God Hides His Face From Israel
Near the end of Moses' life, God told him what would happen to Israel. They would abandon the covenant, worship strange gods and do wickedly. God would hide His face from them. (Deuteronomy 31:14-17) This prophecy came with the visible sign of the pillar of cloud as confirmation. (Deuteronomy 18:21-22, 31:15) The prediction came true even before Isaiah's time, but the majority in Israel didn't realize it. (Isaiah 8:13-17) These two passages hold a very important spiritual lesson, and this is backed up by the numbers when the two are combined and treated as one.
14 And the LORD said to Moses, "Behold, the days approach when you must die; call Joshua, and present yourselves in the tent of meeting, that I may commission him." And Moses and Joshua went and presented themselves in the tent of meeting. 15 And the LORD appeared in the tent in a pillar of cloud; and the pillar of cloud stood by the door of the tent. 16 And the LORD said to Moses, "Behold, you are about to sleep with your fathers; then this people will rise and play the harlot after the strange gods of the land, where they go to be among them, and they will forsake me and break my covenant which I have made with them. 17 Then my anger will be kindled against them in that day, and I will forsake them and hide my face from them, and they will be devoured; and many evils and troubles will come upon them, so that they will say in that day, `Have not these evils come upon us because our God is not among us?' (Deuteronomy 31:14-17)1
Breaking the covenant means God will be angry with Israel. God will abandon them and hide
His face. They will become prey to other nations and peoples. Many evils and troubles will come upon them. Many evils and troubles
means this will happen again and again until they recognize what is happening is because they broke the covenant and that God is not with them. Thus prophetic warnings and events can repeat.
The priests were to bless Israel by invoking God’s name and asking God to show His face and make it shine upon His people. (Numbers 6:24-27) God hiding His face would nullify this blessing. And if Israel received any other blessings at all, they would be muted.
The many wars Israel has fought and is fighting even today with Hamas and Hezbollah, are because of the broken covenant.
5 | 4 | 3 | 2 | 1 | :A | |||||||||||
55 | 345 | 31 | 26 | 257 | :B | |||||||||||
16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | :C |
50 | 5 | 5 | 300 | 40 | 30 | 1 | 5 | 6 | 5 | 10 | 200 | 40 | 1 | 10 | 6 | :D |
הן | משה | אל | יהוה | ויאמר | :E | |||||||||||
9 | 8 | 7 | 6 | :A | ||||||||||||
301 | 476 | 80 | 308 | :B | ||||||||||||
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | :C | |
1 | 200 | 100 | 400 | 6 | 40 | 30 | 20 | 10 | 40 | 10 | 6 | 2 | 200 | 100 | :D | |
קרא | למות | ימיך | קרבו | :E | ||||||||||||
12 | 11 | 10 | :A | |||||||||||||
519 | 391 | 401 | :B | |||||||||||||
45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | :C | ||
6 | 2 | 90 | 10 | 400 | 5 | 6 | 70 | 300 | 6 | 5 | 10 | 400 | 1 | :D | ||
והתיצבו | יהושע | את | :E | |||||||||||||
15 | 14 | 13 | :A | |||||||||||||
159 | 120 | 38 | :B | |||||||||||||
59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | :C | ||
6 | 50 | 6 | 90 | 1 | 6 | 4 | 70 | 6 | 40 | 30 | 5 | 1 | 2 | :D | ||
ואצונו | מועד | באהל | :E | |||||||||||||
18 | 17 | 16 | :A | |||||||||||||
397 | 345 | 66 | :B | |||||||||||||
72 | 71 | 70 | 69 | 68 | 67 | 66 | 65 | 64 | 63 | 62 | 61 | 60 | :C | |||
70 | 300 | 6 | 5 | 10 | 6 | 5 | 300 | 40 | 20 | 30 | 10 | 6 | :D | |||
ויהושע | משה | וילך | :E | |||||||||||||
21 | 20 | 19 | :A | |||||||||||||
120 | 38 | 524 | :B | |||||||||||||
87 | 86 | 85 | 84 | 83 | 82 | 81 | 80 | 79 | 78 | 77 | 76 | 75 | 74 | 73 | :C | |
4 | 70 | 6 | 40 | 30 | 5 | 1 | 2 | 6 | 2 | 90 | 10 | 400 | 10 | 6 | :D | |
מועד | באהל | ויתיצבו | :E | |||||||||||||
24 | 23 | 22 | :A | |||||||||||||
38 | 26 | 217 | :B | |||||||||||||
99 | 98 | 97 | 96 | 95 | 94 | 93 | 92 | 91 | 90 | 89 | 88 | :C | ||||
30 | 5 | 1 | 2 | 5 | 6 | 5 | 10 | 1 | 200 | 10 | 6 | :D | ||||
באהל | יהוה | וירא | :E | |||||||||||||
27 | 26 | 25 | :A | |||||||||||||
130 | 170 | 122 | :B | |||||||||||||
112 | 111 | 110 | 109 | 108 | 107 | 106 | 105 | 104 | 103 | 102 | 101 | 100 | :C | |||
4 | 40 | 70 | 10 | 6 | 50 | 50 | 70 | 4 | 6 | 40 | 70 | 2 | :D | |||
ויעמד | ענן | בעמוד | :E | |||||||||||||
31 | 30 | 29 | 28 | :A | ||||||||||||
488 | 100 | 175 | 120 | :B | ||||||||||||
125 | 124 | 123 | 122 | 121 | 120 | 119 | 118 | 117 | 116 | 115 | 114 | 113 | :C | |||
8 | 400 | 80 | 30 | 70 | 50 | 50 | 70 | 5 | 4 | 6 | 40 | 70 | :D | |||
פתח | על | הענן | עמוד | :E | ||||||||||||
35 | 34 | 33 | 32 | :A | ||||||||||||
31 | 26 | 257 | 41 | :B | ||||||||||||
140 | 139 | 138 | 137 | 136 | 135 | 134 | 133 | 132 | 131 | 130 | 129 | 128 | 127 | 126 | :C | |
30 | 1 | 5 | 6 | 5 | 10 | 200 | 40 | 1 | 10 | 6 | 30 | 5 | 1 | 5 | :D | |
אל | יהוה | ויאמר | האהל | :E | ||||||||||||
40 | 39 | 38 | 37 | 36 | :A | |||||||||||
433 | 110 | 322 | 75 | 345 | :B | |||||||||||
156 | 155 | 154 | 153 | 152 | 151 | 150 | 149 | 148 | 147 | 146 | 145 | 144 | 143 | 142 | 141 | :C |
20 | 10 | 400 | 2 | 1 | 40 | 70 | 2 | 20 | 300 | 20 | 50 | 5 | 5 | 300 | 40 | :D |
אבתיך | עם | שכב | הנך | משה | :E | |||||||||||
44 | 43 | 42 | 41 | :A | ||||||||||||
68 | 17 | 115 | 146 | :B | ||||||||||||
169 | 168 | 167 | 166 | 165 | 164 | 163 | 162 | 161 | 160 | 159 | 158 | 157 | :C | |||
5 | 50 | 7 | 6 | 5 | 7 | 5 | 40 | 70 | 5 | 40 | 100 | 6 | :D | |||
וזנה | הזה | העם | וקם | :E | ||||||||||||
48 | 47 | 46 | 45 | :A | ||||||||||||
296 | 270 | 46 | 219 | :B | ||||||||||||
184 | 183 | 182 | 181 | 180 | 179 | 178 | 177 | 176 | 175 | 174 | 173 | 172 | 171 | 170 | :C | |
90 | 200 | 1 | 5 | 200 | 20 | 50 | 10 | 5 | 30 | 1 | 10 | 200 | 8 | 1 | :D | |
הארץ | נכר | אלהי | אחרי | :E | ||||||||||||
53 | 52 | 51 | 50 | 49 | :A | |||||||||||
310 | 345 | 3 | 12 | 501 | :B | |||||||||||
200 | 199 | 198 | 197 | 196 | 195 | 194 | 193 | 192 | 191 | 190 | 189 | 188 | 187 | 186 | 185 | :C |
6 | 2 | 200 | 100 | 2 | 5 | 40 | 300 | 1 | 2 | 1 | 6 | 5 | 200 | 300 | 1 | :D |
בקרבו | שמה | בא | הוא | אשר | :E | |||||||||||
56 | 55 | 54 | :A | |||||||||||||
401 | 291 | 145 | :B | |||||||||||||
212 | 211 | 210 | 209 | 208 | 207 | 206 | 205 | 204 | 203 | 202 | 201 | :C | ||||
400 | 1 | 200 | 80 | 5 | 6 | 10 | 50 | 2 | 7 | 70 | 6 | :D | ||||
את | והפר | ועזבני | :E | |||||||||||||
60 | 59 | 58 | 57 | :A | ||||||||||||
407 | 630 | 501 | 622 | :B | ||||||||||||
227 | 226 | 225 | 224 | 223 | 222 | 221 | 220 | 219 | 218 | 217 | 216 | 215 | 214 | 213 | :C | |
6 | 400 | 1 | 10 | 400 | 200 | 20 | 200 | 300 | 1 | 10 | 400 | 10 | 200 | 2 | :D | |
אתו | כרתי | אשר | בריתי | :E | ||||||||||||
64 | 63 | 62 | 61 | :A | ||||||||||||
58 | 8 | 91 | 219 | :B | ||||||||||||
240 | 239 | 238 | 237 | 236 | 235 | 234 | 233 | 232 | 231 | 230 | 229 | 228 | :C | |||
40 | 6 | 10 | 2 | 6 | 2 | 10 | 80 | 1 | 5 | 200 | 8 | 6 | :D | |||
ביום | בו | אפי | וחרה | :E | ||||||||||||
66 | 65 | :A | ||||||||||||||
535 | 17 | :B | ||||||||||||||
251 | 250 | 249 | 248 | 247 | 246 | 245 | 244 | 243 | 242 | 241 | :C | |||||
40 | 10 | 400 | 2 | 7 | 70 | 6 | 1 | 6 | 5 | 5 | :D | |||||
ועזבתים | ההוא | :E | ||||||||||||||
69 | 68 | 67 | :A | |||||||||||||
85 | 140 | 1081 | :B | |||||||||||||
264 | 263 | 262 | 261 | 260 | 259 | 258 | 257 | 256 | 255 | 254 | 253 | 252 | :C | |||
40 | 5 | 40 | 10 | 50 | 80 | 10 | 400 | 200 | 400 | 60 | 5 | 6 | :D | |||
מהם | פני | והסתרתי | :E | |||||||||||||
72 | 71 | 70 | :A | |||||||||||||
148 | 81 | 26 | :B | |||||||||||||
278 | 277 | 276 | 275 | 274 | 273 | 272 | 271 | 270 | 269 | 268 | 267 | 266 | 265 | :C | ||
6 | 5 | 1 | 90 | 40 | 6 | 30 | 20 | 1 | 30 | 5 | 10 | 5 | 6 | :D | ||
ומצאהו | לאכל | והיה | :E | |||||||||||||
75 | 74 | 73 | :A | |||||||||||||
702 | 608 | 676 | :B | |||||||||||||
291 | 290 | 289 | 288 | 287 | 286 | 285 | 284 | 283 | 282 | 281 | 280 | 279 | :C | |||
400 | 6 | 200 | 90 | 6 | 400 | 6 | 2 | 200 | 400 | 6 | 70 | 200 | :D | |||
וצרות | רבות | רעות | :E | |||||||||||||
79 | 78 | 77 | 76 | :A | ||||||||||||
36 | 17 | 58 | 247 | :B | ||||||||||||
306 | 305 | 304 | 303 | 302 | 301 | 300 | 299 | 298 | 297 | 296 | 295 | 294 | 293 | 292 | :C | |
1 | 30 | 5 | 1 | 6 | 5 | 5 | 40 | 6 | 10 | 2 | 200 | 40 | 1 | 6 | :D | |
הלא | ההוא | ביום | ואמר | :E | ||||||||||||
84 | 83 | 82 | 81 | 80 | :A | |||||||||||
314 | 46 | 61 | 30 | 100 | :B | |||||||||||
322 | 321 | 320 | 319 | 318 | 317 | 316 | 315 | 314 | 313 | 312 | 311 | 310 | 309 | 308 | 307 | :C |
10 | 2 | 200 | 100 | 2 | 10 | 5 | 30 | 1 | 50 | 10 | 1 | 10 | 20 | 30 | 70 | :D |
בקרבי | אלהי | אין | כי | על | :E | |||||||||||
87 | 86 | 85 | :A | |||||||||||||
41 | 681 | 197 | :B | |||||||||||||
337 | 336 | 335 | 334 | 333 | 332 | 331 | 330 | 329 | 328 | 327 | 326 | 325 | 324 | 323 | :C | |
5 | 30 | 1 | 5 | 400 | 6 | 70 | 200 | 5 | 10 | 50 | 6 | 1 | 90 | 40 | :D | |
האלה | הרעות | מצאוני | :E |
A: Word position. B: Word sum. C: Letter position. D: Letter value.
E: Hebrew.
There are 87 words in this passage and 337 letters. The numeric total: 19871 (nf).
Isaiah's passage re-establishes who is the core of the covenant: the lord. He is holy. The word holy not only means sacred, but also separate and different. God is not like any of the other gods. He is unique.
13 But the LORD of hosts, him you shall regard as holy; let him be your fear, and let him be your dread. 14 And he will become a sanctuary, and a stone of offense, and a rock of stumbling to both houses of Israel, a trap and a snare to the inhabitants of Jerusalem. 15 And many shall stumble thereon; they shall fall and be broken; they shall be snared and taken." 16 Bind up the testimony, seal the teaching among my disciples. 17 I will wait for the LORD, who is hiding his face from the house of Jacob, and I will hope in him. (Isaiah 8:13-17)
The problem with Israel, and with most people, is that they treat God like any other person, like any other god. They do not revere Him as holy, separate and uniquely different. Even though God is a sanctuary and safe place, this is why God becomes a rock of stumbling for Israel, Judah and Jerusalem. They will stumble and actually fall. In falling they are broken. In breaking they are trapped and caught.
Isaiah sees no way out for the vast majority. This teaching
is only for his disciples. One can only wait for God to fix it.
4 | 3 | 2 | 1 | :A | ||||||||||||
407 | 499 | 26 | 401 | :B | ||||||||||||
14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | :C | ||
6 | 400 | 1 | 400 | 6 | 1 | 2 | 90 | 5 | 6 | 5 | 10 | 400 | 1 | :D | ||
אתו | צבאות | יהוה | את | :E | ||||||||||||
7 | 6 | 5 | :A | |||||||||||||
307 | 18 | 820 | :B | |||||||||||||
30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | :C |
40 | 20 | 1 | 200 | 6 | 40 | 1 | 6 | 5 | 6 | 6 | 300 | 10 | 4 | 100 | 400 | :D |
מוראכם | והוא | תקדישו | :E | |||||||||||||
10 | 9 | 8 | :A | |||||||||||||
26 | 460 | 18 | :B | |||||||||||||
44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | 31 | :C | ||
5 | 10 | 5 | 6 | 40 | 20 | 90 | 200 | 70 | 40 | 1 | 6 | 5 | 6 | :D | ||
והיה | מערצכם | והוא | :E | |||||||||||||
13 | 12 | 11 | :A | |||||||||||||
133 | 89 | 474 | :B | |||||||||||||
57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | :C | |||
80 | 3 | 50 | 50 | 2 | 1 | 30 | 6 | 300 | 4 | 100 | 40 | 30 | :D | |||
נגף | ולאבן | למקדש | :E | |||||||||||||
16 | 15 | 14 | :A | |||||||||||||
390 | 396 | 332 | :B | |||||||||||||
71 | 70 | 69 | 68 | 67 | 66 | 65 | 64 | 63 | 62 | 61 | 60 | 59 | 58 | :C | ||
10 | 50 | 300 | 30 | 30 | 6 | 300 | 20 | 40 | 200 | 6 | 90 | 30 | 6 | :D | ||
לשני | מכשול | ולצור | :E | |||||||||||||
19 | 18 | 17 | :A | |||||||||||||
118 | 541 | 412 | :B | |||||||||||||
82 | 81 | 80 | 79 | 78 | 77 | 76 | 75 | 74 | 73 | 72 | :C | |||||
8 | 80 | 30 | 30 | 1 | 200 | 300 | 10 | 10 | 400 | 2 | :D | |||||
לפח | ישראל | בתי | :E | |||||||||||||
21 | 20 | :A | ||||||||||||||
348 | 482 | :B | ||||||||||||||
93 | 92 | 91 | 90 | 89 | 88 | 87 | 86 | 85 | 84 | 83 | :C | |||||
2 | 300 | 6 | 10 | 30 | 300 | 100 | 6 | 40 | 30 | 6 | :D | |||||
ליושב | ולמוקש | :E | ||||||||||||||
24 | 23 | 22 | :A | |||||||||||||
42 | 362 | 586 | :B | |||||||||||||
106 | 105 | 104 | 103 | 102 | 101 | 100 | 99 | 98 | 97 | 96 | 95 | 94 | :C | |||
40 | 2 | 6 | 30 | 300 | 20 | 6 | 40 | 30 | 300 | 6 | 200 | 10 | :D | |||
בם | וכשלו | ירושלם | :E | |||||||||||||
27 | 26 | 25 | :A | |||||||||||||
564 | 172 | 252 | :B | |||||||||||||
121 | 120 | 119 | 118 | 117 | 116 | 115 | 114 | 113 | 112 | 111 | 110 | 109 | 108 | 107 | :C | |
6 | 200 | 2 | 300 | 50 | 6 | 6 | 30 | 80 | 50 | 6 | 40 | 10 | 2 | 200 | :D | |
ונשברו | ונפלו | רבים | :E | |||||||||||||
30 | 29 | 28 | :A | |||||||||||||
296 | 116 | 468 | :B | |||||||||||||
136 | 135 | 134 | 133 | 132 | 131 | 130 | 129 | 128 | 127 | 126 | 125 | 124 | 123 | 122 | :C | |
200 | 6 | 90 | 6 | 4 | 20 | 30 | 50 | 6 | 6 | 300 | 100 | 6 | 50 | 6 | :D | |
צור | ונלכדו | ונוקשו | :E | |||||||||||||
33 | 32 | 31 | :A | |||||||||||||
611 | 454 | 485 | :B | |||||||||||||
149 | 148 | 147 | 146 | 145 | 144 | 143 | 142 | 141 | 140 | 139 | 138 | 137 | :C | |||
5 | 200 | 6 | 400 | 40 | 6 | 400 | 8 | 5 | 4 | 6 | 70 | 400 | :D | |||
תורה | חתום | תעודה | :E | |||||||||||||
36 | 35 | 34 | :A | |||||||||||||
56 | 454 | 86 | :B | |||||||||||||
165 | 164 | 163 | 162 | 161 | 160 | 159 | 158 | 157 | 156 | 155 | 154 | 153 | 152 | 151 | 150 | :C |
5 | 6 | 5 | 10 | 30 | 10 | 400 | 10 | 20 | 8 | 6 | 10 | 4 | 40 | 30 | 2 | :D |
ליהוה | וחכיתי | בלמדי | :E | |||||||||||||
39 | 38 | 37 | :A | |||||||||||||
452 | 146 | 715 | :B | |||||||||||||
179 | 178 | 177 | 176 | 175 | 174 | 173 | 172 | 171 | 170 | 169 | 168 | 167 | 166 | :C | ||
400 | 10 | 2 | 40 | 6 | 10 | 50 | 80 | 200 | 10 | 400 | 60 | 40 | 5 | :D | ||
מבית | פניו | המסתיר | :E | |||||||||||||
42 | 41 | 40 | :A | |||||||||||||
36 | 532 | 182 | :B | |||||||||||||
191 | 190 | 189 | 188 | 187 | 186 | 185 | 184 | 183 | 182 | 181 | 180 | :C | ||||
6 | 30 | 10 | 400 | 10 | 6 | 100 | 6 | 2 | 100 | 70 | 10 | :D | ||||
לו | וקויתי | יעקב | :E |
A: Word position. B: Word sum. C: Letter position. D: Letter value.
E: Hebrew.
There are 42 words in this section, 191 letters and a numeric total of 13764. (Aside from the number of words being a multiple of 7, there are no other number features.)
When prophecy and fulfillment are placed together for the entire picture, numeric features appear.
Primary Features
(Derived from Revelation 1:8 and grouped for easy reference.)
I Am (Present tense - living through it) Add up everything.
A.1Numeric total: 33635 = 5 x 7 x 312.. (See feature 1.)
Is, Was, Is To Come (Second present tense - skipping sequentially through it) Add up every other occurrance.
B.2Every other verse (odd): 19446 = 2 x 3 x 7 x 463. (See feature 1.1.)
B.2.2Every other verse (even): 14189 = 7 x 2027. (See feature 1.2.)
B.3Every other word (odd): 14854 = 2 x 7 x 1061. (See feature 2.3.1.)
B.3.2Every other word (even): 18781 = 7 x 2683. (See feature 2.3.2.)
B.4Every other letter (odd): 3402 = 2 x 35 x 7. (See feature 5.2.1.)
B.4.2Every other letter (even): 5096 = 23 x 72 x 13. (See feature 5.2.2.)
Alpha & Omega (The first and last) Add up the first item with the last item.
C.3.2First and last letter of each word: 13097 = 7 x 1871. (See feature 3.)
Alpha (The first) Add up the first item.
D.3.3First letter of each word: 4599 = 32 x 7 x 73. (See feature 4.)
Omega (The last) Add up the last item.
E.3.3Last letter of each word: 8498 = 2 x 7 x 607. (See feature 5.)
The Verses
List of verses: 4997 1627 6944 6303 2956 4327 1976 1932 2573
1There are 9 verses, 129 words, 528 letters and a numeric total of 33635 (5 x 7 x 312).
4997 6944 2956 1976 2573
Total: 19446 = 2 x 3 x 7 x 463.
1627 6303 4327 1932
Total: 14189 = 7 x 2027.
1.3.1The letters of God’s name in Hebrew (10-5-6-5) point to four verses.
Letter from the Name: 10 5 6 5 Adjusted to 9 verses: 1 5 6 5 Verse found: 4997 2956 4327 2956
Total of the verses: 15236 = 22 x 13 x 293.
1.3.2The letters of God’s name in Hebrew (10-5-6-5) count through the 9 verses.
Letter from the Name: 10 5 6 5 Count: 10 6 12 8 Adjusted to 9 verses: 1 6 3 8 Verse found: 4997 4327 6944 1932
Total of verses found: 18200 = 23 x 52 x 7 x 13.
1.4Only two verses are prime numbers:
Verse position: 2 6 Verse value: 1627 4327
Total of these two verses: 5954 = 2 x 13 x 229. (This leaves 7 verses that are not prime numbers, but these verses have no other feature.)
1.4.2Four of the verse positions are prime numbers:
Verse position: 2 3 5 7 Verse value: 1627 6944 2956 1976
Total of these verses: 13503 = 3 x 7 x 643.
1.4.3Five verse positions are not prime numbers:
Verse position: 1 4 6 8 9 Verse value: 4997 6303 4327 1932 2573
Total of these verses: 20132 = 2 x 2 x 7 x 719.
1.5Only one verse has a multiple of 13. This just so happens to be the seventh verse.
1.6The middle 7 verses total 26065 (5 x 13 x 401).
1.7Take the first verse, and every succeeding Nth verse where N increases by one each time.
Verse position: 1 2 4 7 Increasing N: 1 2 3 4 Verse found: 4997 1627 6303 1976
Total of this progression: 14903 = 7 x 2129.
1.8When the verses are added one by one, there are only two instances where the total would be a multiple of 7. This only happens at the 5th and 9th verses. Providentially, 5 + 9 = 14.
1.9Line up the verse totals according to their verse reference.
Verse number: 13 14 15 16 17 Deuteronomy: 0 4997 1627 6944 6303 Isaiah: 2956 4327 1976 1932 2573 Column total: 2956 9324 3603 8876 8876
Out of five column totals the odds would suggest only one or perhaps two being divisible by 7. Three are divisible by 7 (columns 14, 16 and 17).
Providentially, the two columns that are not divisible by 7, have their column verses adding to 28 (22 x 7).
1.10.1.1Total of the first letter of each word for verses where the sum of the first letter of each word is an odd value: 1533 = 3 x 7 x 73.
1.10.1.2Total of the first letter of each word for verses where the sum of the first letter of each word is an even value: 3066 = 2 x 3 x 7 x 73.
1.10.2.1Total of the verses where the sum of the last letter of each word is an odd value: 16800 = 25 x 3 x 52 x 7.
1.10.2.2Total of the verses where the sum of the last letter of each word is an even value: 16835 = 5 x 7 x 13 x 37.
1.10.3.1Total of the verses where the first word is an odd value: 22827 = 3 x 7 x 1087.
1.10.3.2Total of the verses where the first word is an even value: 10808 = 23 x 7 x 193.
Even though there are only 9 verses, there still are quite a number of numeric features following the principle of complementary opposites in Revelation 1:8.
The Words
2.1.1The letters of God’s name in Hebrew (10-5-6-5) point out four words.
Letter from the Name: 10 5 6 5 Word found: 401 55 308 55
Total of the words found: 819 = 32 x 7 x 13. SF: 26 = 2 x 13.
2.1.2The letters of God’s name in Hebrew (10-5-6-5) are applied 5 times to just count through the words.
a) 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 10 5 b) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 119 c) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 119 d) 401 159 120 170 345 146 270 345 91 1081 676 17 401 18 89 412 564 454 a) 6 5 (Letter from the Name.) b) 125 130 (Count.) c) 125 1 (Count adjusted to 129 words.) d) 146 257 (Word found.)
Total of the words found: 6162 = 2 x 3 x 13 x 79.
2.2Following Revelation 1:8's Alpha and Omega, pair up the words, Nth and Nth last.
2.2.1As there is only one true God, only one pair of words, together and individually are multiples of 7.
Nth word: 62 Value: 91 Nth last word: 68 Value: 140 Sum: 231
Naturally, because there are only 129 words, the Nth and Nth last positions together is a multiple of 13: 130 = 2 x 5 x 13.
2.2.2Exactly 7 pairs of words, Nth and Nth last together are multiples of 7. (Individually, not all of these are multiples of 7.)
Nth word: 16 35 44 48 50 54 62 Value: 66 31 68 296 12 145 91 Nth last word: 114 95 86 82 80 76 68 Value: 564 18 681 61 100 247 140 Sum: 630 49 749 357 112 392 231
Sum of positions: 910 = 2 x 5 x 7 x 13.
2.2.3As there is only one true God, only one pair of words, together and individually are multiples of 13.
Nth word: 27 Value: 130 Nth last word: 103 Value: 390 Sum: 520
Sum of positions: 130 = 2 x 5 x 13.
2.2.4Exactly 7 pairs of words, Nth and Nth last together are multiples of 13. (Individually, not all of these are multiples of 13.)
Nth word: 11 24 25 27 29 45 51 Value: 391 38 122 130 175 219 3 Nth last word: 119 106 105 103 101 85 79 Value: 454 118 541 390 332 197 36 Sum: 845 156 663 520 507 416 39
Sum of positions: 910 = 2 x 5 x 7 x 13.
2.3Take every other word.
2.3.1The odd positioned words:
a) 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 b) 257 31 55 80 301 391 38 159 345 524 120 26 122 130 175 488 257 31 a) 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 b) 75 110 146 17 219 270 501 3 310 291 622 630 219 8 17 1081 85 81 a) 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 b) 676 702 58 36 30 46 197 41 26 407 18 18 26 89 332 390 541 482 586 a) 111 113 115 117 119 121 123 125 127 129 (Word position.) b) 42 172 468 296 454 86 56 146 182 36 (Word value.)
Total of the words: 14854 = 2 x 7 x 1061.
2.3.2The even positioned words:
a) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 b) 26 345 308 476 401 519 120 66 397 38 217 38 170 120 100 41 26 345 a) 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 b) 322 433 115 68 46 296 12 345 145 401 501 407 91 58 535 140 26 148 a) 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 b) 608 247 17 100 61 314 681 401 499 820 307 460 474 133 396 412 118 a) 108 110 112 114 116 118 120 122 124 126 128 (Word position.) b) 348 362 252 564 116 485 611 454 715 452 532 (Word value.)
Total of the words: 18781 = 7 x 2683.
2.3.3Whether one begins with the first word and takes every Nth after, or just takes every Nth word, only three values of N work for both cases in producing totals divisible by 7:
2 20 48
Total of the N values: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
2.3.4Beginning with the first word and taking every Nth after, the following values of N produce totals divisible by 13:
6 22 26 53 58 59
Total of the N values: 224 = 25 x 7.
2.3.5Beginning with the first word and taking every Nth after, the following values of N produce totals divisible by 91 (7 x 13):
26 58
Total of the N values: 84 = 22 x 3 x 7. SF: 14 = 2 x 7.
2.4Extract alternating groups of N-number of words.
2.4.1Odd positioned words from the list in feature 2:
257 31 55 80 301 391 38 159 345 524 120 26 122 130 175 488 257 31 75 110 146 17 219 270 501 3 310 291 622 630 219 8 17 1081 85 81 676 702 58 36 30 46 197 41 26 407 18 18 26 89 332 390 541 482 586 42 172 468 296 454 86 56 146 182 36
Total: 14854 = 2 x 7 x 1061.
2.4.2Even positioned words from the list in feature 2:
26 345 308 476 401 519 120 66 397 38 217 38 170 120 100 41 26 345 322 433 115 68 46 296 12 345 145 401 501 407 91 58 535 140 26 148 608 247 17 100 61 314 681 401 499 820 307 460 474 133 396 412 118 348 362 252 564 116 485 611 454 715 452 532
Total: 18781 = 7 x 2683.
2.4.2.1First half of 32 from 2.4.2:
26 345 308 476 401 519 120 66 397 38 217 38 170 120 100 41 26 345 322 433 115 68 46 296 12 345 145 401 501 407 91 58
Total: 6993 = 33 x 7 x 37.
2.4.2.2Last half of 32 from 2.4.2:
535 140 26 148 608 247 17 100 61 314 681 401 499 820 307 460 474 133 396 412 118 348 362 252 564 116 485 611 454 715 452 532
Total: 11788 = 22 x 7 x 421.
2.4.2.2.1Odd positioned groups of 2 from 2.4.2.2:
535 140 608 247 61 314 499 820 474 133 118 348 564 116 454 715
Total: 6146 = 2 x 7 x 439. SF: 448 = 26 x 7.
2.4.2.2.2Even positioned groups of 2 from 2.4.2.2:
26 148 17 100 681 401 307 460 396 412 362 252 485 611 452 532
Total: 5642 = 2 x 7 x 13 x 31.
2.5Divide the 129 words into four groups depending on the odd/even value of the word, and the odd/even value of its position in the combined passage.
2.5.1Words that are odd positioned and odd valued:
a) 1 3 5 9 11 15 17 29 33 35 37 43 45 49 51 55 61 65 b) 257 31 55 301 391 159 345 175 257 31 75 17 219 501 3 291 219 17 a) 67 69 71 85 87 91 99 105 (Word position.) b) 1081 85 81 197 41 407 89 541 (Word value.)
Total of the words (b): 5866 = 2 x 7 x 419. (Position total [a]: 1238.)
2.5.2Words that are odd positioned and even valued:
a) 77 79 81 83 89 93 95 97 101 103 107 109 111 113 115 117 119 121 b) 58 36 30 46 26 18 18 26 332 390 482 586 42 172 468 296 454 86 a) 123 125 127 129 (Word position.) b) 56 146 182 36 (Word value.)
Total of the words (b): 8988 = 22 x 3 x 7 x 107. (Position total [a]: 2987.)
2.5.3Even position and odd valued:
a) 78 82 86 88 90 94 100 118 120 124 (Word position.) b) 17 61 681 401 499 307 133 485 611 715 (Word value.)
Total of the words (b): 9395 (nf). (Position total [a]: 1680 = 24 x 3 x 5 x 7.)
2.5.4Words that are even positioned and even valued:
a) 72 74 80 84 92 96 98 102 104 106 108 110 112 114 116 122 b) 148 608 100 314 820 460 474 396 412 118 348 362 252 564 116 454 a) 126 128 (Word position.) b) 452 532 (Word value.)
Total of the words (b): 9386 = 2 x 13 x 192. (Position total [a]: 2480.)
2.5.5Only feature 2.5.3 does not have the total of the words being a multiple of 7 or 13. Providentially, the total of the positions is a multiple of 7 while the other 3 features show nothing for the positions.
2.5.6Features 2.5.1 and 2.5.4 consist of words that are both odd, or both even in their values and positions. This sets them apart from 2.5.2 and 2.5.3 where values and positions are mixed. The positions of 2.5.1 and 2.5.4: 1238 + 2480 = 3718 = 2 x 11 x 132. SF: 39 = 3 x 13.
2.5.7Now the positions of 2.5.2 and 2.5.3 are put together: 2987 + 1680 = 4667 = 13 x 359.
2.5.8Two of the four categories (2.5.1 and 2.5.2) have the total of the words being divisible by 7. This naturally leads to putting their positions together: 1238 + 2987 = 4225 = 52 x 132.
2.5.9The previous feature puts 2.5.3 and 2.5.4 together. When the total of the words for 2.5.3 and 2.5.4 are put together they are divisible by 7: 9395 + 9386 = 18781 = 7 x 2683. When their positions are put together, the result is a multiple of 13: 1680 + 2480 = 4160 = 26 x 5 x 13.
It would appear the words have been strategically positioned.
2.6Exactly 21 words are prime numbers, but there is no other feature. Precisely 98 of the word positions are not prime numbers, but once again there is no other feature.
2.716 words are divisible by 13. Together, their sum is also a multiple of 7.
Position: 2 23 27 34 62 70 73 75 76 89 97 103 115 120 124 127 Value: 26 26 130 26 91 26 676 702 247 26 26 390 468 611 715 182
Total of the words: 4368 = 24 x 3 x 7 x 13.
2.8When the words are added one by one, 6 times the total will be a multiple of 13. The positions where this occurs are listed below.
a) Word position: 24 37 45 68 85 101 b) Word value: 38 75 219 140 197 332 c) Accumulated total: 5278 7358 8788 15717 19149 23881
Total of the words (b): 1001 = 7 x 11 x 13. This is a very nice symmetrical number visually displaying the same one God who is beginning and end. (Providentially, the sum of line c] is also a multiple of 7 and 13: 80171 = 7 x 13 x 881.)
2.9.179 word values occurred only once.
3 8 12 30 42 55 56 61 66 68 75 80 81 85 86 89 91 110 115 116 118 122 130 133 140 145 148 159 170 172 175 182 197 217 247 252 270 291 301 307 308 310 314 322 332 348 362 390 391 396 397 412 433 452 460 468 474 476 482 485 488 499 519 524 532 535 541 564 586 608 611 622 630 676 681 702 715 820 1081
Total of these words: 25151 = 7 x 3593.
2.9.2This means the remaining word values that occurred more than once, all together would also be a multiple of 7: 8484 = 22 x 3 x 7 x 101.
First And Last
3Sum of the first and last letters of each word: 13097 = 7 x 1871.
3.1.1As there is only one supreme God, there is only one pairing of the Nth and Nth last totals in feature 3 that together and individually are divisible by 7.
Position of Nth: 40 Value: 21 Position of Nth last: 90 Value: 490 Sum of pair: 511
Total of the positions: 130 = 2 x 5 x 13.
3.1.2Relax the rule of the pair needing to be individually divisible by 7. There are 8 that together are multiples of 7.
Position of Nth: 13 14 24 33 40 49 56 61 Value: 32 44 32 206 21 201 401 11 Position of Nth last: 117 116 106 97 90 81 74 69 Value: 290 12 38 11 490 30 600 80 Sum of pair: 322 56 70 217 511 231 1001 91
Total of the positions: 1040 = 24 x 5 x 13. SF: 26 = 2 x 13.
3.1.3Exactly 7 pairs can be found that together are divisible by 13.
Position of Nth: 7 10 22 39 44 56 61 Value: 30 401 7 110 11 401 11 Position of Nth last: 123 120 108 91 86 74 69 Value: 35 405 32 7 405 600 80 Sum: 65 806 39 117 416 1001 91
Total of the positions: 910 = 2 x 5 x 7 x 13.
3.2The 129 totals from feature 3 can be grouped in various ways so that the total of every other group is a multiple of 7. This can be repeated with the results.
3.2.1Odd positioned groups of 3 from feature 3:
45 55 106 401 80 12 26 45 76 7 15 32 74 55 100 15 31 45 21 46 45 11 250 95 305 8 16 201 30 7 42 6 46 11 60 12 206 42 6 51 11 12 401 15 490 80 7 80 130 206 70 38 306 32 240 12 12 405 48 405 205 86 440
Total: 6468 = 22 x 3 x 72 x 11.
3.2.1.1Odd positioned groups of 21 from 3.2.1:
45 55 106 401 80 12 26 45 76 7 15 32 74 55 100 15 31 45 21 46 45 401 15 490 80 7 80 130 206 70 38 306 32 240 12 12 405 48 405 205 86 440
Total: 5040 = 24 x 32 x 5 x 7. SF: 26 = 2 x 13.
3.2.1.1.1Odd positioned groups of 7 from 3.2.1.1:
45 55 106 401 80 12 26 100 15 31 45 21 46 45 206 70 38 306 32 240 12
Total: 1932 = 22 x 3 x 7 x 23.
3.2.1.1.1.1Odd positioned groups of 1 from 3.2.1.1.1:
45 106 80 26 15 45 46 206 38 32 12
Total: 651 = 3 x 7 x 31.
3.2.1.1.1.2Even positioned groups of 1 from 3.2.1.1.1:
55 401 12 100 31 21 45 70 306 240
Total: 1281 = 3 x 7 x 61.
3.2.1.1.2Even positioned groups of 7 from 3.2.1.1:
45 76 7 15 32 74 55 401 15 490 80 7 80 130 12 405 48 405 205 86 440
Total: 3108 = 22 x 3 x 7 x 37.
3.2.1.2Even positioned groups of 21 from 3.2.1:
11 250 95 305 8 16 201 30 7 42 6 46 11 60 12 206 42 6 51 11 12
Total: 1428 = 22 x 3 x 7 x 17.
3.2.2Even positioned groups of 3 from feature 3:
206 15 31 30 430 101 32 44 12 12 32 44 6 120 10 88 35 206 25 302 110 10 11 11 201 6 3 206 401 12 11 11 8 16 90 80 600 600 406 6 100 30 50 405 10 7 406 7 11 330 56 40 12 40 50 12 42 12 12 290 12 16 35 12 16 36
Total: 6629 = 7 x 947.
3.2.2.1Odd positioned groups of 1 from 3.2.2:
206 31 430 32 12 32 6 10 35 25 110 11 201 3 401 11 8 90 600 406 100 50 10 406 11 56 12 50 42 12 12 35 16
Total: 3472 = 24 x 7 x 31.
3.2.2.1.1Odd positioned groups of 1 from 3.2.2.1:
206 430 12 6 35 110 201 401 8 600 100 10 11 12 42 12 16
Total: 2212 = 22 x 7 x 79.
3.2.2.1.2Even positioned groups of 1 from 3.2.2.1:
31 32 32 10 25 11 3 11 90 406 50 406 56 50 12 35
Total: 1260 = 22 x 32 x 5 x 7.
3.2.2.1.2.1Odd positioned groups of 4 from 3.2.2.1.2:
31 32 32 10 90 406 50 406
Total: 1057 = 7 x 151.
3.2.2.1.2.1.1Odd positioned groups of 1 from 3.2.2.1.2.1:
31 32 90 50
Total: 203 = 7 x 29.
3.2.2.1.2.1.1.1 First half of 2 from 3.2.2.1.2.1.1:
31 32
Total: 63 = 32 x 7. SF: 13.
3.2.2.1.2.1.1.2 Last half of 2 from 3.2.2.1.2.1.1:
90 50
Total: 140 = 22 x 5 x 7.
3.2.2.1.2.1.2Even positioned groups of 1 from 3.2.2.1.2.1:
32 10 406 406
Total: 854 = 2 x 7 x 61. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
3.2.2.1.2.1.2.1 First half of 2 from 3.2.2.1.2.1.2:
32 10
Total: 42 = 2 x 3 x 7.
3.2.2.1.2.1.2.2 Last half of 2 from 3.2.2.1.2.1.2:
406 406
Total: 812 = 22 x 7 x 29.
3.2.2.1.2.1.2.2.1 First half of 1 from 3.2.2.1.2.1.2.2:
406
Total: 406 = 2 x 7 x 29.
3.2.2.1.2.1.2.2.2 Last half of 1 from 3.2.2.1.2.1.2.2:
406
Total: 406 = 2 x 7 x 29.
3.2.2.1.2.1.3Last half of 4 from 3.2.2.1.2.1:
31 32 32 10
Total: 105 = 3 x 5 x 7.
3.2.2.1.2.1.3.1 Odd positioned groups of 1 from 3.2.2.1.2.1.3:
31 32
Total: 63 = 32 x 7. SF: 13.
3.2.2.1.2.1.3.2 Even positioned groups of 1 from 3.2.2.1.2.1.3:
32 10
Total: 42 = 2 x 3 x 7.
3.2.2.1.2.1.3.3 Last half of 2 from 3.2.2.1.2.1.3:
31 32
Total: 63 = 32 x 7. SF: 13.
3.2.2.1.2.1.3.4 First half of 2 from 3.2.2.1.2.1.3:
32 10
Total: 42 = 2 x 3 x 7.
3.2.2.1.2.1.4First half of 4 from 3.2.2.1.2.1:
90 406 50 406
Total: 952 = 23 x 7 x 17.
3.2.2.1.2.1.4.1 Odd positioned groups of 1 from 3.2.2.1.2.1.4:
90 50
Total: 140 = 22 x 5 x 7.
3.2.2.1.2.1.4.2 Even positioned groups of 1 from 3.2.2.1.2.1.4:
406 406
Total: 812 = 22 x 7 x 29.
3.2.2.1.2.1.4.2.1 First half of 1 from 3.2.2.1.2.1.4.2:
406
Total: 406 = 2 x 7 x 29.
3.2.2.1.2.1.4.2.2 Last half of 1 from 3.2.2.1.2.1.4.2:
406
Total: 406 = 2 x 7 x 29.
3.2.2.1.2.2Even positioned groups of 4 from 3.2.2.1.2:
25 11 3 11 56 50 12 35
Total: 203 = 7 x 29.
3.2.2.2Even positioned groups of 1 from 3.2.2:
15 30 101 44 12 44 120 88 206 302 10 11 6 206 12 11 16 80 600 6 30 405 7 7 330 40 40 12 12 290 16 12 36
Total: 3157 = 7 x 11 x 41.
3.3The sum of the middle 119 totals in feature 3 are divisible by 13. Providentially, 119 = 7 x 17.
3.4Start with the first total in feature 3, and add every Nth after where N increases by one each time.
a) Position: 1 2 4 7 11 16 22 29 37 46 56 67 79 92 106 121 b) N: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 c) Total: 206 15 45 30 80 26 7 55 25 11 401 16 6 406 38 12
Sum of the totals (c): 1379 = 7 x 197.
3.5The two charts below lists the number of unique values in feature 3 along with the number of occurrences in the list, and the total of their positions. The unique values are in two separate charts depending on whether the total of the positions for that value is a prime number or not.
Chart 1: Prime Number List A) B) C) D) 10 3 30 157 (Column A: Unique total from feature 3.) 25 1 25 37 (Column B: Number of occurrences.) 46 2 92 107 (Column C: Sum of all occurrences. [A x B]) 60 1 60 71 (Column D: Total of value's positions. A prime number.) 88 1 88 31 201 2 402 107 250 1 250 47 306 1 306 107 406 2 812 167 Chart 2: Not Prime Number List A) B) C) D) A) B) C) D) A) B) C) D) A) B) C) D) 3 1 3 51 35 2 70 155 74 1 74 28 206 5 1030 266 6 5 30 297 36 1 36 129 76 1 76 18 240 1 240 112 7 5 35 361 38 1 38 106 80 4 320 270 290 1 290 117 8 2 16 116 40 2 80 208 86 1 86 125 302 1 302 38 11 8 88 508 42 3 126 252 90 1 90 68 305 1 305 52 12 14 168 1179 44 2 88 35 95 1 95 48 330 1 330 98 15 4 60 148 45 4 180 99 100 2 200 110 401 3 1203 154 16 4 64 371 48 1 48 119 101 1 101 9 405 3 1215 324 21 1 21 40 50 2 100 194 106 1 106 6 430 1 430 8 26 1 26 16 51 1 51 82 110 1 110 39 440 1 440 126 30 3 90 147 55 2 110 34 120 1 120 26 490 1 490 90 31 2 62 38 56 1 56 99 130 1 130 100 600 2 1200 147 32 4 128 165 70 1 70 102 205 1 205 124 (Column A: Unique total from feature 3.) (Column B: Number of occurrences.) (Column C: Sum of all occurrences. [A x B]) (Column D: Total of value's positions. Not a prime number.)
3.5.1From Chart 1, the grand total of these values (column C): 2065 = 5 x 7 x 59.
3.5.2From Chart 2, the grand total of these values (column C): 11032 = 23 x 7 x 197. SF: 210 = 2 x 3 x 5 x 7.
3.5.3The difference between 3.5.1 and 3.5.2: 8967 = 3 x 72 x 61. SF: 78 = 2 x 3 x 13.
The First Letter Of Each Word
4Total of the first letter of each word: 4599 = 32 x 7 x 73.
4.1The letters of God’s name in Hebrew (10-5-6-5) are applied five times to count through the first letters.
a) 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 10 5 6 5 b) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 130 c) 10 15 21 26 36 41 47 52 62 67 73 78 88 93 99 104 114 119 125 1 d) 1 6 40 70 40 6 50 300 1 6 200 5 1 6 6 2 6 8 80 6 a) Letter from the Name. b) Count. c) Count adjusted to 129. d) First letter found.
Total: 840 = 23 x 3 x 5 x 7. SF: 21 = 3 x 7.
4.2Precisely 13 paired groups of the first letters, positioned Nth and Nth last together and individually are multiples of 13.
a) 3 4 6 10 11 14 17 18 19 23 43 46 52 b) 34 40 37 15 24 28 19 63 53 57 46 52 59 c) 2392 3341 2314 975 988 702 260 3042 2210 2535 65 468 793 a) Starting position of first group is N. Starting position of second group is Nth last. b) Ending position of first group is N. Ending position of second group is Nth last. c) Total of both groups.
Total of the starting and ending positions (a + b): 793 = 13 x 61.
4.3Beginning with the first value in feature 4 and taking every Nth after, the following values of N produce multiples of 7.
12 22 24 31 34 38 50 51 56 60
Total of the N values: 378 = 2 x 33 x 7.
4.3.1Whether one begins with the first value (N = 1) in feature, or with the Nth value, only two values of N work in both cases:
12 51
Total of the N values: 63 = 32 x 7. SF: 13.
4.3.2Beginning with the first value in feature 4 and taking every Nth after, the following values of N produce multiples of 13.
2 25 36 48 57
Total of the N values: 168 = 23 x 3 x 7.
4.4Divide the numbers in feature 4 into two groups: prime numbers and not prime numbers.
4.4.128 are prime numbers.
a) 5 13 20 24 25 29 32 37 42 43 48 50 51 53 57 63 64 65 77 78 79 84 86 b) 5 2 2 2 2 5 5 5 5 5 5 5 2 2 2 2 2 5 2 5 5 2 5 a) 87 104 111 121 124 (Word position.) b) 5 2 2 2 5 (First letter.)
Total of the prime numbers: 98 = 2 x 72.
4.4.2101 are not prime numbers.
a) 1 2 3 4 6 7 8 9 10 11 12 14 15 16 17 18 19 21 22 23 26 b) 6 10 1 40 100 10 30 100 1 10 6 40 6 6 40 6 6 40 6 10 70 a) 27 28 30 31 33 34 35 36 38 39 40 41 44 45 46 47 49 52 54 b) 6 70 70 80 6 10 1 40 300 70 1 6 6 1 1 50 1 300 6 a) 55 56 58 59 60 61 62 66 67 68 69 70 71 72 73 74 75 76 80 b) 6 1 1 20 1 6 1 6 6 80 40 6 30 6 200 200 6 6 70 a) 81 82 83 85 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 b) 20 1 1 40 1 10 90 1 400 6 40 6 40 6 30 6 50 6 40 30 a) 105 106 107 108 109 110 112 113 114 115 116 117 118 119 120 122 b) 10 30 6 30 10 6 200 6 6 6 6 90 400 8 400 6 a) 123 125 126 127 128 129 (Word positions.) b) 30 80 40 10 6 30 (First letter.)
Total of the positions (a): 6713 = 72 x 137. Total of the first letters (b): 4501 = 7 x 643. SF: 650 = 2 x 52 x 13.
4.5Five of the first letters are multiples of 7.
Word position: 26 28 30 39 80 First letter: 70 70 70 70 70
Total of the word positions: 203 = 7 x 29.
4.5.218 of the first letters are in word positions that are multiples of 7.
10 40 40 70 1 5 1 1 2 6 2 2 1 30 10 200 8 40
Total of the first letters: 469 = 7 x 67.
4.6When the first letters in feature 4 are added one by one, 19 times the result will be a multiple of 7.
a) 17 20 23 38 39 41 58 60 62 67 b) 40 2 10 300 70 6 1 1 1 6 c) 413 427 483 1155 1225 1232 1631 1652 1659 1680 a) 70 76 78 92 97 107 115 119 129 b) 6 6 5 400 6 6 6 8 30 c) 1806 2254 2261 2912 3010 3220 3486 3990 4599 a) Word position. b) Total of the first and last letters. c) Accumulated total.
Sum of the first/last totals (b): 910 = 2 x 5 x 7 x 13.
4.6.1Odd positioned from line c) of 4.6:
40 10 70 1 1 6 5 6 6 30
Total: 175 = 52 x 7.
4.6.2Even positioned from line c) of 4.6:
2 300 6 1 6 6 400 6 8
Total: 735 = 3 x 5 x 72.
4.76 of the totals in feature 4 divide the rest of the list into what is between and what is not between their Nth and Nth last occurrences.
First Letter | Nth & Nth Last Occurrence | Total Of Sums In Between | Total Of Sums Not In Between | ||
---|---|---|---|---|---|
6 | 1 | 4557 = 3 x 72 x 31. | 42 = 2 x 3 x 7. | ||
6 | 12 | 1337 = 7 x 191. | 3262 = 2 x 7 x 233. | ||
1 | 2 | 2107 = 72 x 43. | 2492 = 22 x 7 x 89. | ||
1 | 3 | 1547 = 7 x 13 x 17. | 3052 = 22 x 7 x 109. | ||
30 | 2 | 2562 = 2 x 3 x 7 x 61. | 2037 = 3 x 7 x 97. | ||
400 | 1 | 1078 = 2 x 72 x 11. | 3521 = 7 x 503. |
4.7.1The total of the table's column 2: 21 = 3 x 7.
4.7.2Only the very first and last in the table, letters 6 and 400 have their second column as 1 (their first and last occurrences). Providentially, 6 + 400 = 406 = 2 x 7 x 29.
4.7.3In the table above, the third and fourth rows are both of the letter 1. This could be considered the middle 2. The first 2 and last 2 rows: 442 = 2 x 13 x 17.
The Last Letter Of Each Word
5Total of the last letter of each word: 8498 = 2 x 7 x 607. SF: 616 = 23 x 7 x 11.
5.1Exactly 14 paired groups of the last letters positioned Nth and Nth last are together and individually multiples of 13.
a) 4 5 6 7 8 9 9 13 14 16 19 23 24 29 b) 46 47 45 17 11 13 60 49 60 50 43 25 41 42 c) 5161 4966 4680 1261 936 767 6981 4082 6214 3861 2678 377 1794 2054 a) Starting position of the first group. (Nth from the beginning.) Starting position of the second group (Nth from the end). b) Ending position of the first group. (Nth from the beginning.) Ending position of the second group (Nth from the end). c) Total of both groups.
Total of the start and end positions (a + b): 735 = 3 x 5 x 72.
5.2Take alternating groups of N-number of letters from feature 5, and repeat with the results.
5.2.1Odd positioned letters from feature 5:
200 30 50 20 1 70 30 6 5 6 4 5 4 4 50 8 200 30 20 40 40 5 10 200 200 1 6 200 10 10 5 6 1 10 40 30 400 400 40 1 10 10 10 5 5 6 1 1 5 50 200 10 30 300 40 40 6 6 200 40 10 5 6 2 6
Total: 3402 = 2 x 35 x 7.
5.2.2Even positioned letters from feature 5:
5 5 6 400 400 6 4 20 70 30 1 30 50 4 30 30 5 5 2 20 40 5 10 90 1 5 10 400 200 6 10 40 40 10 5 6 400 200 1 30 50 10 400 400 400 6 40 40 300 80 30 10 8 2 6 40 6 6 5 5 10 200 400 10
Total: 5096 = 23 x 72 x 13.
5.2.2.1Odd positioned groups of 8 from 5.2.2:
5 5 6 400 400 6 4 20 5 5 2 20 40 5 10 90 40 10 5 6 400 200 1 30 300 80 30 10 8 2 6 40
Total: 2191 = 7 x 313.
5.2.2.2Even positioned groups of 8 from 5.2.2:
70 30 1 30 50 4 30 30 1 5 10 400 200 6 10 40 50 10 400 400 400 6 40 40 6 6 5 5 10 200 400 10
Total: 2905 = 5 x 7 x 83.
5.2.2.2.1First half of 16 from 5.2.2.2:
70 30 1 30 50 4 30 30 1 5 10 400 200 6 10 40
Total: 917 = 7 x 131.
5.2.2.2.1.1First half of 8 from 5.2.2.2.1:
70 30 1 30 50 4 30 30
Total: 245 = 5 x 72.
5.2.2.2.1.1.1Odd positioned groups of 2 from 5.2.2.2.1.1:
70 30 50 4
Total: 154 = 2 x 7 x 11.
5.2.2.2.1.1.2Even positioned groups of 2 from 5.2.2.2.1.1:
1 30 30 30
Total: 91 = 7 x 13.
5.2.2.2.1.2Last half of 8 from 5.2.2.2.1:
1 5 10 400 200 6 10 40
Total: 672 = 25 x 3 x 7.
5.2.2.2.2Last half of 16 from 5.2.2.2:
50 10 400 400 400 6 40 40 6 6 5 5 10 200 400 10
Total: 1988 = 22 x 7 x 71.
5.2.2.2.2.1Odd positioned groups of 4 from 5.2.2.2.2:
50 10 400 400 6 6 5 5
Total: 882 = 2 x 32 x 72.
5.2.2.2.2.2Even positioned groups of 4 from 5.2.2.2.2:
400 6 40 40 10 200 400 10
Total: 1106 = 2 x 7 x 79.
5.2.2.2.2.2.1Odd positioned groups of 2 from 5.2.2.2.2.2:
400 6 10 200
Total: 616 = 23 x 7 x 11.
5.2.2.2.2.2.1.1 First half of 2 from 5.2.2.2.2.2.1:
400 6
Total: 406 = 2 x 7 x 29.
5.2.2.2.2.2.1.2 Last half of 2 from 5.2.2.2.2.2.1:
10 200
Total: 210 = 2 x 3 x 5 x 7.
5.2.2.2.2.2.2Even positioned groups of 2 from 5.2.2.2.2.2:
40 40 400 10
Total: 490 = 2 x 5 x 72 SF: 21 = 3 x 7.
5.2.2.3Odd positioned groups of 16 from 5.2.2:
5 5 6 400 400 6 4 20 70 30 1 30 50 4 30 30 40 10 5 6 400 200 1 30 50 10 400 400 400 6 40 40
Total: 3129 = 3 x 7 x 149.
5.2.2.4Even positioned groups of 16 from 5.2.2:
5 5 2 20 40 5 10 90 1 5 10 400 200 6 10 40 300 80 30 10 8 2 6 40 6 6 5 5 10 200 400 10
Total: 1967 = 7 x 281.
5.2.2.4.1Odd positioned letters from 5.2.2.4:
5 2 40 10 1 10 200 10 300 30 8 6 6 5 10 400
Total: 1043 = 7 x 149. SF: 156 = 22 x 3 x 13.
5.2.2.4.2Even positioned letters from 5.2.2.4:
5 20 5 90 5 400 6 40 80 10 2 40 6 5 200 10
Total: 924 = 22 x 3 x 7 x 11.
5.2.2.4.2.1Odd positioned groups of 4 from 5.2.2.4.2:
5 20 5 90 80 10 2 40
Total: 252 = 22 x 32 x 7.
5.2.2.4.2.2Even positioned groups of 4 from 5.2.2.4.2:
5 400 6 40 6 5 200 10
Total: 672 = 25 x 3 x 7.
5.2.2.4.2.2.1Odd positioned letters from 5.2.2.4.2.2:
5 6 6 200
Total: 217 = 7 x 31.
5.2.2.4.2.2.2Even positioned letters from 5.2.2.4.2.2:
400 40 5 10
Total: 455 = 5 x 7 x 13.
5.3Whether one begins with the first letter in feature 5, or with the Nth letter before taking every Nth after, only two values produce totals divisible by 13:
27 38
Total of the N values: 65 = 5 x 13.
5.4Divide the letters in feature 5 into two groups: prime numbers, and not prime numbers.
5.4.120 letters in feature 5 are prime numbers:
a) 2 4 17 23 34 36 38 43 44 52 61 70 87 89 97 108 118 120 123 127 b) 5 5 5 5 5 5 2 5 5 5 5 5 5 5 5 2 5 5 5 2 a) Word position. b) Last letter.
Total of the prime numbers (b): 91 = 7 x 13.
5.4.2109 letters in feature 5 are not prime numbers:
a) 1 3 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 24 25 b) 200 30 50 6 20 400 1 400 70 6 30 4 6 20 70 6 30 4 1 30 4 a) 26 27 28 29 30 31 32 33 35 37 39 40 41 42 45 46 47 48 49 50 b) 50 4 4 50 30 8 30 200 30 20 40 20 40 40 10 10 200 90 200 1 a) 51 53 54 55 56 57 58 59 60 62 63 64 65 66 67 68 69 71 72 73 b) 1 6 10 200 400 10 200 10 6 10 6 40 1 40 10 10 40 30 6 400 a) 74 75 76 77 78 79 80 81 82 83 84 85 86 88 90 91 92 93 94 95 b) 400 400 200 40 1 1 30 10 50 10 10 10 400 400 400 6 6 1 40 1 a) 96 98 99 100 101 102 103 104 105 106 107 109 110 111 112 113 114 b) 40 300 50 80 200 30 10 10 30 8 300 40 6 40 40 6 6 a) 115 116 117 119 121 122 124 125 126 128 129 (Word position.) b) 6 6 200 40 10 10 200 6 400 10 6 (Last letter.)
Total of the letters (b): 8407 = 7 x 1201.
5.5Nine of the last letters are in word positions that are multiples of 13.
30 50 40 5 1 1 6 10 200
Total of these letters: 343 = 73. SF: 21 = 3 x 7.
5.6When the last letters are added one by one, 18 times the total will be divisible by 7.
a) b) c) a) b) c) a) b) c) 16 20 1253 56 400 3129 84 10 5110 31 8 1554 58 200 3339 92 6 6342 41 40 1946 61 5 3360 95 1 6384 46 10 2016 64 40 3416 106 8 7147 49 200 2506 77 40 4998 113 6 7581 52 5 2513 81 10 5040 129 6 8498 a) Word position b) Last letter. c) Accumulated total at that point.
Total of the letters (b): 1015 = 5 x 7 x 29.
5.6.2When the last letters are added one by one, 18 times the total will be divisible by 13.
a) b) c) 24 30 1404 a) Word position. 38 2 1846 b) Last letter. 75 400 4758 c) Accumulated total. 87 5 5525 94 40 6383 101 200 7059 108 2 7449
Total of the letters (b): 679 = 7 x 97. SF: 104 = 23 x 13.
5.6.3When the last letters are added one by one, 58 times the result will be an odd total.
a) b) c) a) b) c) a) b) c) 2 5 205 57 10 3139 103 10 7099 3 30 235 58 200 3339s 104 10 7109 9 1 717 59 10 3349 105 30 7139 10 400 1117 60 6 3355 106 8 7147s 11 70 1187 65 1 3417 107 300 7447 12 6 1193 66 40 3457 108 2 7449t 13 30 1223 67 10 3467 109 40 7489 14 4 1227 68 10 3477 110 6 7495 15 6 1233 69 40 3517 111 40 7535 16 20 1253s 78 1 4999 112 40 7575 22 1 1369 87 5 5525t 113 6 7581s 34 5 1789 88 400 5925 114 6 7587 35 30 1819 93 1 6343 115 6 7593 43 5 1991 94 40 6383t 116 6 7599 50 1 2507 97 5 6429 117 200 7799 52 5 2513s 98 300 6729 120 5 7849 53 6 2519 99 50 6779 121 10 7859 54 10 2529 100 80 6859 122 10 7869 55 200 2729 101 200 7059t 56 400 3129s 102 30 7089 a) Word position. b) Last letter. c) Accumulated total.
Total of the last letters (b): 3409 = 7 x 487. SF: 494 = 2 x 13 x 19.
5.6.4When the last letters are added one by one, 71 times the result will be an even total.
a) b) c) a) b) c) a) b) c) a) b) c) 1 200 200 30 30 1546 61 5 3360s 85 10 5120 4 5 240 31 8 1554s 62 10 3370 86 400 5520 5 50 290 32 30 1584 63 6 3376 89 5 5930 6 6 296 33 200 1784 64 40 3416s 90 400 6330 7 20 316 36 5 1824 70 5 3522 91 6 6336 8 400 716 37 20 1844 71 30 3552 92 6 6342s 17 5 1258 38 2 1846t 72 6 3558 95 1 6384s 18 70 1328 39 40 1886 73 400 3958 96 40 6424 19 6 1334 40 20 1906 74 400 4358 118 5 7804 20 30 1364 41 40 1946s 75 400 4758t 119 40 7844 21 4 1368 42 40 1986 76 200 4958 123 5 7874 23 5 1374 44 5 1996 77 40 4998s 124 200 8074 24 30 1404t 45 10 2006 79 1 5000 125 6 8080 25 4 1408 46 10 2016s 80 30 5030 126 400 8480 26 50 1458 47 200 2216 81 10 5040s 127 2 8482 27 4 1462 48 90 2306 82 50 5090 128 10 8492 28 4 1466 49 200 2506s 83 10 5100 129 6 8498s 29 50 1516 51 1 2508 84 10 5110s a) Word position. b) Last letter. c) Accumulated total.
Total of the last letters (b): 5089 = 7 x 727.
5.6.5When the last letters are added one by one, 14 times the result will be a prime number.
a) b) c) a) b) c) a) Word position. 10 400 1117 67 10 3467 b) Last letter. 11 70 1187 69 40 3517 c) Accumulated total. 12 6 1193 78 1 4999 13 30 1223 93 1 6343 34 5 1789 99 50 6779 55 200 2729 104 10 7109 66 40 3457 109 40 7489
Total of the last letters (b): 903 = 3 x 7 x 43.
5.6.6When the last letters are added one by one, 115 times the result will not be a prime number.
a) b) c) a) b) c) a) b) c) a) b) c) a) b) c) a) b) c) a) b) c) a) b) c) 1 200 200 20 30 1364 36 5 1824 51 1 2508 70 5 3522 86 400 5520 103 10 7099 120 5 7849 2 5 205 21 4 1368 37 20 1844 52 5 2513s 71 30 3552 87 5 5525t 105 30 7139 121 10 7859 3 30 235 22 1 1369 38 2 1846t 53 6 2519 72 6 3558 88 400 5925 106 8 7147s 122 10 7869 4 5 240 23 5 1374 39 40 1886 54 10 2529 73 400 3958 89 5 5930 107 300 7447 123 5 7874 5 50 290 24 30 1404t 40 20 1906 56 400 3129s 74 400 4358 90 400 6330 108 2 7449t 124 200 8074 6 6 296 25 4 1408 41 40 1946s 57 10 3139 75 400 4758t 91 6 6336 110 6 7495 125 6 8080 7 20 316 26 50 1458 42 40 1986 58 200 3339s 76 200 4958 92 6 6342s 111 40 7535 126 400 8480 8 400 716 27 4 1462 43 5 1991 59 10 3349 77 40 4998s 94 40 6383t 112 40 7575 127 2 8482 9 1 717 28 4 1466 44 5 1996 60 6 3355 79 1 5000 95 1 6384s 113 6 7581s 128 10 8492 14 4 1227 29 50 1516 45 10 2006 61 5 3360s 80 30 5030 96 40 6424 114 6 7587 129 6 8498s 15 6 1233 30 30 1546 46 10 2016s 62 10 3370 81 10 5040s 97 5 6429 115 6 7593 16 20 1253s 31 8 1554s 47 200 2216 63 6 3376 82 50 5090 98 300 6729 116 6 7599 17 5 1258 32 30 1584 48 90 2306 64 40 3416s 83 10 5100 100 80 6859 117 200 7799 18 70 1328 33 200 1784 49 200 2506s 65 1 3417 84 10 5110s 101 200 7059t 118 5 7804 19 6 1334 35 30 1819 50 1 2507 68 10 3477 85 10 5120 102 30 7089 119 40 7844 a) Word position. b) Last letter. c) Accumulated total.
Total of the 115 last letters: 7595 = 5 x 72 x 31.
5.7The number of times a letter occurred can also divide the letters into two opposing complementary groups.
5.7.1Last letters where the number of occurrences is a prime number:
a) Last letter: 2 4 5 6 8 10 30 40 50 70 300 b) Occurrences: 3 5 17 17 2 17 11 13 5 2 2
Total of the letters (a): 525 = 3 x 52 x 7.
5.7.2Last letters where the number of occurrences is not a prime number:
a) Last letter: 1 20 80 90 200 400 b) Occurrences: 9 4 1 1 10 10
Total of the letters (a): 791 = 7 x 113.
5.7.3The difference between 5.7.1 and 5.7.2: 266 = 2 x 7 x 19. SF: 28 = 22 x 7.
5.8Ten of the last letters divide the rest of the list into two groups: what is between their Nth and Nth last occurrences, and what is not in between them.
Last Letter | Nth & Nth Last Occurrence | Total Of Sums In Between | Total Of Sums Not In Between | ||
---|---|---|---|---|---|
5 | 6 | 3696 = 24 x 3 x 7 x 11. | 4802 = 2 x 74 | ||
5 | 7 | 1526 = 2 x 7 x 109. | 6972 = 22 x 3 x 7 x 83. | ||
30 | 1 | 6874 = 2 x 7 x 491. | 1624 = 23 x 7 x 29. SF: 42 = 2 x 3 x 7. | ||
6 | 2 | 6881 = 7 x 983. | 1617 = 3 x 72 x 11. SF: 28 = 22 x 7. | ||
400 | 1 | 7364 = 22 x 7 x 263. | 1134 = 2 x 34 x 7. SF: 21 = 3 x 7. | ||
400 | 4 | 1162 = 2 x 7 x 83. | 7336 = 23 x 7 x 131. | ||
400 | 5 | 0 = | 8498 = 2 x 7 x 607. SF: 616 = 23 x 7 x 11. | ||
1 | 3 | 2492 = 22 x 7 x 89. | 6006 = 2 x 3 x 7 x 11 x 13. | ||
40 | 3 | 5509 = 7 x 787. | 2989 = 72 x 61. | ||
10 | 3 | 5320 = 23 x 5 x 7 x 19. | 3178 = 2 x 7 x 227. |
5.8.1The sum of the Nth/Nth last occurrences (second column of table): 35 = 5 x 7.
5.8.2The lowest letter in the table is 1, and its Nth values is 3. The highest letter in the table is 400, but it appeared three times. Its Nth values: 1, 4 and 5. Lowest and highest together the Nth values would be 13.
5.8.3Providentially, the only two letters in the table that are not multiples of five are 6 and 1.
Letters Not First Or Last In A Word
Letters not first/last in a word:
10 1 40 5 6 300 200 2 40 10 40 6 200 5 6 300 5 400 10 90 2 1 5 6 70 1 90 6 50 10 30 300 10 5 6 300 10 400 10 90 2 1 5 6 70 10 200 5 6 1 5 70 40 6 50 10 70 40 40 6 70 50 400 1 5 10 1 40 5 6 300 50 20 2 400 10 100 70 7 7 50 8 200 30 5 20 1 200 300 6 40 100 200 2 70 7 2 50 5 80 200 10 400 300 200 400 400 8 200 80 10 6 5 6 70 7 2 400 10 5 60 400 200 400 50 5 5 10 1 20 40 90 1 5 70 6 2 6 90 200 6 1 40 10 6 5 6 30 10 30 5 100 200 2 90 1 6 50 200 70 6 1 30 5 6 2 1 6 400 100 4 10 300 5 6 6 200 1 20 5 6 70 200 90 20 5 10 40 100 4 30 1 2 3 30 90 6 20 300 6 300 50 400 300 200 1 80 30 40 6 100 10 6 300 200 6 300 30 20 300 30 2 10 50 80 30 50 300 2 200 50 6 100 300 50 30 20 4 6 70 6 4 400 6 6 200 30 40 4 8 20 10 400 10 5 6 40 60 400 10 50 10 2 10 70 100 100 6 10 400
6Total of letters not first or last in a word: 20538 = 2 x 32 x 7 x 163.
6.1Exactly 26 (2 x 13) pairs of letters, Nth and Nth last can be found from the above list that together are divisible by 7.
a) Nth position: 4 7 12 26 28 33 36 40 44 53 55 56 66 67 b) Value: 5 200 6 1 6 10 300 90 6 40 50 10 10 1 c) Nth last position: 267 264 259 245 243 238 235 231 227 218 216 215 205 204 d) Value: 100 10 400 6 400 4 50 50 50 30 6 200 200 300 e) Sum: 105 210 406 7 406 14 350 140 56 70 56 210 210 301 a) 72 75 87 97 98 100 103 104 106 124 133 134 b) 50 400 1 2 50 80 400 300 400 400 1 5 c) 199 196 184 174 173 171 168 167 165 147 138 137 d) 300 90 90 5 300 4 6 1 6 6 6 2 e) 350 490 91 7 350 84 406 301 406 406 7 7
Sum of the positions (a + c): 7046 = 2 x 13 x 271. SF: 286 = 2 x 11 x 13. SF: 26 = 2 x 13.
6.4Precisely 56 paired groups of letters positioned Nth and Nth last can also be found that together are multiples of 13.
a) 1 2 7 7 8 9 12 13 13 14 19 21 b) 15 31 44 117 97 131 124 48 129 125 82 91 c) 2145 4030 5655 16965 13026 19006 18447 5330 18174 17836 9152 10270 a) 24 26 26 27 27 27 27 28 31 31 31 36 36 b) 36 43 72 30 35 70 99 119 35 70 99 70 99 c) 1716 2886 7696 572 1053 7033 10881 14859 481 6461 10309 5980 9828 a) 38 38 41 42 43 43 44 45 48 49 50 51 b) 50 130 106 127 93 105 72 117 133 129 63 130 c) 1716 14547 10621 13611 7644 10010 4810 11310 13312 12844 2236 12831 a) 53 54 57 58 65 65 68 68 71 76 77 79 86 94 b) 74 94 60 81 85 113 95 107 99 90 118 110 113 105 c) 3913 6526 572 3705 3224 8346 4264 7163 3848 1625 6578 5278 5122 2366 a) 96 101 104 116 121 b) 107 104 123 135 134 c) 2899 1417 3614 2626 1729 a) Starting position of first group. Nth from the beginning. Starting position of second group. Nth from the end. b) Ending position of first group. Nth from the end. Ending position of second group. Nth from the end. c) Total of both groups.
Total of the start/end positions (a + b): 7657 = 13 x 19 x 31. SF: 63 = 32 x 7. SF: 13.
6.6.1Taking every Nth letter from feature 6, the following values of N produce totals divisible by 7:
10 11 12 13 17 39 46 69 78 79 80 87 94 98 107 108 112 113 119 122
Total of the N values: 1414 = 2 x 7 x 101.
6.6.2Whether one begins with the first letter in feature 6 and then every Nth after, or just begins with the Nth letter, only two values work in both cases:
98 119
Total of the N values: 217 = 7 x 31. Providentially both numbers are multiples of 7.
6.6.3Taking every Nth letter from feature 6, the following values of N produce totals divisible by 13:
10 27 51 61 65 66 67 69 116
Total of the N values: 532 = 22 x 7 x 19.
6.7105 sub-features can be found when the list in feature 6 is broken down into alternating groups of N-number of letters and this is repeated on the results.
6.8Divide the 270 letters that are not first or last in a word into two groups: odd and even valued.
6.8.146 are odd valued:
a) 2 4 14 17 22 23 26 34 42 43 48 50 51 64 65 67 69 79 80 85 87 96 99 b) 1 5 5 5 1 5 1 5 1 5 5 1 5 1 5 1 5 7 7 5 1 7 5 a) 113 116 120 126 127 129 133 134 142 146 151 156 162 164 167 174 178 b) 5 7 5 5 5 1 1 5 1 5 5 1 1 5 1 5 1 a) 180 186 192 194 206 255 (Position in feature 6's list.) b) 5 5 1 3 1 5 (Letter value.)
Total of the odd valued letters: 168 = 23 x 3 x 7.
6.8.2224 (25 x 7) are even valued. Their total: 20370 = 2 x 3 x 5 x 7 x 97.
6.8.3The difference between 6.8.1 and 6.8.2 is a symmetrical number: 20202 = 2 x 3 x 7 x 13 x 37.
6.9 Divide the 270 letters in feature 6 into four groups depending on whether they are odd/even valued, and also whether they are in an odd/even position in feature 6.
- Total of letters that are odd positioned and odd valued: 72.
- Total of letters that are odd positioned and even valued: 11286.
- Total of letters that are even positioned and odd valued: 96.
- Total of letters that are even positioned and even valued: 9084.
6.9.1Groups A and D are purely odd, or purely even: 72 + 9084 = 9156 = 22 x 3 x 7 x 109.
6.9.2Groups B and C are mixed: 11286 + 96 = 11382 = 2 x 3 x 7 x 271. (Providentially, the positions of these two mixed groups add up to 11382, which factors as 2 x 3 x 7 x 271).
6.1043 of the letters from feature 6 are prime numbers.
a) 4 8 14 17 21 23 34 41 43 48 51 65 69 74 79 80 85 94 96 97 99 113 116 b) 5 2 5 5 2 5 5 2 5 5 5 5 5 2 7 7 5 2 7 2 5 5 7 a) 117 120 126 127 134 137 146 151 154 164 166 174 180 186 193 194 222 b) 2 5 5 5 5 2 5 5 2 5 2 5 5 5 2 3 2 a) 229 255 263 (Position in feature 6.) b) 2 5 2 (Prime number.)
There is no feature with the total of the letters, but the total of their positions (a) is something else: 4809 = 3 x 7 x 229.
6.11Extract every 13th letter feature 6:
200 1 10 70 5 70 40 300 2 20 40 1 400 70 30 30 30 300 30 10
Total of the letters: 1659 = 3 x 7 x 79.
6.12Beginning with the first letter in feature 6, pull every Nth letter after with N increasing by one each time.
a) 1 2 4 7 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172 191 211 232 254 b) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 c) 10 1 5 200 40 300 1 50 10 10 10 1 7 100 400 60 2 2 10 30 100 6 10 a) Position in feature 6. b) Increasing N. c) Letter found.
Total of the letters found: 1365 = 3 x 5 x 7 x 13. SF: 28 = 22 x 7.
6.13When the letters in feature 6 are added one by one, 37 times the total will be divisible by 7.
a) b) c) a) b) c) a) b) c) 4 5 56 116 7 8953 197 6 13720 17 5 1176 124 400 10430 208 30 15407 32 300 2247 128 10 10500 214 300 15869 35 6 2268 130 20 10521 230 200 17479 41 2 3080 144 10 11088 232 6 17535 58 40 3675 153 200 11480 238 4 18039 64 1 4242 166 2 11949 247 30 18767 68 40 4298 168 6 11956 255 5 19264 88 200 5789 171 4 12460 264 10 19852 98 50 6566 174 5 12775 265 70 19922 107 400 8561 180 5 13013 270 400 20538 114 6 8876 188 40 13454 115 70 8946 194 3 13594 a) Position in feature 6. b) Letter not first/last. c) Accumulated total at that point.
Total of the letters (b): 2898 = 2 x 32 x 7 x 23.
6.14For each letter in feature 6 add up its positions within the list.
6.14.1Letters whose position total in feature 6 is an odd number.
a) Letter value: 1 6 7 10 60 90 100 200 400 b) Position total: 1825 5363 371 3521 379 893 1657 2477 2271
Total of the letters (a): 140 = 22 x 5 x 7.
6.14.2Letters whose position total in feature 6 is an even number.
a) Letter value: 2 3 4 5 8 20 30 40 50 70 80 300 b) Position total: 1816 194 1090 2428 440 1558 2318 1528 2060 1510 642 2244
Total of the letters (a): 130 = 2 x 5 x 13.
6.15Divide the 270 letters in feature 6 into alternating groups of M and N-number of letters where M and N are multiples of 7 and 13.
6.15.1Alternating groups of 13 and 77.
6.15.1.1Groups of 13: 2604 = 22 x 3 x 7 x 31.
6.15.1.2Groups of 77: 17934 = 2 x 3 x 72 x 61.
6.15.2Alternating groups of 70 and 130.
6.15.2.1Groups of 70: 10801 = 7 x 1543.
6.15.2.2Groups of 130: 9737 = 7 x 13 x 107.
6.16Precisely 14 of the letters in feature 6 divide the rest of the letters into two groups: what is between their Nth and Nth last occurrences, and what is not between those occurrences.
Letter | Nth & Nth Last Occurrence | Total Of Sums In Between | Total Of Sums Not In Between | ||
---|---|---|---|---|---|
10 | 1 | 20118 = 2 x 3 x 7 x 479. | 420 = 22 x 3 x 5 x 7. | ||
10 | 6 | 16261 = 7 x 23 x 101. | 4277 = 7 x 13 x 47. | ||
10 | 7 | 13769 = 72 x 281. | 6769 = 7 x 967. | ||
10 | 13 | 1631 = 7 x 233. | 18907 = 7 x 37 x 73. SF: 117 = 32 x 13. | ||
5 | 5 | 9674 = 2 x 7 x 691. SF: 700 = 22 x 52 x 7. SF: 21 = 3 x 7. | 10864 = 24 x 7 x 97. SF: 112 = 24 x 7. | ||
6 | 4 | 16835 = 5 x 7 x 13 x 37. | 3703 = 7 x 232 | ||
6 | 6 | 15771 = 3 x 7 x 751. | 4767 = 3 x 7 x 227. | ||
6 | 18 | 805 = 5 x 7 x 23. SF: 35 = 5 x 7. | 19733 = 7 x 2819. | ||
300 | 2 | 15806 = 2 x 7 x 1129. | 4732 = 22 x 7 x 132 | ||
2 | 7 | 1778 = 2 x 7 x 127. | 18760 = 23 x 5 x 7 x 67. | ||
90 | 2 | 11438 = 2 x 7 x 19 x 43. | 9100 = 22 x 52 x 7 x 13. | ||
50 | 7 | 1099 = 7 x 157. | 19439 = 7 x 2777. | ||
20 | 1 | 14140 = 22 x 5 x 7 x 101. SF: 117 = 32 x 13. | 6398 = 2 x 7 x 457. | ||
7 | 2 | 1232 = 24 x 7 x 11. SF: 26 = 2 x 13. | 19306 = 2 x 72 x 197. |
6.16.1The 14 letters from column 1:
10 10 10 10 5 6 6 6 300 2 90 50 20 7
Total of the letters: 532 = 22 x 7 x 19.
6.16.2Since there are 270 letters in feature 6, this points out the importance of the factor 3. (270 = 2 x 33 x 5.) Providentially, the numbers in the second column add up to 81 (34), whose factors consist only of 3.
6.16.3The fourteen letters are listed along with their Nth and Nth last positions in feature 6.
a) 10 10 10 10 5 6 6 6 300 2 90 50 20 7 b) 1 6 7 13 5 4 6 18 2 7 2 7 1 2 c) 1 37 39 111 34 24 35 145 16 117 27 125 73 80 d) 269 252 223 128 164 244 239 161 228 137 184 158 251 96 a) Letter b) Nth/Nth last occurrence. c) Position of Nth occurrence. d) Position of Nth last occurrence.
Total of the Nth and Nth last positions (c + d): 3598 = 2 x 7 x 257. SF: 266 = 2 x 7 x 19. SF: 28 = 22 x 7.
6.16.4Three of the letters in column 1 are prime numbers (5, 2, and 7). Their total: 14 (2 x 7).
6.16.5The Nth/Nth last values for 5, 2 and 7 are 5, 7 and 2, which again totals 14 (2 x 7).
6.16.6The remaining numbers in column 1 are not prime numbers. Their total: 518 = 2 x 7 x 37.
6.17Place the 270 letters from feature 6 into a 18 x 15 rectangle.
6.17.1The perimeter, or outside of this rectangle: 5019 = 3 x 7 x 239.
6.17.2The inside of the rectangle: 15519 = 3 x 7 x 739. SF: 749 = 7 x 107.
6.17.3Four outlines on the rectangle: 11984 = 24 x 7 x 107.
6.17.4First and last columns: 2964 = 22 x 3 x 13 x 19. SF: 39 = 3 x 13.
6.17.5Odd positioned rows: 10959 = 3 x 13 x 281.
6.17.63 x 3 squares: 9945 = 32 x 5 x 13 x 17.
6.17.7Alternate pattern: 9594 = 2 x 3 x 3 x 13 x 41.
6.17.7Three inner rectangles: 6965 = 5 x 7 x 199.
6.17.8Checker board: 11843 = 13 x 911.SF:= 924 = 22 x 3 x 7 x 11.
All The Letters
7.1Exactly 42 pairs of letters positioned Nth and Nth last are together divisible by 7.
a) Nth letter: 5 7 9 13 15 18 21 25 28 29 30 36 58 63 b) Value: 200 5 5 300 5 200 10 30 400 100 200 6 50 20 c) Nth last: 524 522 520 516 514 511 508 504 501 500 499 493 471 466 d) Value: 10 100 2 400 2 10 200 40 6 5 10 8 90 50 e) Sum: 210 105 7 700 7 210 210 70 406 105 210 14 140 70 a) 81 84 91 106 127 129 132 133 137 141 154 155 171 176 178 179 182 b) 1 40 1 50 1 30 1 40 6 40 400 10 8 5 50 20 1 c) 448 445 438 423 402 400 397 396 392 388 375 374 358 353 351 350 347 d) 6 2 20 6 300 40 90 30 50 30 90 200 6 100 6 400 6 e) 7 42 21 56 301 70 91 70 56 70 490 210 14 105 56 420 7 a) 185 205 208 209 213 234 235 236 243 244 250 b) 1 50 5 80 2 10 2 6 6 1 10 c) 344 324 321 320 316 295 294 293 286 285 279 d) 90 90 2 200 5 200 40 1 400 6 200 e) 91 140 7 280 7 210 42 7 406 7 210
Sum of the positions (a + c): 22218 = 2 x 3 x 7 x 232. (Two factors of 23 fit the purpose of the prophecy. It is a warning to people, and the number 23 matches the number of chromosome pairs in the average person.)
7.2.1Sum of the odd positioned letters: 15652 = 22 x 7 x 13 x 43.
7.2.2Sum of the even positioned letters: 17983 = 72 x 367.
7.3We can take every Nth letter, or begin with the first letter and take every Nth after to extract totals of divisible by 7 in four different ways. N works both ways when N is 2, 35, 43, or 123. Providentially, the sum of these four: 203 = 7 x 29.
7.4The same applies for finding totals divisible by 13. N works both ways when N is either 2 or 33. And once again the sum of the two is a multiple of 7: 35 (5 x 7).
7.5Taking every Nth letter, the following values of N produce totals divisible by 13:
6 19 30 31 42 54 62 85 151 155 179 196 233 254 260
Total of the N values: 1757 = 7 x 251.
7.6Over 1300 sub-features are possible when building on features 7.2.1 and 7.2.2 by taking alternating groups of N-number of letters, and repeating the exercise on the results.
7.7Exactly 101 letters are odd valued. The 101 is a visual representation of the one God who is beginning and end. 427 (7 x 61) letters are even valued. Curiously, the total of the positions of the odd valued letters is 22172 (22 x 23 x 241), and the total of the positions of the even valued letters is 117484 (22 x 23 x 1277). Both numbers are multiples of 23, the number of man.
If one were take from the 101 odd valued letters, every other letter (i.e. the odd positioned from the list), the total would be 169 (132). And if one were to take from the 427 even valued letters, every other letter (i.e. the even positioned from the list), the total would be 16510 (2 x 5 x 13 x 127).
Although the total of the odd valued letters, and the total of the even valued letters have no numeric features, there is still something hidden in this division of the letters.
7.7.1Odd and even is determined by the last digit of a number. Using the first digit achieves something else. 269 letters have a first digit that is an odd number. Once again there is no numeric feature with their total. The total of their positions: 67758 = 2 x 3 x 23 x 491. 259 (7 x 37) letters have an even valued first digit. Again the total has no numeric feature. The total of their positions: 71898 = 2 x 3 x 23 x 521. Factor 23 appears again. This is much rarer than 7 or 13. Providentially, three factors are common (2, 3, and 23), just like in feature 7.7.
7.891 (7 x 13) letters are prime numbers, but there is no other feature. 437 letters (19 x 23. SF: 42 = 2 x 3 x 7.) are not prime numbers. Their total: 33267 = 3 x 13 x 853.
7.8.199 letters are in positions that are prime numbers.
a) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 b) 10 1 200 5 30 300 100 2 10 100 1 300 400 90 1 4 6 10 6 300 6 a) 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 b) 6 30 10 1 70 6 50 10 70 1 10 6 1 2 40 6 5 7 a) 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 b) 10 20 5 2 300 100 2 1 400 6 8 80 6 5 40 400 5 a) 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 b) 30 20 5 6 200 1 70 1 50 10 70 5 6 1 100 5 40 a) 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 b) 70 5 40 1 90 20 2 8 30 10 6 300 40 50 200 6 300 a) 467 479 487 491 499 503 509 521 523 (Letter position.) b) 30 8 2 10 10 5 80 6 6 (Letter value.)
Total of the letters (b): 5558 = 2 x 7 x 397. SF: 406 = 2 x 7 x 29.
7.8.2This means the remaining 429 (3 x 11 x 13) letters that are not in positions that are prime numbers is also a multiple of 7: 28077 = 3 x 72 x 191. SF: 208 = 24 x 13. SF: 21 = 3 x 7.
7.8.3The difference between the letters in positions that are prime numbers from those that are not: 22519 = 7 x 3217. SF: 3224 = 23 x 13 x 31.
7.9When the letters are added one by one, 82 times the accumulated total will be a multiple of 7.
a) b) c) a) b) c) a) b) c) a) b) c) 16 50 714 177 10 8834 313 50 18592 413 300 25389 20 6 1022 179 20 8904 321 2 18942 416 30 25620 46 2 3192 183 200 9310 324 90 19082 421 30 25774 57 6 3451 185 1 9401 326 6 19089 426 30 26250 59 6 3507 189 6 9912 336 30 19866 437 6 27160 65 300 3913 198 200 10563 339 400 20272 440 30 27510 68 10 3934 201 6 10577 342 6 20293 458 6 28546 93 5 5229 202 70 10647 346 1 20391 460 50 28602 97 1 5243 203 7 10654 348 400 20797 463 300 29008 99 30 5278 213 2 11410 364 200 22288 468 20 29120 102 40 5390 215 10 11620 366 20 22309 478 5 29911 109 10 5586 221 20 12551 372 40 22407 483 400 30765 110 70 5656 237 2 13888 373 70 22477 490 4 31052 114 40 5810 240 40 13944 377 40 22827 499 10 31556 128 5 6594 254 60 14567 380 10 22848 503 5 31577 134 200 6881 262 40 15757 382 30 22883 510 50 32417 137 6 6902 266 5 15813 384 100 23023 513 40 32473 147 300 7658 277 5 16051 390 2 23366 522 100 33173 152 1 7791 283 200 16933 395 6 23555 528 6 33635 162 40 8484 288 90 17437 398 6 23681 172 200 8778 308 30 18501 402 300 24241 a) Letter position. b) Letter value. c) Accumulated total.
Total of the positions where this happens (a): 23374 = 2 x 13 x 29 x 31.
7.9.2When the letters are added one by one, 42 times the accumulated total will be a multiple of 13.
a) b) c) a) b) c) a) b) c) a) b) c) 18 200 1014 123 80 6175 250 10 14456 399 200 23881 36 6 2301 130 6 6630 261 10 15717 413 300 25389 48 5 3198 146 20 7358 265 6 15808 427 10 26260 54 6 3354 155 10 8203 328 10 19149 451 30 27976 56 90 3445 157 6 8229 342 6 20293 456 2 28340 61 10 3523 163 5 8489 347 6 20397 468 20 29120 65 300 3913 173 10 8788 359 5 22035 484 6 30771 69 5 3939 188 5 9906 369 5 22360 494 20 31096 90 200 5213 202 70 10647 373 70 22477 503 5 31577 99 30 5278 241 5 13949 384 100 23023 524 10 33189 a) Letter position. b) Letter value. c) Accumulated total.
Total of the positions where this happens (a): 10171 = 7 x 1453.
7.9.3When the letters are added one by one, 241 times the accumulated total will be an odd number. The total of these letters: 17003 = 72 x 347.
7.9.4When the letters are added one by one, 287 (7 x 41) times the accumulated total will be an even number. The total of these letters: 16632 = 23 x 33 x 7 x 11.
7.9.5When the letters are added one by one, 121 times the letter position, letter value, and the accumulated total will all be even valued, and 32 times all three will be odd valued. Considering both categories as being purely odd/even, the total of these letters would be 8866 (2 x 11 x 13 x 31).
7.10Divide the letters into groups of 8 and add up each group.
7.10.1.1Odd valued groups of 8: 14007 = 3 x 7 x 23 x 29.
7.10.1.2Even valued groups of 8: 19628 = 22 x 7 x 701.
7.10.2Divide the letters into groups of 11 and add up each group.
7.10.2.1Odd valued groups of 11: 13951 = 7 x 1993.
7.10.2.2Even valued groups of 11: 19684 = 22 x 7 x 19 x 37.
7.10.3Divide the letters into groups of 22 and add up each group.
7.10.3.1Odd valued groups of 22: 14189 = 7 x 2027.
7.10.3.2Even valued groups of 22: 19446 = 2 x 3 x 7 x 463.
7.10.4Divide the letters into groups of 44 and add up each group.
7.10.4.1Odd valued groups of 44: 25949 = 7 x 11 x 337.
7.10.4.2Even valued groups of 44: 7686 = 2 x 32 x 7 x 61.
7.11Divide the letters into alternating groups of M and N-number of letters, where M and N are multiples of 7 or 13.
7.11.1Alternating groups of 13 and 35.
7.11.1.1Groups of 13: 7861 = 7 x 1123.
7.11.1.2Groups of 35: 25774 = 2 x 72 x 263.
7.11.2Alternating groups of 104 and 28.
7.11.2.1Groups of 104: 27174 = 2 x 3 x 7 x 647.
7.11.2.2Groups of 28: 6461 = 7 x 13 x 71. SF: 91 = 7 x 13.
7.11.3Alternating groups of 49 and 39.
7.11.3.1Groups of 49: 18130 = 2 x 5 x 72 x 37.
7.11.3.2Groups of 39: 15505 = 5 x 7 x 443. SF: 455 = 5 x 7 x 13.
7.11.4Alternating groups of 238 and 52.
7.11.4.1Groups of 238: 29890 = 2 x 5 x 72 x 61.
7.11.4.2Groups of 52: 3745 = 5 x 7 x 107. SF: 119 = 7 x 17.
7.11.5Alternating groups of 78 and 98.
7.11.5.1Groups of 78: 15540 = 22 x 3 x 5 x 7 x 37. SF: 56 = 23 x 7. SF: 13.
7.11.5.2Groups of 98: 18095 = 5 x 7 x 11 x 47. SF: 70 = 2 x 5 x 7. SF: 14 = 2 x 7.
Conclusion
A multitude of numeric features based on Revelation 1:8's principle of complementary opposites tie Deuteronomy 31:14-17 with its fulfillment in Isaiah 8:13-17. It is uncertain when God hid His face from Israel, but it is clear this was the case by the time Isaiah wrote his prophecy. The natural question is when this will end. When will God reveal His face to Israel? This is found in Ezekiel 39:28-29 after Magog's failed invasion. Revelation 20:7-8 places this 1000 years after Armageddon. Israel has a long journey to complete.