 31 31 17 257 41 47 257 13 401 157 31 37 31 257 647 31 37 31 401

Total: 3892 = 22 x 7 x 139. (There is no matching feature with the even positioned.)

2.6.2133 words are not prime numbers. (133 = 7 x 19. SF: 26 = 2 x 13.)

a) 1   3   4   5   8   10  11  12  13  14  15  16  18  22  24  26
b) 36  56  36  124 501 212 26  501 216 68  342 26  30  12  501 212

a) 27  28  29  30  32  33  35  37  38  39  40  41  43  47  48  50
b) 26  69  212 68  609 136 104 91  26  415 51  427 190 91  26  104

a) 52  54  55  57  58  59  60  61  63  64  65  66  67  68  70  72
b) 820 51  100 775 105 56  555 30  84  104 30  91  26  12  104 91

a) 73  74  75  76  78  79  81  82  83  84  85  86  87  88  89  90
b) 26  50  360 30  236 108 36  91  26  75  12  731 380 18  121 124

a) 91  94  95  96  97  98  99  100 102 103 104 107 108 109 110 111
b) 104 132 407 108 116 100 301 56  806 110 713 508 42  140 62  400

a) 112 113 114 115 116 117 118 120 121 122 123 125 126 127 128 131
b) 116 91  26  39  62  110 713 132 100 185 296 150 80  91  26  104

a) 133 134 135 136 137 138 139 140 142 144 145 146 147 148 149 151
b) 707 8   84  104 30  91  26  12  104 707 446 496 30  86  267 36

a) 152 153 154 155 158 159 160 163 165 166 167 169 170 171 173 174
b) 707 36  178 26  138 110 105 262 50  36  496 481 428 440 52  707

a) 176 177 179 180 181  (Word position.)
b) 346 696 325 249 26   (Word value.)

Once again the total of words yields nothing, and once again the total of the positions is a multiple of 7: 12418 = 2 x 7 x 887. SF: 896 = 27 x 7. SF: 21 = 3 x 7. The curious part is that both features have the sum of their positions having extra levels of factors.

2.6.2.1From the list of words that are not prime numbers, take the even valued words.

36 56 36 124 212 26 216 68 342 26 30 12 212 26 212 68 136 104 26 190 26 104 820 100 56 30 84 104 30 26 12 104 26 50 360 30 236 108 36 26 12 380 18 124 104 132 108 116 100 56 806 110 508 42 140 62 400 116 26 62 110 132 100 296 150 80 26 104 8 84 104 30 26 12 104 446 496 30 86 36 36 178 26 138 110 262 50 36 496 428 440 52 346 696 26

Total of the even valued words: 13728 = 25 x 3 x 11 x 13.

2.6.2.2From the list of words that are not prime numbers, take every other position (i.e. the odd positioned positions).

1 4 8 11 13 15 18 24 27 29 32 35 38 40 43 48 52 55 58 60 63 65 67 70 73 75 78 81 83 85 87 89 91 95 97 99 102 104 108 110 112 114 116 118 121 123 126 128 133 135 137 139 142 145 147 149 152 154 158 160 165 167 170 173 176 179 181

Total of the positions: 6253 = 132 x 37. SF: 63 = 32 x 7. SF: 13.

2.6.2.3From the list of words that are not prime numbers, take all the positions where the first digit is odd.

1 3 5 10 11 12 13 14 15 16 18 30 32 33 35 37 38 39 50 52 54 55 57 58 59 70 72 73 74 75 76 78 79 90 91 94 95 96 97 98 99 100 102 103 104 107 108 109 110 111 112 113 114 115 116 117 118 120 121 122 123 125 126 127 128 131 133 134 135 136 137 138 139 140 142 144 145 146 147 148 149 151 152 153 154 155 158 159 160 163 165 166 167 169 170 171 173 174 176 177 179 180 181

Total of these positions.: 10752 = 29 x 3 x 7. SF: 28 = 22 x 7.

2.6.2.4From the list of words that are not prime numbers, take all the positions where the first digit is even.

4 8 22 24 26 27 28 29 40 41 43 47 48 60 61 63 64 65 66 67 68 81 82 83 84 85 86 87 88 89

Total of these positions: 1666 = 2 x 72 x 17.

2.7When the words are added one by one, 33 times the accumulated total will be a multiple of 7.

a)  b)  c)      a)  b)  c)
7   211 1505    98  100 16107
9   31  2037    99  301 16408
11  26  2275    100 56  16464
15  342 3402    105 251 18501
17  37  3465    107 508 19040
33  136 5880    108 42  19082
36  31  6272    109 140 19222
37  91  6363    111 400 19684
39  415 6804    120 132 21224
43  190 7903    123 296 21805
48  26  8421    134 8   23317
54  51  9499    135 84  23401
56  47  9646    154 178 27692
60  555 11137   156 541 28259
69  257 11802   168 31  30065
73  26  12054   181 26  34580
91  104 14826

a) Word position.
b) Word value.
c) Accumulated total.

Total of the words (b): 5670 = 2 x 34 x 5 x 7. SF: 26 = 2 x 13.

2.8Divide the words into alternating groups of 52 and 77 words.

2.8.1Groups of 52:

36 641 56 36 124 401 211 501 31 212 26 501 216 68 342 26 37 30 211 37 19 12 211 501 31 212 26 69 212 68 31 609 136 257 104 31 91 26 415 51 427 431 190 17 127 257 91 26 31 104 41 820
31 104 37 707 8 84 104 30 91 26 12 257 104 31 707 446 496 30 86 267 647 36 707 36 178 26 541 31 138 110 105 109 37 262 401 50 36 496 31 481 428 440 311 52 707 401 346 696 53 325 249 26

Total of the groups of 52: 21567 = 3 x 7 x 13 x 79.

2.8.2Groups of 77:

31 51 100 47 775 105 56 555 30 31 84 104 30 91 26 12 257 104 31 91 26 50 360 30 13 236 108 257 36 91 26 75 12 731 380 18 121 124 104 401 17 132 407 108 116 100 301 56 157 806 110 713 251 31 508 42 140 62 400 116 91 26 39 62 110 713 251 132 100 185 296 37 150 80 91 26 241

Total of the groups of 77: 13013 = 7 x 11 x 132.

2.9The first and last occurrence of five words have the unique ability of dividing the rest of the words into two groups, what is between them, and what is not between them.

Between & Not Between The Nth & Nth Last Word
Word ValueNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
26132279 = 132 x 191. SF: 217 = 7 x 31.2301 = 3 x 13 x 59.
6811976 = 23 x 13 x 19.32604 = 22 x 3 x 11 x 13 x 19.
104117680 = 24 x 5 x 13 x 17.16900 = 22 x 52 x 132
25112340 = 22 x 32 x 5 x 13. SF: 28 = 22 x 7.32240 = 24 x 5 x 13 x 31.
621672 = 25 x 3 x 7.33908 = 22 x 72 x 173.

2.9.1The sum of these five words (first column of table): 511 = 7 x 73.

2.9.2These five words appear multiple times in the passage. The total of all their occurrences: 1932 = 22 x 3 x 7 x 23.

2.9.3A third feature of these five words lies in the positions of their last occurrences.

Word:                         26  68 104 251 62
Position of first appearance: 11  14 35  105 110
Position of last appearance:  181 30 142 119 116

Total of the last positions of these words: 588 = 22 x 3 x 72. SF: 21 = 3 x 7.

First And Last

3.1.1Total of the first and last letters of each word: 16800 = 25 x 3 x 52 x 7.

3.1.2Pairing Nth and Nth last from the list in feature 3.1, where they are together a multiple of 7, there are exactly 14 of them.

a) 4   6   15  16  20  33  45  47  50  52  60  68  69  70
b) 6   401 42  15  7   46  110 60  48  410 405 6   206 48
c) 178 176 167 166 162 149 137 135 132 130 122 114 113 112
d) 36  306 406 6   7   206 30  80  36  31  120 15  60  36
e) 42  707 448 21  14  252 140 140 84  441 525 21  266 84

a) Nth from list.
b) Value.
c) Nth from list end.
d) Value.
e) Sum of both values.

Sum of positions (a + c): 2548 = 22 x 72 x 13.

3.1.3From the list of totals of the first and last letters, take every other.

3.1.3.1The odd positioned from the list in feature 3.1:

a) 1  3  5   7   9  11 13  15 17 19  21 23  25 27 29 31 33 35 37 39 41
b) 16 22 120 205 31 15 210 42 7  205 11 205 31 15 10 31 46 48 60 55 21

a) 43 45  47 49 51 53 55 57  59 61 63 65 67 69  71 73 75  77 79 81 83
b) 50 110 60 31 41 31 22 405 35 30 80 30 15 206 31 15 320 11 26 36 15

a) 85 87 89 91 93 95  97 99  101 103 105 107 109 111 113 115 117 119
b) 12 40 90 48 13 406 36 205 7   14  240 402 70  10  60  4   14  240

a) 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153
b) 100 6   90  60  35  48  7   80  30  15  206 31  440 30  206 36  36

a) 155 157 159 161 163 165 167 169 171 173 175 177 179 181
b) 15  31  46  11  11  50  406 11  10  52  401 350 205 15

a) Word position.
b) Total of the first and last letters.

Total of the odd positioned (b): 7987 = 72 x 163.

3.1.3.2The even positioned in the list of feature 3.1:

a) 2   4 6   8   10 12  14 16 18 20 22 24  26 28 30 32  34  36 38 40
b) 600 6 401 201 10 201 6  15 15 7  6  201 10 52 6  600 206 31 15 51

a) 42 44 46  48 50 52  54 56 58 60  62 64 66 68 70 72 74 76 78 80  82
b) 11 13 206 15 48 410 31 46 75 405 31 48 60 6  48 60 50 30 24 206 60

a) 84 86  88 90 92  94 96 98  100 102 104 106 108 110 112 114 116 118
b) 35 430 7  14 401 45 10 100 35  430 12  16  7   13  36  15  13  12

a) 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152
b) 12  120 7   74  15  31  36  8   48  60  6   48  7   450 41  206 7

a) 154 156 158 160 162 164 166 168 170 172 174 176 178 180
b) 98  36  38  75  7   401 6   31  420 10  7   306 36  12

a) Word position.
b) Total of the first and last letters.

Total of the even positioned (b): 8813 = 7 x 1259.

Forty-three other sub-features continue the pattern in feature 3.3.

3.1.4.140 of the sums in feature 3.1 are prime numbers. They are strategically placed in the passage.

a) 6   9  17 20  21 25  31  36  42  44  49  51  53  54  62
b) 401 31 7  7   11 31  31  31  11  13  31  41  31  31  31

a) 71  77 88 92  93 101 108 110 116 124 130 133 143 144 148
b) 31  11 7  401 13 7   7   13  13  7   31  7   31  7   41

a) 152 157 161 162 163 164 168 169 174 175 (Word position.)
b) 7   31  11  7   11  401 31  11  7   401 (Total first last.)

Total of the positions (a): 3843 = 32 x 7 x 61.

3.1.4.2141 of the sums in feature 3.1 are not prime numbers.

a) 1  2   3  4 5   7   8   10 11 12  13  14 15 16 18 19  22 23  
b) 16 600 22 6 120 205 201 10 15 201 210 6  42 15 15 205 6  205 

a) 24  26 27 28 29 30 32  33 34  35 37 38 39 40 41 43 45  46  47 
b) 201 10 15 52 10 6  600 46 206 48 60 15 55 51 21 50 110 206 60 

a) 48 50 52  55 56 57  58 59 60  61 63 64 65 66 67 68 69  70 72 
b) 15 48 410 22 46 405 75 35 405 30 80 48 30 60 15 6  206 48 60 

a) 73 74 75  76 78 79 80  81 82 83 84 85 86  87 89 90 91 94 95  96 
b) 15 50 320 30 24 26 206 36 60 15 35 12 430 40 90 14 48 45 406 10 

a) 97 98  99  100 102 103 104 105 106 107 109 111 112 113 114 115 
b) 36 100 205 35  430 14  12  240 16  402 70  10  36  60  15  4   

a) 117 118 119 120 121 122 123 125 126 127 128 129 131 132 134 135 
b) 14  12  240 12  100 120 6   90  74  60  15  35  48  36  8   80  

a) 136 137 138 139 140 141 142 145 146 147 149 150 151 153 154 155 
b) 48  30  60  15  6   206 48  440 450 30  206 206 36  36  98  15  

a) 156 158 159 160 165 166 167 170 171 172 173 176 177 178 179 
b) 36  38  46  75  50  6   406 420 10  10  52  306 350 36  205 

a) 180 181 (Word position.)
b) 12  15  (Sum of the first and last letters.)

Total of the positions (a): 12628 = 22 x 7 x 11 x 41. SF: 63 = 32 x 7. SF: 13.

3.1.5The middle N from feature 3.1 add up to a multiple of 7 when N is one of the following:

167 159 143 141 117 115 103 97 89 87 67 55 47 45 43 41 23 19 15 9

Total of the N values: 1582 = 2 x 7 x 113.

3.1.6Of the list in feature 3.1, value 4 is the lowest, and value 600 is the highest. Value 4 occurred only once for a total of 4, and value 600 appeared twice for a total of 1200. Thus lowest and highest together total 1204 = 22 x 7 x 43.

3.1.6.2In the feature 3.1 list, value 210 only appeared once and the total of its positions is 13, the lowest. Value 7 appeared 11 times and the total of its positions is 1223, the highest in the list. Lowest and highest are both multiples of 7.

3.1.7Seventeen of the sums in feature 3.1 divide the rest of the list into what is between their Nth and Nth last occurrences, and what is not between them.

Between & Not Between The Nth & Nth Last Sum
First Last SumNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
16110143 = 32 x 72 x 23.6657 = 3 x 7 x 317.
20526888 = 23 x 3 x 7 x 41.9912 = 23 x 3 x 7 x 59.
1037791 = 3 x 72 x 53. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.9009 = 32 x 7 x 11 x 13.
1563003 = 3 x 7 x 11 x 13.13797 = 33 x 7 x 73.
7211718 = 2 x 33 x 7 x 31. SF: 49 = 72 SF: 14 = 2 x 7.5082 = 2 x 3 x 7 x 112
735607 = 32 x 7 x 89.11193 = 3 x 7 x 13 x 41.
11210003 = 7 x 1429.6797 = 7 x 971.
20619653 = 72 x 197.7147 = 7 x 1021.
20635362 = 2 x 7 x 383. SF: 392 = 23 x 7211438 = 2 x 7 x 19 x 43.
4827210 = 2 x 5 x 7 x 103. SF: 117 = 32 x 13.9590 = 2 x 5 x 7 x 137.
4835341 = 72 x 109.11459 = 7 x 1637.
4841512 = 23 x 33 x 7.15288 = 23 x 3 x 72 x 13.
4118540 = 22 x 5 x 7 x 61. SF: 77 = 7 x 11.8260 = 22 x 5 x 7 x 59.
7518316 = 22 x 33 x 7 x 11.8484 = 22 x 3 x 7 x 101.
8015488 = 24 x 7311312 = 24 x 7 x 101.
3632954 = 2 x 7 x 211.13846 = 2 x 7 x 23 x 43.
2401672 = 25 x 3 x 7.16128 = 28 x 32 x 7.

3.1.7.1The sum of the Nth occurrences (second column of table): 39 = 3 x 13.

3.1.7.2Of the 17, six are with their first and last occurrences:

16 206 41 75 80 240

Total of the six: 658 = 2 x 7 x 47. SF: 56 = 23 x 7. SF: 13.

3.1.7.3If duplicates were removed from the first column, there would be only 13 unique numbers.

3.1.7.4The lowest value in the first column is 7. The highest value is 240. Lowest and highest together: 247 = 13 x 19.

3.2The first and last letters of each word work very well together. Now they are examined separately.

3.2.1Total of the first letter of each word: 6797 = 7 x 971.

3.2.2.1Every Nth first letter adds to a multiple of 13 when N is one of the following:

4 12 16 30 35 49 57

Total of the N values: 203 = 7 x 29.

3.2.2.2Only one Nth value, 49 (7 x 7), produces a total divisible by 7 and 13.

3.2.3Exactly 7 of the first letters are multiples of 7.

Word position: 45 58 85 98 121 126 160
First letter:  70 70 7  70 70  70  70

Total of the word positions: 693 = 32 x 7 x 11.

3.2.4The 181 first letters of each word can be grouped into alternating groups of 84 and 13 letters.

3.2.4.1Groups of 84 letters:

6 400 2 1 50 1 5 1 30 4 10 1 10 5 2 10 6 10 5 6 10 5 5 1 30 4 10 2 4 5 30 400 40 6 40 1 40 10 50 50 1 6 30 3 70 6 40 10 1 40 1 400 30 1 2 6 400 70 30 400 20 30 10 40 20 40 10 5 6 40 1 40 10 40 300 20 10 4 6 6 30 40 10 30
70 5 30 6 30 6 6 200 6 2 5 40 5 5 6 40 10 2 5 6 6 200 6 70 80 1 6 10 70 40 10 30 1 40 6 1 1 10 40 20 40 10 5 6 40 1 1 40 50 20 1 200 6 30 1 30 8 10 30 30 30 40 70 6 6 5 1 20 1 6 30 5 20 6 5 2 6 1 300 300 6 5 6 10

Total of the groups of 84: 6202 = 2 x 7 x 443.

3.2.4.2Single group of 13 letters:

7 400 30 6 80 6 40 1 3 5 6 5 6

Total: 595 = 5 x 7 x 17.

3.2.5Twelve of the first letters divide the rest of the list into what is and what is not between their Nth and Nth last occurrences.

Between & Not Between The Nth & Nth Last Of The First Letter
First LetterNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
645033 = 7 x 719.1764 = 22 x 32 x 72
654774 = 2 x 7 x 11 x 31.2023 = 7 x 172
674095 = 32 x 5 x 7 x 13.2702 = 2 x 7 x 193.
125628 = 22 x 3 x 7 x 67.1169 = 7 x 167.
1111988 = 22 x 7 x 71.4809 = 3 x 7 x 229.
5020 =6797 = 7 x 971.
554816 = 24 x 7 x 43.1981 = 7 x 283.
1073472 = 24 x 7 x 31.3325 = 52 x 7 x 19.
4034214 = 2 x 72 x 43.2583 = 32 x 7 x 41.
2013255 = 3 x 5 x 7 x 31.3542 = 2 x 7 x 11 x 23.
30013003 = 3 x 7 x 11 x 13.3794 = 2 x 7 x 271. SF: 280 = 23 x 5 x 7.
2001994 = 2 x 7 x 71.5803 = 7 x 829.

3.2.5.1The sum of the Nth occurrences (second column): 49 = 72. SF: 14 = 2 x 7.

3.2.5.2Only three of the first letters have their Nth occurrence as 1. The sum of these letters: 520 = 23 x 5 x 13.

3.2.5.3The first letter 1 appears twice in the table. Its Nth occurrences are 2 and 11, a total of 13.

3.2.5.4Letter 6 is the only other first letter to appear more than once. Thus the letters that appear more than once are 1 and 6, which appropriately adds to 7.

3.2.5.5The lowest first letter in the table is 1. The highest is 300. The pair together: 301 = 7 x 43.

3.3.1The last letter of each word: 10003 = 7 x 1429.

3.3.1.1The difference between the first and last letters of each word: 3206 = 2 x 7 x 229. SF: 238 = 2 x 7 x 17. SF: 26 = 2 x 13.

3.3.2Twenty-one pairs, positioned Nth and Nth last, can be found among the last letters that together are multiples of 7.

a) Nth from list: 4   6   28  30  31  37  39  54  62  64  66  67  71  72
b) Value:         5   400 50  1   1   20  5   30  1   8   20  5   30  20
c) Nth last:      178 176 154 152 151 145 143 128 120 118 116 115 111 110
d) Value:         30  6   90  6   6   400 30  5   6   6   8   2   5   8
e) Sum:           35  406 140 7   7   420 35  35  7   14  28  7   35  28

a) 73  75  79  81  84 85 86
b) 5   20  20  6   5  5  30
c) 109 107 103 101 98 97 96
d) 30  400 8   1   30 30 5
e) 35  420 28  7   35 35 35

Sum of positions (a + c): 3822 = 2 x 3 x 72 x 13.

3.3.3Twenty-three pairs of groups, positioned Nth and Nth last, can be found that together and individually are multiples of 13.

a) 1    2    4    5    6    6    13  17  19   20   23   26   27   29
b) 40   83   88   9    31   67   17  21  46   66   35   58   48   71
c) 5967 8996 9126 1378 3796 6669 689 650 2938 3484 1274 2782 2392 3198

a) 32   39   55  57   60  60  61   66  77   (Nth from the beginning/end.)
b) 67   74   57  82   65  70  77   70  81   (Nth last from beginning/end.)
c) 2873 1716 169 1911 234 533 1079 299 702

Total of the positions (a + b): 2028 = 22 x 3 x 132.

3.3.4.1The sum of every Nth from the list of last letters is a multiple of 7 when N is one of the following:

3 18 25 49 57 58 77 79 81 82 86 88 90

Total of the N values: 793 = 13 x 61.

3.3.4.2The sum of every Nth from the list of last letters is a multiple of 13 when N is one of the following:

23 26 33 38 39 47 64 72 77 78

Total of the N values: 497 = 7 x 71. SF: 78 = 2 x 3 x 13.

3.3.4.3There is only one N value where the sum of every Nth is a multiple of 91 (7 x 13). Providentially this is N = 77.

3.3.5Divide the list of last letters into two groups, odd and even.

3.3.5.155 are odd valued:

a) 4 9 11 14 16 17 18 20 21 22 25 27 30 31 38 39 40 42 48 53 57 58 59
b) 5 1 5  1  5  1  5  1  1  1  1  5  1  1  5  5  1  5  5  1  5  5  5

a) 60 62 67 68 73 77 83 84 85 88 96 100 101 111 114 123 124 128 129 134
b) 5  1  5  1  5  1  5  5  5  1  5  5   1   5   5   5   1   5   5   7

a) 139 140 155 157 160 161 162 166 168 172 174 181 (Word position.)
b) 5   1   5   1   5   5   1   5   1   5   1   5   (Letter value.)

Total of the odd valued last letters: 189 = 33 x 7.

3.3.5.2126 of the last letters are even valued (2 x 32 x 7}:

a) 1  2   3  5  6   7   8   10 12  13  15 19  23  24  26 28 29 32  33
b) 10 200 20 70 400 200 200 6  200 200 40 200 200 200 6  50 6  200 6

a) 34  35 36 37 41 43 44 45 46  47 49 50 51 52 54 55 56 61 63 64 65 66
b) 200 8  30 20 20 20 10 40 200 20 30 8  40 10 30 20 40 10 70 8  10 20

a) 69  70 71 72 74 75 76 78 79 80  81 82 86 87 89 90 91 92  93 94 95
b) 200 8  30 20 10 20 10 20 20 200 6  20 30 10 10 8  8  400 10 40 400

a) 97 98 99  102 103 104 105 106 107 108 109 110 112 113 115 116 117
b) 30 30 200 400 8   6   40  10  400 2   30  8   30  20  2   8   8

a) 118 119 120 121 122 125 126 127 130 131 132 133 135 136 137 138 141
b) 6   40  6   30  40  80  4   20  30  8   30  6   70  8   10  20  200

a) 142 143 144 145 146 147 148 149 150 151 152 153 154 156 158 159 163
b) 8   30  6   400 400 10  40  6   200 6   6   6   90  6   8   6   6

a) 164 165 167 169 170 171 173 175 176 177 178 179 180 (Word position.)
b) 400 30  400 6   400 4   50  400 6   50  30  200 6   (Last letter.)

Total of the last letters: 9814 = 2 x 7 x 701.

3.3.6Divide the last letters into four categories (odd in position and value, odd position but even in value, even in position but odd in value, and even in position and value).

Odd position & odd valued:
9 11 17 21 25 27 31 39 53 57 59 67 73 77 83 85 101 111 123 129 139
1 5  1  1  1  5  1  5  1  5  5  5  5  1  5  5  1   5   5   5   5

155 157 161 181
5   1   5   5         Total: 89.

Odd position & even valued:
1   3   5   7   13  15  19  23  29  33  35  37  41  43  45  47
10  20  70  200 200 40  200 200 6   6   8   20  20  20  40  20

49  51  55  61  63  65  69  71  75  79  81  87  89  91  93  95
30  40  20  10  70  10  200 30  20  20  6   10  10  8   10  400

97  99  103 105 107 109 113 115 117 119 121 125 127 131 133 135
30  200 8   40  400 30  20  2   8   40  30  80  20  8   6   70

137 141 143 145 147 149 151 153 159 163 165 167 169 171 173 175
10  200 30  400 10  6   6   6   6   6   30  400 6   4   50  400

177 179
50  200        Total: 4786.

Even position & odd valued:
4 14 16 18 20 22 30 38 40 42 48 58 60 62 68 84 88 96 100 114 124
5 1  5  5  1  1  1  5  1  5  5  5  5  1  1  5  1  5  5   5   1

128 134 140 160 162 166 168 172 174
5   7   1   5   1   5   1   5   1        Total: 100.

Even position & even valued:
2   6   8   10  12  24  26  28  32  34  36  44  46  50  52  54
200 400 200 6   200 200 6   50  200 200 30  10  200 8   10  30

56  64  66  70  72  74  76  78  80  82  86  90  92  94  98  102
40  8   20  8   20  10  10  20  200 20  30  8   400 40  30  400

104 106 108 110 112 116 118 120 122 126 130 132 136 138 142 144
6   10  2   8   30  8   6   6   40  4   30  30  8   20  8   6

146 148 150 152 154 156 158 164 170 176 178 180
400 40  200 6   90  6   8   400 400 6   30  6        Total: 5028.

3.3.6.1The last letters that are purely odd in position and value are paired with those that are purely even in position and value: 89 + 5028 = 5117 (7 x 17 x 43).

3.3.6.2The last letters that are mixed (odd in one but even in the other) form another pair: 4786 + 100 = 4886 (2 x 7 x 349).

3.3.6.2The difference between what is pure and mixed: 231 = 3 x 7 x 11. SF: 21 = 3 x 7.

3.3.7Rather than odd/even, which depends on the last digit of a number, use the first digit.

3.3.7.190 of the last letters have an odd valued first digit.

a) 1   4   5   9   11  14  16  17  18  20  21  22  25  27  28  30
b) 10  5   70  1   5   1   5   1   5   1   1   1   1   5   50  1

a) 31  36  38  39  40  42  44  48  49  52  53  54  57  58  59  60
b) 1   30  5   5   1   5   10  5   30  10  1   30  5   5   5   5

a) 61  62  63  65  67  68  71  73  74  76  77  83  84  85  86  87
b) 10  1   70  10  5   1   30  5   10  10  1   5   5   5   30  10

a) 88  89  93  96  97  98  100 101 106 109 111 112 114 121 123 124
b) 1   10  10  5   30  30  5   1   10  30  5   30  5   30  5   1

a) 128 129 130 132 134 135 137 139 140 143 147 154 155 157 160 161
b) 5   5   30  30  7   70  10  5   1   30  10  90  5   1   5   5

a) 162 165 166 168 172 173 174 177 178 181 (Word position.)
b) 1   30  5   1   5   50  1   50  30  5   (Last letter.)

Total of positions (a): 7889 = 73 x 23.

3.3.7.291 of the last letters have an even valued first digit.

a) 2   3   6   7   8   10  12  13  15  19  23  24  26  29  32  33
b) 200 20  400 200 200 6   200 200 40  200 200 200 6   6   200 6

a) 34  35  37  41  43  45  46  47  50  51  55  56  64  66  69  70
b) 200 8   20  20  20  40  200 20  8   40  20  40  8   20  200 8

a) 72  75  78  79  80  81  82  90  91  92  94  95  99  102 103 104
b) 20  20  20  20  200 6   20  8   8   400 40  400 200 400 8   6

a) 105 107 108 110 113 115 116 117 118 119 120 122 125 126 127 131
b) 40  400 2   8   20  2   8   8   6   40  6   40  80  4   20  8

a) 133 136 138 141 142 144 145 146 148 149 150 151 152 153 156 158
b) 6   8   20  200 8   6   400 400 40  6   200 6   6   6   6   8

a) 159 163 164 167 169 170 171 175 176 179 180 (Word position.)
b) 6   6   400 400 6   400 4   400 6   200 6   (Last letter.)

Total of the positions (a): 8582 = 2 x 7 x 613.

3.3.8From the list of the last letters, the middle N letters add up to a multiple of 7 when N is one of the following:

175 173 151 85 75 73 69 65 27 17

Total of the N values: 910 = 2 x 5 x 7 x 13.

3.3.9When the last letters of each word are added one by one, sometimes the accumulated total is odd, and sometimes even.

3.3.9.1Where the accumulated total is odd valued.

a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)
4   5   235     40  1   2717    70  8   3569    94  40  4463    143 30  6791    166 5   8439
5   70  305     41  20  2737    71  30  3599    95  400 4863    144 6   6797    167 400 8839
6   400 705     48  5   3037    72  20  3619    100 5   5133    145 400 7197    172 5   9255
7   200 905     49  30  3067    77  1   3665    111 5   6043    146 400 7597    173 50  9305
8   200 1105    50  8   3075    78  20  3685    112 30  6073    147 10  7607    181 5   10003
11  5   1117    51  40  3115    79  20  3705    113 20  6093    148 40  7647
12  200 1317    52  10  3125    80  200 3905    123 5   6243    149 6   7653    a) Word position.
13  200 1517    57  5   3221    81  6   3911    128 5   6353    150 200 7853    b) Last letter.
16  5   1563    59  5   3231    82  20  3931    134 7   6439    151 6   7859    c) Accumulated
18  5   1569    62  1   3247    84  5   3941    135 70  6509    152 6   7865            total.
19  200 1769    63  70  3317    88  1   3987    136 8   6517    153 6   7871
21  1   1771    64  8   3325    89  10  3997    137 10  6527    154 90  7961
25  1   2173    65  10  3335    90  8   4005    138 20  6547    157 1   7973
26  6   2179    66  20  3355    91  8   4013    140 1   6553    158 8   7981
30  1   2241    68  1   3361    92  400 4413    141 200 6753    159 6   7987
38  5   2711    69  200 3561    93  10  4423    142 8   6761    161 5   7997

Total of the positions (a): 7735 = 5 x 7 x 13 x 17. SF: 42 = 2 x 3 x 7.

3.3.9.2Where the accumulated total is even valued.

a)  b)  c)     a)  b)  c)     a)  b)  c)     a)  b)  c)     a)  b)  c)     a)  b)  c)
1   10  10     32  200 2442   56  40  3216   99  200 5128   119 40  6162   160 5   7992
2   200 210    33  6   2448   58  5   3226   101 1   5134   120 6   6168   162 1   7998
3   20  230    34  200 2648   60  5   3236   102 400 5534   121 30  6198   163 6   8004
9   1   1106   35  8   2656   61  10  3246   103 8   5542   122 40  6238   164 400 8404
10  6   1112   36  30  2686   67  5   3360   104 6   5548   124 1   6244   165 30  8434
14  1   1518   37  20  2706   73  5   3624   105 40  5588   125 80  6324   168 1   8840
15  40  1558   39  5   2716   74  10  3634   106 10  5598   126 4   6328   169 6   8846
17  1   1564   42  5   2742   75  20  3654   107 400 5998   127 20  6348   170 400 9246
20  1   1770   43  20  2762   76  10  3664   108 2   6000   129 5   6358   171 4   9250
22  1   1772   44  10  2772   83  5   3936   109 30  6030   130 30  6388   174 1   9306
23  200 1972   45  40  2812   85  5   3946   110 8   6038   131 8   6396   175 400 9706
24  200 2172   46  200 3012   86  30  3976   114 5   6098   132 30  6426   176 6   9712
27  5   2184   47  20  3032   87  10  3986   115 2   6100   133 6   6432   177 50  9762
28  50  2234   53  1   3126   96  5   4868   116 8   6108   139 5   6552   178 30  9792
29  6   2240   54  30  3156   97  30  4898   117 8   6116   155 5   7966   179 200 9992
31  1   2242   55  20  3176   98  30  4928   118 6   6122   156 6   7972   180 6   9998
a) Word position.     b) Last letter.     c) Accumulated total.

Total of the positions (a): 8736 = 25 x 3 x 7 x 13.

3.3.9.3When the last letters are added one by one, 9 times the accumulated total will be a multiple of 13.

Word position:     8    27   40   79   119  131  139  152  168
Last letter:       200  5    1    20   40   8    5    6    1
Accumulated total: 1105 2184 2717 3705 6162 6396 6552 7865 8840

Total of the letters: 286 = 2 x 11 x 13. SF: 26 = 2 x 13.

3.4Now the letters that are not first or last in a word are examined.

Letters not first or last in a word:
20 1 40 30 2 2 10 20 4 4 2 300 2 200 5 6 300 4 2 50 2 10 300 5 6 30 5 10 4 2 30 2 6 6 4 2 300 2 200 5 6 7 4 6 2 200 50 2 10 3 6 40 50 10 1 40 50 6 30 1 5 6 70 90 200 6 400 50 70 300 80 50 10 4 7 10 10 1 40 30 1 5 6 50 6 70 90 200 50 20 30 8 40 1 70 300 30 10 5 6 70 30 50 4 50 6 30 1 5 6 6 10 1 40 50 6 30 1 5 6 40 2 2 200 10 20 2 4 50 6 10 1 40 30 1 5 6 40 300 1 300 40 5 6 30 1 10 100 50 6 4 70 7 10 1 40 50 8 10 70 90 6 10 5 6 40 80 30 70 300 6 40 50 6 1 300 400 1 10 10 5 70 30 6 30 5 70 40 7 2 300 40 10 40 10 70 30 1 5 6 30 5 40 7 2 40 50 6 1 300 400 1 10 10 80 30 50 10 5 200 90 30 60 6 30 1 5 6 5 200 1 50 6 1 300 400 4 50 6 30 1 5 6 6 10 1 40 50 6 300 400 6 40 6 30 5 10 1 10 50 400 1 40 300 400 80 5 6 5 40 10 400 50 100 10 4 50 30 40 50 8 30 200 1 50 30 20 70 300 40 10 70 50 7 1 400 30 1 300 400 100 200 40 40 300 6 10 3 4 50 70 10 2 200 20 5 5 6

3.4318 letters are not first or last in a word: 17780 = 22 x 5 x 7 x 127. SF: 143 = 11 x 13.

3.4.2267 paired groups of these letters, positioned Nth and Nth last, individually and together are multiples of 7.

a) 1    1     2    2    2    2    2     2     2     3    3    3     3
b) 18   131   26   30   63   74   113   123   143   23   48   88    158
c) 2023 14861 3591 4032 7700 9849 13706 14084 16541 3486 6013 11235 17668

a) 4    4    4     4     4     4     5   5    5     5     6     6
b) 35   77   82    84    102   129   10  54   127   136   91    95
c) 4200 9842 10010 10766 12558 14721 378 6573 14315 14952 11249 11410

a) 7    7    7    7     7     7     8     8     9    9     9     10
b) 29   46   53   99    109   128   149   155   78   98    150   52
c) 3423 5250 5957 12131 13279 14413 16814 17143 9478 11816 16800 5663

a) 10   10    10    11   11    11    12   12   12   12   12    13   13
b) 69   97    159   54   127   136   42   60   67   76   121   55   132
c) 8827 11662 17283 6195 13937 14574 4697 7119 7994 9394 13496 6181 14112

a) 13    13    13    14    14    14    15   15   16   16    17    18
b) 134   142   146   106   141   153   61   81   39   126   114   32
c) 14217 15442 15841 12047 14994 16646 6307 8750 3696 13027 12355 2261

a) 18   18    18    19    21    22   22   22    22    24   24   24
b) 68   100   151   131   104   47   64   112   115   48   88   158
c) 7035 10556 15358 12838 10024 3255 5068 10913 11053 2527 7749 14182

a) 25    26   26    26    27  27   27   27    27    27    28    28
b) 119   79   140   147   30  63   74   113   123   143   116   122
c) 10430 6454 11984 13174 441 4109 6258 10115 10493 12950 10185 10346

a) 28    30   30   30   30   30    31   31   31   31    31    33   33
b) 138   46   53   99   109  128   63   74   113  123   143   68   100
c) 11508 1827 2534 8708 9856 10990 3668 5817 9674 10052 12509 4774 8295

a) 33    34   34   35   35   36   36   36   36   36    37  37   37
b) 151   65   111  59   89   77   82   84   102  129   45  57   90
c) 13097 3836 9415 3346 7245 5642 5810 6566 8358 10521 854 2653 7063

a) 37   37    38  38   38   38    39   40   41   41   41    42   42
b) 118  145   43  62   108  137   96   126  101  110  152   70   73
c) 9464 12131 406 2842 8498 10346 7280 9331 7441 8505 12313 4480 4711

a) 43   43   43   43   44   44   44   45   46   46   46   46    47  47
b) 60   67   76   121  62   108  137  71   57   90   118  145   53  99
c) 2422 3297 4697 8799 2436 8092 9940 4529 1799 6209 8610 11277 707 6881

a) 47   47   48   48   48   49   49    50   50   51   51   52    53
b) 109  128  64   112  115  88   158   124  139  58   125  156   69
c) 8029 9163 1813 7658 7798 5222 11655 8225 9415 1435 8267 11431 3164

a) 53   53    54   54   54   55   55   56   56   56   56   57   57
b) 97   159   99   109  128  127  136  132  134  142  146  75   133
c) 5999 11620 6174 7322 8456 7742 8379 7931 8036 9261 9660 2807 7896

a) 57    57    58   58   58   59   60   61  61   61   62   63   63
b) 154   157   90   118  145  125  89   67  76   121  81   108  137
c) 10409 10521 4410 6811 9478 6832 3899 875 2275 6377 2443 5656 7504

a) 64   64   64   64   65   65   66   68   68   69   69   70   70   71
b) 74   113  123  143  112  115  111  76   121  100  151  97   159  73
c) 2149 6006 6384 8841 5845 5985 5579 1400 5502 3521 8323 2835 8456 231

a) 75   75   75   76   76   76   77   78  78  78   78   79   79   80
b) 113  123  143  133  154  157  121  82  84  102  129  98   150  140
c) 3857 4235 6692 5089 7602 7714 4102 168 924 2716 4879 2338 7322 5530

a) 80   81   81   81   83  83   83   84  84   84   85   85   86   86
b) 147  103  117  148  84  102  129  85  105  120  102  129  105  120
c) 6720 2688 3885 6790 756 2548 4711 357 2366 3472 1792 3955 2009 3115

a) 87   88  89   91   91   92  95   98   99   100  100  101  102  102
b) 130  92  158  118  145  95  135  159  150  109  128  151  110  152
c) 3885 525 6433 2401 5068 161 3381 5621 4984 1148 2282 4802 1064 4872

a) 103  104  104  106  107  107  108  109  110  111  113 114 114  117
b) 129  117  148  120  141  153  144  137  128  152  115 123 143  122
c) 2163 1197 4102 1106 2947 4599 3668 1848 1134 3808 140 378 2835 161

a) 117  118  119  123  124  125  128 133 133  133  134  134  135  135
b) 138  148  145  138  143  139  136 134 142  146  154  157  142  146
c) 1323 2905 2667 1162 2457 1190 637 105 1330 1729 2513 2625 1225 1624

a) 141  142  143 150 155  (Start of group. Nth & Nth last positions.)
b) 147  153  146 155 157  (End of group. Nth & Nth last positions.)
c) 1190 1652 399 329 112  (Total of both groups.)

Total of the start and end positions of these groups (a + b): 42812 = 22 x 7 x 11 x 139. SF: 161 = 7 x 23.

3.4.3Beginning with the first in the list and taking every Nth, the following values of N produce totals divisible by 7.

12 17 29 34 39 40 50 80 89 92 98 116 121 135 137 144 158

Total of the N values: 1391 = 13 x 107.

3.4.4Divide the list in 3.4 into groups of six.

3.4.4.1The odd positioned groups of six:

10 20 4 4 2 300 2 50 2 10 300 5 30 2 6 6 4 2 4 6 2 200 50 2 1 40 50 6 30 1 400 50 70 300 80 50 40 30 1 5 6 50 30 8 40 1 70 300 50 4 50 6 30 1 50 6 30 1 5 6 2 4 50 6 10 1 300 1 300 40 5 6 4 70 7 10 1 40 10 5 6 40 80 30 1 300 400 1 10 10 70 40 7 2 300 40 5 6 30 5 40 7 400 1 10 10 80 30 60 6 30 1 5 6 300 400 4 50 6 30 40 50 6 300 400 6 10 50 400 1 40 300 10 400 50 100 10 4 200 1 50 30 20 70 1 400 30 1 300 400 10 3 4 50 70 10

Total: 10479 = 3 x 7 x 499.

3.4.4.2Even positioned groups of six:

20 1 40 30 2 2 2 200 5 6 300 4 6 30 5 10 4 2 300 2 200 5 6 7 10 3 6 40 50 10 5 6 70 90 200 6 10 4 7 10 10 1 6 70 90 200 50 20 30 10 5 6 70 30 5 6 6 10 1 40 40 2 2 200 10 20 40 30 1 5 6 40 30 1 10 100 50 6 50 8 10 70 90 6 70 300 6 40 50 6 5 70 30 6 30 5 10 40 10 70 30 1 2 40 50 6 1 300 50 10 5 200 90 30 5 200 1 50 6 1 1 5 6 6 10 1 40 6 30 5 10 1 400 80 5 6 5 40 50 30 40 50 8 30 300 40 10 70 50 7 100 200 40 40 300 6 2 200 20 5 5 6

Total: 7301 = 72 x 149.

3.4.5Take every Nth letter from the list in 3.4, where N increases by 1 each time.

a) 1  2 4  7  11 16 22 29 37  46  56 67  79 92 106 121 137 154 172 191 211 232 254 277 301
b) 1  2 3  4  5  6  7  8  9   10  11 12  13 14 15  16  17  18  19  20  21  22  23  24  25
c) 20 1 30 10 2  6  10 4  300 200 40 400 40 8  6   40  6   10  40  300 400 50  6   50  100

a) Count.
b) Increasing N.
c) Letter found.

Total of the letters found: 2079 = 33 x 7 x 11.

3.4.6Divide the 318 letters into groups of six.

3.4.6.1Odd valued groups of 6:

20 1 40 30 2 2         70 40 7 2 300 40
2 200 5 6 300 4        10 40 10 70 30 1
2 50 2 10 300 5        5 6 30 5 40 7
6 30 5 10 4 2          2 40 50 6 1 300
10 3 6 40 50 10        400 1 10 10 80 30
5 6 70 90 200 6        50 10 5 200 90 30
30 8 40 1 70 300       5 200 1 50 6 1
30 10 5 6 70 30        1 5 6 6 10 1
50 4 50 6 30 1         10 50 400 1 40 300
2 4 50 6 10 1          200 1 50 30 20 70
30 1 10 100 50 6       300 40 10 70 50 7
10 5 6 40 80 30        10 3 4 50 70 10

Total: 6832 = 24 x 7 x 61.

3.4.6.2Even valued groups of 6:

10 20 4 4 2 300         50 8 10 70 90 6
30 2 6 6 4 2            70 300 6 40 50 6
300 2 200 5 6 7         1 300 400 1 10 10
4 6 2 200 50 2          5 70 30 6 30 5
1 40 50 6 30 1          60 6 30 1 5 6
400 50 70 300 80 50     300 400 4 50 6 30
10 4 7 10 10 1          40 50 6 300 400 6
40 30 1 5 6 50          40 6 30 5 10 1
6 70 90 200 50 20       400 80 5 6 5 40
5 6 6 10 1 40           10 400 50 100 10 4
50 6 30 1 5 6           50 30 40 50 8 30
40 2 2 200 10 20        1 400 30 1 300 400
40 30 1 5 6 40          100 200 40 40 300 6
300 1 300 40 5 6        2 200 20 5 5 6
4 70 7 10 1 40

Total: 10948 = 22 x 7 x 17 x 23.

3.4.6.3The difference between the odd and even valued groups of six: 4116 = 22 x 3 x 73. SF: 28 = 22 x 7.

3.4.7Alternating groups of 78 and 28 letters can be extracted from the list in 3.4.

3.4.7.1Groups of 78 letters:

20 1 40 30 2 2 10 20 4 4 2 300 2 200 5 6 300 4 2 50 2 10 300 5 6 30 5 10 4 2 30 2 6 6 4 2 300 2 200 5 6 7 4 6 2 200 50 2 10 3 6 40 50 10 1 40 50 6 30 1 5 6 70 90 200 6 400 50 70 300 80 50 10 4 7 10 10 1
30 1 5 6 6 10 1 40 50 6 30 1 5 6 40 2 2 200 10 20 2 4 50 6 10 1 40 30 1 5 6 40 300 1 300 40 5 6 30 1 10 100 50 6 4 70 7 10 1 40 50 8 10 70 90 6 10 5 6 40 80 30 70 300 6 40 50 6 1 300 400 1 10 10 5 70 30 6
10 10 80 30 50 10 5 200 90 30 60 6 30 1 5 6 5 200 1 50 6 1 300 400 4 50 6 30 1 5 6 6 10 1 40 50 6 300 400 6 40 6 30 5 10 1 10 50 400 1 40 300 400 80 5 6 5 40 10 400 50 100 10 4 50 30 40 50 8 30 200 1 50 30 20 70 300 40

Total: 12614 = 2 x 7 x 17 x 53.

3.4.7.2Groups of 28 letters:

40 30 1 5 6 50 6 70 90 200 50 20 30 8 40 1 70 300 30 10 5 6 70 30 50 4 50 6
30 5 70 40 7 2 300 40 10 40 10 70 30 1 5 6 30 5 40 7 2 40 50 6 1 300 400 1
10 70 50 7 1 400 30 1 300 400 100 200 40 40 300 6 10 3 4 50 70 10 2 200 20 5 5 6

Total: 5166 = 2 x 32 x 7 x 41. SF: 56 = 23 x 7. SF: 13.

3.4.7.3The difference between the groups of 78 and 28: 7448 = 23 x 72 x 19. SF: 39 = 3 x 13.

3.4.8Twenty-seven of the letters in feature 3.4 divide the rest of list into what is between and not between their Nth and Nth last occurrences, but only three divide the list with their first and last occurrences.

Between & Not Between The Nth & Nth Last Of Letters Not First Or Last In A Word
LetterNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
20117724 = 22 x 3 x 7 x 211.56 = 23 x 7. SF: 13.
50116408 = 23 x 7 x 293.1372 = 22 x 73
7113622 = 2 x 72 x 139.4158 = 2 x 33 x 7 x 11.

3.4.8.1The sum of the three letters (first column, 20, 50, 7): 77 = 7 x 11.

3.4.8.2These three letters (20, 50 and 7) occur 6 times, 27 times, and 6 times in the list of 3.4 for a total of 39 (3 x 13).

3.4.8.3The total of all these three letters in the list: 1512 = 23 x 33 x 7.

3.4.8.4Each of the three letters' positions is given below for their first and last appearance in the list. (This is not the same as their positions in the actual passage which includes letters that are first or last in a word.)

3 Special Letters
LetterPosition Of First
Occurrence
Position Of Last
Occurrence
201315
5020310
742294

3.4.8.5Of the six positions in the last two columns of the table, half of them are divisible by 7.

3.4.8.6The sum of the numbers in the second column: 63 = 32 x 7. SF: 13.

3.4.8.7Providentially, letter 7 is the only one where the positions are both multiples of seven.

3.4.8.8The difference in the first and last occurrences of the positions for letter 7 is a symmetrical number where the first two and last two digits would also add up to 7: 252.

All The Letters

4.11204 pairs of letter groups positioned Nth and Nth last are individually and together divisible by 7.

a) 1    1     1     1     2     2     2     2     3     3     3     3
b) 56   119   179   223   88    140   219   298   93    157   227   230
c) 7938 13965 19698 24423 10612 16275 24087 30240 10997 18753 24633 24773

a) 3     3     4   4    4    4    4    4     4     4     4     4
b) 304   337   6   46   55   62   78   100   118   144   207   221
c) 30401 34405 462 6951 7875 8470 9555 11599 13867 17325 22582 24206

a) 4     4     4     5     5     5     5     5     5     6    6    6
b) 279   286   318   151   222   241   245   262   265   36   73   80
c) 28161 28819 32550 17535 23926 25571 25648 26446 26488 4648 9072 9205

a) 6     6     6     6     6     6     7    7    7    7    7     7
b) 125   186   215   272   317   340   46   55   62   78   100   118
c) 14266 20111 22967 27321 32123 34111 6489 7413 8008 9093 11137 13405

a) 7     7     7     7     7     7     8    8     8     8     8     9
b) 144   207   221   279   286   318   57   124   250   263   270   25
c) 16863 22120 23744 27699 28357 32088 7210 13951 25459 26194 27006 1918

a) 9    9     9     9     9     9     9     9     9     9     9     9
b) 53   117   161   198   214   239   252   259   292   311   319   332
c) 6636 12733 17913 20965 22400 25011 25529 25781 28091 31073 31682 32592

a) 10  10    10    10    10    10    10    11  11   11   11    11
b) 14  95    106   173   282   291   312   19  48   58   156   244
c) 371 10108 11011 18585 27321 27979 31101 560 6083 7000 17759 25123

a) 11    11    12   12   12    12    12    12    12    13   13   13
b) 249   313   29   44   168   243   254   294   308   71   90   195
c) 25207 31199 3143 5404 18130 25102 25578 28280 30219 8120 9667 20601

a) 13    13    13    13    13    13    13    14    14    14    15   15
b) 197   211   229   267   295   297   299   139   165   301   95   106
c) 20657 22022 23492 25837 28266 28742 29064 14931 17703 29022 9737 10640

a) 15    15    15    15    16   16    16    16    17    17    17    18
b) 173   282   291   312   76   208   246   300   224   288   329   38
c) 18214 26950 27608 30730 8225 21420 24759 28924 23114 27510 32046 3682

a) 18   18   18   18    18    18    18    18    19   19   19   19
b) 40   60   77   99    132   137   287   327   63   91   97   103
c) 4284 7028 8148 10108 13734 14252 27426 31864 7077 9429 9681 10437

a) 19    19    19    19    20   20   20    20    20    20    21   21
b) 128   275   278   280   48   58   156   244   249   313   81   170
c) 13580 26404 26551 26768 5523 6440 17199 24563 24647 30639 8169 17640

a) 21    21    21    22   22    22    22    23   23    24   24   24
b) 276   326   335   79   192   256   322   41   271   50   89   98
c) 26348 31640 32480 7623 19565 24598 30968 3934 25760 4788 8323 9233

a) 24    24    24    24    24    24    25   25   25    25    25    25
b) 180   182   216   248   283   290   83   104  160   163   167   202
c) 17787 18158 21329 23863 26397 26628 7574 9555 16485 16590 16744 19663

a) 25    26   26    26    26    26    26    26    26    26    26    26
b) 303   53   117   161   198   214   239   252   259   292   311   319
c) 28014 4718 10815 15995 19047 20482 23093 23611 23863 26173 29155 29764

a) 26    27   27    27    27    27    27    27    27    28   28   28
b) 332   105  113   155   184   190   268   306   328   49   92   102
c) 30674 9058 10185 15792 17696 18445 24234 28028 30534 3892 7798 8491

a) 28   28    28    28    28    28    28    28    28    29   29    29
b) 108  172   206   209   217   257   285   309   323   43   166   194
c) 8960 16282 18963 19943 20447 23415 25550 28476 29855 2289 15351 18102

a) 29    29    29    30   30    30    30    30    30    31   31   31
b) 226   232   293   44   168   243   254   294   308   65   114  143
c) 20888 21210 25536 2261 14987 21959 22435 25137 27076 4445 9219 12894

a) 31    31    31    32   32   32    32    33   33   33    33    33
b) 242   266   269   111  115  234   321   85   120  154   196   220
c) 21945 22862 23562 8099 9415 20993 28791 6188 9632 14273 17500 19838

a) 34   34   34   34    34    34    34    35    35    35    35    36
b) 54   61   75   162   251   305   338   175   188   193   334   112
c) 2982 3871 4914 14224 21623 25844 29813 14602 16030 16527 28973 7581

a) 36   36    36    36    37   37   37   37    37    37    37    37
b) 129  131   141   253   73   80   125  186   215   272   317   340
c) 9989 10094 11354 21448 4424 4557 9618 15463 18319 22673 27475 29463

a) 38   38    38    38    39  39   39   39   39    39    39    39
b) 69   147   149   225   40  60   77   99   132   137   287   327
c) 4116 12292 12726 19404 602 3346 4466 6426 10052 10570 23744 28182

a) 40   40    40    40    41   41   41   41   41   41    41    42
b) 109  158   187   307   60   77   99   132  137  287   327   271
c) 6734 13370 15190 25466 2744 3864 5824 9450 9968 23142 27580 21826

a) 43   43    44    44    44    44    44    45    45    45    45    45
b) 134  330   166   194   226   232   293   168   243   254   294   308
c) 9282 27545 13062 15813 18599 18921 23247 12726 19698 20174 22876 24815

a) 46   46    46    47  47   47   47   47   47    47    47    47    47
b) 122  314   339   55  62   78   100  118  144   207   221   279   286
c) 7791 25921 27965 924 1519 2604 4648 6916 10374 15631 17255 21210 21868

a) 47    48   48    48    48    48    48    48    48    48    48    49
b) 318   116  145   183   185   199   205   247   258   260   336   58
c) 25599 6545 10325 13496 13517 14854 15064 19110 19593 19733 27377 917

a) 49    49    49    49    50   50   50   50    50    50    50    50
b) 156   244   249   313   92   102  108  172   206   209   217   257
c) 11676 19040 19124 25116 3906 4599 5068 12390 15071 16051 16555 19523

a) 50    50    50    51   51   51    51    51    51    51    51    52
b) 285   309   323   89   98   180   182   216   248   283   290   110
c) 21658 24584 25963 3535 4445 12999 13370 16541 19075 21609 21840 5054

a) 52   52    53   53   53   53   53    53    53    53    53    54
b) 127  281   64   74   121  142  152   189   274   277   325   117
c) 7840 21126 1050 2030 6860 9100 10745 13664 20335 20447 25585 6097

a) 54    54    54    54    54    54    54    54    54    54    55  55
b) 161   198   214   239   252   259   292   311   319   332   61  75
c) 11277 14329 15764 18375 18893 19145 21455 24437 25046 25956 889 1932

a) 55    55    55    55    56  56   56   56   56   56    56    56
b) 162   251   305   338   62  78   100  118  144  207   221   279
c) 11242 18641 22862 26831 595 1680 3724 5992 9450 14707 16331 20286

a) 56    56    57   57    57    58   58    58    58    59    59    59
b) 286   318   119  179   223   124  250   263   270   156   244   249
c) 20944 24675 6027 11760 16485 6741 18249 18984 19796 10759 18123 18207

a) 59    60  60    60    60    60    60    60    61   61   61   61
b) 313   67  236   238   240   273   310   331   77   99   132  137
c) 24199 224 17451 17528 17563 19397 23597 25102 1120 3080 6706 7224

a) 61    61    62   62    62    62    62    63   63   63   63   63
b) 287   327   75   162   251   305   338   78   100  118  144  207
c) 20398 24836 1043 10353 17752 21973 25942 1085 3129 5397 8855 14112

a) 63    63    63    63    64   64   64   64   64    64    64    65
b) 221   279   286   318   91   97   103  128  275   278   280   74
c) 15736 19691 20349 24080 2352 2604 3360 6503 19327 19474 19691 980

a) 65   65   65   65    65    65    65    66   66   66    66    66
b) 121  142  152  189   274   277   325   114  143  242   266   269
c) 5810 8050 9695 12614 19285 19397 24535 4774 8449 17500 18417 19117

a) 67  67   67   67    67    68    68    68    68    68    68    69
b) 70  94   126  237   316   236   238   240   273   310   331   146
c) 665 2429 6174 17290 23968 17227 17304 17339 19173 23373 24878 8176

a) 69   69    69    69    69    70   70   70    71   71   71    71
b) 164  233   235   261   296   147  149  225   94   126  237   316
c) 9737 15883 16317 17584 20286 8176 8610 15288 1764 5509 16625 23303

a) 72   72    72    72    72    72    72    72    72    73   73   73
b) 90   195   197   211   229   267   295   297   299   86   123  133
c) 1547 12481 12537 13902 15372 17717 20146 20622 20944 1225 5096 5859

a) 73   73   73    73    73    74  74   74    74    74    74    74
b) 150  153  228   315   320   80  125  186   215   272   317   340
c) 8568 9268 15351 23226 23310 133 5194 11039 13895 18249 23051 25039

a) 75   75   75   75    75    75    75    76   76    76    76    77
b) 121  142  152  189   274   277   325   162  251   305   338   208
c) 4830 7070 8715 11634 18305 18417 23555 9310 16709 20930 24899 13195

a) 77    77    78   78   78   78    78    79   79   79   79    79
b) 246   300   99   132  137  287   327   100  118  144  207   221
c) 16534 20699 1960 5586 6104 19278 23716 2044 4312 7770 13027 14651

a) 79    79    79    80    80    80    81   81    81    81    81    81
b) 279   286   318   192   256   322   125  186   215   272   317   340
c) 18606 19264 22995 11942 16975 23345 5061 10906 13762 18116 22918 24906

a) 82   82    82    82    83  83  83   83   83    84   84   84   84
b) 170  276   326   335   84  87  171  178  203   104  160  163  167
c) 9471 18179 23471 24311 336 693 9471 9765 12145 1981 8911 9016 9170

a) 84    84    85  85   85   85    86   86   86    86    87   87   87
b) 202   303   87  171  178  203   120  154  196   220   123  133  150
c) 12089 20440 357 9135 9429 11809 3444 8085 11312 13650 3871 4634 7343

a) 87   87    87    87    88   88   88    89   89    89    90  90   90
b) 153  228   315   320   171  178  203   140  219   298   98  180  182
c) 8043 14126 22001 22085 8778 9072 11452 5663 13475 19628 910 9464 9835

a) 90    90    90    90    91    91    91    91    91    91    91
b) 216   248   283   290   195   197   211   229   267   295   297
c) 13006 15540 18074 18305 10934 10990 12355 13825 16170 18599 19075

a) 91    92  92   92   92    92    92    93  93   93   93    93    93
b) 299   97  103  128  275   278   280   102 108  172  206   209   217
c) 19397 252 1008 4151 16975 17122 17339 693 1162 8484 11165 12145 12649

a) 93    93    93    93    94   94    94    94    94    95   95    95
b) 257   285   309   323   157  227   230   304   337   126  237   316
c) 15617 17752 20678 22057 7756 13636 13776 19404 23408 3745 14861 21539

a) 96  96   96    96    96    97  97    98  98   98    98    98    99
b) 106 173  282   291   312   107 200   103 128  275   278   280   180
c) 903 8477 17213 17871 20993 987 10864 756 3899 16723 16870 17087 8554

a) 99   99    99    99    99    100  100  100   100   101  101  101
b) 182  216   248   283   290   132  137  287   327   118  144  207
c) 8925 12096 14630 17164 17395 3626 4144 17318 21756 2268 5726 10983

a) 101   101   101   101   102  102   102   102   103 103  103   103
b) 221   279   286   318   176  213   218   255   108 172  206   209
c) 12607 16562 17220 20951 8008 11641 12033 14917 469 7791 10472 11452

a) 103   103   103   103   103   104  104   104   104   105  105  105
b) 217   257   285   309   323   128  275   278   280   160  163  167
c) 11956 14924 17059 19985 21364 3143 15967 16114 16331 6930 7035 7189

a) 105   105   106  106  106  106  106   106   106   107  107   107
b) 202   303   113  155  184  190  268   306   328   173  282   291
c) 10108 18459 1127 6734 8638 9387 15176 18970 21476 7574 16310 16968

a) 107   108  109  109   109   109   109   109   109   109   110  110
b) 312   200  172  206   209   217   257   285   309   323   158  187
c) 20090 9877 7322 10003 10983 11487 14455 16590 19516 20895 6636 8456

a) 110   111  111   112  112   112   113  113  113  113   114  114  114
b) 307   127  281   115  234   321   129  131  141  253   155  184  190
c) 18732 2786 16072 1316 12894 20692 2408 2513 3773 13867 5607 7511 8260

a) 114   114   114   115  115   115   115   116   116   117  117  117
b) 268   306   328   143  242   266   269   234   321   145  183  185
c) 14049 17843 20349 3675 12726 13643 14343 11578 19376 3780 6951 6972

a) 117  117  117   117   117   117   118  118  118  118   118   118
b) 199  205  247   258   260   336   161  198  214  239   252   259
c) 8309 8519 12565 13048 13188 20832 5180 8232 9667 12278 12796 13048

a) 118   118   118   118   119  119  119   119   119   119   120  120
b) 292   311   319   332   144  207  221   279   286   318   179  223
c) 15358 18340 18949 19859 3458 8715 10339 14294 14952 18683 5733 10458

a) 121  121  121   122  122  122  122   122   122   123   123   124 124
b) 154  196  220   142  152  189  274   277   325   314   339   133 150
c) 4641 7868 10206 2240 3885 6804 13475 13587 18725 18130 20174 763 3472

a) 124  124   124   124   125   125   125   126  126  126   126   126
b) 153  228   315   320   250   263   270   186  215  272   317   340
c) 4172 10255 18130 18214 11508 12243 13055 5845 8701 13055 17857 19845

a) 127   127   128   129   129   129   130 130  130   131  131  131
b) 237   316   281   275   278   280   131 141  253   159  169  212
c) 11116 17794 13286 12824 12971 13188 105 1365 11459 3745 4053 8204

a) 132  132   133 133   133   134  134  134  134   134   135   136  136
b) 141  253   137 287   327   150  153  228  315   320   330   148  174
c) 1260 11354 518 13692 18130 2709 3409 9492 17367 17451 18263 2177 3976

a) 136  136  136  136   136   136   137  137   138   138   139  139
b) 177  181  231  264   284   324   204  333   287   327   191  201
c) 4032 4781 9212 11291 13069 17423 6454 17920 13174 17612 5747 6216

a) 139  139   139   140  140   141  141   142   143  143  143   143
b) 210  289   302   165  301   219  298   253   152  189  274   277
c) 7399 13160 14553 2772 14091 7812 13965 10094 1645 4564 11235 11347

a) 143   144  144  144   145  145  145   145   145   146  146  146  146
b) 325   242  266  269   207  221  279   286   318   183  185  199  205
c) 16485 9051 9968 10668 5257 6881 10836 11494 15225 3171 3192 4529 4739

a) 146  146  146  146   147  147  147  147  147   148 148  149  149
b) 247  258  260  336   164  233  235  261  296   149 225  174  177
c) 8785 9268 9408 17052 1561 7707 8141 9408 12110 434 7112 1799 1855

a) 149  149  149  149   149   150  151 151  151   151   152  152  152
b) 181  231  264  284   324   225  153 228  315   320   222  241  245
c) 2604 7035 9114 10892 15246 6678 700 6783 14658 14742 6391 8036 8113

a) 152  152  153  153  153  153   154  154   154   155  155  156  156
b) 262  265  189  274  277  325   228  315   320   196  220  184  190
c) 8911 8953 2919 9590 9702 14840 6083 13958 14042 3227 5565 1904 2653

a) 156  156   156   157  157  157   158  158  158   158   159  159
b) 268  306   328   244  249  313   227  230  304   337   187  307
c) 8442 12236 14742 7364 7448 13440 5880 6020 11648 15652 1820 12096

a) 160 160  161 161 161  161   162  162  162  162  162  162   162   162
b) 169 212  163 167 202  303   198  214  239  252  259  292   311   319
c) 308 4459 105 259 3178 11529 3052 4487 7098 7616 7868 10178 13160 13769

a) 162   163  163   163   164 164  164   165  165  165  165   166   167
b) 332   251  305   338   167 202  303   233  235  261  296   301   194
c) 14679 7399 11620 15589 154 3073 11424 6146 6580 7847 10549 11319 2751

a) 167  167  167   168  168   169  169  169   169   170  171  171   171
b) 226  232  293   202  303   243  254  294   308   212  276  326   335
c) 5537 5859 10185 2919 11270 6972 7448 10150 12089 4151 8708 14000 14840

a) 172 172  173  173  173  173  173  173   173   174  174  174   175
b) 178 203  206  209  217  257  285  309   323   282  291  312   177
c) 294 2674 2681 3661 4165 7133 9268 12194 13573 8736 9394 12516 56

a) 175 175  175  175  175   176  176  176   177  177  177  178 178  178
b) 181 231  264  284  324   188  193  334   213  218  255  181 231  264
c) 805 5236 7315 9093 13447 1428 1925 14371 3633 4025 6909 749 5180 7259

a) 178  178   179  180  181 181  181  181  181  182  182  182  182
b) 284  324   203  223  182 216  248  283  290  231  264  284  324
c) 9037 13391 2380 4725 371 3542 6076 8610 8841 4431 6510 8288 12642

a) 183  183  183  183  184 184  184  184  184  184  184   185 185  185
b) 216  248  283  290  185 199  205  247  258  260  336   190 268  306
c) 3171 5705 8239 8470 21  1358 1568 5614 6097 6237 13881 749 6538 10332

a) 185   186  186  186  186  186  186   187  187  187   187   188   189
b) 328   199  205  247  258  260  336   215  272  317   340   307   193
c) 12838 1337 1547 5593 6076 6216 13860 2856 7210 12012 14000 10276 497

a) 189   190  190  190   191  191  191   192 192  192  192  193  193
b) 334   274  277  325   268  306  328   201 210  289  302  256  322
c) 12943 6671 6783 11921 5789 9583 12089 469 1652 7413 8806 5033 11403

a) 194   195  195  195  196 196  196  196  196  196  196  197  198  198
b) 334   226  232  293  197 211  229  267  295  297  299  220  211  229
c) 12446 2786 3108 7434 56  1421 2891 5236 7665 8141 8463 2338 1365 2835

a) 198  198  198  198  199  199  199  199  199  199   199   199   200
b) 267  295  297  299  214  239  252  259  292  311   319   332   205
c) 5180 7609 8085 8407 1435 4046 4564 4816 7126 10108 10717 11627 210

a) 200  200  200  200   202  202  202  203  205   206  206  206  206
b) 247  258  260  336   210  289  302  303  333   247  258  260  336
c) 4256 4739 4879 12523 1183 6944 8337 8351 11466 4046 4529 4669 12313

a) 207 207  207  207  207  207   208  208  208  208  209  209  210 210
b) 209 217  257  285  309  323   221  279  286  318  246  300  217 257
c) 980 1484 4452 6587 9513 10892 1624 5579 6237 9968 3339 7504 504 3472

a) 210  210  210  211  211  212  212  212  212  212  214 214  215  215
b) 285  309  323  289  302  229  267  295  297  299  218 255  239  252
c) 5607 8533 9912 5761 7154 1470 3815 6244 6720 7042 392 3276 2611 3129

a) 215  215  215  215  215   216  216  216   217  217  217  218  218
b) 259  292  311  319  332   272  317  340   248  283  290  257  285
c) 3381 5691 8673 9282 10192 4354 9156 11144 2534 5068 5299 2968 5103

a) 218  218  219  220  222  222  222  223  223  223  223  225  225  227
b) 309  323  255  298  279  286  318  241  245  262  265  288  329  232
c) 8029 9408 2884 6153 3955 4613 8344 1645 1722 2520 2562 4396 8932 322

a) 227  228 228  228  229  229  230  230  230  230  231  231  232  232
b) 293  230 304  337  315  320  267  295  297  299  304  337  264  284
c) 4648 140 5768 9772 7875 7959 2345 4774 5250 5572 5628 9632 2079 3857

a) 232  233  234 234  234  235  236  236  237 237 237  237  237  238
b) 324  293  235 261  296  321  261  296  238 240 273  310  331  316
c) 8211 4326 434 1701 4403 7798 1267 3969 77  112 1946 6146 7651 6678

a) 239 239  239  239  240 240 240  240  240  240  241  241  241  242
b) 240 273  310  331  252 259 292  311  319  332  273  310  331  245
c) 35  1869 6069 7574 518 770 3080 6062 6671 7581 1834 6034 7539 77

a) 242 242 243 243  244 244  244  245 245  246 246 247  248 248 248
b) 262 265 266 269  254 294  308  249 313  262 265 300  258 260 336
c) 875 917 917 1617 476 3178 5117 84  6076 798 840 4165 483 623 8267

a) 249  249  250  251 251  252  252  253 253  253  253  253  255  255
b) 283  290  313  263 270  305  338  259 292  311  319  332  294  308
c) 2534 2765 5992 735 1547 4221 8190 252 2562 5544 6153 7063 2702 4641

a) 257  258  258  258  259 259  260  260  260  260  261  262  263 264
b) 322  285  309  323  260 336  292  311  319  332  336  296  265 270
c) 6370 2135 5061 6440 140 7784 2310 5292 5901 6811 7644 2702 42  812

a) 265  265  267 268  268  268  269  269  273  273  274  274  275 275
b) 284  324  269 295  297  299  306  328  317  340  310  331  277 325
c) 1778 6132 700 2429 2905 3227 3794 6300 4802 6790 4200 5705 112 5250

a) 276 276 277  277  278  279 280 280  283 283  284 285  286  286  287
b) 278 280 326  335  325  280 286 318  291 312  290 324  309  323  318
c) 147 364 5292 6132 5138 217 658 4389 658 3780 231 4354 2926 4305 3731

a) 288  289  290  292  293  293  293  295  296 296 298 305  306  307
b) 327  329  302  312  311  319  332  308  297 299 299 337  338  328
c) 4438 4536 1393 3122 2982 3591 4501 1939 476 798 322 4004 3969 2506

a) 310  311  312 312  315  316 318  320 327
b) 323  331  319 332  339  320 340  332 335
c) 1379 1505 609 1519 2044 84  1988 910 840

a) Starting position of group. Nth and Nth last.
b) Ending position of group. Nth and Nth last.
c) Total of both groups.

Total of the positions (a + b): 413588 = 22 x 7 x 14771.

4.2.1Odd positioned letters: 17171 = 7 x 11 x 223.

4.2.2Even positioned letters: 17409 = 3 x 7 x 829.

4.2.3Difference between the odd and even positioned letters: 238 = 2 x 7 x 17. SF: 26 = 2 x 13.

4.3Beginning with the first letter and taking every Nth after, the following values of N produce totals divisible by 7.

2 28 38 39 40 43 44 67 76 80 81 99 104 112 123 124 127 129 130 138 139 141 170 179 181 184 192 193 209 216 218 224 230 234 236 237 242 245 252 253 283 294 298 306 310 326

Total of the N values: 7616 = 26 x 7 x 17.

4.4Over 1300 sub-features are possible in taking every other group of N letters, and repeating the process on the results.

4.5115 letters are prime numbers.

a) 8   10  11  16  22  24  32  36  38  44  46  48  51  55  57  62
b) 2   2   2   5   5   2   2   5   5   2   5   2   2   5   5   5

a) 64  65  67  73  76  79  81  89  93  95  96  97  102 105 107 113
b) 5   5   2   2   5   5   2   2   5   5   2   7   2   5   2   3

a) 136 138 143 154 160 164 177 179 199 210 213 216 218 223 242 244
b) 5   5   5   5   3   7   5   5   2   5   5   5   5   5   5   5

a) 245 264 266 275 278 284 301 303 306 307 308 318 335 338 340 346
b) 5   5   5   2   2   2   5   5   5   7   5   5   3   5   7   5

a) 350 357 363 365 392 394 399 401 402 406 408 409 411 416 426 428
b) 5   5   5   5   5   2   5   5   2   5   7   2   5   5   5   5

a) 429 431 432 433 435 436 462 467 482 484 486 489 504 519 521 522
b) 2   5   2   5   7   2   5   5   5   5   5   5   7   5   5   5

a) 551 576 578 580 598 603 607 618 625 633 640 643 644 663 666 672
b) 5   5   5   5   5   5   5   5   5   7   5   5   2   3   5   2

a) 675 678 680   (Letter position.)
b) 5   5   5     (Letter value.)

Total of the positions (a): 35581 = 7 x 13 x 17 x 23.

4.5.2The positions of these prime numbers form alternating groups of 21 and 26.

4.5.2.1The groups of 21 positions:

8 10 11 16 22 24 32 36 38 44 46 48 51 55 57 62 64 65 67 73 76
244 245 264 266 275 278 284 301 303 306 307 308 318 335 338 340 346 350 357 363 365
521 522 551 576 578 580 598 603 607 618 625 633 640 643 644 663 666 672 675 678 680

Total: 20371 = 13 x 1567.

4.5.2.2The groups of 26 positions:

79 81 89 93 95 96 97 102 105 107 113 136 138 143 154 160 164 177 179 199 210 213 216 218 223 242
392 394 399 401 402 406 408 409 411 416 426 428 429 431 432 433 435 436 462 467 482 484 486 489 504 519

Total: 15210 = 2 x 32 x 5 x 132 SF: 39 = 3 x 13.

4.631 letters are multiples of 7:

a) 19 97 140 152 163 164 189 208 211 220 230 307 339 340 353 355 372
b) 70 7  70  70  70  7   70  70  70  70  70  7   70  7   70  70  70

a) 395 404 408 419 435 457 474 504 507 596 621 629 633 668
b) 70  70  7   70  7   70  70  7   70  70  70  70  7   70

a) Letter position.
b) Letter value.

Their total produces an extra seven: 1666 = 2 x 72 x 17. The sum of the positions is not a multiple of 7 or 13, 11009 (101 x 109), but there is the symmetrical number 101 denoting the same one God who is beginning and end. The sum of the factors is a multiple of 7: 210 = 2 x 3 x 5 x 7.

4.7When the letters are added one by one, exactly 49 times the accumulated total will be a multiple of 13.

a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)
2   20  26      214 30  10556   376 6   17433   560 400 26494
17  50  819     218 5   10582   380 8   17537   570 30  27508
31  4   2041    225 10  11167   399 5   19045   628 10  30420
34  6   2249    246 6   11544   406 5   19227   642 300 31720
38  5   2275    263 10  12038   457 70  21294   662 10  33943
80  4   3783    275 2   12506   465 200 21710   676 6   34554
111 1   5135    287 6   12831   482 5   22178   680 5   34580
113 3   5538    289 6   12857   488 1   22425
117 40  5824    312 30  14079   502 6   23309   a) Letter position.
126 50  6227    338 5   15249   509 50  23491   b) Letter value.
142 200 6799    349 8   15886   520 6   23647   c) Accumulated total.
166 40  8047    353 70  15977   531 50  24011
206 40  9646    356 30  16107   543 50  25259
211 70  10491   367 40  16510   550 30  25766

Total of the letters (b): 2044 = 22 x 7 x 73. SF: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

4.7.2When the letters are added one by one, exactly 21 times the accumulated total will be a multiple of 26.

a)  b)  c)      a)  b)  c)      a)  b)  c)
2   20  26      263 10  12038   550 30  25766
113 3   5538    275 2   12506   560 400 26494
117 40  5824    349 8   15886   570 30  27508
206 40  9646    367 40  16510   628 10  30420
214 30  10556   457 70  21294   642 300 31720
218 5   10582   465 200 21710   676 6   34554
246 6   11544   482 5   22178   680 5   34580

Total of the letters (b): 1260 = 22 x 32 x 5 x 7.

4.7.3When the letters are added one by one, 10 times the accumulated total will be a multiple of 91.

Letter position: 17  38   117  206  214   287   356   457   662   680
Letter value:    50  5    40   40   30    6     30    70    10    5
Accumul. total:  819 2275 5824 9646 10556 12831 16107 21294 33943 34580

Total of the letters: 286 = 2 x 11 x 13. SF: 26 = 2 x 13.

4.7.4When the letters are added one by one, extract only those where all columns are odd, or all columns are even.

All columns odd:
a)  b) c)     a)  b) c)     a)  b) c)     a)  b) c)
5   1 437     145 1 6855    333 1 14827   499 1 22603
55  5 3417    179 5 8421    363 5 16453   519 5 23641
71  1 3743    223 5 11137   387 1 18451   527 1 23681
79  5 3779    239 1 11487   399 5 19045   551 5 25771
87  1 4517    247 1 11545   411 5 19289   561 1 26495
95  5 4755    257 1 11907   423 1 19871   609 1 28995
105 5 5041    303 5 13261   433 5 19961   633 7 30573
111 1 5135    307 7 13343   467 5 21805   643 5 31725
133 1 6343    311 1 14049   479 1 22143   651 1 32485
a) Letter position.   b) Letter value.
c) Accumulated total.

All columns even:
a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)
2   20  26      98  4   4768    170 40  8104    246 6   11544   328 8   14722   402 2   19082   460 50  21454   574 90  27692   638 30  31410
4   400 436     100 50  4824    172 40  8344    252 200 11802   330 50  14812   404 70  19192   466 90  21800   588 30  28320   642 300 31720
14  10  744     102 2   4830    178 6   8416    254 50  11892   332 8   14826   410 8   19284   472 60  21912   590 8   28428   664 4   33950
28  200 2006    104 6   5036    182 40  8492    256 8   11906   336 4   15234   418 10  19700   474 70  22062   592 10  28478   676 6   34554
40  300 2576    110 30  5134    184 6   8548    262 20  12028   342 40  15376   420 30  19800   476 4   22072   594 50  28532
42  10  2786    114 6   5544    206 40  9646    268 10  12104   348 50  15878   422 30  19870   478 30  22142   596 70  28608  a) Letter position.
44  2   2792    116 40  5784    208 70  10116   270 40  12444   358 90  16202   432 2   19956   498 30  22602   604 6   28758
52  300 3362    118 50  5874    214 30  10556   272 20  12484   360 200 16408   436 2   20010   518 10  23636   608 200 28994  b) Letter value.
54  10  3412    120 6   5886    220 70  11052   274 10  12504   362 10  16448   438 6   20024   526 10  23680   614 20  29472
58  6   3434    130 30  6272    222 50  11132   292 40  12908   366 6   16470   440 50  20114   550 30  25766   620 20  29564  c) Accumulated
66  4   3504    132 30  6342    228 10  11208   294 30  13138   368 80  16590   442 8   20128   556 10  26032   622 400 30034       total.
68  200 3706    144 50  6854    230 70  11282   296 40  13184   384 400 18244   450 10  21052   558 6   26088   626 300 30370
70  30  3742    148 400 7262    232 50  11372   302 6   13256   386 200 18450   452 6   21098   560 400 26494   628 10  30420
84  300 4286    150 6   7288    234 8   11386   310 300 14048   394 2   18534   454 80  21188   568 400 27472   630 50  30540
86  30  4516    152 70  7408    236 10  11416   324 10  14598   396 30  18634   456 6   21224   570 30  27508   632 20  30566
94  6   4750    162 10  7920    238 30  11486   326 10  14614   398 400 19040   458 30  21324   572 8   27522   636 6   30980

Total of the letters, all odd/even (b): 8892 = 22 x 32 x 13 x 19. SF: 42 = 2 x 3 x 7.

4.8Divide the letters into groups of 5. Add up each group, and gather all groups with odd totals together, and all groups with even totals together. This can also be done with groups of 10, and 17.

4.8.1.1Odd valued groups of 5: 20594 = 2 x 7 x 1471.

4.8.1.2Even valued groups of 5: 13986 = 2 x 33 x 7 x 37.

4.8.2.1Odd valued groups of 10: 17248 = 25 x 72 x 11. SF: 35 = 5 x 7.

4.8.2.2Even valued groups of 10: 17332 = 22 x 7 x 619. SF: 630 = 2 x 32 x 5 x 7.

4.8.3.1Odd valued groups of 17: 12138 = 2 x 3 x 7 x 172.

4.8.3.2Even valued groups of 17: 22442 = 2 x 72 x 229. SF: 245 = 5 x 72.

4.9.1Alternating groups of 7 and 13.

4.9.1.1Groups of 7: 12908 = 22 x 7 x 461.

4.9.1.2Groups of 13: 21672 = 23 x 32 x 7 x 43.

4.9.2Alternating groups of 7 and 78.

4.9.2.1Groups of 7: 2261 = 7 x 17 x 19.

4.9.2.2Groups of 78: 32319 = 35 x 7 x 19.

4.9.3Alternating groups of 26 and 42.

4.9.3.1Groups of 26: 14175 = 34 x 52 x 7.

4.9.3.2Groups of 42: 20405 = 5 x 7 x 11 x 53.

4.9.4Alternating groups of 301 and 39.

4.9.4.1Groups of 301: 29344 = 25 x 7 x 131.

4.9.4.2Groups of 39: 5236 = 22 x 7 x 11 x 17. SF: 39 = 3 x 13.

4.9.5Alternating groups of 52 and 105.

4.9.5.1Groups of 52: 13937 = 7 x 11 x 181.

4.9.5.2Groups of 105: 20643 = 3 x 7 x 983.

4.9.6Alternating groups of 84 and 65.

4.9.6.1Groups of 84: 21853 = 13 x 412.

4.9.6.2Groups of 65: 12727 = 11 x 13 x 89.

4.9.7Alternating groups of 65 and 195.

4.9.7.1Groups of 65: 14903 = 7 x 2129.

4.9.7.2Groups of 105: 19677 = 3 x 7 x 937.

4.9.8Alternating groups of 221 and 238.

4.9.8.1Groups of 221: 24258 = 2 x 3 x 13 x 311. SF: 329 = 7 x 47.

4.9.8.2Groups of 238: 10322 = 2 x 13 x 397.

4.10Exactly seven letters divide the rest of the letters into two groups, what is between and what is not between their first and last occurrences.

Between & Not Between The First & Last Occurrences Of A Letter
LetterNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
40133054 = 2 x 3 x 7 x 787.1526 = 2 x 7 x 109.
2133642 = 2 x 33 x 7 x 89.938 = 2 x 7 x 67.
30133241 = 13 x 2557.1339 = 13 x 103.
50133166 = 2 x 7 x 23 x 103.1414 = 2 x 7 x 101.
7125802 = 2 x 7 x 19 x 97.8778 = 2 x 3 x 7 x 11 x 19. SF: 42 = 2 x 3 x 7.
3128405 = 5 x 13 x 19 x 23.6175 = 52 x 13 x 19. SF: 42 = 2 x 3 x 7.
8122498 = 2 x 7 x 1607.12082 = 2 x 7 x 863.

4.10.1The sum of the letters (first column of table): 140 = 22 x 5 x 7. (Since it is the first and last occurrence of these seven letters, the sum of the second column is also 7.)

4.10.2These 7 letters appear multiple times in the passage. The total of all their occurrences is a marvellous symmetrical number: 6006 = 2 x 3 x 7 x 11 x 13.

4.10.3The positions of their first occurence is listed below:

6 8 9 17 97 113 128

Total of the positions: 378 = 2 x 33 x 7.

4.11Load the 680 letters into a five dimension object (2 x 22 x 5 x 17).

4.11.1Total of all letters where the fourth dimension is an odd value: 20426 = 2 x 7 x 1459.

4.11.2Total of all letters where the fourth dimension is an even value: 14154 = 2 x 3 x 7 x 337.

4.11.3The difference between 4.11.1 and 4.11.2: 6272 = 27 x 72. SF: 28 = 22 x 7.

4.11.4.1Total of all letters where the fifth dimension is minimum or 1: 2576 = 24 x 7 x 23.

4.11.4.2Total of all letters where the fifth dimension is 10: 2667 = 3 x 7 x 127.

4.11.4.3Total of all letters where the fifth dimension is 13: 1484 = 22 x 7 x 53.

4.11.4.4Total of all letters where the fifth dimension is 16: 2730 = 2 x 3 x 5 x 7 x 13.

4.11.4.5Out of 17 possible values for the fifth dimension, the odds would suggest only two or at most three would produce a total divisible by 7. There were four.

4.11.5.1Total of all letters where the fifth dimension is 5: 1625 = 53 x 13. SF: 28 = 22 x 7.

4.11.5.2Total of all letters where the fifth dimension is 6: 1976 = 23 x 13 x 19.

4.11.5.3Total of all letters where the fifth dimension is 14: 2847 = 3 x 13 x 73.

4.11.5.4Total of all letters where the fifth dimension is 16: 2730 = 2 x 3 x 5 x 7 x 13.

4.11.5.5Out of 17 possible values for the fifth dimension, the odds would predict at most two producing totals divisible by 13. There were four.

4.11.6Out of five possible values for the fourth dimension, the odds are against any one of the five values producing a total divisible by 13. However, where the fourth dimension is 4, the total of the letters is 7410. (2 x 3 x 5 x 13 x 19. SF: 42 = 2 x 3 x 7.)

4.12676 (26 x 26) is the closest square number to 680 (the number of letters). Load the 680 letters into a square with the dimensions of 26 x 26 and drop the last four letters to make it fit. The perimeter of this square: 5782 = 2 x 72 x 59.

Conclusion

The numbers show the truth of Deuteronomy 18:21-22 when applied to the prophecy in Judges 13:15-24. What God has spoken comes to pass in small ways and then in large ways.

Notes

  1. English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.
  2. Hebrew text is from, The Biblia Hebraica Stuttgartensia (BHS), edited by K. Elliger and W. Rudolph of the Deutsche Biblegesselchaft (German Bible Society) 1983.
  3. The Greek text is from The Nestle-Aland 27th Edition of the Greek New Testament (GNT), Copyright © 1966, 1968, 1975, 1993-1994 United Bible Societies, found within Bibleworks 3.0 by Hermeneutika, Michael S. Bushell, 1995. Vowel marks and punctuation have been removed.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




The foolishness of God is greater than anything we can imagine (1 Corinthians 1:25). On the off chance the numbers are a form of foolishness, do not spend too much time on them.