Bible Numbers 2.0

God Hides His Face From Israel

Near the end of Moses' life, God told him what would happen to Israel. They would abandon the covenant, worship strange gods and do wickedly. God would hide His face from them. (Deuteronomy 31:14-17) This prophecy came with the visible sign of the pillar of cloud as confirmation. (Deuteronomy 18:21-22, 31:15) The prediction came true even before Isaiah's time, but the majority in Israel didn't realize it. (Isaiah 8:13-17) These two passages hold a very important spiritual lesson, and this is backed up by the numbers when the two are combined and treated as one.

14 And the LORD said to Moses, "Behold, the days approach when you must die; call Joshua, and present yourselves in the tent of meeting, that I may commission him." And Moses and Joshua went and presented themselves in the tent of meeting. 15 And the LORD appeared in the tent in a pillar of cloud; and the pillar of cloud stood by the door of the tent. 16 And the LORD said to Moses, "Behold, you are about to sleep with your fathers; then this people will rise and play the harlot after the strange gods of the land, where they go to be among them, and they will forsake me and break my covenant which I have made with them. 17 Then my anger will be kindled against them in that day, and I will forsake them and hide my face from them, and they will be devoured; and many evils and troubles will come upon them, so that they will say in that day, `Have not these evils come upon us because our God is not among us?' (Deuteronomy 31:14-17)1

Breaking the covenant means God will be angry with Israel. God will abandon them and hide His face. They will become prey to other nations and peoples. Many evils and troubles will come upon them. Many evils and troubles means this will happen again and again until they recognize what is happening is because they broke the covenant and that God is not with them. Thus prophetic warnings and events can repeat.

The priests were to bless Israel by invoking God’s name and asking God to show His face and make it shine upon His people. (Numbers 6:24-27) God hiding His face would nullify this blessing. And if Israel received any other blessings at all, they would be muted.

The many wars Israel has fought and is fighting even today with Hamas and Hezbollah, are because of the broken covenant.

Deuteronomy 31:14-172
54321:A
553453126257:B
16151413121110987654321:C
50553004030156510200401106:D
הןמשהאליהוהויאמר:E
9876:A
30147680308:B
313029282726252423222120191817:C
1200100400640302010401062200100:D
קראלמותימיךקרבו:E
121110:A
519391401:B
4544434241403938373635343332:C
629010400567030065104001:D
והתיצבויהושעאת:E
151413:A
15912038:B
5958575655545352515049484746:C
6506901647064030512:D
ואצונומועדבאהל:E
181716:A
39734566:B
72717069686766656463626160:C
70300651065300402030106:D
ויהושעמשהוילך:E
212019:A
12038524:B
878685848382818079787776757473:C
47064030512629010400106:D
מועדבאהלויתיצבו:E
242322:A
3826217:B
999897969594939291908988:C
30512565101200106:D
באהליהוהוירא:E
272625:A
130170122:B
112111110109108107106105104103102101100:C
440701065050704640702:D
ויעמדענןבעמוד:E
31302928:A
488100175120:B
125124123122121120119118117116115114113:C
84008030705050705464070:D
פתחעלהענןעמוד:E
35343332:A
312625741:B
140139138137136135134133132131130129128127126:C
3015651020040110630515:D
אליהוהויאמרהאהל:E
4039383736:A
43311032275345:B
156155154153152151150149148147146145144143142141:C
201040021407022030020505530040:D
אבתיךעםשכבהנךמשה:E
44434241:A
6817115146:B
169168167166165164163162161160159158157:C
5507657540705401006:D
וזנההזההעםוקם:E
48474645:A
29627046219:B
184183182181180179178177176175174173172171170:C
902001520020501053011020081:D
הארץנכראלהיאחרי:E
5352515049:A
310345312501:B
200199198197196195194193192191190189188187186185:C
622001002540300121652003001:D
בקרבושמהבאהואאשר:E
565554:A
401291145:B
212211210209208207206205204203202201:C
40012008056105027706:D
אתוהפרועזבני:E
60595857:A
407630501622:B
227226225224223222221220219218217216215214213:C
640011040020020200300110400102002:D
אתוכרתיאשרבריתי:E
64636261:A
58891219:B
240239238237236235234233232231230229228:C
4061026210801520086:D
ביוםבואפיוחרה:E
6665:A
53517:B
251250249248247246245244243242241:C
4010400277061655:D
ועזבתיםההוא:E
696867:A
851401081:B
264263262261260259258257256255254253252:C
40540105080104002004006056:D
מהםפניוהסתרתי:E
727170:A
1488126:B
278277276275274273272271270269268267266265:C
65190406302013051056:D
ומצאהולאכלוהיה:E
757473:A
702608676:B
291290289288287286285284283282281280279:C
400620090640062200400670200:D
וצרותרבותרעות:E
79787776:A
361758247:B
306305304303302301300299298297296295294293292:C
130516554061022004016:D
הלאההואביוםואמר:E
8483828180:A
314466130100:B
322321320319318317316315314313312311310309308307:C
10220010021053015010110203070:D
בקרביאלהיאיןכיעל:E
878685:A
41681197:B
337336335334333332331330329328327326325324323:C
5301540067020051050619040:D
האלההרעותמצאוני:E

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Hebrew.

There are 87 words in this passage and 337 letters. The numeric total: 19871 (nf).

Isaiah's passage re-establishes who is the core of the covenant: the lord. He is holy. The word holy not only means sacred, but also separate and different. God is not like any of the other gods. He is unique.

13 But the LORD of hosts, him you shall regard as holy; let him be your fear, and let him be your dread. 14 And he will become a sanctuary, and a stone of offense, and a rock of stumbling to both houses of Israel, a trap and a snare to the inhabitants of Jerusalem. 15 And many shall stumble thereon; they shall fall and be broken; they shall be snared and taken." 16 Bind up the testimony, seal the teaching among my disciples. 17 I will wait for the LORD, who is hiding his face from the house of Jacob, and I will hope in him. (Isaiah 8:13-17)

The problem with Israel, and with most people, is that they treat God like any other person, like any other god. They do not revere Him as holy, separate and uniquely different. Even though God is a sanctuary and safe place, this is why God becomes a rock of stumbling for Israel, Judah and Jerusalem. They will stumble and actually fall. In falling they are broken. In breaking they are trapped and caught.

Isaiah sees no way out for the vast majority. This teaching is only for his disciples. One can only wait for God to fix it.

Isaiah 8:13-17
4321:A
40749926401:B
1413121110987654321:C
6400140061290565104001:D
אתוצבאותיהוהאת:E
765:A
30718820:B
30292827262524232221201918171615:C
4020120064016566300104100400:D
מוראכםוהואתקדישו:E
1098:A
2646018:B
4443424140393837363534333231:C
5105640209020070401656:D
והיהמערצכםוהוא:E
131211:A
13389474:B
57565554535251504948474645:C
80350502130630041004030:D
נגףולאבןלמקדש:E
161514:A
390396332:B
7170696867666564636261605958:C
1050300303063002040200690306:D
לשנימכשולולצור:E
191817:A
118541412:B
8281807978777675747372:C
8803030120030010104002:D
לפחישראלבתי:E
2120:A
348482:B
9392919089888786858483:C
230061030300100640306:D
ליושבולמוקש:E
242322:A
42362586:B
106105104103102101100999897969594:C
4026303002064030300620010:D
בםוכשלוירושלם:E
272625:A
564172252:B
121120119118117116115114113112111110109108107:C
620023005066308050640102200:D
ונשברוונפלורבים:E
302928:A
296116468:B
136135134133132131130129128127126125124123122:C
20069064203050663001006506:D
צורונלכדוונוקשו:E
333231:A
611454485:B
149148147146145144143142141140139138137:C
52006400406400854670400:D
תורהחתוםתעודה:E
363534:A
5645486:B
165164163162161160159158157156155154153152151150:C
56510301040010208610440302:D
ליהוהוחכיתיבלמדי:E
393837:A
452146715:B
179178177176175174173172171170169168167166:C
4001024061050802001040060405:D
מביתפניוהמסתיר:E
424140:A
36532182:B
191190189188187186185184183182181180:C
63010400106100621007010:D
לווקויתייעקב:E

A: Word position.       B: Word sum.       C: Letter position.       D: Letter value.
E: Hebrew.

There are 42 words in this section, 191 letters and a numeric total of 13764. (Aside from the number of words being a multiple of 7, there are no other number features.)

When prophecy and fulfillment are placed together for the entire picture, numeric features appear.

Primary Features

(Derived from Revelation 1:8 and grouped for easy reference.)

I Am (Present tense - living through it) Add up everything.

A.1Numeric total: 33635 = 5 x 7 x 312.. (See feature 1.)

Is, Was, Is To Come (Second present tense - skipping sequentially through it) Add up every other occurrance.

B.2Every other verse (odd): 19446 = 2 x 3 x 7 x 463. (See feature 1.1.)

B.2.2Every other verse (even): 14189 = 7 x 2027. (See feature 1.2.)

B.3Every other word (odd): 14854 = 2 x 7 x 1061. (See feature 2.3.1.)

B.3.2Every other word (even): 18781 = 7 x 2683. (See feature 2.3.2.)

B.4Every other letter (odd): 3402 = 2 x 35 x 7. (See feature 5.2.1.)

B.4.2Every other letter (even): 5096 = 23 x 72 x 13. (See feature 5.2.2.)

Alpha & Omega (The first and last) Add up the first item with the last item.

C.3.2First and last letter of each word: 13097 = 7 x 1871. (See feature 3.)

Alpha (The first) Add up the first item.

D.3.3First letter of each word: 4599 = 32 x 7 x 73. (See feature 4.)

Omega (The last) Add up the last item.

E.3.3Last letter of each word: 8498 = 2 x 7 x 607. (See feature 5.)

The Verses

List of verses:
4997 1627 6944 6303 2956 4327 1976 1932 2573

1There are 9 verses, 129 words, 528 letters and a numeric total of 33635 (5 x 7 x 312).

1.1Odd positioned verses:

4997 6944 2956 1976 2573

Total: 19446 = 2 x 3 x 7 x 463.

1.2Even positioned verses:

1627 6303 4327 1932

Total: 14189 = 7 x 2027.

1.3.1The letters of God’s name in Hebrew (10-5-6-5) point to four verses.

Letter from the Name: 10   5    6    5
Adjusted to 9 verses: 1    5    6    5
Verse found:          4997 2956 4327 2956

Total of the verses: 15236 = 22 x 13 x 293.

1.3.2The letters of God’s name in Hebrew (10-5-6-5) count through the 9 verses.

Letter from the Name: 10   5    6    5
Count:                10   6    12   8
Adjusted to 9 verses: 1    6    3    8
Verse found:          4997 4327 6944 1932

Total of verses found: 18200 = 23 x 52 x 7 x 13.

1.4Only two verses are prime numbers:

Verse position: 2       6
Verse value:    1627    4327

Total of these two verses: 5954 = 2 x 13 x 229. (This leaves 7 verses that are not prime numbers, but these verses have no other feature.)

1.4.2Four of the verse positions are prime numbers:

Verse position: 2    3    5    7
Verse value:    1627 6944 2956 1976

Total of these verses: 13503 = 3 x 7 x 643.

1.4.3Five verse positions are not prime numbers:

Verse position: 1    4    6    8    9
Verse value:    4997 6303 4327 1932 2573

Total of these verses: 20132 = 2 x 2 x 7 x 719.

1.5Only one verse has a multiple of 13. This just so happens to be the seventh verse.

1.6The middle 7 verses total 26065 (5 x 13 x 401).

1.7Take the first verse, and every succeeding Nth verse where N increases by one each time.

Verse position: 1    2    4    7    
Increasing N:   1    2    3    4    
Verse found:    4997 1627 6303 1976 

Total of this progression: 14903 = 7 x 2129.

1.8When the verses are added one by one, there are only two instances where the total would be a multiple of 7. This only happens at the 5th and 9th verses. Providentially, 5 + 9 = 14.

1.9Line up the verse totals according to their verse reference.

Verse number: 13    14     15    16     17
Deuteronomy:  0     4997   1627  6944   6303
Isaiah:       2956  4327   1976  1932   2573
Column total: 2956  9324   3603  8876   8876

Out of five column totals the odds would suggest only one or perhaps two being divisible by 7. Three are divisible by 7 (columns 14, 16 and 17).

Providentially, the two columns that are not divisible by 7, have their column verses adding to 28 (22 x 7).

1.10.1.1Total of the first letter of each word for verses where the sum of the first letter of each word is an odd value: 1533 = 3 x 7 x 73.

1.10.1.2Total of the first letter of each word for verses where the sum of the first letter of each word is an even value: 3066 = 2 x 3 x 7 x 73.

1.10.2.1Total of the verses where the sum of the last letter of each word is an odd value: 16800 = 25 x 3 x 52 x 7.

1.10.2.2Total of the verses where the sum of the last letter of each word is an even value: 16835 = 5 x 7 x 13 x 37.

1.10.3.1Total of the verses where the first word is an odd value: 22827 = 3 x 7 x 1087.

1.10.3.2Total of the verses where the first word is an even value: 10808 = 23 x 7 x 193.

Even though there are only 9 verses, there still are quite a number of numeric features following the principle of complementary opposites in Revelation 1:8.

The Words

2.1.1The letters of God’s name in Hebrew (10-5-6-5) point out four words.

Letter from the Name: 10  5  6   5
Word found:           401 55 308 55

Total of the words found: 819 = 32 x 7 x 13. SF: 26 = 2 x 13.

2.1.2The letters of God’s name in Hebrew (10-5-6-5) are applied 5 times to just count through the words.

a) 10  5   6   5   10  5   6   5   10 5    6   5  10  5  6  5   10  5
b) 10  15  21  26  36  41  47  52  62 67   73  78 88  93 99 104 114 119
c) 10  15  21  26  36  41  47  52  62 67   73  78 88  93 99 104 114 119
d) 401 159 120 170 345 146 270 345 91 1081 676 17 401 18 89 412 564 454


a) 6   5   (Letter from the Name.)
b) 125 130 (Count.)
c) 125 1   (Count adjusted to 129 words.)
d) 146 257 (Word found.)

Total of the words found: 6162 = 2 x 3 x 13 x 79.

2.2Following Revelation 1:8's Alpha and Omega, pair up the words, Nth and Nth last.

2.2.1As there is only one true God, only one pair of words, together and individually are multiples of 7.

Nth word:      62
Value:         91
Nth last word: 68
Value:         140
Sum:           231

Naturally, because there are only 129 words, the Nth and Nth last positions together is a multiple of 13: 130 = 2 x 5 x 13.

2.2.2Exactly 7 pairs of words, Nth and Nth last together are multiples of 7. (Individually, not all of these are multiples of 7.)

Nth word:      16  35 44  48  50  54  62
Value:         66  31 68  296 12  145 91
Nth last word: 114 95 86  82  80  76  68
Value:         564 18 681 61  100 247 140
Sum:           630 49 749 357 112 392 231

Sum of positions: 910 = 2 x 5 x 7 x 13.

2.2.3As there is only one true God, only one pair of words, together and individually are multiples of 13.

Nth word:      27
Value:         130
Nth last word: 103
Value:         390
Sum:           520

Sum of positions: 130 = 2 x 5 x 13.

2.2.4Exactly 7 pairs of words, Nth and Nth last together are multiples of 13. (Individually, not all of these are multiples of 13.)

Nth word:      11  24  25  27  29  45  51
Value:         391 38  122 130 175 219 3
Nth last word: 119 106 105 103 101 85  79
Value:         454 118 541 390 332 197 36
Sum:           845 156 663 520 507 416 39

Sum of positions: 910 = 2 x 5 x 7 x 13.

2.3Take every other word.

2.3.1The odd positioned words:

a) 1   3  5  7  9   11  13 15  17  19  21  23 25  27  29  31  33  35 
b) 257 31 55 80 301 391 38 159 345 524 120 26 122 130 175 488 257 31 

a) 37 39  41  43 45  47  49  51 53  55  57  59  61  63 65 67   69 71 
b) 75 110 146 17 219 270 501 3  310 291 622 630 219 8  17 1081 85 81 

a) 73  75  77 79 81 83 85  87 89 91  93 95 97 99 101 103 105 107 109 
b) 676 702 58 36 30 46 197 41 26 407 18 18 26 89 332 390 541 482 586 

a) 111 113 115 117 119 121 123 125 127 129 (Word position.) 
b) 42  172 468 296 454 86  56  146 182 36  (Word value.)    

Total of the words: 14854 = 2 x 7 x 1061.

2.3.2The even positioned words:

a) 2  4   6   8   10  12  14  16 18  20 22  24 26  28  30  32 34 36  
b) 26 345 308 476 401 519 120 66 397 38 217 38 170 120 100 41 26 345 

a) 38  40  42  44 46 48  50 52  54  56  58  60  62 64 66  68  70 72  
b) 322 433 115 68 46 296 12 345 145 401 501 407 91 58 535 140 26 148 

a) 74  76  78 80  82 84  86  88  90  92  94  96  98  100 102 104 106 
b) 608 247 17 100 61 314 681 401 499 820 307 460 474 133 396 412 118 

a) 108 110 112 114 116 118 120 122 124 126 128 (Word position.)
b) 348 362 252 564 116 485 611 454 715 452 532 (Word value.)

Total of the words: 18781 = 7 x 2683.

2.3.3Whether one begins with the first word and takes every Nth after, or just takes every Nth word, only three values of N work for both cases in producing totals divisible by 7:

2 20 48

Total of the N values: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

2.3.4Beginning with the first word and taking every Nth after, the following values of N produce totals divisible by 13:

6 22 26 53 58 59

Total of the N values: 224 = 25 x 7.

2.3.5Beginning with the first word and taking every Nth after, the following values of N produce totals divisible by 91 (7 x 13):

26 58

Total of the N values: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.

2.4Extract alternating groups of N-number of words.

2.4.1Odd positioned words from the list in feature 2:

257 31 55 80 301 391 38 159 345 524 120 26 122 130 175 488 257 31 75 110 146 17 219 270 501 3 310 291 622 630 219 8 17 1081 85 81 676 702 58 36 30 46 197 41 26 407 18 18 26 89 332 390 541 482 586 42 172 468 296 454 86 56 146 182 36

Total: 14854 = 2 x 7 x 1061.

2.4.2Even positioned words from the list in feature 2:

26 345 308 476 401 519 120 66 397 38 217 38 170 120 100 41 26 345 322 433 115 68 46 296 12 345 145 401 501 407 91 58 535 140 26 148 608 247 17 100 61 314 681 401 499 820 307 460 474 133 396 412 118 348 362 252 564 116 485 611 454 715 452 532

Total: 18781 = 7 x 2683.

2.4.2.1First half of 32 from 2.4.2:

26 345 308 476 401 519 120 66 397 38 217 38 170 120 100 41 26 345 322 433 115 68 46 296 12 345 145 401 501 407 91 58

Total: 6993 = 33 x 7 x 37.

2.4.2.2Last half of 32 from 2.4.2:

535 140 26 148 608 247 17 100 61 314 681 401 499 820 307 460 474 133 396 412 118 348 362 252 564 116 485 611 454 715 452 532

Total: 11788 = 22 x 7 x 421.

2.4.2.2.1Odd positioned groups of 2 from 2.4.2.2:

535 140 608 247 61 314 499 820 474 133 118 348 564 116 454 715

Total: 6146 = 2 x 7 x 439. SF: 448 = 26 x 7.

2.4.2.2.2Even positioned groups of 2 from 2.4.2.2:

26 148 17 100 681 401 307 460 396 412 362 252 485 611 452 532

Total: 5642 = 2 x 7 x 13 x 31.

2.5Divide the 129 words into four groups depending on the odd/even value of the word, and the odd/even value of its position in the combined passage.

2.5.1Words that are odd positioned and odd valued:

a) 1   3  5  9   11  15  17  29  33  35 37 43 45  49  51 55  61  65
b) 257 31 55 301 391 159 345 175 257 31 75 17 219 501 3  291 219 17

a) 67   69 71 85  87 91  99 105 (Word position.)
b) 1081 85 81 197 41 407 89 541 (Word value.)

Total of the words (b): 5866 = 2 x 7 x 419. (Position total [a]: 1238.)

2.5.2Words that are odd positioned and even valued:

a) 77 79 81 83 89 93 95 97 101 103 107 109 111 113 115 117 119 121
b) 58 36 30 46 26 18 18 26 332 390 482 586 42  172 468 296 454 86

a) 123 125 127 129 (Word position.)
b) 56  146 182 36  (Word value.)

Total of the words (b): 8988 = 22 x 3 x 7 x 107. (Position total [a]: 2987.)

2.5.3Even position and odd valued:

a) 78 82 86  88  90  94  100 118 120 124 (Word position.)
b) 17 61 681 401 499 307 133 485 611 715 (Word value.)

Total of the words (b): 9395 (nf). (Position total [a]: 1680 = 24 x 3 x 5 x 7.)

2.5.4Words that are even positioned and even valued:

a) 72  74  80  84  92  96  98  102 104 106 108 110 112 114 116 122
b) 148 608 100 314 820 460 474 396 412 118 348 362 252 564 116 454

a) 126 128 (Word position.)
b) 452 532 (Word value.)

Total of the words (b): 9386 = 2 x 13 x 192. (Position total [a]: 2480.)

2.5.5Only feature 2.5.3 does not have the total of the words being a multiple of 7 or 13. Providentially, the total of the positions is a multiple of 7 while the other 3 features show nothing for the positions.

2.5.6Features 2.5.1 and 2.5.4 consist of words that are both odd, or both even in their values and positions. This sets them apart from 2.5.2 and 2.5.3 where values and positions are mixed. The positions of 2.5.1 and 2.5.4: 1238 + 2480 = 3718 = 2 x 11 x 132. SF: 39 = 3 x 13.

2.5.7Now the positions of 2.5.2 and 2.5.3 are put together: 2987 + 1680 = 4667 = 13 x 359.

2.5.8Two of the four categories (2.5.1 and 2.5.2) have the total of the words being divisible by 7. This naturally leads to putting their positions together: 1238 + 2987 = 4225 = 52 x 132.

2.5.9The previous feature puts 2.5.3 and 2.5.4 together. When the total of the words for 2.5.3 and 2.5.4 are put together they are divisible by 7: 9395 + 9386 = 18781 = 7 x 2683. When their positions are put together, the result is a multiple of 13: 1680 + 2480 = 4160 = 26 x 5 x 13.

It would appear the words have been strategically positioned.

2.6Exactly 21 words are prime numbers, but there is no other feature. Precisely 98 of the word positions are not prime numbers, but once again there is no other feature.

2.716 words are divisible by 13. Together, their sum is also a multiple of 7.

Position: 2  23 27  34 62 70 73  75  76  89 97 103 115 120 124 127
Value:    26 26 130 26 91 26 676 702 247 26 26 390 468 611 715 182

Total of the words: 4368 = 24 x 3 x 7 x 13.

2.8When the words are added one by one, 6 times the total will be a multiple of 13. The positions where this occurs are listed below.

a) Word position:     24   37   45   68    85    101
b) Word value:        38   75   219  140   197   332
c) Accumulated total: 5278 7358 8788 15717 19149 23881

Total of the words (b): 1001 = 7 x 11 x 13. This is a very nice symmetrical number visually displaying the same one God who is beginning and end. (Providentially, the sum of line c] is also a multiple of 7 and 13: 80171 = 7 x 13 x 881.)

2.9.179 word values occurred only once.

3 8 12 30 42 55 56 61 66 68 75 80 81 85 86 89 91 110 115 116 118 122 130 133 140 145 148 159 170 172 175 182 197 217 247 252 270 291 301 307 308 310 314 322 332 348 362 390 391 396 397 412 433 452 460 468 474 476 482 485 488 499 519 524 532 535 541 564 586 608 611 622 630 676 681 702 715 820 1081

Total of these words: 25151 = 7 x 3593.

2.9.2This means the remaining word values that occurred more than once, all together would also be a multiple of 7: 8484 = 22 x 3 x 7 x 101.

First And Last

3Sum of the first and last letters of each word: 13097 = 7 x 1871.

3.1.1As there is only one supreme God, there is only one pairing of the Nth and Nth last totals in feature 3 that together and individually are divisible by 7.

Position of Nth:      40
Value:                21
Position of Nth last: 90
Value:                490
Sum of pair:          511

Total of the positions: 130 = 2 x 5 x 13.

3.1.2Relax the rule of the pair needing to be individually divisible by 7. There are 8 that together are multiples of 7.

Position of Nth:       13  14  24  33  40  49  56   61
Value:                 32  44  32  206 21  201 401  11
Position of Nth last:  117 116 106 97  90  81  74   69
Value:                 290 12  38  11  490 30  600  80
Sum of pair:           322 56  70  217 511 231 1001 91

Total of the positions: 1040 = 24 x 5 x 13. SF: 26 = 2 x 13.

3.1.3Exactly 7 pairs can be found that together are divisible by 13.

Position of Nth:      7   10  22  39  44  56   61
Value:                30  401 7   110 11  401  11
Position of Nth last: 123 120 108 91  86  74   69
Value:                35  405 32  7   405 600  80
Sum:                  65  806 39  117 416 1001 91

Total of the positions: 910 = 2 x 5 x 7 x 13.

3.2The 129 totals from feature 3 can be grouped in various ways so that the total of every other group is a multiple of 7. This can be repeated with the results.

3.2.1Odd positioned groups of 3 from feature 3:

45 55 106 401 80 12 26 45 76 7 15 32 74 55 100 15 31 45 21 46 45 11 250 95 305 8 16 201 30 7 42 6 46 11 60 12 206 42 6 51 11 12 401 15 490 80 7 80 130 206 70 38 306 32 240 12 12 405 48 405 205 86 440

Total: 6468 = 22 x 3 x 72 x 11.

3.2.1.1Odd positioned groups of 21 from 3.2.1:

45 55 106 401 80 12 26 45 76 7 15 32 74 55 100 15 31 45 21 46 45 401 15 490 80 7 80 130 206 70 38 306 32 240 12 12 405 48 405 205 86 440

Total: 5040 = 24 x 32 x 5 x 7. SF: 26 = 2 x 13.

3.2.1.1.1Odd positioned groups of 7 from 3.2.1.1:

45 55 106 401 80 12 26 100 15 31 45 21 46 45 206 70 38 306 32 240 12

Total: 1932 = 22 x 3 x 7 x 23.

3.2.1.1.1.1Odd positioned groups of 1 from 3.2.1.1.1:

45 106 80 26 15 45 46 206 38 32 12

Total: 651 = 3 x 7 x 31.

3.2.1.1.1.2Even positioned groups of 1 from 3.2.1.1.1:

55 401 12 100 31 21 45 70 306 240

Total: 1281 = 3 x 7 x 61.

3.2.1.1.2Even positioned groups of 7 from 3.2.1.1:

45 76 7 15 32 74 55 401 15 490 80 7 80 130 12 405 48 405 205 86 440

Total: 3108 = 22 x 3 x 7 x 37.

3.2.1.2Even positioned groups of 21 from 3.2.1:

11 250 95 305 8 16 201 30 7 42 6 46 11 60 12 206 42 6 51 11 12

Total: 1428 = 22 x 3 x 7 x 17.

3.2.2Even positioned groups of 3 from feature 3:

206 15 31 30 430 101 32 44 12 12 32 44 6 120 10 88 35 206 25 302 110 10 11 11 201 6 3 206 401 12 11 11 8 16 90 80 600 600 406 6 100 30 50 405 10 7 406 7 11 330 56 40 12 40 50 12 42 12 12 290 12 16 35 12 16 36

Total: 6629 = 7 x 947.

3.2.2.1Odd positioned groups of 1 from 3.2.2:

206 31 430 32 12 32 6 10 35 25 110 11 201 3 401 11 8 90 600 406 100 50 10 406 11 56 12 50 42 12 12 35 16

Total: 3472 = 24 x 7 x 31.

3.2.2.1.1Odd positioned groups of 1 from 3.2.2.1:

206 430 12 6 35 110 201 401 8 600 100 10 11 12 42 12 16

Total: 2212 = 22 x 7 x 79.

3.2.2.1.2Even positioned groups of 1 from 3.2.2.1:

31 32 32 10 25 11 3 11 90 406 50 406 56 50 12 35

Total: 1260 = 22 x 32 x 5 x 7.

3.2.2.1.2.1Odd positioned groups of 4 from 3.2.2.1.2:

31 32 32 10 90 406 50 406

Total: 1057 = 7 x 151.

3.2.2.1.2.1.1Odd positioned groups of 1 from 3.2.2.1.2.1:

31 32 90 50

Total: 203 = 7 x 29.

3.2.2.1.2.1.1.1     First half of 2 from 3.2.2.1.2.1.1:

31 32

Total: 63 = 32 x 7. SF: 13.

3.2.2.1.2.1.1.2     Last half of 2 from 3.2.2.1.2.1.1:

90 50

Total: 140 = 22 x 5 x 7.

3.2.2.1.2.1.2Even positioned groups of 1 from 3.2.2.1.2.1:

32 10 406 406

Total: 854 = 2 x 7 x 61. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

3.2.2.1.2.1.2.1     First half of 2 from 3.2.2.1.2.1.2:

32 10

Total: 42 = 2 x 3 x 7.

3.2.2.1.2.1.2.2     Last half of 2 from 3.2.2.1.2.1.2:

406 406

Total: 812 = 22 x 7 x 29.

3.2.2.1.2.1.2.2.1         First half of 1 from 3.2.2.1.2.1.2.2:

406

Total: 406 = 2 x 7 x 29.

3.2.2.1.2.1.2.2.2         Last half of 1 from 3.2.2.1.2.1.2.2:

406

Total: 406 = 2 x 7 x 29.

3.2.2.1.2.1.3Last half of 4 from 3.2.2.1.2.1:

31 32 32 10

Total: 105 = 3 x 5 x 7.

3.2.2.1.2.1.3.1     Odd positioned groups of 1 from 3.2.2.1.2.1.3:

31 32

Total: 63 = 32 x 7. SF: 13.

3.2.2.1.2.1.3.2     Even positioned groups of 1 from 3.2.2.1.2.1.3:

32 10

Total: 42 = 2 x 3 x 7.

3.2.2.1.2.1.3.3     Last half of 2 from 3.2.2.1.2.1.3:

31 32

Total: 63 = 32 x 7. SF: 13.

3.2.2.1.2.1.3.4     First half of 2 from 3.2.2.1.2.1.3:

32 10

Total: 42 = 2 x 3 x 7.

3.2.2.1.2.1.4First half of 4 from 3.2.2.1.2.1:

90 406 50 406

Total: 952 = 23 x 7 x 17.

3.2.2.1.2.1.4.1     Odd positioned groups of 1 from 3.2.2.1.2.1.4:

90 50

Total: 140 = 22 x 5 x 7.

3.2.2.1.2.1.4.2     Even positioned groups of 1 from 3.2.2.1.2.1.4:

406 406

Total: 812 = 22 x 7 x 29.

3.2.2.1.2.1.4.2.1       First half of 1 from 3.2.2.1.2.1.4.2:

406

Total: 406 = 2 x 7 x 29.

3.2.2.1.2.1.4.2.2         Last half of 1 from 3.2.2.1.2.1.4.2:

406

Total: 406 = 2 x 7 x 29.

3.2.2.1.2.2Even positioned groups of 4 from 3.2.2.1.2:

25 11 3 11 56 50 12 35

Total: 203 = 7 x 29.

3.2.2.2Even positioned groups of 1 from 3.2.2:

15 30 101 44 12 44 120 88 206 302 10 11 6 206 12 11 16 80 600 6 30 405 7 7 330 40 40 12 12 290 16 12 36

Total: 3157 = 7 x 11 x 41.

3.3The sum of the middle 119 totals in feature 3 are divisible by 13. Providentially, 119 = 7 x 17.

3.4Start with the first total in feature 3, and add every Nth after where N increases by one each time.

a) Position: 1   2  4  7  11 16 22 29 37 46 56  67 79 92  106 121
b) N:        1   2  3  4  5  6  7  8  9  10 11  12 13 14  15  16
c) Total:    206 15 45 30 80 26 7  55 25 11 401 16 6  406 38  12

Sum of the totals (c): 1379 = 7 x 197.

3.5The two charts below lists the number of unique values in feature 3 along with the number of occurrences in the list, and the total of their positions. The unique values are in two separate charts depending on whether the total of the positions for that value is a prime number or not.

Chart 1: Prime Number List

A)  B) C)  D)
10  3  30  157   (Column A: Unique total from feature 3.)
25  1  25  37    (Column B: Number of occurrences.)
46  2  92  107   (Column C: Sum of all occurrences. [A x B])
60  1  60  71    (Column D: Total of value's positions. A prime number.)
88  1  88  31
201 2  402 107
250 1  250 47
306 1  306 107
406 2  812 167


Chart 2: Not Prime Number List

A)  B) C)   D)     A)  B) C)   D)     A)  B) C)   D)     A)  B) C)   D)
3   1  3    51     35  2  70   155    74  1  74   28     206 5  1030 266
6   5  30   297    36  1  36   129    76  1  76   18     240 1  240  112
7   5  35   361    38  1  38   106    80  4  320  270    290 1  290  117
8   2  16   116    40  2  80   208    86  1  86   125    302 1  302  38
11  8  88   508    42  3  126  252    90  1  90   68     305 1  305  52
12  14 168  1179   44  2  88   35     95  1  95   48     330 1  330  98
15  4  60   148    45  4  180  99     100 2  200  110    401 3  1203 154
16  4  64   371    48  1  48   119    101 1  101  9      405 3  1215 324
21  1  21   40     50  2  100  194    106 1  106  6      430 1  430  8
26  1  26   16     51  1  51   82     110 1  110  39     440 1  440  126
30  3  90   147    55  2  110  34     120 1  120  26     490 1  490  90
31  2  62   38     56  1  56   99     130 1  130  100    600 2  1200 147
32  4  128  165    70  1  70   102    205 1  205  124

(Column A: Unique total from feature 3.)
(Column B: Number of occurrences.)
(Column C: Sum of all occurrences. [A x B])
(Column D: Total of value's positions. Not a prime number.)

3.5.1From Chart 1, the grand total of these values (column C): 2065 = 5 x 7 x 59.

3.5.2From Chart 2, the grand total of these values (column C): 11032 = 23 x 7 x 197. SF: 210 = 2 x 3 x 5 x 7.

3.5.3The difference between 3.5.1 and 3.5.2: 8967 = 3 x 72 x 61. SF: 78 = 2 x 3 x 13.

The First Letter Of Each Word

4Total of the first letter of each word: 4599 = 32 x 7 x 73.

4.1The letters of God’s name in Hebrew (10-5-6-5) are applied five times to count through the first letters.

a) 10 5  6  5  10 5  6  5   10 5  6   5  10 5  6  5   10  5   6   5
b) 10 15 21 26 36 41 47 52  62 67 73  78 88 93 99 104 114 119 125 130
c) 10 15 21 26 36 41 47 52  62 67 73  78 88 93 99 104 114 119 125 1
d) 1  6  40 70 40 6  50 300 1  6  200 5  1  6  6  2   6   8   80  6

a) Letter from the Name.
b) Count.
c) Count adjusted to 129.
d) First letter found.

Total: 840 = 23 x 3 x 5 x 7. SF: 21 = 3 x 7.

4.2Precisely 13 paired groups of the first letters, positioned Nth and Nth last together and individually are multiples of 13.

a) 3    4    6    10  11  14  17  18   19   23   43 46  52
b) 34   40   37   15  24  28  19  63   53   57   46 52  59
c) 2392 3341 2314 975 988 702 260 3042 2210 2535 65 468 793

a) Starting position of first group is N. Starting position of second group is Nth last.
b) Ending position of first group is N. Ending position of second group is Nth last.
c) Total of both groups.

Total of the starting and ending positions (a + b): 793 = 13 x 61.

4.3Beginning with the first value in feature 4 and taking every Nth after, the following values of N produce multiples of 7.

12 22 24 31 34 38 50 51 56 60

Total of the N values: 378 = 2 x 33 x 7.

4.3.1Whether one begins with the first value (N = 1) in feature, or with the Nth value, only two values of N work in both cases:

12 51

Total of the N values: 63 = 32 x 7. SF: 13.

4.3.2Beginning with the first value in feature 4 and taking every Nth after, the following values of N produce multiples of 13.

2 25 36 48 57

Total of the N values: 168 = 23 x 3 x 7.

4.4Divide the numbers in feature 4 into two groups: prime numbers and not prime numbers.

4.4.128 are prime numbers.

a) 5 13 20 24 25 29 32 37 42 43 48 50 51 53 57 63 64 65 77 78 79 84 86
b) 5 2  2  2  2  5  5  5  5  5  5  5  2  2  2  2  2  5  2  5  5  2  5

a) 87 104 111 121 124 (Word position.)
b) 5  2   2   2   5   (First letter.)

Total of the prime numbers: 98 = 2 x 72.

4.4.2101 are not prime numbers.

a) 1 2  3 4   6   7  8  9   10 11 12  14 15 16 17 18 19  21 22 23   26
b) 6 10 1 40  100 10 30 100 1  10 6   40 6  6  40 6  6   40 6  10   70

a) 27 28  30 31  33 34 35 36  38  39 40 41   44 45 46 47  49   52   54
b) 6  70  70 80  6  10 1  40  300 70 1  6    6  1  1  50  1    300  6

a) 55 56  58 59 60 61 62    66 67 68 69 70 71 72 73  74  75 76    80
b) 6  1   1  20 1  6  1     6  6  80 40 6  30 6  200 200 6  6     70

a) 81 82 83  85   88 89 90 91 92  93 94 95 96 97 98 99 100 101 102 103
b) 20 1  1   40   1  10 90 1  400 6  40 6  40 6  30 6  50  6   40  30

a) 105 106 107 108 109 110  112 113 114 115 116 117 118 119 120  122
b) 10  30  6   30  10  6    200 6   6   6   6   90  400 8   400  6

a) 123 125 126 127 128 129  (Word positions.)
b) 30  80  40  10  6   30   (First letter.)

Total of the positions (a): 6713 = 72 x 137. Total of the first letters (b): 4501 = 7 x 643. SF: 650 = 2 x 52 x 13.

4.5Five of the first letters are multiples of 7.

Word position: 26 28 30 39 80
First letter:  70 70 70 70 70

Total of the word positions: 203 = 7 x 29.

4.5.218 of the first letters are in word positions that are multiples of 7.

10 40 40 70 1 5 1 1 2 6 2 2 1 30 10 200 8 40

Total of the first letters: 469 = 7 x 67.

4.6When the first letters in feature 4 are added one by one, 19 times the result will be a multiple of 7.

a) 17  20  23  38   39   41   58   60   62   67
b) 40  2   10  300  70   6    1    1    1    6
c) 413 427 483 1155 1225 1232 1631 1652 1659 1680

a) 70   76   78   92   97   107  115  119  129
b) 6    6    5    400  6    6    6    8    30
c) 1806 2254 2261 2912 3010 3220 3486 3990 4599

a) Word position.
b) Total of the first and last letters.
c) Accumulated total.

Sum of the first/last totals (b): 910 = 2 x 5 x 7 x 13.

4.6.1Odd positioned from line c) of 4.6:

40 10 70 1 1 6 5 6 6 30

Total: 175 = 52 x 7.

4.6.2Even positioned from line c) of 4.6:

2 300 6 1 6 6 400 6 8

Total: 735 = 3 x 5 x 72.

4.76 of the totals in feature 4 divide the rest of the list into what is between and what is not between their Nth and Nth last occurrences.

Between & Not Between The Nth & Nth Last Occurrences Of The First Letter Of A Word
First LetterNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
614557 = 3 x 72 x 31.42 = 2 x 3 x 7.
6121337 = 7 x 191.3262 = 2 x 7 x 233.
122107 = 72 x 43.2492 = 22 x 7 x 89.
131547 = 7 x 13 x 17.3052 = 22 x 7 x 109.
3022562 = 2 x 3 x 7 x 61.2037 = 3 x 7 x 97.
40011078 = 2 x 72 x 11.3521 = 7 x 503.

4.7.1The total of the table's column 2: 21 = 3 x 7.

4.7.2Only the very first and last in the table, letters 6 and 400 have their second column as 1 (their first and last occurrences). Providentially, 6 + 400 = 406 = 2 x 7 x 29.

4.7.3In the table above, the third and fourth rows are both of the letter 1. This could be considered the middle 2. The first 2 and last 2 rows: 442 = 2 x 13 x 17.

The Last Letter Of Each Word

5Total of the last letter of each word: 8498 = 2 x 7 x 607. SF: 616 = 23 x 7 x 11.

5.1Exactly 14 paired groups of the last letters positioned Nth and Nth last are together and individually multiples of 13.

a) 4    5    6    7    8   9   9    13   14   16   19   23  24   29
b) 46   47   45   17   11  13  60   49   60   50   43   25  41   42
c) 5161 4966 4680 1261 936 767 6981 4082 6214 3861 2678 377 1794 2054

a) Starting position of the first group. (Nth from the beginning.)
         Starting position of the second group (Nth from the end).
b) Ending position of the first group. (Nth from the beginning.)
         Ending position of the second group (Nth from the end).
c) Total of both groups.

Total of the start and end positions (a + b): 735 = 3 x 5 x 72.

5.2Take alternating groups of N-number of letters from feature 5, and repeat with the results.

5.2.1Odd positioned letters from feature 5:

200 30 50 20 1 70 30 6 5 6 4 5 4 4 50 8 200 30 20 40 40 5 10 200 200 1 6 200 10 10 5 6 1 10 40 30 400 400 40 1 10 10 10 5 5 6 1 1 5 50 200 10 30 300 40 40 6 6 200 40 10 5 6 2 6

Total: 3402 = 2 x 35 x 7.

5.2.2Even positioned letters from feature 5:

5 5 6 400 400 6 4 20 70 30 1 30 50 4 30 30 5 5 2 20 40 5 10 90 1 5 10 400 200 6 10 40 40 10 5 6 400 200 1 30 50 10 400 400 400 6 40 40 300 80 30 10 8 2 6 40 6 6 5 5 10 200 400 10

Total: 5096 = 23 x 72 x 13.

5.2.2.1Odd positioned groups of 8 from 5.2.2:

5 5 6 400 400 6 4 20 5 5 2 20 40 5 10 90 40 10 5 6 400 200 1 30 300 80 30 10 8 2 6 40

Total: 2191 = 7 x 313.

5.2.2.2Even positioned groups of 8 from 5.2.2:

70 30 1 30 50 4 30 30 1 5 10 400 200 6 10 40 50 10 400 400 400 6 40 40 6 6 5 5 10 200 400 10

Total: 2905 = 5 x 7 x 83.

5.2.2.2.1First half of 16 from 5.2.2.2:

70 30 1 30 50 4 30 30 1 5 10 400 200 6 10 40

Total: 917 = 7 x 131.

5.2.2.2.1.1First half of 8 from 5.2.2.2.1:

70 30 1 30 50 4 30 30

Total: 245 = 5 x 72.

5.2.2.2.1.1.1Odd positioned groups of 2 from 5.2.2.2.1.1:

70 30 50 4

Total: 154 = 2 x 7 x 11.

5.2.2.2.1.1.2Even positioned groups of 2 from 5.2.2.2.1.1:

1 30 30 30

Total: 91 = 7 x 13.

5.2.2.2.1.2Last half of 8 from 5.2.2.2.1:

1 5 10 400 200 6 10 40

Total: 672 = 25 x 3 x 7.

5.2.2.2.2Last half of 16 from 5.2.2.2:

50 10 400 400 400 6 40 40 6 6 5 5 10 200 400 10

Total: 1988 = 22 x 7 x 71.

5.2.2.2.2.1Odd positioned groups of 4 from 5.2.2.2.2:

50 10 400 400 6 6 5 5

Total: 882 = 2 x 32 x 72.

5.2.2.2.2.2Even positioned groups of 4 from 5.2.2.2.2:

400 6 40 40 10 200 400 10

Total: 1106 = 2 x 7 x 79.

5.2.2.2.2.2.1Odd positioned groups of 2 from 5.2.2.2.2.2:

400 6 10 200

Total: 616 = 23 x 7 x 11.

5.2.2.2.2.2.1.1     First half of 2 from 5.2.2.2.2.2.1:

400 6

Total: 406 = 2 x 7 x 29.

5.2.2.2.2.2.1.2     Last half of 2 from 5.2.2.2.2.2.1:

10 200

Total: 210 = 2 x 3 x 5 x 7.

5.2.2.2.2.2.2Even positioned groups of 2 from 5.2.2.2.2.2:

40 40 400 10

Total: 490 = 2 x 5 x 72 SF: 21 = 3 x 7.

5.2.2.3Odd positioned groups of 16 from 5.2.2:

5 5 6 400 400 6 4 20 70 30 1 30 50 4 30 30 40 10 5 6 400 200 1 30 50 10 400 400 400 6 40 40

Total: 3129 = 3 x 7 x 149.

5.2.2.4Even positioned groups of 16 from 5.2.2:

5 5 2 20 40 5 10 90 1 5 10 400 200 6 10 40 300 80 30 10 8 2 6 40 6 6 5 5 10 200 400 10

Total: 1967 = 7 x 281.

5.2.2.4.1Odd positioned letters from 5.2.2.4:

5 2 40 10 1 10 200 10 300 30 8 6 6 5 10 400

Total: 1043 = 7 x 149. SF: 156 = 22 x 3 x 13.

5.2.2.4.2Even positioned letters from 5.2.2.4:

5 20 5 90 5 400 6 40 80 10 2 40 6 5 200 10

Total: 924 = 22 x 3 x 7 x 11.

5.2.2.4.2.1Odd positioned groups of 4 from 5.2.2.4.2:

5 20 5 90 80 10 2 40

Total: 252 = 22 x 32 x 7.

5.2.2.4.2.2Even positioned groups of 4 from 5.2.2.4.2:

5 400 6 40 6 5 200 10

Total: 672 = 25 x 3 x 7.

5.2.2.4.2.2.1Odd positioned letters from 5.2.2.4.2.2:

5 6 6 200

Total: 217 = 7 x 31.

5.2.2.4.2.2.2Even positioned letters from 5.2.2.4.2.2:

400 40 5 10

Total: 455 = 5 x 7 x 13.

5.3Whether one begins with the first letter in feature 5, or with the Nth letter before taking every Nth after, only two values produce totals divisible by 13:

27 38

Total of the N values: 65 = 5 x 13.

5.4Divide the letters in feature 5 into two groups: prime numbers, and not prime numbers.

5.4.120 letters in feature 5 are prime numbers:

a) 2 4 17 23 34 36 38 43 44 52 61 70 87 89 97 108 118 120 123 127
b) 5 5 5  5  5  5  2  5  5  5  5  5  5  5  5  2   5   5   5   2

a) Word position.
b) Last letter.

Total of the prime numbers (b): 91 = 7 x 13.

5.4.2109 letters in feature 5 are not prime numbers:

a) 1    3   5  6 7  8   9 10  11 12 13 14 15 16  18 19 20 21 22  24 25
b) 200  30  50 6 20 400 1 400 70 6  30 4  6  20  70 6  30 4  1   30 4

a) 26 27 28 29 30 31 32 33   35  37  39 40 41 42   45 46 47  48 49  50
b) 50 4  4  50 30 8  30 200  30  20  40 20 40 40   10 10 200 90 200 1

a) 51  53 54 55  56  57 58  59 60  62 63 64 65 66 67 68 69  71 72 73
b) 1   6  10 200 400 10 200 10 6   10 6  40 1  40 10 10 40  30 6  400

a) 74  75  76  77 78 79 80 81 82 83 84 85 86   88   90  91 92 93 94 95
b) 400 400 200 40 1  1  30 10 50 10 10 10 400  400  400 6  6  1  40 1

a) 96  98  99 100 101 102 103 104 105 106 107  109 110 111 112 113 114
b) 40  300 50 80  200 30  10  10  30  8   300  40  6   40  40  6   6

a) 115 116 117  119  121 122  124 125 126  128 129 (Word position.)
b) 6   6   200  40   10  10   200 6   400  10  6   (Last letter.)

Total of the letters (b): 8407 = 7 x 1201.

5.5Nine of the last letters are in word positions that are multiples of 13.

30 50 40 5 1 1 6 10 200

Total of these letters: 343 = 73. SF: 21 = 3 x 7.

5.6When the last letters are added one by one, 18 times the total will be divisible by 7.

a)  b)  c)     a)  b)  c)     a)  b)  c)
16  20  1253   56  400 3129   84  10  5110
31  8   1554   58  200 3339   92  6   6342
41  40  1946   61  5   3360   95  1   6384
46  10  2016   64  40  3416   106 8   7147
49  200 2506   77  40  4998   113 6   7581
52  5   2513   81  10  5040   129 6   8498
a) Word position    b) Last letter.
c) Accumulated total at that point.

Total of the letters (b): 1015 = 5 x 7 x 29.

5.6.2When the last letters are added one by one, 18 times the total will be divisible by 13.

a)  b)  c)
24  30  1404      a) Word position.
38  2   1846      b) Last letter.
75  400 4758      c) Accumulated total.
87  5   5525
94  40  6383
101 200 7059
108 2   7449

Total of the letters (b): 679 = 7 x 97. SF: 104 = 23 x 13.

5.6.3When the last letters are added one by one, 58 times the result will be an odd total.

a)  b)  c)      a)  b)  c)      a)  b)  c)
2   5   205     57  10  3139    103 10  7099
3   30  235     58  200 3339s   104 10  7109
9   1   717     59  10  3349    105 30  7139
10  400 1117    60  6   3355    106 8   7147s
11  70  1187    65  1   3417    107 300 7447
12  6   1193    66  40  3457    108 2   7449t
13  30  1223    67  10  3467    109 40  7489
14  4   1227    68  10  3477    110 6   7495
15  6   1233    69  40  3517    111 40  7535
16  20  1253s   78  1   4999    112 40  7575
22  1   1369    87  5   5525t   113 6   7581s
34  5   1789    88  400 5925    114 6   7587
35  30  1819    93  1   6343    115 6   7593
43  5   1991    94  40  6383t   116 6   7599
50  1   2507    97  5   6429    117 200 7799
52  5   2513s   98  300 6729    120 5   7849
53  6   2519    99  50  6779    121 10  7859
54  10  2529    100 80  6859    122 10  7869
55  200 2729    101 200 7059t
56  400 3129s   102 30  7089
a) Word position.   b) Last letter.
c) Accumulated total.

Total of the last letters (b): 3409 = 7 x 487. SF: 494 = 2 x 13 x 19.

5.6.4When the last letters are added one by one, 71 times the result will be an even total.

a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)
1   200 200     30  30  1546    61  5   3360s   85  10  5120
4   5   240     31  8   1554s   62  10  3370    86  400 5520
5   50  290     32  30  1584    63  6   3376    89  5   5930
6   6   296     33  200 1784    64  40  3416s   90  400 6330
7   20  316     36  5   1824    70  5   3522    91  6   6336
8   400 716     37  20  1844    71  30  3552    92  6   6342s
17  5   1258    38  2   1846t   72  6   3558    95  1   6384s
18  70  1328    39  40  1886    73  400 3958    96  40  6424
19  6   1334    40  20  1906    74  400 4358    118 5   7804
20  30  1364    41  40  1946s   75  400 4758t   119 40  7844
21  4   1368    42  40  1986    76  200 4958    123 5   7874
23  5   1374    44  5   1996    77  40  4998s   124 200 8074
24  30  1404t   45  10  2006    79  1   5000    125 6   8080
25  4   1408    46  10  2016s   80  30  5030    126 400 8480
26  50  1458    47  200 2216    81  10  5040s   127 2   8482
27  4   1462    48  90  2306    82  50  5090    128 10  8492
28  4   1466    49  200 2506s   83  10  5100    129 6   8498s
29  50  1516    51  1   2508    84  10  5110s
a) Word position.   b) Last letter.
c) Accumulated total.

Total of the last letters (b): 5089 = 7 x 727.

5.6.5When the last letters are added one by one, 14 times the result will be a prime number.

a)  b)  c)     a)  b)  c)      a) Word position.
10  400 1117   67  10  3467    b) Last letter.
11  70  1187   69  40  3517    c) Accumulated total.
12  6   1193   78  1   4999
13  30  1223   93  1   6343
34  5   1789   99  50  6779
55  200 2729   104 10  7109
66  40  3457   109 40  7489

Total of the last letters (b): 903 = 3 x 7 x 43.

5.6.6When the last letters are added one by one, 115 times the result will not be a prime number.

a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)      a)  b)  c)
1   200 200     20  30  1364    36  5   1824    51  1   2508    70  5   3522    86  400 5520    103 10  7099    120 5   7849
2   5   205     21  4   1368    37  20  1844    52  5   2513s   71  30  3552    87  5   5525t   105 30  7139    121 10  7859
3   30  235     22  1   1369    38  2   1846t   53  6   2519    72  6   3558    88  400 5925    106 8   7147s   122 10  7869
4   5   240     23  5   1374    39  40  1886    54  10  2529    73  400 3958    89  5   5930    107 300 7447    123 5   7874
5   50  290     24  30  1404t   40  20  1906    56  400 3129s   74  400 4358    90  400 6330    108 2   7449t   124 200 8074
6   6   296     25  4   1408    41  40  1946s   57  10  3139    75  400 4758t   91  6   6336    110 6   7495    125 6   8080
7   20  316     26  50  1458    42  40  1986    58  200 3339s   76  200 4958    92  6   6342s   111 40  7535    126 400 8480
8   400 716     27  4   1462    43  5   1991    59  10  3349    77  40  4998s   94  40  6383t   112 40  7575    127 2   8482
9   1   717     28  4   1466    44  5   1996    60  6   3355    79  1   5000    95  1   6384s   113 6   7581s   128 10  8492
14  4   1227    29  50  1516    45  10  2006    61  5   3360s   80  30  5030    96  40  6424    114 6   7587    129 6   8498s
15  6   1233    30  30  1546    46  10  2016s   62  10  3370    81  10  5040s   97  5   6429    115 6   7593
16  20  1253s   31  8   1554s   47  200 2216    63  6   3376    82  50  5090    98  300 6729    116 6   7599
17  5   1258    32  30  1584    48  90  2306    64  40  3416s   83  10  5100    100 80  6859    117 200 7799
18  70  1328    33  200 1784    49  200 2506s   65  1   3417    84  10  5110s   101 200 7059t   118 5   7804
19  6   1334    35  30  1819    50  1   2507    68  10  3477    85  10  5120    102 30  7089    119 40  7844
a) Word position.   b) Last letter.
c) Accumulated total.

Total of the 115 last letters: 7595 = 5 x 72 x 31.

5.7The number of times a letter occurred can also divide the letters into two opposing complementary groups.

5.7.1Last letters where the number of occurrences is a prime number:

a) Last letter: 2 4 5  6  8 10 30 40 50 70 300
b) Occurrences: 3 5 17 17 2 17 11 13 5  2  2

Total of the letters (a): 525 = 3 x 52 x 7.

5.7.2Last letters where the number of occurrences is not a prime number:

a) Last letter: 1 20 80 90 200 400
b) Occurrences: 9 4  1  1  10  10

Total of the letters (a): 791 = 7 x 113.

5.7.3The difference between 5.7.1 and 5.7.2: 266 = 2 x 7 x 19. SF: 28 = 22 x 7.

5.8Ten of the last letters divide the rest of the list into two groups: what is between their Nth and Nth last occurrences, and what is not in between them.

Between & Not Between The Nth & Nth Last Occurrences Of The Last Letter Of A Word
Last LetterNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
563696 = 24 x 3 x 7 x 11.4802 = 2 x 74
571526 = 2 x 7 x 109.6972 = 22 x 3 x 7 x 83.
3016874 = 2 x 7 x 491.1624 = 23 x 7 x 29. SF: 42 = 2 x 3 x 7.
626881 = 7 x 983.1617 = 3 x 72 x 11. SF: 28 = 22 x 7.
40017364 = 22 x 7 x 263.1134 = 2 x 34 x 7. SF: 21 = 3 x 7.
40041162 = 2 x 7 x 83.7336 = 23 x 7 x 131.
40050 =8498 = 2 x 7 x 607. SF: 616 = 23 x 7 x 11.
132492 = 22 x 7 x 89.6006 = 2 x 3 x 7 x 11 x 13.
4035509 = 7 x 787.2989 = 72 x 61.
1035320 = 23 x 5 x 7 x 19.3178 = 2 x 7 x 227.

5.8.1The sum of the Nth/Nth last occurrences (second column of table): 35 = 5 x 7.

5.8.2The lowest letter in the table is 1, and its Nth values is 3. The highest letter in the table is 400, but it appeared three times. Its Nth values: 1, 4 and 5. Lowest and highest together the Nth values would be 13.

5.8.3Providentially, the only two letters in the table that are not multiples of five are 6 and 1.

Letters Not First Or Last In A Word

Letters not first/last in a word:
10 1 40 5 6 300 200 2 40 10 40 6 200 5 6 300 5 400 10 90 2 1 5 6 70 1 90 6 50 10 30 300 10 5 6 300 10 400 10 90 2 1 5 6 70 10 200 5 6 1 5 70 40 6 50 10 70 40 40 6 70 50 400 1 5 10 1 40 5 6 300 50 20 2 400 10 100 70 7 7 50 8 200 30 5 20 1 200 300 6 40 100 200 2 70 7 2 50 5 80 200 10 400 300 200 400 400 8 200 80 10 6 5 6 70 7 2 400 10 5 60 400 200 400 50 5 5 10 1 20 40 90 1 5 70 6 2 6 90 200 6 1 40 10 6 5 6 30 10 30 5 100 200 2 90 1 6 50 200 70 6 1 30 5 6 2 1 6 400 100 4 10 300 5 6 6 200 1 20 5 6 70 200 90 20 5 10 40 100 4 30 1 2 3 30 90 6 20 300 6 300 50 400 300 200 1 80 30 40 6 100 10 6 300 200 6 300 30 20 300 30 2 10 50 80 30 50 300 2 200 50 6 100 300 50 30 20 4 6 70 6 4 400 6 6 200 30 40 4 8 20 10 400 10 5 6 40 60 400 10 50 10 2 10 70 100 100 6 10 400

6Total of letters not first or last in a word: 20538 = 2 x 32 x 7 x 163.

6.1Exactly 26 (2 x 13) pairs of letters, Nth and Nth last can be found from the above list that together are divisible by 7.

a) Nth position:      4   7   12  26  28  33  36  40  44  53  55  56  66  67
b) Value:             5   200 6   1   6   10  300 90  6   40  50  10  10  1
c) Nth last position: 267 264 259 245 243 238 235 231 227 218 216 215 205 204
d) Value:             100 10  400 6   400 4   50  50  50  30  6   200 200 300
e) Sum:               105 210 406 7   406 14  350 140 56  70  56  210 210 301

a) 72  75  87  97  98  100 103 104 106 124 133 134
b) 50  400 1   2   50  80  400 300 400 400 1   5
c) 199 196 184 174 173 171 168 167 165 147 138 137
d) 300 90  90  5   300 4   6   1   6   6   6   2
e) 350 490 91  7   350 84  406 301 406 406 7   7

Sum of the positions (a + c): 7046 = 2 x 13 x 271. SF: 286 = 2 x 11 x 13. SF: 26 = 2 x 13.

6.4Precisely 56 paired groups of letters positioned Nth and Nth last can also be found that together are multiples of 13.

a) 1    2    7    7     8     9     12    13   13    14    19   21
b) 15   31   44   117   97    131   124   48   129   125   82   91
c) 2145 4030 5655 16965 13026 19006 18447 5330 18174 17836 9152 10270

a) 24   26   26   27  27   27   27    28    31  31   31    36   36
b) 36   43   72   30  35   70   99    119   35  70   99    70   99
c) 1716 2886 7696 572 1053 7033 10881 14859 481 6461 10309 5980 9828

a) 38   38    41    42    43   43    44   45    48    49    50   51
b) 50   130   106   127   93   105   72   117   133   129   63   130
c) 1716 14547 10621 13611 7644 10010 4810 11310 13312 12844 2236 12831

a) 53   54   57  58   65   65   68   68   71   76   77   79   86   94
b) 74   94   60  81   85   113  95   107  99   90   118  110  113  105
c) 3913 6526 572 3705 3224 8346 4264 7163 3848 1625 6578 5278 5122 2366

a) 96   101  104  116  121
b) 107  104  123  135  134
c) 2899 1417 3614 2626 1729

a) Starting position of first group. Nth from the beginning.
       Starting position of second group. Nth from the end.
b) Ending position of first group. Nth from the end.
       Ending position of second group. Nth from the end.
c) Total of both groups.

Total of the start/end positions (a + b): 7657 = 13 x 19 x 31. SF: 63 = 32 x 7. SF: 13.

6.6.1Taking every Nth letter from feature 6, the following values of N produce totals divisible by 7:

10 11 12 13 17 39 46 69 78 79 80 87 94 98 107 108 112 113 119 122

Total of the N values: 1414 = 2 x 7 x 101.

6.6.2Whether one begins with the first letter in feature 6 and then every Nth after, or just begins with the Nth letter, only two values work in both cases:

98 119

Total of the N values: 217 = 7 x 31. Providentially both numbers are multiples of 7.

6.6.3Taking every Nth letter from feature 6, the following values of N produce totals divisible by 13:

10 27 51 61 65 66 67 69 116

Total of the N values: 532 = 22 x 7 x 19.

6.7105 sub-features can be found when the list in feature 6 is broken down into alternating groups of N-number of letters and this is repeated on the results.

6.8Divide the 270 letters that are not first or last in a word into two groups: odd and even valued.

6.8.146 are odd valued:

a) 2 4 14 17 22 23 26 34 42 43 48 50 51 64 65 67 69 79 80 85 87 96 99
b) 1 5 5  5  1  5  1  5  1  5  5  1  5  1  5  1  5  7  7  5  1  7  5

a) 113 116 120 126 127 129 133 134 142 146 151 156 162 164 167 174 178
b) 5   7   5   5   5   1   1   5   1   5   5   1   1   5   1   5   1

a) 180 186 192 194 206 255 (Position in feature 6's list.)
b) 5   5   1   3   1   5   (Letter value.)

Total of the odd valued letters: 168 = 23 x 3 x 7.

6.8.2224 (25 x 7) are even valued. Their total: 20370 = 2 x 3 x 5 x 7 x 97.

6.8.3The difference between 6.8.1 and 6.8.2 is a symmetrical number: 20202 = 2 x 3 x 7 x 13 x 37.

6.9 Divide the 270 letters in feature 6 into four groups depending on whether they are odd/even valued, and also whether they are in an odd/even position in feature 6.

  1. Total of letters that are odd positioned and odd valued: 72.
  2. Total of letters that are odd positioned and even valued: 11286.
  3. Total of letters that are even positioned and odd valued: 96.
  4. Total of letters that are even positioned and even valued: 9084.

6.9.1Groups A and D are purely odd, or purely even: 72 + 9084 = 9156 = 22 x 3 x 7 x 109.

6.9.2Groups B and C are mixed: 11286 + 96 = 11382 = 2 x 3 x 7 x 271. (Providentially, the positions of these two mixed groups add up to 11382, which factors as 2 x 3 x 7 x 271).

6.1043 of the letters from feature 6 are prime numbers.

a) 4 8 14 17 21 23 34 41 43 48 51 65 69 74 79 80 85 94 96 97 99 113 116
b) 5 2 5  5  2  5  5  2  5  5  5  5  5  2  7  7  5  2  7  2  5  5   7

a) 117 120 126 127 134 137 146 151 154 164 166 174 180 186 193 194 222
b) 2   5   5   5   5   2   5   5   2   5   2   5   5   5   2   3   2

a) 229 255 263 (Position in feature 6.)
b) 2   5   2   (Prime number.)

There is no feature with the total of the letters, but the total of their positions (a) is something else: 4809 = 3 x 7 x 229.

6.11Extract every 13th letter feature 6:

200 1 10 70 5 70 40 300 2 20 40 1 400 70 30 30 30 300 30 10

Total of the letters: 1659 = 3 x 7 x 79.

6.12Beginning with the first letter in feature 6, pull every Nth letter after with N increasing by one each time.

a) 1  2 4 7   11 16  22 29 37 46 56 67 79 92  106 121 137 154 172 191 211 232 254
b) 1  2 3 4   5  6   7  8  9  10 11 12 13 14  15  16  17  18  19  20  21  22  23
c) 10 1 5 200 40 300 1  50 10 10 10 1  7  100 400 60  2   2   10  30  100 6   10

a) Position in feature 6.
b) Increasing N.
c) Letter found.

Total of the letters found: 1365 = 3 x 5 x 7 x 13. SF: 28 = 22 x 7.

6.13When the letters in feature 6 are added one by one, 37 times the total will be divisible by 7.

a)  b)  c)         a)  b)  c)         a)  b)  c)
4   5   56         116 7   8953       197 6   13720
17  5   1176       124 400 10430      208 30  15407
32  300 2247       128 10  10500      214 300 15869
35  6   2268       130 20  10521      230 200 17479
41  2   3080       144 10  11088      232 6   17535
58  40  3675       153 200 11480      238 4   18039
64  1   4242       166 2   11949      247 30  18767
68  40  4298       168 6   11956      255 5   19264
88  200 5789       171 4   12460      264 10  19852
98  50  6566       174 5   12775      265 70  19922
107 400 8561       180 5   13013      270 400 20538
114 6   8876       188 40  13454
115 70  8946       194 3   13594
a) Position in feature 6.
b) Letter not first/last.
c) Accumulated total at that point.

Total of the letters (b): 2898 = 2 x 32 x 7 x 23.

6.14For each letter in feature 6 add up its positions within the list.

6.14.1Letters whose position total in feature 6 is an odd number.

a) Letter value:   1    6    7   10   60  90  100  200  400
b) Position total: 1825 5363 371 3521 379 893 1657 2477 2271

Total of the letters (a): 140 = 22 x 5 x 7.

6.14.2Letters whose position total in feature 6 is an even number.

a) Letter value:   2    3   4    5    8   20   30   40   50   70   80  300
b) Position total: 1816 194 1090 2428 440 1558 2318 1528 2060 1510 642 2244

Total of the letters (a): 130 = 2 x 5 x 13.

6.15Divide the 270 letters in feature 6 into alternating groups of M and N-number of letters where M and N are multiples of 7 and 13.

6.15.1Alternating groups of 13 and 77.

6.15.1.1Groups of 13: 2604 = 22 x 3 x 7 x 31.

6.15.1.2Groups of 77: 17934 = 2 x 3 x 72 x 61.

6.15.2Alternating groups of 70 and 130.

6.15.2.1Groups of 70: 10801 = 7 x 1543.

6.15.2.2Groups of 130: 9737 = 7 x 13 x 107.

6.16Precisely 14 of the letters in feature 6 divide the rest of the letters into two groups: what is between their Nth and Nth last occurrences, and what is not between those occurrences.

Between & Not Between The Nth & Nth Last Occurrences Of Letters That Are Not First Or Last
LetterNth & Nth Last OccurrenceTotal Of Sums In BetweenTotal Of Sums Not In Between
10120118 = 2 x 3 x 7 x 479.420 = 22 x 3 x 5 x 7.
10616261 = 7 x 23 x 101.4277 = 7 x 13 x 47.
10713769 = 72 x 281.6769 = 7 x 967.
10131631 = 7 x 233.18907 = 7 x 37 x 73. SF: 117 = 32 x 13.
559674 = 2 x 7 x 691. SF: 700 = 22 x 52 x 7. SF: 21 = 3 x 7.10864 = 24 x 7 x 97. SF: 112 = 24 x 7.
6416835 = 5 x 7 x 13 x 37.3703 = 7 x 232
6615771 = 3 x 7 x 751.4767 = 3 x 7 x 227.
618805 = 5 x 7 x 23. SF: 35 = 5 x 7.19733 = 7 x 2819.
300215806 = 2 x 7 x 1129.4732 = 22 x 7 x 132
271778 = 2 x 7 x 127.18760 = 23 x 5 x 7 x 67.
90211438 = 2 x 7 x 19 x 43.9100 = 22 x 52 x 7 x 13.
5071099 = 7 x 157.19439 = 7 x 2777.
20114140 = 22 x 5 x 7 x 101. SF: 117 = 32 x 13.6398 = 2 x 7 x 457.
721232 = 24 x 7 x 11. SF: 26 = 2 x 13.19306 = 2 x 72 x 197.

6.16.1The 14 letters from column 1:

10 10 10 10 5 6 6 6 300 2 90 50 20 7

Total of the letters: 532 = 22 x 7 x 19.

6.16.2Since there are 270 letters in feature 6, this points out the importance of the factor 3. (270 = 2 x 33 x 5.) Providentially, the numbers in the second column add up to 81 (34), whose factors consist only of 3.

6.16.3The fourteen letters are listed along with their Nth and Nth last positions in feature 6.

a) 10  10  10  10  5   6   6   6   300 2   90  50  20  7
b) 1   6   7   13  5   4   6   18  2   7   2   7   1   2
c) 1   37  39  111 34  24  35  145 16  117 27  125 73  80
d) 269 252 223 128 164 244 239 161 228 137 184 158 251 96

a) Letter
b) Nth/Nth last occurrence.
c) Position of Nth occurrence.
d) Position of Nth last occurrence.

Total of the Nth and Nth last positions (c + d): 3598 = 2 x 7 x 257. SF: 266 = 2 x 7 x 19. SF: 28 = 22 x 7.

6.16.4Three of the letters in column 1 are prime numbers (5, 2, and 7). Their total: 14 (2 x 7).

6.16.5The Nth/Nth last values for 5, 2 and 7 are 5, 7 and 2, which again totals 14 (2 x 7).

6.16.6The remaining numbers in column 1 are not prime numbers. Their total: 518 = 2 x 7 x 37.

6.17Place the 270 letters from feature 6 into a 18 x 15 rectangle.

6.17.1The perimeter, or outside of this rectangle: 5019 = 3 x 7 x 239.

6.17.2The inside of the rectangle: 15519 = 3 x 7 x 739. SF: 749 = 7 x 107.

6.17.3Four outlines on the rectangle: 11984 = 24 x 7 x 107.

6.17.4First and last columns: 2964 = 22 x 3 x 13 x 19. SF: 39 = 3 x 13.

6.17.5Odd positioned rows: 10959 = 3 x 13 x 281.

6.17.63 x 3 squares: 9945 = 32 x 5 x 13 x 17.

6.17.7Alternate pattern: 9594 = 2 x 3 x 3 x 13 x 41.

6.17.7Three inner rectangles: 6965 = 5 x 7 x 199.

6.17.8Checker board: 11843 = 13 x 911.SF:= 924 = 22 x 3 x 7 x 11.

All The Letters

7.1Exactly 42 pairs of letters positioned Nth and Nth last are together divisible by 7.

a) Nth letter: 5   7   9   13  15  18  21  25  28  29  30  36  58  63
b) Value:      200 5   5   300 5   200 10  30  400 100 200 6   50  20
c) Nth last:   524 522 520 516 514 511 508 504 501 500 499 493 471 466
d) Value:      10  100 2   400 2   10  200 40  6   5   10  8   90  50
e) Sum:        210 105 7   700 7   210 210 70  406 105 210 14  140 70

a) 81  84  91  106 127 129 132 133 137 141 154 155 171 176 178 179 182
b) 1   40  1   50  1   30  1   40  6   40  400 10  8   5   50  20  1
c) 448 445 438 423 402 400 397 396 392 388 375 374 358 353 351 350 347
d) 6   2   20  6   300 40  90  30  50  30  90  200 6   100 6   400 6
e) 7   42  21  56  301 70  91  70  56  70  490 210 14  105 56  420 7

a) 185 205 208 209 213 234 235 236 243 244 250
b) 1   50  5   80  2   10  2   6   6   1   10
c) 344 324 321 320 316 295 294 293 286 285 279
d) 90  90  2   200 5   200 40  1   400 6   200
e) 91  140 7   280 7   210 42  7   406 7   210

Sum of the positions (a + c): 22218 = 2 x 3 x 7 x 232. (Two factors of 23 fit the purpose of the prophecy. It is a warning to people, and the number 23 matches the number of chromosome pairs in the average person.)

7.2.1Sum of the odd positioned letters: 15652 = 22 x 7 x 13 x 43.

7.2.2Sum of the even positioned letters: 17983 = 72 x 367.

7.3We can take every Nth letter, or begin with the first letter and take every Nth after to extract totals of divisible by 7 in four different ways. N works both ways when N is 2, 35, 43, or 123. Providentially, the sum of these four: 203 = 7 x 29.

7.4The same applies for finding totals divisible by 13. N works both ways when N is either 2 or 33. And once again the sum of the two is a multiple of 7: 35 (5 x 7).

7.5Taking every Nth letter, the following values of N produce totals divisible by 13:

6 19 30 31 42 54 62 85 151 155 179 196 233 254 260

Total of the N values: 1757 = 7 x 251.

7.6Over 1300 sub-features are possible when building on features 7.2.1 and 7.2.2 by taking alternating groups of N-number of letters, and repeating the exercise on the results.

7.7Exactly 101 letters are odd valued. The 101 is a visual representation of the one God who is beginning and end. 427 (7 x 61) letters are even valued. Curiously, the total of the positions of the odd valued letters is 22172 (22 x 23 x 241), and the total of the positions of the even valued letters is 117484 (22 x 23 x 1277). Both numbers are multiples of 23, the number of man.

If one were take from the 101 odd valued letters, every other letter (i.e. the odd positioned from the list), the total would be 169 (132). And if one were to take from the 427 even valued letters, every other letter (i.e. the even positioned from the list), the total would be 16510 (2 x 5 x 13 x 127).

Although the total of the odd valued letters, and the total of the even valued letters have no numeric features, there is still something hidden in this division of the letters.

7.7.1Odd and even is determined by the last digit of a number. Using the first digit achieves something else. 269 letters have a first digit that is an odd number. Once again there is no numeric feature with their total. The total of their positions: 67758 = 2 x 3 x 23 x 491. 259 (7 x 37) letters have an even valued first digit. Again the total has no numeric feature. The total of their positions: 71898 = 2 x 3 x 23 x 521. Factor 23 appears again. This is much rarer than 7 or 13. Providentially, three factors are common (2, 3, and 23), just like in feature 7.7.

7.891 (7 x 13) letters are prime numbers, but there is no other feature. 437 letters (19 x 23. SF: 42 = 2 x 3 x 7.) are not prime numbers. Their total: 33267 = 3 x 13 x 853.

7.8.199 letters are in positions that are prime numbers.

a) 2  3 5   7 11 13  17  19 23 29  31 37  41  43 47 53 59 61 67 71  73
b) 10 1 200 5 30 300 100 2  10 100 1  300 400 90 1  4  6  10 6  300 6

a) 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167
b) 6  30 10 1  70  6   50  10  70  1   10  6   1   2   40  6   5   7

a) 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263
b) 10  20  5   2   300 100 2   1   400 6   8   80  6   5   40  400 5

a) 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367
b) 30  20  5   6   200 1   70  1   50  10  70  5   6   1   100 5   40

a) 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463
b) 70  5   40  1   90  20  2   8   30  10  6   300 40  50  200 6   300

a) 467 479 487 491 499 503 509 521 523 (Letter position.)
b) 30  8   2   10  10  5   80  6   6   (Letter value.)

Total of the letters (b): 5558 = 2 x 7 x 397. SF: 406 = 2 x 7 x 29.

7.8.2This means the remaining 429 (3 x 11 x 13) letters that are not in positions that are prime numbers is also a multiple of 7: 28077 = 3 x 72 x 191. SF: 208 = 24 x 13. SF: 21 = 3 x 7.

7.8.3The difference between the letters in positions that are prime numbers from those that are not: 22519 = 7 x 3217. SF: 3224 = 23 x 13 x 31.

7.9When the letters are added one by one, 82 times the accumulated total will be a multiple of 7.

a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)
16  50  714        177 10  8834       313 50  18592      413 300 25389
20  6   1022       179 20  8904       321 2   18942      416 30  25620
46  2   3192       183 200 9310       324 90  19082      421 30  25774
57  6   3451       185 1   9401       326 6   19089      426 30  26250
59  6   3507       189 6   9912       336 30  19866      437 6   27160
65  300 3913       198 200 10563      339 400 20272      440 30  27510
68  10  3934       201 6   10577      342 6   20293      458 6   28546
93  5   5229       202 70  10647      346 1   20391      460 50  28602
97  1   5243       203 7   10654      348 400 20797      463 300 29008
99  30  5278       213 2   11410      364 200 22288      468 20  29120
102 40  5390       215 10  11620      366 20  22309      478 5   29911
109 10  5586       221 20  12551      372 40  22407      483 400 30765
110 70  5656       237 2   13888      373 70  22477      490 4   31052
114 40  5810       240 40  13944      377 40  22827      499 10  31556
128 5   6594       254 60  14567      380 10  22848      503 5   31577
134 200 6881       262 40  15757      382 30  22883      510 50  32417
137 6   6902       266 5   15813      384 100 23023      513 40  32473
147 300 7658       277 5   16051      390 2   23366      522 100 33173
152 1   7791       283 200 16933      395 6   23555      528 6   33635
162 40  8484       288 90  17437      398 6   23681
172 200 8778       308 30  18501      402 300 24241
a) Letter position.    b) Letter value.    c) Accumulated total.

Total of the positions where this happens (a): 23374 = 2 x 13 x 29 x 31.

7.9.2When the letters are added one by one, 42 times the accumulated total will be a multiple of 13.

a)  b)  c)         a)  b)  c)         a)  b)  c)         a)  b)  c)
18  200 1014       123 80  6175       250 10  14456      399 200 23881
36  6   2301       130 6   6630       261 10  15717      413 300 25389
48  5   3198       146 20  7358       265 6   15808      427 10  26260
54  6   3354       155 10  8203       328 10  19149      451 30  27976
56  90  3445       157 6   8229       342 6   20293      456 2   28340
61  10  3523       163 5   8489       347 6   20397      468 20  29120
65  300 3913       173 10  8788       359 5   22035      484 6   30771
69  5   3939       188 5   9906       369 5   22360      494 20  31096
90  200 5213       202 70  10647      373 70  22477      503 5   31577
99  30  5278       241 5   13949      384 100 23023      524 10  33189
a) Letter position.    b) Letter value.    c) Accumulated total.

Total of the positions where this happens (a): 10171 = 7 x 1453.

7.9.3When the letters are added one by one, 241 times the accumulated total will be an odd number. The total of these letters: 17003 = 72 x 347.

7.9.4When the letters are added one by one, 287 (7 x 41) times the accumulated total will be an even number. The total of these letters: 16632 = 23 x 33 x 7 x 11.

7.9.5When the letters are added one by one, 121 times the letter position, letter value, and the accumulated total will all be even valued, and 32 times all three will be odd valued. Considering both categories as being purely odd/even, the total of these letters would be 8866 (2 x 11 x 13 x 31).

7.10Divide the letters into groups of 8 and add up each group.

7.10.1.1Odd valued groups of 8: 14007 = 3 x 7 x 23 x 29.

7.10.1.2Even valued groups of 8: 19628 = 22 x 7 x 701.

7.10.2Divide the letters into groups of 11 and add up each group.

7.10.2.1Odd valued groups of 11: 13951 = 7 x 1993.

7.10.2.2Even valued groups of 11: 19684 = 22 x 7 x 19 x 37.

7.10.3Divide the letters into groups of 22 and add up each group.

7.10.3.1Odd valued groups of 22: 14189 = 7 x 2027.

7.10.3.2Even valued groups of 22: 19446 = 2 x 3 x 7 x 463.

7.10.4Divide the letters into groups of 44 and add up each group.

7.10.4.1Odd valued groups of 44: 25949 = 7 x 11 x 337.

7.10.4.2Even valued groups of 44: 7686 = 2 x 32 x 7 x 61.

7.11Divide the letters into alternating groups of M and N-number of letters, where M and N are multiples of 7 or 13.

7.11.1Alternating groups of 13 and 35.

7.11.1.1Groups of 13: 7861 = 7 x 1123.

7.11.1.2Groups of 35: 25774 = 2 x 72 x 263.

7.11.2Alternating groups of 104 and 28.

7.11.2.1Groups of 104: 27174 = 2 x 3 x 7 x 647.

7.11.2.2Groups of 28: 6461 = 7 x 13 x 71. SF: 91 = 7 x 13.

7.11.3Alternating groups of 49 and 39.

7.11.3.1Groups of 49: 18130 = 2 x 5 x 72 x 37.

7.11.3.2Groups of 39: 15505 = 5 x 7 x 443. SF: 455 = 5 x 7 x 13.

7.11.4Alternating groups of 238 and 52.

7.11.4.1Groups of 238: 29890 = 2 x 5 x 72 x 61.

7.11.4.2Groups of 52: 3745 = 5 x 7 x 107. SF: 119 = 7 x 17.

7.11.5Alternating groups of 78 and 98.

7.11.5.1Groups of 78: 15540 = 22 x 3 x 5 x 7 x 37. SF: 56 = 23 x 7. SF: 13.

7.11.5.2Groups of 98: 18095 = 5 x 7 x 11 x 47. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.

Conclusion

A multitude of numeric features based on Revelation 1:8's principle of complementary opposites tie Deuteronomy 31:14-17 with its fulfillment in Isaiah 8:13-17. It is uncertain when God hid His face from Israel, but it is clear this was the case by the time Isaiah wrote his prophecy. The natural question is when this will end. When will God reveal His face to Israel? This is found in Ezekiel 39:28-29 after Magog's failed invasion. Revelation 20:7-8 places this 1000 years after Armageddon. Israel has a long journey to complete.

Notes

  1. English reference quotes are from the Revised Standard Version, Thomas Nelson Inc., 1972.
  2. Hebrew text is from, The Biblia Hebraica Stuttgartensia (BHS), edited by K. Elliger and W. Rudolph of the Deutsche Biblegesselchaft (German Bible Society) 1983.

Numeric Study Links

The Rational Bible

Bible Issues

presents the Bible as a rational book, as history, economics, and prophecy (with an extensive look at the book of Revelation) also covering a diverse range of topics. (Active site.)




The foolishness of God is greater than anything we can imagine (1 Corinthians 1:25). On the off chance the numbers are a form of foolishness, do not spend too much time on them.