Bible Numbers 2.0

Two Dark Prophecies Concerning Israel

In Matthew 8:11-12, Jesus gave one of the darkest prophecies concerning Israel. The sons of the kingdom would be thrown into outer darkness.

I tell you, many will come from east and west and sit at table with Abraham, Isaac, and Jacob in the kingdom of heaven, while the sons of the kingdom will be thrown into the outer darkness; there men will weep and gnash their teeth. (Matthew 8:11-12)1

λεγω δε υμιν οτι πολλοι απο ανατολων και δυσμων ηξουσιν και ανακλιθησονται μετα Ἁβρααμ και Ισαακ και Ιακωβ εν τη βασιλεια των ουρανων οι δε υιοι της βασιλειας εκβληθησονται εις το σκοτος το εξωτερον εκει εσται ο κλαυθμος και ο βρυγμος των οδοντων (Matthew 8:11-12)2

Before Jesus gave this prophecy, he healed a leper. After he gave this prophecy, he healed the centurion's servant, Peter's mother-in-law, and many more! In essence, Jesus was making very clear he was following Deuteronomy 18:14-22 in giving massive proof/confirmation that this prophecy was genuine and would be fulfilled.

(For more proof on the veracity of this prophecy, see the numeric study He Has Borne Our Griefs.)

While this prophecy was given near the beginning of Jesus' ministry, there is also a second related prophecy near the end of his ministry. It is because Israel rejected Jesus that they are thrown into outer darkness and lose the kingdom.

Jesus said to them, "Have you never read in the scriptures: `The very stone which the builders rejected has become the head of the corner; this was the Lord's doing, and it is marvelous in our eyes'? Therefore I tell you, the kingdom of God will be taken away from you and given to a nation producing the fruits of it. (Matthew 21:42-43)

λεγει αυτοις ο Ιησους Ουδεποτε ανεγνωτε εν ταις γραφαις Λιθον ον απεδοκιμασαν οι οικοδομουντες ουτος εγενηθη εις κεφαλην γωνιας παρα κυριου εγενετο αυτη και εστιν θαυμαστη εν οφθαλμοις ημων δια τουτο λεγω υμιν οτι αρθησεται αφ υμων η βασιλεια του θεου και δοθησεται εθνει ποιουντι τους καρπους αυτης (Matthew 21:42-43)

Jesus warned the people of his day to make sure they entered the kingdom of heaven. (Matthew 5:20) He said the ruling class prevented people from entering the kingdom. (Matthew 23:13) Thus having the kingdom, and entering it, are two different things. [For more on the difference in having the kingdom and entering it, see this.]

Quoting Psalm 118:22-23, Jesus made certain the chief priests and Pharisees would understand that in rejecting him, they would lose the kingdom of God. It would be taken from them and given to another people. Jesus did not say might be taken or might be given. He said will be taken. He used the future tense, will be given to another people. This was a prophecy.

Do these two dark prophecies really go together? Put them together and see if God's signature of complementary opposites appears. (Revelation 1:8)

(N.B. Since these two prophecies are about Israel, and not about God or Jesus, there will be inconsistencies.)

Two Dark Prophecies Together
A:1234
B:6289279169
C:12345678910111213
D:20536004520030940601009
E:λεγωδευμινοτι
A:56
B:239131
C:141516171819202122
D:7060202060917060
E:πολλοιαπο
A:78
B:86220
C:2324252627282930313233
D:14011006020600401019
E:ανατολωνκαι
A:91011
B:96445620
C:34353637383940414243444546474849
D:420090306004075060200909401019
E:δυσμωνηξουσινκαι
A:12
B:396
C:5051525354555657585960616263
D:1401102098790604010019
E:ανακλιθησονται
A:131415
B:13611520
C:64656667686970717273747576
D:3051001128011301019
E:μετααβρααμκαι
A:16171819
B:1112062245
C:777879808182838485868788899091
D:9901110101991106002540
E:ισαακκαιιακωβεν
A:202122
B:107137740
C:9293949596979899100101102103104
D:1007219092059110060040
E:τηβασιλειατων
A:23242526
B:1021699278
C:105106107108109110111112113114115116117118119
D:602008014060040609452009609
E:ουρανωνοιδευιοι
A:2728
B:197227
C:120121122123124125126127128129130131
D:100790219092059190
E:τηςβασιλειας
A:2930
B:359104
C:132133134135136137138139140141142143144145146147
D:510220787906040100195990
E:εκβληθησονταιεις
A:313233
B:160410160
C:148149150151152153154155156157
D:10060901060100609010060
E:τοσκοτοςτο
A:3435
B:94029
C:158159160161162163164165166167168169
D:550600100580604051059
E:εξωτερονεκει
A:363738
B:20560419
C:170171172173174175176177178179180181182183
D:5901001960102012008306090
E:εσταιοκλαυθμος
A:39404142
B:2060465740
C:184185186187188189190191192193194195196197
D:101960280200330609010060040
E:καιοβρυγμοςτων
A:4344
B:90442
C:198199200201202203204205206207208209
D:604604010060040205359
E:οδοντωνλεγει
A:454647
B:46060456
C:210211212213214215216217218219220221222
D:1200100609906097906020090
E:αυτοιςοιησους
A:4849
B:504794
C:223224225226227228229230231232233234235236237238
D:60200457060100514053406001005
E:ουδεποτεανεγνωτε
A:505152
B:45200484
C:239240241242243244245246247248249250251
D:540100199038013001990
E:ενταιςγραφαις
A:5354
B:137100
C:252253254255256257258
D:209860406040
E:λιθονον
A:5556
B:32169
C:259260261262263264265266267268269270271272
D:170546010930190140609
E:απεδοκιμασανοι
A:57
B:728
C:273274275276277278279280281282283284285
D:6091060460306020040100590
E:οικοδομουντες
A:585960
B:51075104
C:286287288289290291292293294295296297298299300
D:602001006090535407875990
E:ουτοςεγενηθηεις
A:6162
B:383743
C:301302303304305306307308309310311312313
D:1053001207403600409190
E:κεφαληνγωνιας
A:6364
B:152559
C:314315316317318319320321322323
D:7018011020080960200
E:παρακυριου
A:656667
B:21830820
C:324325326327328329330331332333334335336337
D:53540510060120010071019
E:εγενετοαυτηκαι
A:686970
B:24443745
C:338339340341342343344345346347348349350351352
D:59010094081200301901007540
E:εστινθαυμαστηεν
A:717273
B:57867714
C:353354355356357358359360361362363364365366367368
D:603008120306099073060040491
E:οφθαλμοιςημωνδια
A:74757677
B:520628279169
C:369370371372373374375376377378379380381382383384
D:1006020010060205360020030940601009
E:τουτολεγωυμινοτι
A:78798081
B:3013018707
C:385386387388389390391392393394395396397398399400
D:1808790510019130020030600407
E:αρθησεταιαφυμωνη
A:828384
B:137360273
C:401402403404405406407408409410411412413414415
D:2190920591100602008560200
E:βασιλειατουθεου
A:8586
B:20284
C:416417418419420421422423424425426427
D:10194608790510019
E:καιδοθησεται
A:8788
B:67548
C:428429430431432433434435436437438439440
D:5840597060960200401009
E:εθνειποιουντι
A:899091
B:450511398
C:441442443444445446447448449450451452453454455456
D:1006020090101807060200901200100790
E:τουςκαρπουςαυτης

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Greek.

The Four Verses

Basic Verse Numbers
Reference Number of words Numeric total of verse Total of the first letter of each word Total of the last letter of each word First letter of each verse Last letter of each verse First & last letter of each verse
Mat 8:112372477241059204060
Mat 8:122058159839596040100
Mat 21:422994537241509204060
Mat 21:43196137903177349094

1Numeric total of the four verses: 28652 = 22 x 13 x 19 x 29. SF: 65 = 5 x 13. With a second 13 in the sum of the factors, this is a one in 169 chance.

1.1The first and last verses: 13384 = 23 x 7 x 239. SF: 252 = 22 x 32 x 7.

1.2The number of words in the first and last verses: 42 = 2 x 3 x 7.

1.2.1The number of words in the last verse of the first prophecy and the first verse of the second prophecy: 49 = 72.

1.2.2The number of words in the first verse of each prophecy: 52 = 22 x 13.

1.2.3The number of words in the last verse of each prophecy: 39 = 3 x 13.

1.3.1The total of the first letter of each word for the first verse of the first prophecy is 724. The total of the first letter of each word for the first verse of the second prophecy providentially is 724. Even though the number is not a multiple of 7 or 13, it is a one in 724 chance.

1.3.2The total of the last letter of each word for the first verse of the first prophecy is 1059. The total of the last letter of each word for the first verse of the second prophecy is 1509. This time the totals are not the same, but it is curious how all the digits are the same. At a quick glance, the two could almost be mistaken for each other.

1.4The first and last letters of the first and last verses: 154 = 2 x 7 x 11.

The Words

List of words:
628 9 279 169 239 131 862 20 964 456 20 396 136 115 20 111 20 622 45 107 137 740 1021 69 9 278 197 227 359 104 160 410 160 940 29 205 60 419 20 60 465 740 904 42 460 60 456 504 794 45 200 484 137 100 321 69 728 510 75 104 383 743 152 559 218 308 20 244 437 45 578 677 14 520 628 279 169 301 301 870 7 137 360 273 20 284 67 548 450 511 398

2There are 91 words. (91 = 7 x 13.)

2.1When the letter values of God's name in Hebrew (10-5-6-5) are applied four times to count through the words, they cover all 91 words and overshoot just a little to wrap around to the beginning.

a) 10  5  6   5   10  5   6   5   10  5  6  5   10  5  6  5
b) 10  15 21  26  36  41  47  52  62  67 73 78  88  93 8  13
c) 10  15 21  26  36  41  47  52  62  67 73 78  88  2  8  13
d) 456 20 137 278 205 465 456 484 743 20 14 301 548 9  20 136

a) Value from the Name.
b) Count.
c) Count adjusted to 91.
d) Word found.

The result is not a multiple of 7 or 13: 4292 = 22 x 29 x 37. The feature is hidden in the sum of the factors: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

2.2The values from the Name are applied 13 times.

a) 10  5  6   5   10  5   6   5   10  5  6  5   10  5  6  5   10   5
b) 10  15 21  26  36  41  47  52  62  67 73 78  88  93 8  13  23   28
c) 10  15 21  26  36  41  47  52  62  67 73 78  88  2  8  13  23   28
d) 456 20 137 278 205 465 456 484 743 20 14 301 548 9  20 136 1021 227

a) 6   5  10  5   6   5   10  5   6   5   10  5  6   5   10  5   6
b) 34  39 49  54  60  65  75  80  86  91  101 15 21  26  36  41  47
c) 34  39 49  54  60  65  75  80  86  91  10  15 21  26  36  41  47
d) 940 20 794 100 104 218 628 870 284 398 456 20 137 278 205 465 456

a) 5   10  5  6  5   10  5  6  5   10   5   6   5  10  5   6   5
b) 52  62  67 73 78  88  93 8  13  23   28  34  39 49  54  60  65
c) 52  62  67 73 78  88  2  8  13  23   28  34  39 49  54  60  65
d) 484 743 20 14 301 548 9  20 136 1021 227 940 20 794 100 104 218

a) Value from the Name.
b) Count.
c) Count adjusted to 91.
d) Word found.

Total: 17612 = 22 x 7 x 17 x 37. SF: 65 = 5 x 13.

2.2.1From the results (d) in feature 2.2, take the odd positioned:

456 137 205 456 743 14 548 20 1021 940 794 104 628 284 456 137 205 456 743 14 548 20 1021 940 794 104

Total: 11788 = 22 x 7 x 421.

2.2.1.1Take the odd positioned again from feature 2.2.1:

456 205 743 548 1021 794 628 456 205 743 548 1021 794

Total: 8162 = 2 x 7 x 11 x 53.

2.2.1.2Take the even positioned again from feature 2.2.1:

137 456 14 20 940 104 284 137 456 14 20 940 104

Total: 3626 = 2 x 7 x 7 x 37.

2.2.2From the results (d) in feature 2.2, take the even positioned:

20 278 465 484 20 301 9 136 227 20 100 218 870 398 20 278 465 484 20 301 9 136 227 20 100 218

Total: 5824 = 26 x 7 x 13.

2.2.3From the results (d) in feature 2.2, take the odd valued:

137 205 465 743 301 9 1021 227 137 205 465 743 301 9 1021 227

Total: 6216 = 23 x 3 x 7 x 37.

2.2.4From the results (d) in feature 2.2, take the even valued:

456 20 278 456 484 20 14 548 20 136 940 20 794 100 104 218 628 870 284 398 456 20 278 456 484 20 14 548 20 136 940 20 794 100 104 218

Total: 11396 = 22 x 7 x 11 x 37.

2.3Exactly seven pairs of words, Nth and Nth last together are divisible by 7.

a) Nth word:  7   15  20  29  30  41  44
b) Value:     862 20  107 359 104 465 42
c) Nth last:  85  77  72  63  62  51  48
d) Value:     20  169 677 152 743 200 504
e) Sum:       882 189 784 511 847 665 546

Sum of positions (a + c): 644 = 22 x 7 x 23.

2.3.1The odd valued words from lines (a) and (c):

107 359 465 169 677 743

Total: 2520 = 23 x 32 x 5 x 7.

2.3.2The even valued words from lines (a) and (c):

862 20 104 42 20 152 200 504

Total: 1904 = 24 x 7 x 17.

2.4Every Nth word adds up to a multiple of 13 when N is one of the following:

14 22 29 33

Total of the N values: 98 = 2 x 72.

2.4.1Whether one begins with the first word and takes every Nth, or just takes every Nth word, only one value of N succeeds both ways: 14 (2 x 7).

2.551 words are even valued.

a) 1   7   8  9   10  11 12  13  15 17 18  22  26  30  31  32  33  34
b) 628 862 20 964 456 20 396 136 20 20 622 740 278 104 160 410 160 940

a) 37 39 40 42  43  44 45  46 47  48  49  51  52  54  57  58  60  63
b) 60 20 60 740 904 42 460 60 456 504 794 200 484 100 728 510 104 152

a) 65  66  67 68  71  73 74  75  80  83  85 86  88  89  91
b) 218 308 20 244 578 14 520 628 870 360 20 284 548 450 398

a) Word position.
b) Word value.

Total of the words (b): 18774 = 2 x 32 x 7 x 149. (There is no correlating feature with the odd valued words because this is not a prophecy about God or Jesus.)

2.6Divide the words into four categories: a) odd positioned and odd valued, b) odd positioned and even valued, c) even positioned and odd valued, and d) even positioned and even valued.

a) Odd position & odd valued:
3   5   19 21  23   25 27  29  35 41  53  55  59 61  69  77  79  81 87
279 239 45 137 1021 9  197 359 29 465 137 321 75 383 437 169 301 7  67
Total: 4677 = 3 x 1559.

b) Odd position & even valued:
1   7   9   11 13  15 17 31  33  37 39 43  45  47  49  51  57  63  65  67 71  73 75  83  85 89  91
628 862 964 20 136 20 20 160 160 60 20 904 460 456 794 200 728 152 218 20 578 14 628 360 20 450 398
Total: 9430 = 2 x 5 x 23 x 41.

c) Even position & odd valued:
2 4   6   14  16  20  24 28  36  38  50 56 62  64  70 72  76  78  82  84  90
9 169 131 115 111 107 69 227 205 419 45 69 743 559 45 677 279 301 137 273 511
Total: 5201 = 7 x 743.

d) Even position & even valued:
8  10  12  18  22  26  30  32  34  40 42  44 46 48  52  54  58  60  66  68  74  80  86  88
20 456 396 622 740 278 104 410 940 60 740 42 60 504 484 100 510 104 308 244 520 870 284 548
Total: 9344 = 27 x 73.

2.6.1Only category (c) is a multiple of 7. Out of four totals, this is simply the odds.

2.6.2Categories (a) and (d) could be considered pure since they are odd, or even in both position and value. The total of the two categories: 14021 = 7 x 2003. (Categories (b) and (c) have no feature because they are a mix of odd and even, i.e. not pure.)

2.C.1Among the 91 word positions are 24 that are prime numbers. The words in these prime number positions are listed below.

a) 2 3   5   7   11 13  17 19 23   29  31  37 41  43  47  53  59 61
b) 9 279 239 862 20 136 20 45 1021 359 160 60 465 904 456 137 75 383

a) 67 71  73 79  83  89  (Prime number word position.)
b) 20 578 14 301 360 450 (Word value.)

Total of the words (b): 7353 = 32 x 19 x 43. 7353 is not a multiple of 7 or 13. The factor to note is 19. It first showed in feature 1 with the total of the passage. Its significance will be covered later.

2.C.267 word positions are not prime numbers.

a) 1   4   6   8  9   10  12  14  15 16  18  20  21  22  24 25 26  27
b) 628 169 131 20 964 456 396 115 20 111 622 107 137 740 69 9  278 197

a) 28  30  32  33  34  35 36  38  39 40 42  44 45  46 48  49  50 51
b) 227 104 410 160 940 29 205 419 20 60 740 42 460 60 504 794 45 200

a) 52  54  55  56 57  58  60  62  63  64  65  66  68  69  70 72  74
b) 484 100 321 69 728 510 104 743 152 559 218 308 244 437 45 677 520

a) 75  76  77  78  80  81 82  84  85 86  87 88  90  91
b) 628 279 169 301 870 7 137 273 20 284 67 548 511 398

a) Non-prime number word position.
b) Word value.

Total of the words (b): 21299 = 192 x 59. This time the factor 19 appears twice, demonstrating that 19 is also fundamental to the two prophecies just like 7 and 13.

2.7Ten words are multiples of 7. Their sum produces an extra factor of 7, as does their word positions.

Word position: 44 48  57  66  73 78  79  81 84  90
Word value:    42 504 728 308 14 301 301 7  273 511

Total of the positions (a): 700 = 22 x 52 x 7. SF: 21 = 3 x 7.
Total of the words: 2989 = 72 x 61.

2.8The middle 81, 71, 55, 45, 21, and 7 words all add to a multiple of 7. The total of these numbers: 280 = 23 x 5 x 7.

2.9Add up the words one by one, and keep track of the running total.

2.9.1Ten times the total will be divisible by 7.

a) 2   4    7    14   29   43    44    52    60    88
b) 9   169  862  115  359  904   42    484   104   548
c) 637 1085 2317 4424 8386 13062 13104 16107 18151 27293

a) Word position.
b) Word value.
c) Accumulated value at that point.

Total of the positions (a): 343 = 73.

2.9.2Precisely 13 times the accumulated total will be divisible by 13.

a) 2   10   12   21   27   44    46    52    66    73    74    80    91
b) 9   456  396  137  197  42    60    484   308   14    520   870   398
c) 637 3757 4173 5486 7800 13104 13624 16107 20514 22529 23049 25597 28652

a) Word position.
b) Word value.
c) Accumulated value at that point.

Total of the positions: 598 = 2 x 13 x 23.

2.10Three words divide the rest of the words into two groups: what is between their first and last appearances, and what is not between these appearances.

Between & Not Between A Word's First & Last Occurrences
WordTotal Of Words In BetweenTotal Of Words Not Between
2024037 = 13 x 432.4615 = 5 x 13 x 71.
4569867 = 3 x 11 x 13 x 23.18785 = 5 x 13 x 172. SF: 52 = 22 x 13.
301028652 = 22 x 13 x 19 x 29. SF: 65 = 5 x 13.
91 Words (Click to hide.)
6289279169239131862
2096445620396136115
201112062245107137
7401021699278197227
35910416041016094029
205604192060465740
9044246060456504794
4520048413710032169
72851075104383743152
5592183082024443745
57867714520628279169
3013018707137360273
2028467548450511398

2.10.1The difference from the first row: 19422 = 2 x 32 x 13 x 83. SF: 104 = 23 x 13.

2.10.2The difference from the second row: 8918 = 2 x 73 x 13.

2.10.3Incredibly, the three words (column 1) add up to 777 (3 x 7 x 37).

2.10.4301 stands out with no total in between. (301 = 7 x 43.) This means the other two are also divisible by 7 when added together: 476 = 22 x 7 x 17. SF: 28 = 22 x 7.

2.11The first word is 628. Consider it a low valued word and search for the next word that is higher in value. Continue the search, low and high, low and high, until the list of words has been covered. Total of the words selected: 14963 = 13 x 1151.

2.12The first word is an even number. Search through the words alternating between even and odd.

a) 1   2 7   14  15 16  17 19 22  23   26  27  30  35 37 38  39 41  42
b) 628 9 862 115 20 111 20 45 740 1021 278 197 104 29 60 419 20 465 740

a) 50 51  53  54  55  57  59 60  61  63  64  65  69  71  72  73 76  80
b) 45 200 137 100 321 728 75 104 383 152 559 218 437 578 677 14 279 870

a) 81 83  84  85 87 88  90  91
b) 7  360 273 20 67 548 511 398

Total of the words (b): 13944 = 23 x 3 x 7 x 83.

2.13Arrange the 91 words into a 7 x 13 rectangle.

2.13.1The outside, or perimeter of the rectangle: 11804 = 22 x 13 x 227.

2.13.2The inside of the rectangle: 16848 = 24 x 34 x 13.

2.13.3Even positioned columns: 12278 = 2 x 7 x 877. (No corresponding feature with the odd positioned columns.)

2.13.4Middle column and middle row (without the centre): 5746 = 2 x 132 x 17.

2.14Divide the words into four groups depending on whether the first and last letters of the word are odd valued, or even valued.

2.14.1Words with an odd valued first letter and an odd valued last letter:

396 359 29 205 794 75 308 301 7 67

Total: 2541 = 3 x 7 x 11 x 11.

2.14.2Words with an odd valued first letter and even valued last letter:

131 862 456 115 111 622 45 104 940 460 456 45 484 321 104 743 218 244 45 677 301 398

Total: 7882 = 2 x 7 x 563. SF: 572 = 2 x 2 x 11 x 13. SF: 28 = 2 x 2 x 7.

2.14.3Words with an even valued first letter and odd valued last letter:

9 169 239 20 20 136 20 20 107 137 69 9 278 20 42 504 69 152 20 437 14 169 137 20 284 548

Total: 3649 = 41 x 89. SF: 130 = 2 x 5 x 13.

2.14.4Words with an even valued first letter and even valued last letter:

628 279 964 740 1021 197 227 160 410 160 60 419 60 465 740 904 60 200 137 100 728 510 383 559 578 520 628 279 870 360 273 450 511

Total: 14580 = 2 x 2 x 3 x 3 x 3 x 3 x 3 x 3 x 5.

2.14.5Two of the four categories have multiples of 7. The odds would have suggested only one.

2.14.62.14.1 and 2.14.4 purely odd, or purely even. The total of both categories: 17121 = 3 x 13 x 439. SF: 455 = 5 x 7 x 13.

2.14.72.14.2 and 2.14.3 are mixed. The total of the two categories: 11531 = 13 x 887.

2.14.8The difference between the pure and mixed categories: 5590 = 2 x 5 x 13 x 43. SF: 63 = 32 x 7. SF: 13.

First & Last

3This is a list of the totals for the first and last letters of each word.

620 9 240 69 79 61 41 19 44 47 19 10 31 31 19 19 19 11 45 107 3 140 100 69 9 209 190 92 14 95 160 180 160 45 14 14 120 100 19 120 92 140 100 29 91 120 99 65 6 45 190 93 60 100 41 69 150 150 12 95 50 93 71 210 65 8 19 45 15 45 150 47 5 160 620 240 69 10 301 240 14 3 300 208 19 13 14 79 190 100 91

3.CThe sum of the first and last letters of each word is not divisible by 7 or 13: 8634 = 2 x 3 x 1439. But there is something hidden in the factors: 1444 = 22 x 192. SF: 42 = 2 x 3 x 7.

3.1Apply the letter values of God's name in Hebrew (10-5-6-5) seven times to these totals.

a) 10 5  6  5   10 5  6  5  10 5  6  5  10 5  6  5  10  5  6  5  10 5
b) 10 15 21 26  36 41 47 52 62 67 73 78 88 93 8  13 23  28 34 39 49 54
c) 47 19 3  209 14 92 99 93 93 19 5  10 79 9  19 31 100 92 45 19 6  100

a) 6  5  10  5   6  5  (Value from the Name.)
b) 60 65 75  80  86 91 (Count.)
c) 95 65 620 240 13 91 (First/last sum found.)

Total (c): 2327 = 13 x 179.

3.2Eight paired groups of the first/last totals can be found, positioned Nth and Nth last, that together, and individually are multiples of 13.

a) 1    1    2    16   17   17   21  25
b) 15   40   21   40   20   22   22  32
c) 2990 7657 3705 4667 1014 1352 338 1560

a) Starting position of first group is from the beginning, and of the 
      second group is from the end.
b) Ending position of the first group is from the beginning, and of the 
      second group is from the end.
c) Total of both groups.

Total of the positions (a + b): 312 = 23 x 3 x 13.

3.3Whether one begins with the first number in the list and takes every Nth after, or just takes every Nth, only one value of N both works both ways. Providentially, this occurs when N equals 13.

3.3.1Beginning with the first and taking every 13th after: 1330 = 2 x 5 x 7 x 19.

3.3.2Every 13th from the list: 518 = 2 x 7 x 37.

3.4Divide the first/last totals into two groups depending on whether the first digit is odd or even.

3.4.162 have a first digit that is odd valued:

a) 2 5  8  11 12 13 14 15 16 17 18 20  21 22  23  25 27  28 29 30 31
b) 9 79 19 19 10 31 31 19 19 19 11 107 3  140 100 9  190 92 14 95 160

a) 32  33  35 36 37  38  39 40  41 42  43  45 46  47 51  52 54  57
b) 180 160 14 14 120 100 19 120 92 140 100 91 120 99 190 93 100 150

a) 58  59 60 61 62 63 67 69 71  73 74  78 79  81 82 83  85 86 87 88
b) 150 12 95 50 93 71 19 15 150 5  160 10 301 14 3  300 19 13 14 79

a) 89  90  91  (Position in the list.)
b) 190 100 91  (First/last sum.)

Total of the positions (a): 2891 = 72 x 59.

3.4.229 have an even valued first digit:

a) 1   3   4  6  7  9  10 19 24 26  34 44 48 49 50 53 55 56 64  65
b) 620 240 69 61 41 44 47 45 69 209 45 29 65 6  45 60 41 69 210 65

a) 66 68 70 72 75  76  77 80  84  (Position in the list.)
b) 8  45 45 47 620 240 69 240 208 (First/last sum.)

Total of positions: 1295 = 5 x 7 x 37. SF: 49 = 72 SF: 14 = 2 x 7.

3.5Eleven of the first/last sums are multiples of 7:

a) 22  29 35 36 42  45 64  79  81 87 91 (Position in the list.)
b) 140 14 14 14 140 91 210 301 14 14 91 (First/last sum.)

Total of the positions (a): 611 = 13 x 47.
Total of the sums (b): 1043 = 7 x 149. SF: 156 = 22 x 3 x 13.

3.6Take every Nth, where N increases by 1 each time.

a) Count:      1   2 4  7  11 16 22  29 37  46  56 67 79
b) N:          1   2 3  4  5  6  7   8  9   10  11 12 13
c) First/last: 620 9 69 41 19 19 140 14 120 120 69 19 301

Total (c): 1560 = 23 x 3 x 5 x 13.

3.7When the totals in feature 3 are added one by one, sometimes the accumulated total is a prime number. There is only one point in the list where the list position, the first/last total and the accumulated total are all prime numbers. Providentially, this occurs with the 13th total. Also providentially, the first/last total is 31, a digit reversal of the position.

3.7.118 times the accumulated total will be a prime number.

a) 10   13   19   21   23   25   31   32   48   52   53   56   68
b) 47   31   45   3    100  9    160  180  65   93   60   69   45
c) 1229 1289 1433 1543 1783 1861 2621 2801 4129 4463 4523 4733 5701

a) 76   80   85   89   90    (Position in list.)
b) 240  240  19   190  100   (First/last total.)
c) 6983 7603 8147 8443 8543  (Accumulated total at that point.)

Total of the positions (a): 871 = 13 x 67.

3.7.2The remaining 73 accumulated totals are not prime numbers.

a) 1   2   3   4   5    6    7    8    9    11   12   14   15   16   17
b) 620 9   240 69  79   61   41   19   44   19   10   31   19   19   19
c) 620 629 869 938 1017 1078 1119 1138 1182 1248 1258 1320 1339 1358 1377

a) 18   20   22   24   26   27   28   29   30   33   34   35   36   37
b) 11   107  140  69   209  190  92   14   95   160  45   14   14   120
c) 1388 1540 1683 1852 2070 2260 2352 2366 2461 2961 3006 3020 3034 3154

a) 38   39   40   41   42   43   44   45   46   47   49   50   51   54
b) 100  19   120  92   140  100  29   91   120  99   6    45   190  100
c) 3254 3273 3393 3485 3625 3725 3754 3845 3965 4064 4135 4180 4370 4623

a) 55   57   58   59   60   61   62   63   64   65   66   67   69   70
b) 41   150  150  12   95   50   93   71   210  65   8    19   15   45
c) 4664 4883 5033 5045 5140 5190 5283 5354 5564 5629 5637 5656 5716 5761

a) 71   72   73   74   75   77   78   79   81   82   83   84   86   87
b) 150  47   5    160  620  69   10   301  14   3    300  208  13   14
c) 5911 5958 5963 6123 6743 7052 7062 7363 7617 7620 7920 8128 8160 8174

a) 88   91   (Position in list.)
b) 79   91   (First/last total.)
c) 8253 8634 (Accumulated total at that point.)

Total of the positions (a): 3315 = 3 x 5 x 13 x 17.

3.8The lowest valued total is 3, and it appeared in the list two times for a total value of 6. The highest valued total is 620, and it also appeared only two times. Its total value is 1240. Lowest and highest form a complementary opposite. Together: 6 + 1240 = 1246 = 2 x 7 x 89. SF: 98 = 2 x 72.

Alpha: The First Letter Of Each Word

20 4 200 60 70 1 1 10 4 7 10 1 30 1 10 9 10 9 5 100 2 100 60 60 4 200 100 2 5 5 100 90 100 5 5 5 60 10 10 60 2 100 60 20 1 60 9 60 1 5 100 3 20 60 1 60 60 60 5 5 10 3 70 10 5 1 10 5 8 5 60 7 4 100 20 200 60 1 1 200 7 2 100 8 10 4 5 70 100 10 1

4The total of the first letters: 3334 (nf).

4.1The first and last of the list: 21 = 3 x 7.

4.2The letter values of God's name in Hebrew (10-5-6-5) are applied 13 times to count through the list.

a) 10 5  6  5   10 5  6  5  10 5  6  5  10 5  6  5  10 5  6  5  10 5
b) 10 15 21 26  36 41 47 52 62 67 73 78 88 93 8  13 23 28 34 39 49 54
c) 10 15 21 26  36 41 47 52 62 67 73 78 88 2  8  13 23 28 34 39 49 54
d) 7  10 2  200 5  2  9  3  3  10 4  1  70 4  10 30 60 2  5  10 1  60

a) 6  5  10 5   6  5  10  5  6  5   10 5  6  5  10 5  6  5  10 5  6
b) 60 65 75 80  86 91 101 15 21 26  36 41 47 52 62 67 73 78 88 93 8
c) 60 65 75 80  86 91 10  15 21 26  36 41 47 52 62 67 73 78 88 2  8
d) 5  5  20 200 4  1  7   10 2  200 5  2  9  3  3  10 4  1  70 4  10

a) 5  10 5  6  5  10 5  6  5   (Value from the Name.)
b) 13 23 28 34 39 49 54 60 65  (Count.)
c) 13 23 28 34 39 49 54 60 65  (Count adjusted to 91.)
d) 30 60 2  5  10 1  60 5  5   (First letter found.)

Total (d): 1261 = 13 x 97. (The inside of this number is 26, which is the exact total of God's name in Hebrew. The outside of this number would be 1001, which equals 7 x 11 x 13.)

4.3Taking every Nth from the list, the following values of N produce totals divisible by 13:

9 17 18 40

Total of the N values: 84 = 22 x 3 x 7. SF: 14 = 2 x 7. (The first and last N values add up to 49. The middle two N values add up to 35.)

4.432 of the first letters are odd valued.

a) 6 7 10 12 14 16 18 19 29 30 34 35 36 45 47 49 50 52 55 59 60 62 65
b) 1 1 7  1  1  9  9  5  5  5  5  5  5  1  9  1  5  3  1  5  5  3  5

a) 66 68 70 72 78 79 81 87 91 (List position.)
b) 1  5  5  7  1  1  7  5  1  (First letter.)

Total of the letters (b): 130 = 2 x 5 x 13. (There is no corresponding feature with the even valued first letters because these are prophecies about people, not about God or Jesus.)

4.5When these letters are categorized by their odd/even positions and values, three of the four categories end up with numeric features.

4.5.1First letters that are odd positioned and odd valued:

List position: 7 19 29 35 45 47 49 55 59 65 79 81 87 91
First letter:  1 5  5  5  1  9  1  1  5  5  1  7  5  1
Total of the letters: 52 = 22 x 13.

4.5.2First letters that are odd positioned and even valued:

a) 1  3   5  9 11 13 15 17 21 23 25 27  31  33  37 39 41 43 51  53 57
b) 20 200 70 4 10 30 10 10 2  60 4  100 100 100 60 10 2  60 100 20 60

a) 61 63 67 69 71 73 75 77 83  85 89  (List position.)
b) 10 70 10 8  60 4  20 60 100 10 100 (First letter.)

Total of the letters (b): 1484 = 22 x 7 x 53.

4.5.3First letters that are even positioned and odd valued:

List position: 6 10 12 14 16 18 30 34 36 50 52 60 62 66 68 70 72 78
Letter value:  1 7  1  1  9  9  5  5  5  5  3  5  3  1  5  5  7  1

Total: 78 = 2 x 3 x 13.

4.624 of the first letters are in list positions that are prime numbers.

a) 2 3   5  7 11 13 17 19 23 29 31  37 41 43 47 53 59 61 67 71 73 79
b) 4 200 70 1 10 30 10 5  60 5  100 60 2  60 9  20 5  10 10 60 4  1

a) 83  89   (Prime number list position.)
b) 100 100  (First letter.)

Total of the first letters (b): 936 = 23 x 32 x 13.

4.7The middle 13 of the list of first letters adds up to a multiple of 13:

60 2 100 60 20 1 60 9 60 1 5 100 3

Total: 481 = 13 x 37. (Note how the first and last in this smaller list adds up to 63 = 32 x 7. SF: 13.)

4.8.1When the first letters are added up one by one, 42 times (2 x 3 x 7) the result is an odd valued number.

a) b)  c)        a) b)  c)        a) b)  c)
6  1   355       42 100 1647      68 5   2351
10 7   377       43 60  1707      69 8   2359
11 10  387       44 20  1727      72 7   2431
14 1   419       47 9   1797      73 4   2435
15 10  429       48 60  1857      74 100 2535
18 9   457       50 5   1863      75 20  2555
29 5   1095      51 100 1963      76 200 2755
34 5   1395      55 1   2047      77 60  2815
36 5   1405      56 60  2107      79 1   2817
37 60  1465      57 60  2167      80 200 3017
38 10  1475      58 60  2227      87 5   3153
39 10  1485      60 5   2237      88 70  3223
40 60  1545      61 10  2247      89 100 3323
41 2   1547      65 5   2335      90 10  3333
a) List position.   b) First letter.
c) Accumulated total at that point.

Total of the letters (b): 1540 = 22 x 5 x 7 x 11.

4.8.249 (72) times the result is an even number.

a) b)  c)        a) b)  c)        a) b)  c)        a) b)  c)
1  20  20        21 2   564       46 60  1788      81 7   3024
2  4   24        22 100 664       49 1   1858      82 2   3026
3  200 224       23 60  724       52 3   1966      83 100 3126
4  60  284       24 60  784       53 20  1986      84 8   3134
5  70  354       25 4   788       54 60  2046      85 10  3144
7  1   356       26 200 988       59 5   2232      86 4   3148
8  10  366       27 100 1088      62 3   2250      91 1   3334
9  4   370       28 2   1090      63 70  2320
12 1   388       30 5   1100      64 10  2330
13 30  418       31 100 1200      66 1   2336
16 9   438       32 90  1290      67 10  2346
17 10  448       33 100 1390      70 5   2364
19 5   462       35 5   1400      71 60  2424
20 100 562       45 1   1728      78 1   2816
a) List position.     b) First letter.
c) Accumulated total at that point.

Total of the first letters (b): 1794 = 2 x 3 x 13 x 23.

4.8.315 times the list position, the first letter, and the accumulated total will all be even numbers.

a) 2  4   8   20  22  24  26  28   32   46   54   64   82   84   86    
b) 4  60  10  100 100 60  200 2    90   60   60   10   2    8    4     
c) 24 284 366 562 664 784 988 1090 1290 1788 2046 2330 3026 3134 3148  

a) List position.
b) First letter.
c) Accumulated total at that point.

Total of the first letters (b): 770 = 2 x 5 x 7 x 11.

4.8.4Six times the list position, the first letter, and the accumulated total will all be odd numbers.

List position: 29   47   55   65   79   87    
First letter:  5    9    1    5    1    5     
Running total: 1095 1797 2047 2335 2817 3153  

Total of the first letters (b): 26 = 2 x 13.

Omega: The Last Letter Of Each Word

600 5 40 9 9 60 40 9 40 40 9 9 1 30 9 10 9 2 40 7 1 40 40 9 5 9 90 90 9 90 60 90 60 40 9 9 60 90 9 60 90 40 40 9 90 60 90 5 5 40 90 90 40 40 40 9 90 90 7 90 40 90 1 200 60 7 9 40 7 40 90 40 1 60 600 40 9 9 300 40 7 1 200 200 9 9 9 9 90 90 90

5The total of the last letters is not a multiple of 7 or 13: 5300 (nf).

5.1The letter values of God's name in Hebrew are applied 13 times to count through the list of last letters.

a) 10 5  6  5  10 5  6  5  10 5  6  5  10 5  6 5  10 5  6  5  10 5  6
b) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 8 13 23 28 34 39 49 54 60
c) 10 15 21 26 36 41 47 52 62 67 73 78 88 2  8 13 23 28 34 39 49 54 60
d) 40 9  1  9  9  90 90 90 90 9  1  9  9  5  9 1  40 90 40 9  5  40 90

a) 5  10  5  6  5  10  5  6  5  10 5  6  5  10 5  6  5  10 5  6 5  10
b) 65 75  80 86 91 101 15 21 26 36 41 47 52 62 67 73 78 88 93 8 13 23
c) 65 75  80 86 91 10  15 21 26 36 41 47 52 62 67 73 78 88 2  8 13 23
d) 60 600 40 9  90 40  9  1  9  9  90 90 90 90 9  1  9  9  5  9 1  40

a) 5  6  5  10 5  6  5   (Value from the Name.)
b) 28 34 39 49 54 60 65  (Count.)
c) 28 34 39 49 54 60 65  (Count adjusted to 91.)
d) 90 40 9  5  40 90 60  (Last letter found.)

Total of the last letters found: 2429 = 7 x 347.

5.2Beginning with the first of the last letters and taking every Nth after, the following values of N produce multiples of 7:

8 11 12 13 14 21 34 41

Total of the N values: 154 = 2 x 7 x 11. (The first and last N values add up to 49.)

5.CTaking every Nth value, the following values of N produce multiples of 7:

6 10 35 36 41 43

Total of the N values: 171 = 32 x 19. (Again the first and last N values add up to 49.)

5.3Beginning with the first of the last letters and taking every Nth after, the following values of N produce multiples of 13:

9 16 19 24 44

Total of the N values: 112 = 24 x 7.

5.4Taking every Nth value, the following values of N produce multiples of 13:

8 19 22 28 38 41

Total of the N values: 156 = 22 x 3 x 13. (A third time the first and last N values add up to 49.)

5.5.157 of the last letters have an odd valued first digit.

a) 2 4 5 8 11 12 13 14 15 16 17 20 21 24 25 26 27 28 29 30 32 35 36 38
b) 5 9 9 9 9  9  1  30 9  10 9  7  1  9  5  9  90 90 9  90 90 9  9  90

a) 39 41 44 45 47 48 49 51 52 56 57 58 59 60 62 63 66 67 69 71 73 77 78
b) 9  90 9  90 90 5  5  90 90 9  90 90 7  90 90 1  7  9  7  90 1  9  9

a) 79  81 82 85 86 87 88 89 90 91 (List position.)
b) 300 7  1  9  9  9  9  90 90 90 (Last letter.)

Total of the positions (a): 2678 = 2 x 13 x 103.

5.5.234 of the last letters have an even valued first digit.

a) 1   3  6  7  9  10 18 19 22 23 31 33 34 37 40 42 43 46 50 53 54 55 61
b) 600 40 60 40 40 40 2  40 40 40 60 60 40 60 60 40 40 60 40 40 40 40 40

a) 64  65 68 70 72 74 75  76 80 83  84  (List position.)
b) 200 60 40 40 40 60 600 40 40 200 200 (Last letter.)

Total of the positions (a): 1508 = 22 x 13 x 29.

5.5.3The difference between the last letters with an odd or even valued first digit: 1170 = 2 x 32 x 5 x 13. SF: 26 = 2 x 13.

5.681 of the last letters are not prime numbers. (There is no corresponding feature with the last letters that are prime numbers.)

a) 1    3  4 5 6  7  8 9  10 11 12 13 14 15 16 17  19  21 22 23 24  26
b) 600  40 9 9 60 40 9 40 40 9  9  1  30 9  10 9   40  1  40 40 9   9

a) 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47   50
b) 90 90 9  90 60 90 60 40 9  9  60 90 9  60 90 40 40 9  90 60 90   40

a) 51 52 53 54 55 56 57 58  60 61 62 63 64  65  67 68  70 71 72 73 74
b) 90 90 40 40 40 9  90 90  90 40 90 1  200 60  9  40  40 90 40 1  60

a) 75  76 77 78 79  80  82 83  84  85 86 87 88 89 90 91 (List position.)
b) 600 40 9  9  300 40  1  200 200 9  9  9  9  90 90 90 (Last letter.)

Total of the positions (a): 3749 = 23 x 163. (Factor 23 is the number of a person, as the average person has 23 pairs of chromosomes. These are prophecies about people.)
Total of the last letters (b): 5243 = 72 x 107.

5.6.1From line (a) of feature 5.6, extract every other position.

1 4 6 8 10 12 14 16 19 22 24 27 29 31 33 35 37 39 41 43 45 47 51 53 55 57 60 62 64 67 70 72 74 76 78 80 83 85 87 89 91

Total: 1897 = 7 x 271.

5.6.2From line (a) of feature 5.6, extract the odd valued numbers.

1 3 5 7 9 11 13 15 17 19 21 23 27 29 31 33 35 37 39 41 43 45 47 51 53 55 57 61 63 65 67 71 73 75 77 79 83 85 87 89 91

Total: 1833 = 3 x 13 x 47. SF: 63 = 32 x 7. SF: 13.

5.6.3From line (a) of feature 5.6, extract all having an odd valued first digit.

1 3 5 7 9 10 11 12 13 14 15 16 17 19 30 31 32 33 34 35 36 37 38 39 50 51 52 53 54 55 56 57 58 70 71 72 73 74 75 76 77 78 79 90 91

Total: 1909 = 23 x 83.

5.6.4From line (a) of feature 5.6, extract all having an even valued first digit.

4 6 8 21 22 23 24 26 27 28 29 40 41 42 43 44 45 46 47 60 61 62 63 64 65 67 68 80 82 83 84 85 86 87 88 89

Total: 1840 = 24 x 5 x 23.

5.6.5From line (b) of feature 5.6, take the odd valued.

9 9 9 9 9 1 9 9 1 9 9 9 9 9 9 9 9 1 9 1 9 9 1 9 9 9 9

Total: 203 = 7 x 29.

5.6.6From line (b) of feature 5.6, take the even valued.

600 40 60 40 40 40 30 10 40 40 40 90 90 90 60 90 60 40 60 90 60 90 40 40 90 60 90 40 90 90 40 40 40 90 90 90 40 90 200 60 40 40 90 40 60 600 40 300 40 200 200 90 90 90

Total: 5040 = 24 x 32 x 5 x 7. SF: 26 = 2 x 13.

5.6.7From line (b) of feature 5.6, take those with a first digit that is odd.

9 9 9 9 9 1 30 9 10 9 1 9 9 90 90 9 90 90 9 9 90 9 90 9 90 90 90 90 9 90 90 90 90 1 9 90 1 9 9 300 1 9 9 9 9 90 90 90

Total: 2163 = 3 x 7 x 103.

5.6.7.1From 5.6.7, take the odd valued:

9 9 9 9 9 1 9 9 1 9 9 9 9 9 9 9 9 1 9 1 9 9 1 9 9 9 9

Total: 203 = 7 x 29.

5.6.7.2From 5.6.7, take the even valued:

30 10 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 300 90 90 90

Total: 1960 = 23 x 5 x 72.

5.6.8From line (b) of feature 5.6, take those with a first digit that is even.

600 40 60 40 40 40 40 40 40 60 60 40 60 60 40 40 60 40 40 40 40 40 200 60 40 40 40 60 600 40 40 200 200

Total: 3080 = 23 x 5 x 7 x 11.

5.7The chart below shows how many times a last letter appeared the passage, its total value, and the total of its positions in the list.

a) Letter value:            1   2  5   7   9   10 30 40  60  90   200 300 600
b) # occurrences:           5   1  4   5   22  1  1  20  8   18   3   1   2
c) Total value (a x b):     5   2  20  35  198 10 30 800 480 1620 600 300 1200
d) Total of list positions: 252 18 124 295 929 16 14 851 332 969  231 79  76

When the principle of complementary opposites (odd/even) is applied, four numeric features appear.

5.7.1Six of the letters have an odd number on line (d).

a) Letter value:              7   9   40  90   200 300
b) # occurrences:             5   22  20  18   3   1
c) Total value (a x b):       35  198 800 1620 600 300
d) Total of list positions:   295 929 851 969  231 79

Total of line (d): 3354 = 2 x 3 x 13 x 43.

5.7.213 of the letters have an even number on line (d).

a) Letter value:             1   2  5   10 30 60  600
b) # occurrences:            5   1  4   1  1  8   2
c) Total value (a x b):      5   2  20  10 30 480 1200
d) Total of list positions:  252 18 124 16 14 332 76

Total of line (d): 832 = 26 x 13.

5.7.3The number of occurrences (b) for four letters is a prime number.

a) Letter value:              1   7   200 600
b) # occurrences:             5   5   3   2
c) Total value (a x b):       5   35  600 1200
d) Total of list positions:   252 295 231 76

Total of line (d): 854 = 2 x 7 x 61. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

5.7.4The number of occurrences (b) for nine of the letters is not a prime number.

a) Letter value:             2  5   9   10 30 40  60  90   300
b) # occurrences:            1  4   22  1  1  20  8   18   1
c) Total value (a x b):      2  20  198 10 30 800 480 1620 300
d) Total of list positions:  18 124 929 16 14 851 332 969  79

Total of line (d): 3332 = 22 x 72 x 17. SF: 35 = 5 x 7.

5.8Even the positions in the passage of the last letters have numeric features.

4 6 10 13 19 22 30 33 39 46 49 63 67 73 76 81 84 89 91 93 101 104 111 113 115 119 122 131 144 147 149 155 157 165 169 174 175 183 186 187 194 197 204 209 215 216 222 230 238 240 244 251 256 258 270 272 285 290 297 300 307 313 317 323 330 334 337 342 350 352 361 365 368 373 377 381 384 393 395 399 400 408 411 415 418 427 432 440 444 451 456

5.8.121 paired groups of the last letter positions, together and individually are divisible by 7.

a) 1     1     1     2    3    4     7   7     8    8    9    14   17
b) 32    37    45    15   5    26    8   29    19   25   29   27   35
c) 14602 16856 20370 6363 1358 10493 896 10507 5495 8239 9611 6419 8680

a) 18   20   23   24   33   33   34   38
b) 20   25   40   44   37   45   43   45
c) 1379 2744 8134 9429 2254 5768 4438 3514

a) Start position of first group is from the beginning,
and of the second group is from the end. b) End position of first group is from the beginning,
and of the second group is from the end.

Total of the start and end positions (a + b): 936 = 23 x 32 x 13.

5.8.2Every 26th position from the list adds up to a multiple of 7.

5.8.2.1Start with the first in the list and take every 26th after.

a) List position:    1 27  53  79
b) Passage position: 4 122 256 395

Total of the positions (b): 777 = 3 x 7 x 37.

5.8.2.2Just take every 26th from the list.

a) List position:    26  52  78
b) Passage position: 119 251 393

Total of the positions (b): 763 = 7 x 109.

5.8.3Divide the positions into two groups: odd and even.

5.8.3.150 are odd valued. These are their positions in the list.

a) 4  5  8  9  11 12 13 14 16 18 19 20 21  23  24  25  26  28  30  31
b) 13 19 33 39 49 63 67 73 81 89 91 93 101 111 113 115 119 131 147 149

a) 32  33  34  35  37  38  40  42  44  45  52  57  59  61  62  63  64
b) 155 157 165 169 175 183 187 197 209 215 251 285 297 307 313 317 323

a) 67  71  72  74  75  76  78  79  80  83  84  86  90
b) 337 361 365 373 377 381 393 395 399 411 415 427 451

a) Position in the list.
b) Last letter position in passage.

Total of the list positions (a): 2170 = 2 x 5 x 7 x 31.
Total of the odd valued passage positions: 10686 = 2 x 3 x 13 x 137.

5.8.3.141 are even valued.

a) 1 2 3  6  7  10 15 17 22  27  29  36  39  41  43  46  47  48  49
b) 4 6 10 22 30 46 76 84 104 122 144 174 186 194 204 216 222 230 238

a) 50  51  53  54  55  56  58  60  65  66  68  69  70  73  77  81  82
b) 240 244 256 258 270 272 290 300 330 334 342 350 352 368 384 400 408

a) 85  87  88  89  91  (Position in the list.)
b) 418 432 440 444 456 (Last letter position in passage.)

Total of the list positions (a): 2016 = 25 x 32 x 7.

5.8.4.1The sum of the middle N-numbers of the list is a multiple of 7, when N is one of the following:

85 39 31 25 23 5

Total of the N values: 208 = 24 x 13. SF: 21 = 3 x 7. (It is curious how searching for multiples of 7, the N values is a multiple of 13. Compare this with the next feature where searching for multiples of 13, the N values is a multiple of 7.)

5.8.4.2The sum of the middle N-numbers of the list is a multiple of 13, when N is one of the following:

87 79 69 47 15 13 7 5

Total of the N values: 322 = 2 x 7 x 23.

5.8.5When the positions are added one by one, 9 times the accumulated total will be divisible by 7. This is listed below.

a) List position:     28   32   34   36   37   45   53   57   87
b) Passage position:  131  155  165  174  175  215  256  285  432
c) Accumulated total: 1904 2499 2821 3164 3339 4914 6811 7896 18795

Total of the passage positions (b): 1988 = 22 x 7 x 71.

Letters Not First Or Last

6278 letters are not first or last in a word. Their total has no numeric feature: 20205 = 32 x 5 x 449.

5 3 30 9 100 60 20 20 60 70 40 1 100 60 20 600 1 200 90 30 600 50 60 200 90 9 1 40 1 10 20 9 8 7 90 60 40 100 1 5 100 2 80 1 1 1 90 1 1 1 1 10 600 1 90 9 20 5 9 600 200 80 1 40 600 9 60 7 1 90 9 20 5 9 1 10 2 20 7 8 7 90 60 40 100 1 9 10 60 100 60 50 600 100 5 80 60 10 5 90 100 1 20 1 200 8 30 60 1 80 200 3 30 60 600 4 60 40 100 600 5 3 5 200 100 60 9 7 90 60 200 200 4 5 70 60 100 40 5 3 40 600 100 1 9 80 1 300 1 9 9 8 60 70 5 4 60 10 9 30 1 90 1 9 10 60 4 60 30 60 200 40 100 5 200 100 60 3 5 40 7 8 9 5 300 1 20 7 600 40 9 1 1 80 200 80 9 60 3 5 40 5 100 200 100 1 90 100 9 1 200 30 1 90 100 300 8 1 20 30 60 9 30 600 9 60 200 100 5 3 30 9 100 80 8 7 90 5 100 1 30 600 1 90 9 20 5 9 60 5 60 1 60 8 7 90 5 100 1 8 40 5 60 9 60 200 40 100 60 200 1 80 70 60 200 200 100 7

6.1The letter values of God's Hebrew name (10-5-6-5) are applied 11 times to count through all 278 of these letters.

a) 10 5  6   5  10 5   6  5  10 5  6  5  10 5   6  5   10  5   6   5
b) 10 15 21  26 36 41  47 52 62 67 73 78 88 93  99 104 114 119 125 130
c) 10 15 21  26 36 41  47 52 62 67 73 78 88 93  99 104 114 119 125 130
d) 70 20 600 9  60 100 90 10 80 60 5  20 10 600 5  1   60  100 100 60

a) 10  5   6   5   10  5   6   5   10  5   6   5   10  5   6   5   10
b) 140 145 151 156 166 171 177 182 192 197 203 208 218 223 229 234 244
c) 140 145 151 156 166 171 177 182 192 197 203 208 218 223 229 234 244
d) 3   9   9   4   60  200 60  8   1   9   100 100 1   30  5   80  90

a) 5   6   5   10  5   6   5  (Value from the Name.)
b) 249 255 260 270 275 281 8  (Count.)
c) 249 255 260 270 275 3   8  (Count adjusted to 278.)
d) 60  7   8   200 200 30  20 (Letter not first/last found.)

Total: 3354 = 2 x 3 x 13 x 43.

6.2From the list of letters not first or last in a word, 26 pairs positioned Nth and Nth last can be found that together are a multiple of 7.

a) Nth letter:  8   11  19  21  25  30  32  33  40  41  52  63  64  77
b) Value:      20  40  90  600 90  10  9   8   5   100 10  1   40  2
c) Nth last:   271 268 260 258 254 249 247 246 239 238 227 216 215 202
d) Value:      1   100 8   100 8   60  5   20  100 5   200 300 100 5
e) Sum:        21  140 98  700 98  70  14  28  105 105 210 301 140 7

a) 83  90  92  107 112 114 115 120 122 133 134 137
b) 60  100 50  30  3   60  600 600 3   4   5   100
c) 196 189 187 172 167 165 164 159 157 146 145 142
d) 80  600 20  40  4   10  9   9   60  80  9   600
e) 140 700 70  70  7   70  609 609 63  84  14  700

Sum of positions (a + c): 7254 = 2 x 32 x 13 x 31. SF: 52 = 22 x 13.

6.3Beginning with the first number, and taking every Nth after, the following values of N produce totals divisible by 7.

17 29 34 43 47 59 63 67 75 89 99 108 109 123 130 136 137

Total of the N values: 1365 = 3 x 5 x 7 x 13. SF: 28 = 22 x 7.

6.441 of these letters are prime numbers.

a) 1 2 34 40 42 58 68 73 77 79 81 95 99 112 121 122 123 128 134 139
b) 5 3 7  5  2  5  7  5  2  7  7  5  5  3   5   3   5   7   5   5

a) 140 155 174 178 179 181 184 188 199 200 202 229 230 236 238 247
b) 3   5   5   3   5   7   5   7   3   5   5   5   3   7   5   5

a) 250 255 257 262 278 (Position in list.)
b) 5   7   5   5   7   (Prime number letter not first/last.)

Total of the positions (b): 6090 = 2 x 3 x 5 x 7 x 29.

6.5Divide the letters that are not first/last into two groups, depending on whether their position in the list is a prime number or not.

6.5.159 of the letters that are not first or last are in positions of the list that are prime numbers.

a) 2 3  5   7  11 13  17 19 23 29 31 37 41  43 47 53  59 61  67 71 73
b) 3 30 100 20 40 100 1  90 60 1  20 40 100 80 90 600 9  200 60 9  5

a) 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167
b) 7  60 60 60 100 20  30  1   30  9   200 100 5   1   9   60  1   4

a) 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263
b) 100 5   7   9   1   9   3   200 30  200 5   100 100 30  60  5   60

a) 269 271 277  (List position.)
b) 60  1   100  (Letter not first/last.)

Total of the letters (b): 3500 = 22 x 53 x 7. SF: 26 = 2 x 13.

6.5.2219 letters are not in positions that are prime numbers.

a) 1 4 6  8  9  10 12 14 15 16  18  20 21  22 24  25 26 27 28 30 32 33
b) 5 9 60 20 60 70 1  60 20 600 200 30 600 50 200 90 9  1  40 10 9  8

a) 34 35 36 38  39 40 42 44 45 46 48 49 50 51 52 54 55 56 57 58 60  62
b) 7  90 60 100 1  5  2  1  1  1  1  1  1  1  10 1  90 9  20 5  600 80

a) 63 64 65  66 68 69 70 72 74 75 76 77 78 80 81 82 84 85  86 87 88 90
b) 1  40 600 9  7  1  90 20 9  1  10 2  20 8  7  90 40 100 1  9  10 100

a) 91 92 93  94  95 96 98 99 100 102 104 105 106 108 110 111 112 114
b) 60 50 600 100 5  80 10 5  90  1   1   200 8   60  80  200 3   60

a) 115 116 117 118 119 120 121 122 123 124 125 126 128 129 130 132 133
b) 600 4   60  40  100 600 5   3   5   200 100 60  7   90  60  200 4

a) 134 135 136 138 140 141 142 143 144 145 146 147 148 150 152 153 154
b) 5   70  60  40  3   40  600 100 1   9   80  1   300 9   8   60  70

a) 155 156 158 159 160 161 162 164 165 166 168 169 170 171 172 174 175
b) 5   4   10  9   30  1   90  9   10  60  60  30  60  200 40  5   200

a) 176 177 178 180 182 183 184 185 186 187 188 189 190 192 194 195 196
b) 100 60  3   40  8   9   5   300 1   20  7   600 40  1   80  200 80

a) 198 200 201 202 203 204 205 206 207 208 209 210 212 213 214 215 216
b) 60  5   40  5   100 200 100 1   90  100 9   1   30  1   90  100 300

a) 217 218 219 220 221 222 224 225 226 228 230 231 232 234 235 236 237
b) 8   1   20  30  60  9   600 9   60  100 3   30  9   80  8   7   90

a) 238 240 242 243 244 245 246 247 248 249 250 252 253 254 255 256 258
b) 5   1   600 1   90  9   20  5   9   60  5   1   60  8   7   90  100

a) 259 260 261 262 264 265 266 267 268 270 272 273 274 275 276 278
b) 1   8   40  5   9   60  200 40  100 200 80  70  60  200 200 7

a) List positions that are not prime numbers.
b) Letter.

Total of the letters (b0) 16705 = 5 x 13 x 257.

6.6Exactly 14 of these letters are multiples of 7.

a) List position:  10 34 68 79 81 128 135 154 181 188 236 255 273 278
b) Not first/last: 70 7  7  7  7  7   70  70  7   7   7   7   70  7

Total of the positions (a): 2100 = 22 x 3 x 52 x 7.

6.6.1Four 70s appear in feature 6.6.

10 135 154 273

Total of their positions: 572 = 22 x 11 x 13. SF: 28 = 22 x 7.

6.7Every 13th letter from the list.

No features from positions D7.Items in positions divisible by 13:
100 9 1 10 600 20 60 1 60 60 100 4 30 8 200 100 60 80 5 8 70

Total of these letters: 1586 = 2 x 13 x 61.

6.CRather than taking every Nth, where N is a fixed number, have N increase by 1 each time.

a) 1 2 4 7  11 16  22 29 37 46 56 67 79 92 106 121 137 154 172 191
b) 1 2 3 4  5  6   7  8  9  10 11 12 13 14 15  16  17  18  19  20
c) 5 3 9 20 40 600 50 1  40 1  9  60 7  50 8   5   100 70  40  9

a) 211 232 254 277 (Count.)
b) 21  22  23  24  (Increasing N.)
c) 200 9   8   100 (Letter found that is not first/last.)

Total of the letters (c): 1444 = 22 x 192. SF: 42 = 2 x 3 x 7.

6.8.1When these letters are added one by one, precisely 39 times the letter's position in the list, the letter value itself, and the accumulated total at that point, will all be an even number.

a)  b)  c)         a)  b)  c)         a)  b)  c)
14  60  578        126 60  9830       198 60  14604
16  600 1198       130 60  9996       208 100 15248
30  10  2580       132 200 10396      212 30  15488
36  60  2774       148 300 11814      220 30  16038
38  100 2914       156 4   11980      226 60  16806
42  2   3022       158 10  12050      228 100 17106
64  40  4864       162 90  12180      242 600 18174
72  20  5660       166 60  12260      246 20  18294
80  8   5722       168 60  12324      254 8   18502
96  80  7094       170 60  12414      258 100 18704
98  10  7164       172 40  12654      272 80  19568
110 80  7760       182 8   13182      274 60  19698
124 200 9670       190 40  14164      276 200 20098
a) List position.     b) Letter value.
c) Total accumulation at that point.

Sum of the letters (b): 3710 = 2 x 5 x 7 x 53.

6.8.2When these letters are added one by one, 31 times the letter's position in the list, the letter value itself, and the accumulated total at that point, will all be an odd number.

a)  b) c)        a)  b) c)        a)  b) c)
1   5 5          87  9 6029       193 1 14175
17  1 1199       99  5 7169       199 3 14607
27  1 2529       127 9 9839       209 9 15257
39  1 2915       145 9 11433      213 1 15489
49  1 3197       149 1 11815      229 5 17111
51  1 3199       151 9 11833      243 1 18175
59  9 3943       159 9 12059      247 5 18299
69  1 5541       163 1 12181      255 7 18509
73  5 5665       179 5 13127      259 1 18705
75  1 5675       183 9 13191
81  7 5729       191 9 14173
a) List position.     b) Letter value.
c) Total accumulation at that point.

Sum of the positions (a): 4221 = 32 x 7 x 67.

6.9.1The first letter not first or last in a word is 5. Find the next letter in the list that is lower in value (3). Continue through the rest of the list, alternating the search for the next letter higher and then lower. This will find 174 letters. The total of these letters: 9243 = 32 x 13 x 79. SF: 98 = 2 x 72.

6.9.2This is a search that is a reverse of the previous feature, searching low and high. The total of these letters: 9240 = 23 x 3 x 5 x 7 x 11.

6.10When the 278 letters are placed in a two dimension object (2 x 139), there are 22 letters where the second dimension coordinate will be a multiple of 13.

a)  b) c)       a)  b) c)
90  1  13       4   2  78
9   2  13       7   1  91
1   1  26       8   2  91
10  2  26       90  1  104   a) Letter not first/last.
2   1  39       100 2  104   b) First dimension coordinate.
20  2  39       100 1  117   c) Second dimension coordinate.
20  1  52       80  2  117
1   2  52       1   1  130
90  1  65       8   2  130
60  2  65       90  1  13
5   1  78       9   2  13

Total of the letters (a): 805 = 5 x 7 x 23.

6.10.1Only four letters have a second dimension coordinate of 77: 60, 70, 60 and 70. It is 10 times the value of God's name in Hebrew: 260 = 22 x 5 x 13.

All The Letters

List of letters:
20 5 3 600 4 5 200 30 9 40 60 100 9 70 60 20 20 60 9 1 70 60 1 40 1 100 60 20 600 40 10 1 9 4 200 90 30 600 40 7 50 60 200 90 9 40 10 1 9 1 40 1 10 20 9 8 7 90 60 40 100 1 9 30 5 100 1 1 2 80 1 1 30 10 1 9 9 90 1 1 10 10 1 9 9 1 10 600 2 5 40 100 7 2 1 90 9 20 5 9 1 100 600 40 60 200 80 1 40 600 40 60 9 4 5 200 9 60 9 100 7 90 2 1 90 9 20 5 9 1 90 5 10 2 20 7 8 7 90 60 40 100 1 9 5 9 90 100 60 90 10 60 100 60 90 100 60 5 50 600 100 5 80 60 40 5 10 5 9 5 90 100 1 9 60 10 20 1 200 8 30 60 90 10 1 9 60 2 80 200 3 30 60 90 100 600 40 60 4 60 40 100 600 40 20 5 3 5 9 1 200 100 60 9 90 60 9 7 90 60 200 90 60 200 4 5 70 60 100 5 1 40 5 3 40 600 100 5 5 40 100 1 9 90 3 80 1 300 1 9 90 20 9 8 60 40 60 40 1 70 5 4 60 10 9 30 1 90 1 40 60 9 60 9 10 60 4 60 30 60 200 40 100 5 90 60 200 100 60 90 5 3 5 40 7 8 7 5 9 90 10 5 300 1 20 7 40 3 600 40 9 1 90 70 1 80 1 10 200 80 9 60 200 5 3 5 40 5 100 60 1 200 100 7 10 1 9 5 90 100 9 40 8 1 200 30 1 90 100 7 5 40 60 300 8 1 20 30 60 9 90 7 30 600 40 4 9 1 100 60 200 100 60 20 5 3 600 200 30 9 40 60 100 9 1 80 8 7 90 5 100 1 9 1 300 200 30 600 40 7 2 1 90 9 20 5 9 1 100 60 200 8 5 60 200 10 1 9 4 60 8 7 90 5 100 1 9 5 8 40 5 9 70 60 9 60 200 40 100 9 100 60 200 90 10 1 80 70 60 200 90 1 200 100 7 90

7.CAll told there are 456 letters. (456 = 23 x 3 x 19. SF: 28 = 22 x 7.)

7.1Use the Name to count through the letters.

7.1.1The letter values of God's name in Hebrew (10-5-6-5) are applied 18 times to count through all 456 letters.

a) 10 5  6  5   10 5  6  5  10 5  6  5  10  5  6  5   10  5   6   5
b) 10 15 21 26  36 41 47 52 62 67 73 78 88  93 99 104 114 119 125 130
c) 10 15 21 26  36 41 47 52 62 67 73 78 88  93 99 104 114 119 125 130
d) 40 60 70 100 90 50 10 1  1  1  30 90 600 7  5  40  4   9   90  1

a) 10  5   6   5   10  5   6   5   10  5   6   5   10  5   6   5   10
b) 140 145 151 156 166 171 177 182 192 197 203 208 218 223 229 234 244
c) 140 145 151 156 166 171 177 182 192 197 203 208 218 223 229 234 244
d) 60  5   10  100 5   90  20  60  30  40  600 5   7   60  100 3   90

a) 5   6   5   10  5   6   5   10  5   6   5   10  5   6   5   10  5
b) 249 255 260 270 275 281 286 296 301 307 312 322 327 333 338 348 353
c) 249 255 260 270 275 281 286 296 301 307 312 322 327 333 338 348 353
d) 1   60  70  40  10  200 60  8   10  40  1   60  40  100 5   90  60

a) 6   5   10  5   6   5   10  5   6   5   10  5   6   5   10  5   6
b) 359 364 374 379 385 390 400 405 411 416 426 431 437 442 452 457 7
c) 359 364 374 379 385 390 400 405 411 416 426 431 437 442 452 1   7
d) 60  600 20  30  1   5   7   20  200 10  1   5   200 60  1   20  200

a) 5   (Value from the Name.)
b) 12  (Count.)
c) 12  (Count adjusted to 456.)
d) 100 (Letter found.)

Total of the letters found (d): 4979 = 13 x 383.

7.1.1.1Providentially, the first and last letters found are 40 and 100 for a total of 140 (22 x 5 x 7).

7.1.1.2From the results in 7.1.1, take the first and every other: 3150 = 2 x 32 x 52 x 7.

7.1.1.3From the results in 7.1.1, take the odd valued: 77 = 7 x 11.

7.1.2The letter values of God's name in Hebrew (10-5-6-5) are applied 13 times to count through all 456 letters.

a) 10 5  6  5   10 5  6  5  10 5  6  5  10  5  6  5   10  5   6   5
b) 10 15 21 26  36 41 47 52 62 67 73 78 88  93 99 104 114 119 125 130
c) 10 15 21 26  36 41 47 52 62 67 73 78 88  93 99 104 114 119 125 130
d) 40 60 70 100 90 50 10 1  1  1  30 90 600 7  5  40  4   9   90  1

a) 10  5   6   5   10  5   6   5   10  5   6   5   10  5   6   5   10
b) 140 145 151 156 166 171 177 182 192 197 203 208 218 223 229 234 244
c) 140 145 151 156 166 171 177 182 192 197 203 208 218 223 229 234 244
d) 60  5   10  100 5   90  20  60  30  40  600 5   7   60  100 3   90

a) 5   6   5   10  5   6   5   10  5   6   5   10  5   6   5
b) 249 255 260 270 275 281 286 296 301 307 312 322 327 333 338
c) 249 255 260 270 275 281 286 296 301 307 312 322 327 333 338
d) 1   60  70  40  10  200 60  8   10  40  1   60  40  100 5

a) (Value from the Name.)
b) (Count.)
c) (Count adjusted to 456.)
d) (Letter found.)

Total of the letters found (d): 3289 = 11 x 13 x 23.

7.1.3The difference between 7.1.1 and 7.1.2: 1690 = 2 x 5 x 132.

7.2.CNineteen pairs of letters positioned Nth and Nth last together are divisible by 13.

a) Nth letter: 21  42  43  58  64  68  73  81  109 112 147 150 164 168
b) Value:      70  60  200 90  30  1   30  10  40  60  90  90  60  5
c) Nth last:   436 415 414 399 393 389 384 376 348 345 310 307 293 289
d) Value:      60  200 60  40  9   90  9   3   90  200 40  40  5   60
e) Sum:        130 260 260 130 39  91  39  13  130 260 130 130 65  65

a) 179 192 195 215 222
b) 200 30  100 90  90
c) 278 265 262 242 235
d) 60  9   4   1   40
e) 260 39  104 91  130

Total of the Nth positions (a): 2303 = 72 x 47.
Total of the Nth last positions (c): 6380 = 22 x 5 x 11 x 29. SF: 49 = 72. SF: 14 = 2 x 7.
Sum of positions: 8683 = 19 x 457. SF: 476 = 22 x 7 x 17. SF: 28 = 22 x 7.

7.3Whether one begins with the first letter and takes every Nth after, or just takes every Nth letter, only two values work in both cases (40 and 170) to produce a total divisible by 7. Providentially, the two add up to 210 = 2 x 3 x 5 x 7.

7.3.1Beginning with the first letter and taking every Nth after, the following values of N produce multiples of 13.

16 40

Total of the N values: 56 = 23 x 7. SF: 13.

7.4Rather than taking every other letter, one can also take every other group of letters. There are over 80 sub-features.

7.4.1Odd positioned groups of 4 from 7.4:

20 5 3 600 9 40 60 100 20 60 9 1 1 100 60 20 9 4 200 90 50 60 200 90 9 1 40 1 7 90 60 40 5 100 1 1 30 10 1 9 10 10 1 9 2 5 40 100 9 20 5 9 60 200 80 1 9 4 5 200 7 90 2 1 9 1 90 5 8 7 90 60 5 9 90 100 100 60 90 100 100 5 80 60 9 5 90 100 20 1 200 8 1 9 60 2 60 90 100 600 40 100 600 40 9 1 200 100 9 7 90 60 4 5 70 60 5 3 40 600 100 1 9 90 1 9 90 20 60 40 1 70 9 30 1 90 60 9 10 60 200 40 100 5 60 90 5 3 7 5 9 90 20 7 40 3 90 70 1 80 9 60 200 5 100 60 1 200 9 5 90 100 200 30 1 90 60 300 8 1 90 7 30 600 100 60 200 100 600 200 30 9 1 80 8 7 9 1 300 200 2 1 90 9 100 60 200 8 1 9 4 60 100 1 9 5 70 60 9 60 100 60 200 90 60 200 90 1

Total: 15067 = 13 x 19 x 61.

7.4.1.1Even positioned groups of 4 from 7.4:

4 5 200 30 9 70 60 20 70 60 1 40 600 40 10 1 30 600 40 7 9 40 10 1 10 20 9 8 100 1 9 30 2 80 1 1 9 90 1 1 9 1 10 600 7 2 1 90 1 100 600 40 40 600 40 60 9 60 9 100 90 9 20 5 10 2 20 7 40 100 1 9 60 90 10 60 60 5 50 600 40 5 10 5 1 9 60 10 30 60 90 10 80 200 3 30 40 60 4 60 20 5 3 5 60 9 90 60 200 90 60 200 100 5 1 40 100 5 5 40 3 80 1 300 9 8 60 40 5 4 60 10 1 40 60 9 4 60 30 60 90 60 200 100 5 40 7 8 10 5 300 1 600 40 9 1 1 10 200 80 3 5 40 5 100 7 10 1 9 40 8 1 100 7 5 40 20 30 60 9 40 4 9 1 60 20 5 3 40 60 100 9 90 5 100 1 30 600 40 7 20 5 9 1 5 60 200 10 8 7 90 5 8 40 5 9 200 40 100 9 10 1 80 70 200 100 7 90

Total: 13585 = 5 x 11 x 13 x 19.

7.4.1.1.1Odd positioned groups of 38 from 7.4:

20 5 3 600 4 5 200 30 9 40 60 100 9 70 60 20 20 60 9 1 70 60 1 40 1 100 60 20 600 40 10 1 9 4 200 90 30 600 9 90 1 1 10 10 1 9 9 1 10 600 2 5 40 100 7 2 1 90 9 20 5 9 1 100 600 40 60 200 80 1 40 600 40 60 9 4 100 60 90 100 60 5 50 600 100 5 80 60 40 5 10 5 9 5 90 100 1 9 60 10 20 1 200 8 30 60 90 10 1 9 60 2 80 200 100 5 1 40 5 3 40 600 100 5 5 40 100 1 9 90 3 80 1 300 1 9 90 20 9 8 60 40 60 40 1 70 5 4 60 10 9 30 20 7 40 3 600 40 9 1 90 70 1 80 1 10 200 80 9 60 200 5 3 5 40 5 100 60 1 200 100 7 10 1 9 5 90 100 9 40 40 60 100 9 1 80 8 7 90 5 100 1 9 1 300 200 30 600 40 7 2 1 90 9 20 5 9 1 100 60 200 8 5 60 200 10 1 9

Total: 15405 = 3 x 5 x 13 x 79.

7.4.1.1.2Even positioned groups of 38 from 7.4:

40 7 50 60 200 90 9 40 10 1 9 1 40 1 10 20 9 8 7 90 60 40 100 1 9 30 5 100 1 1 2 80 1 1 30 10 1 9 5 200 9 60 9 100 7 90 2 1 90 9 20 5 9 1 90 5 10 2 20 7 8 7 90 60 40 100 1 9 5 9 90 100 60 90 10 60 3 30 60 90 100 600 40 60 4 60 40 100 600 40 20 5 3 5 9 1 200 100 60 9 90 60 9 7 90 60 200 90 60 200 4 5 70 60 1 90 1 40 60 9 60 9 10 60 4 60 30 60 200 40 100 5 90 60 200 100 60 90 5 3 5 40 7 8 7 5 9 90 10 5 300 1 8 1 200 30 1 90 100 7 5 40 60 300 8 1 20 30 60 9 90 7 30 600 40 4 9 1 100 60 200 100 60 20 5 3 600 200 30 9 4 60 8 7 90 5 100 1 9 5 8 40 5 9 70 60 9 60 200 40 100 9 100 60 200 90 10 1 80 70 60 200 90 1 200 100 7 90

Total: 13247 = 13 x 1019.

7.4.1.1.3Odd positioned groups of 3 from 7.4.1:

20 5 3 60 100 20 1 100 60 200 90 50 9 1 40 60 40 5 30 10 1 1 9 2 9 20 5 80 1 9 7 90 2 90 5 8 5 9 90 90 100 100 9 5 90 200 8 1 60 90 100 600 40 9 9 7 90 70 60 5 100 1 9 90 20 60 9 30 1 10 60 200 60 90 5 9 90 20 90 70 1 200 5 100 9 5 90 1 90 60 90 7 30 200 100 600 1 80 8 300 200 2 100 60 200 4 60 100 70 60 9 200 90 60

Total: 7306 = 2 x 13 x 281.

7.4.1.1.4Even positioned groups of 3 from 7.4.1:

600 9 40 60 9 1 20 9 4 60 200 90 1 7 90 100 1 1 9 10 10 5 40 100 9 60 200 4 5 200 1 9 1 7 90 60 100 100 60 5 80 60 100 20 1 9 60 2 600 40 100 1 200 100 60 4 5 3 40 600 90 1 9 40 1 70 90 60 9 40 100 5 3 7 5 7 40 3 80 9 60 60 1 200 100 200 30 300 8 1 600 100 60 200 30 9 7 9 1 1 90 9 8 1 9 1 9 5 60 100 60 200 90 1

Total: 7761 = 3 x 13 x 199.

7.4.1.2Odd positioned groups of 1 from 7.4.2:

4 200 9 60 70 1 600 10 30 40 9 10 10 9 100 9 2 1 9 1 9 10 7 1 1 600 40 40 9 9 90 20 10 20 40 1 60 10 60 50 40 10 1 60 30 90 80 3 40 4 20 3 60 90 200 60 100 1 100 5 3 1 9 60 5 60 1 60 4 30 90 200 5 7 10 300 600 9 1 200 3 40 100 10 9 8 100 5 20 60 40 9 60 5 40 100 90 100 30 40 20 9 5 200 8 90 8 5 200 100 10 80 200 7

Total: 6734 = 2 x 7 x 13 x 37.

7.4.2Even positioned groups of 1 from 7.4.2:

5 30 70 20 60 40 40 1 600 7 40 1 20 8 1 30 80 1 90 1 1 600 2 90 100 40 600 60 60 100 9 5 2 7 100 9 90 60 5 600 5 5 9 10 60 10 200 30 60 60 5 5 9 60 90 200 5 40 5 40 80 300 8 40 4 10 40 9 60 60 60 100 40 8 5 1 40 1 10 80 5 5 7 1 40 1 7 40 30 9 4 1 20 3 60 9 5 1 600 7 5 1 60 10 7 5 40 9 40 9 1 70 100 90

Total: 6851 = 13 x 17 x 31.

7.4.2.1Odd positioned groups of 3 from 7.4.2:

4 5 200 60 20 70 600 40 10 40 7 9 10 20 9 9 30 2 9 90 1 10 600 7 1 100 600 40 60 9 90 9 20 20 7 40 60 90 10 50 600 40 1 9 60 90 10 80 40 60 4 3 5 60 200 90 60 1 40 100 3 80 1 60 40 5 1 40 60 30 60 90 5 40 7 300 1 600 1 10 200 40 5 100 9 40 8 5 40 20 40 4 9 5 3 40 90 5 100 40 7 20 5 60 200 90 5 8 200 40 100 80 70 200

Total: 7943 = 132 x 47.

7.4.2.10Even positioned groups of 3 from 7.4.2:

30 9 70 60 1 40 1 30 600 40 10 1 8 100 1 80 1 1 1 9 1 2 1 90 40 40 600 60 9 100 5 10 2 100 1 9 60 60 5 5 10 5 10 30 60 200 3 30 60 20 5 9 90 60 200 100 5 5 5 40 300 9 8 4 60 10 9 4 60 60 200 100 8 10 5 40 9 1 80 3 5 7 10 1 1 100 7 30 60 9 1 60 20 60 100 9 1 30 600 5 9 1 10 8 7 40 5 9 9 10 1 100 7 90

Total: 5642 = 2 x 7 x 13 x 31.

7.4.2.2Odd positioned groups of 19 from 7.4.2:

4 5 200 30 9 70 60 20 70 60 1 40 600 40 10 1 30 600 40 1 1 9 1 10 600 7 2 1 90 1 100 600 40 40 600 40 60 9 60 5 50 600 40 5 10 5 1 9 60 10 30 60 90 10 80 200 3 1 40 100 5 5 40 3 80 1 300 9 8 60 40 5 4 60 10 1 600 40 9 1 1 10 200 80 3 5 40 5 100 7 10 1 9 40 8 100 9 90 5 100 1 30 600 40 7 20 5 9 1 5 60 200 10 8

Total: 8671 = 13 x 23 x 29. SF: 65 = 5 x 13.

7.4.2.3Even positioned groups of 19 from 7.4.2:

7 9 40 10 1 10 20 9 8 100 1 9 30 2 80 1 1 9 90 60 9 100 90 9 20 5 10 2 20 7 40 100 1 9 60 90 10 60 30 40 60 4 60 20 5 3 5 60 9 90 60 200 90 60 200 100 5 40 60 9 4 60 30 60 90 60 200 100 5 40 7 8 10 5 300 1 1 100 7 5 40 20 30 60 9 40 4 9 1 60 20 5 3 40 60 7 90 5 8 40 5 9 200 40 100 9 10 1 80 70 200 100 7 90

Total: 4914 = 2 x 33 x 7 x 13.

7.4.2.4Odd positioned groups of 76 from 7.4.2:

4 5 200 30 9 70 60 20 70 60 1 40 600 40 10 1 30 600 40 7 9 40 10 1 10 20 9 8 100 1 9 30 2 80 1 1 9 90 1 1 9 1 10 600 7 2 1 90 1 100 600 40 40 600 40 60 9 60 9 100 90 9 20 5 10 2 20 7 40 100 1 9 60 90 10 60 600 40 9 1 1 10 200 80 3 5 40 5 100 7 10 1 9 40 8 1 100 7 5 40 20 30 60 9 40 4 9 1 60 20 5 3 40 60 100 9 90 5 100 1 30 600 40 7 20 5 9 1 5 60 200 10 8 7 90 5 8 40 5 9 200 40 100 9 10 1 80 70 200 100 7 90

Total: 9295 = 5 x 11 x 132. SF: 42 = 2 x 3 x 7.

7.4.2.4.1Even positioned groups of 76 from 7.4.2:

60 5 50 600 40 5 10 5 1 9 60 10 30 60 90 10 80 200 3 30 40 60 4 60 20 5 3 5 60 9 90 60 200 90 60 200 100 5 1 40 100 5 5 40 3 80 1 300 9 8 60 40 5 4 60 10 1 40 60 9 4 60 30 60 90 60 200 100 5 40 7 8 10 5 300 1

Total: 4290 = 2 x 3 x 5 x 11 x 13.

7.4.2.4.2Last half of 114 from 7.4.2:

1 40 100 5 5 40 3 80 1 300 9 8 60 40 5 4 60 10 1 40 60 9 4 60 30 60 90 60 200 100 5 40 7 8 10 5 300 1 600 40 9 1 1 10 200 80 3 5 40 5 100 7 10 1 9 40 8 1 100 7 5 40 20 30 60 9 40 4 9 1 60 20 5 3 40 60 100 9 90 5 100 1 30 600 40 7 20 5 9 1 5 60 200 10 8 7 90 5 8 40 5 9 200 40 100 9 10 1 80 70 200 100 7 90

Total: 5915 = 5 x 7 x 132.

7.4.2.5First half of 114 from 7.4.2:

4 5 200 30 9 70 60 20 70 60 1 40 600 40 10 1 30 600 40 7 9 40 10 1 10 20 9 8 100 1 9 30 2 80 1 1 9 90 1 1 9 1 10 600 7 2 1 90 1 100 600 40 40 600 40 60 9 60 9 100 90 9 20 5 10 2 20 7 40 100 1 9 60 90 10 60 60 5 50 600 40 5 10 5 1 9 60 10 30 60 90 10 80 200 3 30 40 60 4 60 20 5 3 5 60 9 90 60 200 90 60 200 100 5

Total: 7670 = 2 x 5 x 13 x 59.

7.4.2.6Odd positioned groups of 3 from 7.4.1.1:

60 100 20 200 90 50 60 40 5 1 9 2 80 1 9 90 5 8 90 100 100 200 8 1 600 40 9 70 60 5 90 20 60 10 60 200 9 90 20 200 5 100 1 90 60 200 100 600 300 200 2 4 60 100 200 90 60

Total: 5044 = 22 x 13 x 97.

7.4.2.6.1Even positioned groups of 3 from 7.4.1.1:

20 5 3 1 100 60 9 1 40 30 10 1 9 20 5 7 90 2 5 9 90 9 5 90 60 90 100 9 7 90 100 1 9 9 30 1 60 90 5 90 70 1 9 5 90 90 7 30 1 80 8 100 60 200 70 60 9

Total: 2262 = 2 x 3 x 13 x 29.

7.4.2.6.2Odd positioned groups of 38 from 7.4.1.1:

20 5 3 60 100 20 1 100 60 200 90 50 9 1 40 60 40 5 30 10 1 1 9 2 9 20 5 80 1 9 7 90 2 90 5 8 5 9 90 20 90 70 1 200 5 100 9 5 90 1 90 60 90 7 30 200 100 600 1 80 8 300 200 2 100 60 200 4 60 100 70 60 9 200 90 60

Total: 4719 = 3 x 112 x 13.

7.4.2.7Even positioned groups of 38 from 7.4.1.1:

90 90 100 100 9 5 90 200 8 1 60 90 100 600 40 9 9 7 90 70 60 5 100 1 9 90 20 60 9 30 1 10 60 200 60 90 5 9

Total: 2587 = 13 x 199.

7.4.2.7.1Odd positioned groups of 19 from 7.4.2.4:

30 9 70 60 1 40 1 30 600 40 10 1 8 100 1 80 1 1 1 5 5 10 5 10 30 60 200 3 30 60 20 5 9 90 60 200 100 5 9 1 80 3 5 7 10 1 1 100 7 30 60 9 1 60 20 60 100

Total: 2555 = 5 x 7 x 73.

7.4.2.7.1.1   Even positioned groups of 19 from 7.4.2.4:

9 1 2 1 90 40 40 600 60 9 100 5 10 2 100 1 9 60 60 5 5 40 300 9 8 4 60 10 9 4 60 60 200 100 8 10 5 40 9 1 30 600 5 9 1 10 8 7 40 5 9 9 10 1 100 7 90

Total: 3087 = 32 x 73.

7.4.2.7.1.2   Last half of 57 from 7.4.2.6:

40 60 9 4 60 30 60 90 60 200 100 5 40 7 8 10 5 300 1 1 100 7 5 40 20 30 60 9 40 4 9 1 60 20 5 3 40 60 7 90 5 8 40 5 9 200 40 100 9 10 1 80 70 200 100 7 90

Total: 2674 = 2 x 7 x 191.

7.4.2.7.2First half of 57 from 7.4.2.6:

7 9 40 10 1 10 20 9 8 100 1 9 30 2 80 1 1 9 90 60 9 100 90 9 20 5 10 2 20 7 40 100 1 9 60 90 10 60 30 40 60 4 60 20 5 3 5 60 9 90 60 200 90 60 200 100 5

Total: 2240 = 26 x 5 x 7.

7.4.2.7.2.1   Odd positioned groups of 8 from 7.4.2.7:

4 5 200 30 9 70 60 20 30 600 40 7 9 40 10 1 2 80 1 1 9 90 1 1 1 100 600 40 40 600 40 60 10 2 20 7 40 100 1 9 1 10 200 80 3 5 40 5 100 7 5 40 20 30 60 9 40 60 100 9 90 5 100 1 5 60 200 10 8 7 90 5 10 1 80 70 200 100 7 90

Total: 4953 = 3 x 13 x 127. SF: 143 = 11 x 13.

7.4.2.7.2.2   Even positioned groups of 8 from 7.4.2.7:

70 60 1 40 600 40 10 1 10 20 9 8 100 1 9 30 9 1 10 600 7 2 1 90 9 60 9 100 90 9 20 5 60 90 10 60 600 40 9 1 100 7 10 1 9 40 8 1 40 4 9 1 60 20 5 3 30 600 40 7 20 5 9 1 8 40 5 9 200 40 100 9

Total: 4342 = 2 x 13 x 167. SF: 182 = 2 x 7 x 13.

7.4.2.7.2.2.1       Odd positioned groups of 4 from 7.4.2.8:

60 5 50 600 1 9 60 10 80 200 3 30 20 5 3 5 200 90 60 200 100 5 5 40 9 8 60 40 1 40 60 9 90 60 200 100 10 5 300 1

Total: 2834 = 2 x 13 x 109.

7.4.2.7.2.2.2       Even positioned groups of 4 from 7.4.2.8:

40 5 10 5 30 60 90 10 40 60 4 60 60 9 90 60 100 5 1 40 3 80 1 300 5 4 60 10 4 60 30 60 5 40 7 8

Total: 1456 = 24 x 7 x 13. SF: 28 = 22 x 7.

7.4.2.7.2.2.2.1           Odd positioned groups of 19 from 7.4.2.9:

1 40 100 5 5 40 3 80 1 300 9 8 60 40 5 4 60 10 1 600 40 9 1 1 10 200 80 3 5 40 5 100 7 10 1 9 40 8 100 9 90 5 100 1 30 600 40 7 20 5 9 1 5 60 200 10 8

Total: 3241 = 7 x 463.

7.4.2.7.2.2.2.2           Even positioned groups of 19 from 7.4.2.9:

40 60 9 4 60 30 60 90 60 200 100 5 40 7 8 10 5 300 1 1 100 7 5 40 20 30 60 9 40 4 9 1 60 20 5 3 40 60 7 90 5 8 40 5 9 200 40 100 9 10 1 80 70 200 100 7 90

Total: 2674 = 2 x 7 x 191.

7.4.2.7.2.2.3       Last half of 40 from 7.4.2.7.1:

1 10 200 80 3 5 40 5 100 7 5 40 20 30 60 9 40 60 100 9 90 5 100 1 5 60 200 10 8 7 90 5 10 1 80 70 200 100 7 90

Total: 1963 = 13 x 151.

7.4.2.7.2.2.3.1           First half of 40 from 7.4.2.7.1:

4 5 200 30 9 70 60 20 30 600 40 7 9 40 10 1 2 80 1 1 9 90 1 1 1 100 600 40 40 600 40 60 10 2 20 7 40 100 1 9

Total: 2990 = 2 x 5 x 13 x 23.

7.4.2.7.2.2.3.2           Odd positioned groups of 12 from 7.4.2.7.2:

100 1 9 30 9 1 10 600 7 2 1 90 600 40 9 1 100 7 10 1 9 40 8 1 20 5 9 1 8 40 5 9 200 40 100 9

Total: 2132 = 22 x 13 x 41.

7.4.2.7.2.2.4       Even positioned groups of 12 from 7.4.2.7.2:

70 60 1 40 600 40 10 1 10 20 9 8 9 60 9 100 90 9 20 5 60 90 10 60 40 4 9 1 60 20 5 3 30 600 40 7

Total: 2210 = 2 x 5 x 13 x 17.

7.4.2.8Odd positioned groups of 4 from 7.4.2.8.1:

60 5 50 600 80 200 3 30 200 90 60 200 9 8 60 40 90 60 200 100

Total: 2145 = 3 x 5 x 11 x 13.

7.4.2.8.1Even positioned groups of 4 from 7.4.2.8.1:

1 9 60 10 20 5 3 5 100 5 5 40 1 40 60 9 10 5 300 1

Total: 689 = 13 x 53.

7.4.2.8.1.1   Odd positioned groups of 9 from 7.4.2.8.2:

60 4 60 60 9 90 60 100 5 10 4 60 30 60 5 40 7 8

Total: 672 = 25 x 3 x 7.

7.4.2.8.1.2   Even positioned groups of 9 from 7.4.2.8.2:

40 5 10 5 30 60 90 10 40 1 40 3 80 1 300 5 4 60

Total: 784 = 24 x 72.

7.4.2.8.1.2.1       Odd positioned groups of 12 from 7.4.2.8.2:

60 9 90 60 100 5 1 40 3 80 1 300

Total: 749 = 7 x 107.

7.4.2.8.1.2.1.1           Even positioned groups of 12 from 7.4.2.8.2:

40 5 10 5 30 60 90 10 40 60 4 60 5 4 60 10 4 60 30 60 5 40 7 8

Total: 707 = 7 x 101.

7.4.2.8.1.2.1.1.1               Odd positioned groups of 1 from 7.4.2.9.1:

1 100 5 3 1 9 60 5 60 1 40 1 10 80 5 5 7 1 40 100 90 100 30 40 20 9 5 200 8

Total: 1036 = 22 x 7 x 37.

7.4.2.8.1.2.1.1.2               Even positioned groups of 1 from 7.4.2.9.1:

40 5 40 80 300 8 40 4 10 600 9 1 200 3 40 100 10 9 8 9 5 1 600 7 5 1 60 10

Total: 2205 = 32 x 5 x 72.

7.4.2.8.1.2.1.1.3               Odd positioned groups of 3 from 7.4.2.9.1:

5 5 40 300 9 8 4 60 10 9 1 1 3 5 40 10 1 9 9 90 5 600 40 7 1 5 60

Total: 1337 = 7 x 191.

7.4.2.8.1.2.1.1.4               Even positioned groups of 3 from 7.4.2.9.1:

1 40 100 3 80 1 60 40 5 1 600 40 10 200 80 5 100 7 40 8 100 100 1 30 20 5 9 200 10 8

Total: 1904 = 24 x 7 x 17.

7.4.2.8.1.2.1.2           Odd positioned groups of 19 from 7.4.2.9.1:

1 40 100 5 5 40 3 80 1 300 9 8 60 40 5 4 60 10 1 100 9 90 5 100 1 30 600 40 7 20 5 9 1 5 60 200 10 8

Total: 2072 = 23 x 7 x 37.

7.4.2.8.1.2.1.3           Even positioned groups of 19 from 7.4.2.9.1:

600 40 9 1 1 10 200 80 3 5 40 5 100 7 10 1 9 40 8

Total: 1169 = 7 x 167.

7.4.2.8.1.2.1.4           Odd positioned groups of 2 from 7.4.2.7.2.2:

70 60 600 40 10 20 9 60 90 9 60 90 40 4 60 20 30 600

Total: 1872 = 24 x 32 x 13.

7.4.2.8.1.2.2       Even positioned groups of 2 from 7.4.2.7.2.2:

1 40 10 1 9 8 9 100 20 5 10 60 9 1 5 3 40 7

Total: 338 = 2 x 132. SF: 28 = 22 x 7.

7.4.2.8.2Odd positioned groups of 6 from 7.4.2.7.2.2:

10 1 10 20 9 8 20 5 60 90 10 60 5 3 30 600 40 7

Total: 988 = 22 x 13 x 19.

7.4.2.8.2.1   Even positioned groups of 6 from 7.4.2.7.2.2:

70 60 1 40 600 40 9 60 9 100 90 9 40 4 9 1 60 20

Total: 1222 = 2 x 13 x 47.

7.4.2.8.2.1.1       Odd positioned groups of 4 from 7.4.2.8.1.2:

1 9 60 10 100 5 5 40 10 5 300 1

Total: 546 = 2 x 3 x 7 x 13.

7.4.2.8.2.1.2       Even positioned groups of 4 from 7.4.2.8.1.2:

20 5 3 5 1 40 60 9

Total: 143 = 11 x 13.

7.4.2.8.2.2   Last half of 9 from 7.4.2.8.2.1:

60 4 60 60 9 90 60 100 5

Total: 448 = 26 x 7.

7.4.2.8.2.3   First half of 9 from 7.4.2.8.2.1:

10 4 60 30 60 5 40 7 8

Total: 224 = 25 x 7.

7.4.2.8.2.3.1       Odd positioned groups of 3 from 7.4.2.8.2.3:

60 9 90 1 40 3

Total: 203 = 7 x 29.

7.4.2.8.2.3.1.1           Even positioned groups of 3 from 7.4.2.8.2.3:

60 100 5 80 1 300

Total: 546 = 2 x 3 x 7 x 13.

7.4.2.8.2.3.1.2           Odd positioned groups of 4 from 7.4.2.8.2.4:

40 5 10 5 40 60 4 60 4 60 30 60

Total: 378 = 2 x 33 x 7.

7.4.2.8.2.3.2       Even positioned groups of 4 from 7.4.2.8.2.4:

30 60 90 10 5 4 60 10 5 40 7 8

Total: 329 = 7 x 47.

7.4.2.8.2.4   Odd positioned groups of 2 from 7.4.2.9.1.2:

40 5 300 8 10 600 200 3 10 9 5 1 5 1

Total: 1197 = 32 x 7 x 19.

7.4.2.8.2.4.1       Even positioned groups of 2 from 7.4.2.9.1.2:

40 80 40 4 9 1 40 100 8 9 600 7 60 10

Total: 1008 = 24 x 32 x 7. SF: 21 = 3 x 7.

7.4.2.8.2.4.2       Odd positioned groups of 1 from 7.4.2.9.1.6:

600 9 1 200 3 40 100 10 9 8

Total: 980 = 22 x 5 x 72.

7.4.2.9Even positioned groups of 1 from 7.4.2.9.1.6:

40 1 10 80 5 5 7 1 40

Total: 189 = 33 x 7.

7.4.2.9.1Odd positioned groups of 3 from 7.4.2.7.2.2.2:

1 9 8 5 10 60 3 40 7

Total: 143 = 11 x 13.

7.4.2.9.1.1   Even positioned groups of 3 from 7.4.2.7.2.2.2:

1 40 10 9 100 20 9 1 5

Total: 195 = 3 x 5 x 13. SF: 21 = 3 x 7.

7.4.2.9.1.2   Last half of 9 from 7.4.2.7.2.2.3:

10 1 10 20 9 8 20 5 60

Total: 143 = 11 x 13.

7.4.2.9.1.2.1       First half of 9 from 7.4.2.7.2.2.3:

90 10 60 5 3 30 600 40 7

Total: 845 = 5 x 132.

7.4.2.9.1.2.2       Odd positioned groups of 1 from 7.4.2.8.1.2.1:

1 60 100 5 10 300

Total: 476 = 22 x 7 x 17. SF: 28 = 22 x 7.

7.4.2.9.1.2.2.1           Even positioned groups of 1 from 7.4.2.8.1.2.1:

9 10 5 40 5 1

Total: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

7.4.2.9.1.2.2.2           Odd positioned groups of 2 from 7.4.2.8.1.2.1:

1 9 100 5 10 5

Total: 130 = 2 x 5 x 13.

7.4.2.9.1.2.2.2.1               Even positioned groups of 2 from 7.4.2.8.1.2.1:

60 10 5 40 300 1

Total: 416 = 25 x 13.

7.4.2.9.1.2.2.2.2               Odd positioned groups of 2 from 7.4.2.8.2.3.1:

60 9 40 3

Total: 112 = 24 x 7.

7.4.2.9.1.2.2.2.3               Even positioned groups of 2 from 7.4.2.8.2.3.1:

90 1

Total: 91 = 7 x 13.

7.4.2.9.1.2.2.2.4               Odd positioned groups of 2 from 7.4.2.9.1.2.2:

40 80 9 1 8 9 60 10

Total: 217 = 7 x 31.

7.4.2.9.1.3   Even positioned groups of 2 from 7.4.2.9.1.2.2:

40 4 40 100 600 7

Total: 791 = 7 x 113.

7.4.2.9.1.4   Odd positioned groups of 2 from 7.4.2.8.1.2.1.1:

1 60 10 300

Total: 371 = 7 x 53.

7.4.2.9.1.5   Even positioned groups of 2 from 7.4.2.8.1.2.1.1:

100 5

Total: 105 = 3 x 5 x 7.

7.4.2.9.1.6   Last half of 3 from 7.4.2.8.1.2.1.1:

5 10 300

Total: 315 = 32 x 5 x 7.

7.4.2.9.1.6.1       First half of 3 from 7.4.2.8.1.2.1.1:

1 60 100

Total: 161 = 7 x 23.

7.4.2.9.1.6.2       Odd positioned groups of 2 from 7.4.2.9.1.2.2.2:

40 4 600 7

Total: 651 = 3 x 7 x 31.

7.4.2.9.2Even positioned groups of 2 from 7.4.2.9.1.2.2.2:

40 100

Total: 140 = 22 x 5 x 7.

7.4.3Last half of 3 from 7.4.2.9.1.2.2.2:

100 600 7

Total: 707 = 7 x 101.

7.4.4First half of 3 from 7.4.2.9.1.2.2.2:

40 4 40

Total: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

7.5Divide the letters into four groups.

  1. Odd positioned & odd valued.
  2. Odd positioned & even valued.
  3. Even positioned & odd valued.
  4. Even positioned & even valued.
A: Odd position & odd valued.      C: Even position & odd valued.
Total of their positions: 16371    Total of their positions: 21808
Total of the letters: 425          Total of the letters: 419

B. Odd position & even valued.     D: Even position & even valued.
Total of their positions: 35613    Total of their positions: 30404
Total of the letters: 13556        Total of the letters: 14252

7.5.1The letters that are purely odd or purely even (A + D): 425 + 14252 = 14677 = 13 x 1129.

7.5.2The letters that are mixed in being odd and even (B + C): 13556 + 419 = 13975 = 52 x 13 x 43.

7.5.3The total of the positions for the letters in (B) and (C): 35613 + 21808 = 57421 = 7 x 13 x 631. SF: 651 = 3 x 7 x 31.

7.6Exactly 65 (5 x 13) letters are in positions divisible by 7.

200 70 70 20 200 60 9 8 9 80 9 9 40 20 60 60 9 9 10 60 90 60 100 5 60 60 80 600 600 1 9 200 1 5 3 20 1 30 60 60 200 40 10 3 1 60 100 1 8 7 20 600 200 200 1 1 40 5 5 60 9 60 100 70 7

Total of these letters: 4865 = 5 x 7 x 139.

7.6.1Odd valued letters in positions divisible by 7:

9 9 9 9 9 9 5 1 9 1 5 3 1 3 1 1 7 1 1 5 5 9 7

Total: 119 = 7 x 17.

7.6.2Even valued in positions divisible by 7:

200 70 70 20 200 60 8 80 40 20 60 60 10 60 90 60 100 60 60 80 600 600 200 20 30 60 60 200 40 10 60 100 8 20 600 200 200 40 60 60 100 70

Total: 4746 = 2 x 3 x 7 x 113.

7.7Divide the letters into groups of 12 and add up each group. Gather all odd valued groups together, and all even valued groups together. This can also be done with groups of 19 letters.

7.7.1Total of the odd valued groups of 12: 13104 = 24 x 32 x 7 x 13.

7.7.2Total of the even valued groups of 12: 15548 = 22 x 132 x 23.

7.7.3Total of the odd valued groups of 19: 12636 = 22 x 35 x 13.

7.7.4Total of the even valued groups of 19: 16016 = 24 x 7 x 11 x 13. SF: 39 = 3 x 13. (There are 14 groups of 19 in this category.)

7.7.5The difference between 7.7.3 and 7.7.4: 3380 = 22 x 5 x 132. SF: 35 = 5 x 7.

7.7.CThe number 19 takes precedence over the number 12 because there is the extra feature in the difference seen in feature 7.7.5. There are two factors of 13, and the sum of the factors leads to a multiple of 7. (Providentially, the difference between 19 and 12 is 7.)

7.8As God and Jesus were both present at the beginning of our world, so both numbers of 7 and 13 can be used simultaneously. Divide the letters into alternating groups of M and N-number of letters where M and N are multiples of 7 and 13.

7.8.1Alternating groups of 117 and 35.

7.8.1.1Groups of 117: 23348 = 22 x 13 x 449.

7.8.1.2Groups of 35: 5304 = 23 x 3 x 13 x 17. SF: 39 = 3 x 13.

7.8.1.3The difference between the groups of 117 and 35: 18044 = 22 x 13 x 347. SF:364 = 22 x 7 x 13.

7.8.2Alternating groups of 39 and 189.

7.8.2.1Groups of 39: 5356 = 22 x 13 x 103.

7.8.2.2Groups of 189: 23296 = 28 x 7 x 13.

7.8.3Alternating groups of 189 and 78.

7.8.3.1Groups of 189: 23153 = 132 x 137.

7.8.3.2Groups of 78: 5499 = 32 x 13 x 47.

7.8.3.3The difference between the groups of 189 and 78: 17654 = 2 x 7 x 13 x 97. SF: 119 = 7 x 17.

7.8.4Alternating groups of 130 and 196.

7.8.4.1Groups of 130: 16588 = 22 x 11 x 13 x 29.

7.8.4.2Groups of 196: 12064 = 25 x 13 x 29. SF: 52 = 22 x 13.

7.8.4.3The difference between the groups of 130 and 196: 4524 = 22 x 3 x 13 x 29. SF: 49 = 72. SF: 14 = 2 x 7.

It is curious how out of four tries, three have an extra feature in the difference.

456 Letters (Click to hide.)
20536004520030
940601009706020
2060917060140
1100602060040101
942009030600407
506020090940101
91401102098
79060401001930
51001128011
30101999011
1010199110600
254010072190
92059110060040
60200801406004060
9452009609100
79021909205
91905102207
8790604010019
599010060901060
100609010060550600
10058060405105
9590100196010
201200830609010
1960280200330
60901006004060460
401006004020535
912001006099060
9790602009060200
4570601005140
53406001005540
10019903801300
199020986040
6040170546010
930190140609
60910604603060
2004010059060200100
60905354078
759901053001
2074036004091
907018011020080
960200535405
1006012001007101
959010094081
200301901007540
60300812030609
9073060040491
10060200100602053
60020030940601009
180879051001
9130020030600407
2190920591
10060200856020010
1946087905
10019584059
7060960200401009
10060200901018070
60200901200100790

7.9Arrange the letters into a 8 x 57 rectangle.

7.9.1The perimeter of the rectangle, or outside: 7319 = 13 x 563.

7.9.2The inside: 21333 = 3 x 13 x 547.

7.9.3Difference between inside and outside: 14014 = 2 x 72 x 11 x 13.

7.9.4First and last columns with the two middle columns: 14638 = 2 x 13 x 563.

7.9.5Reverse: 14014 = 2 x 72 x 11 x 13. (Same as difference.)

7.9.6.CFirst, middle and last rows: 1900 = 22 x 52 x 19.

7.9.7First row and every 4th after: 7077 = 3 x 7 x 337.

7.9.8First row and every 7th after: 5161 = 13 x 397.

7.9.92x3 checker: 13986 = 2 x 33 x 7 x 37. (No opposite.)

7.10.1When the 456 letters are placed into a five dimension object with dimensions 2 x 2 x 2 x 3 x 19, forty-eight of them will have a fifth dimension coordinate of 13.

A    B   C D E F G       A    B   C D E F G       A    B   C D E F G

289) 60  1 1 1 1 13      305) 20  1 1 1 3 13      297) 7   1 1 1 2 13
290) 90  2 1 1 1 13      306) 7   2 1 1 3 13      298) 5   2 1 1 2 13
291) 5   1 2 1 1 13      307) 40  1 2 1 3 13      299) 9   1 2 1 2 13
292) 3   2 2 1 1 13      308) 3   2 2 1 3 13      300) 90  2 2 1 2 13
293) 5   1 1 2 1 13      309) 600 1 1 2 3 13      301) 10  1 1 2 2 13
294) 40  2 1 2 1 13      310) 40  2 1 2 3 13      302) 5   2 1 2 2 13
295) 7   1 2 2 1 13      311) 9   1 2 2 3 13      303) 300 1 2 2 2 13
296) 8   2 2 2 1 13      312) 1   2 2 2 3 13      304) 1   2 2 2 2 13
297) 7   1 1 1 2 13      289) 60  1 1 1 1 13      305) 20  1 1 1 3 13
298) 5   2 1 1 2 13      290) 90  2 1 1 1 13      306) 7   2 1 1 3 13
299) 9   1 2 1 2 13      291) 5   1 2 1 1 13      307) 40  1 2 1 3 13
300) 90  2 2 1 2 13      292) 3   2 2 1 1 13      308) 3   2 2 1 3 13
301) 10  1 1 2 2 13      293) 5   1 1 2 1 13      309) 600 1 1 2 3 13
302) 5   2 1 2 2 13      294) 40  2 1 2 1 13      310) 40  2 1 2 3 13
303) 300 1 2 2 2 13      295) 7   1 2 2 1 13      311) 9   1 2 2 3 13
304) 1   2 2 2 2 13      296) 8   2 2 2 1 13      312) 1   2 2 2 3 13

A: Letter position in combined passage.
B: Letter value.
C: First dimension coordinate.
D: Second dimension coordinate.
E: Third dimension coordinate.
F: Fourth dimension coordinate.
G: Fifth dimension coordinate.

Total of these letters (A): 2730 = 2 x 3 x 5 x 7 x 13.

7.10.248 will have a fifth dimension coordinate of 7.

A    B   C D E F G      A    B   C D E F G      A    B   C D E F G

145) 5   1 1 1 1 7      161) 100 1 1 1 3 7      153) 100 1 1 1 2 7
146) 9   2 1 1 1 7      162) 5   2 1 1 3 7      154) 60  2 1 1 2 7
147) 90  1 2 1 1 7      163) 80  1 2 1 3 7      155) 90  1 2 1 2 7
148) 100 2 2 1 1 7      164) 60  2 2 1 3 7      156) 100 2 2 1 2 7
149) 60  1 1 2 1 7      165) 40  1 1 2 3 7      157) 60  1 1 2 2 7
150) 90  2 1 2 1 7      166) 5   2 1 2 3 7      158) 5   2 1 2 2 7
151) 10  1 2 2 1 7      167) 10  1 2 2 3 7      159) 50  1 2 2 2 7
152) 60  2 2 2 1 7      168) 5   2 2 2 3 7      160) 600 2 2 2 2 7
153) 100 1 1 1 2 7      145) 5   1 1 1 1 7      161) 100 1 1 1 3 7
154) 60  2 1 1 2 7      146) 9   2 1 1 1 7      162) 5   2 1 1 3 7
155) 90  1 2 1 2 7      147) 90  1 2 1 1 7      163) 80  1 2 1 3 7
156) 100 2 2 1 2 7      148) 100 2 2 1 1 7      164) 60  2 2 1 3 7
157) 60  1 1 2 2 7      149) 60  1 1 2 1 7      165) 40  1 1 2 3 7
158) 5   2 1 2 2 7      150) 90  2 1 2 1 7      166) 5   2 1 2 3 7
159) 50  1 2 2 2 7      151) 10  1 2 2 1 7      167) 10  1 2 2 3 7
160) 600 2 2 2 2 7      152) 60  2 2 2 1 7      168) 5   2 2 2 3 7

A: Letter position in combined passage.
B: Letter value.
C: First dimension coordinate.
D: Second dimension coordinate.
E: Third dimension coordinate.
F: Fourth dimension coordinate.
G: Fifth dimension coordinate.

Total of the letters (B): 3588 = 22 x 3 x 13 x 23.

Conclusion

These numeric features are only possible when both passages are put together as one. Although the first and last letters of each word yield nothing, there are plenty of other numeric features with complementary opposites following Revelation 1:8. Thus the meaning of the passages and their numbers confirm the two passages actually do go together.

Two questions naturally arise concerning Jesus' prophecies. 1) When will Israel be thrown into darkness? 2) When will the kingdom be taken, and to whom will it be given?

The first question is easily answered from Jesus' own words. It would happen when he was rejected. This happened when he was falsely accused of blasphemy and crucified. (See: Dark Prophecy Arrives.)

The second question is not easily answered, but there are strange coincidences from Jesus' own words that could lead to an answer. Jesus' own words are used because they are trustworthy. (See: God’s Kingdom Given To Another People.)

Notes

  1. English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.
  2. The Greek text is from The Nestle-Aland 27th Edition of the Greek New Testament (GNT), Copyright © 1966, 1968, 1975, 1993-1994 United Bible Societies, found within Bibleworks 3.0 by Hermeneutika, Michael S. Bushell, 1995. Vowel marks and punctuation have been removed.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




The foolishness of God is greater than anything we can imagine (1 Corinthians 1:25). On the off chance the numbers are a form of foolishness, do not spend too much time on them.